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1. Introduction

In-situ chemical analyses of the surfaces of planets, their moons, as-
teroids and comets conducted during space missions are an important
step towards a better understanding of the origin and evolution of our
planetary system. Measuring isotope and element abundances of plane-
tary materials, including soils, rocks and individual minerals provides
information on the chemical differentiation of the planet, geological
evolution and weathering processes on its surface. These chemical data
place critical constraints on models for the origin and evolution of
planetary bodies in the solar system (Tolstikhin and Kramers, 2008).
Such investigations also support the search for bio-signatures, which are
of considerable interest in the research of possible past and present life
(Hays, 2017; Neubeck, 2016; Tulej, 2015; Wiesendanger, 2018). The
development of space instrumentation capable of sensitive in-situ mea-
surements of elements and their isotopes is therefore of uttermost
importance to cosmochemistry and planetology. Spectroscopic methods,
such as gamma-ray, X-ray or neutron spectroscopy, while yielding valu-
able scientific data, are often limited by their inability to measure isotope
ratios and by their low sensitivity to many elements. Analytical in-
struments employed on planetary surfaces so far include the Alpha Pro-
ton X-Ray Spectrometer (APXS) (Rieder et al., 1997, 2003) and the Laser
Induced Breakdown Spectrometer (LIBS) (Maurice et al., 2012; Wiens
etal., 2012), both on the surface of Mars. However, they can provide only
elemental analyses with a sensitivity down to the permille range. Sample
return missions bear the risk of contamination as well as being expensive,
technically challenging and increasingly difficult for far away planetary
objects. In addition, such missions will be able to return only small
amounts of sample material that could be insufficient for many analytical
methods. For these reasons, powerful in-situ instruments are needed.

Laser Ablation and ionization Time-of-flight Mass Spectrometry
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(LIMS) developed into an important analytical technique for future in-
situ applications in space research based on the progress in laser tech-
nology and fast electronics. Miniaturized time-of-flight mass spectrom-
eters are especially suitable for space missions because of their light and
robust design and easy operation while still maintaining the capabilities
of larger laboratory instruments. For example, in a study on Pb isotopes
the results from a miniaturized LIMS and a laboratory-sized TIMS in-
strument were of comparable quality (Riedo et al., 2013b). The instru-
ment used for this study is a miniature reflectron-type laser ablation
time-of-flight mass spectrometer (LMS), designed and built at the Uni-
versity of Bern in 2003 for the lander of the BepiColombo mission to
Mercury (Rohner et al., 2003). Since its initial construction, the instru-
ment has undergone significant improvements in the laser ablation ion
source, electronics and data acquisition system. The details of the design
and construction of the LMS instrument can be found in previous pub-
lications (Riedo et al., 2013a, 2013b, 2017). Recently, we developed an
instrument operation mode that greatly enhances the detection sensi-
tivity for heavier elements by preventing the lighter and highly abundant
elements from reaching the detector (Wiesendanger et al., 2017).

In the current study we investigated the lunar meteorite Sayh al
Uhaymir 169 (SaU169) with the LMS instrument to test its ability for
precise and accurate in-situ measurements for planetary research, which
cannot be performed with instrumentation currently in use on planetary
surfaces. SaU169 was found in 2002 in Oman and is described in more
detail by Russel et al. (2003). It consists of two different lithologies. A
holocrystalline, fine-grained polymict impact-melt breccia makes up
around 86% of the rock volume. This part of the meteorite is extremely
enriched in K, REE and P, attesting to the presence of KREEP material.
The remaining 13% are shock-lithified regolith breccia.

The sample investigated in this study contains plagioclase, metallic
iron, spinel, olivine, and orthopyroxene (Gnos et al., 2004). It was
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studied with our LIMS instrument to obtain composition data that can be
used to reconstruct the petrogenesis of this material. Element abundances
were measured over a square area of 450 mm?. In addition, the outline of
a zircon grain was mapped and the grain was analyzed for its trace
element budget.

2. Material and methods

LMS is a miniature reflectron type time-of-flight mass spectrometer.
Details of the design and operation of the instrument can be found in
previous publications (Riedo et al., 2013a and b). The instrument is
located inside an ultra-high vacuum chamber and operated at a back-
ground pressure of mid 1077 mbar. The samples are placed beneath the
entrance of the instrument where they can be positioned with the help of
a xyz-translation stage with 2 pm positioning accuracy. A Ti-sapphire
laser (A = 775 nm, t ~ 190 fs, repetition rate <1 kHz, intensity <1
mJ/pulse) is used for the ablation and ionization process. The laser beam
is focused on the sample via an optical system to a spot size of about 15
pm in diameter. The produced ions enter the analyzer where they are
accelerated before entering the field free drift tube (mass-to-charge
separation). After passing the drift tube, the ions enter the ion mirror, get
reflected, pass the drift tube again before they arrive on the
micro-channel plates (MCP) detection system (Riedo et al., 2017). This is
the standard TOF configuration using a time-focussing ion mirror (Roh-
ner et al., 2003). Two high speed data acquisition cards are used to record
the signals generated by the detector system. The acquired spectra are
then stored on a measurement computer. A high-voltage pulser, coupled
with one element of the ion optical system, can be used to remove ions of
a defined mass range from detection. For example, this allows for opti-
mization of the detection of low abundance elements at high masses. The
pulser generates a temporary high-voltage pulse with about 10 ns rise
and fall times, stopping light ions from reaching the detector and
therefore increasing detection sensitivity by about a factor 4 for heavier
elements (Wiesendanger et al., 2017).

The sample is placed on a stainless steel sample holder and introduced
into the main vacuum chamber with a sample introduction system. The
distance between the entrance of the analyzer and the sample is chosen in
such a way that the focal point of the laser lies just at the sample surface.
The voltage settings of the ion optics are optimized to keep sufficiently
high mass resolution and high ion transmission at the same time. The
optimization can be done manually or with the help of a performance
optimizer (Bieler et al., 2011). The laser itself can be operated in two
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different modes, in standard mode, applying pulses at a rate of 1 kHz, or
in group mode, where a pulse train of an adjustable number of pulses are
sent to the sample, resulting in the same number of recorded spectra
(typically around 100) that are accumulated in one file. Several files are
accumulated for each position to reduce statistical fluctuations and in-
crease the effective signal-to-noise ratio (SNR). Typically about 60’000 to
80’000 spectra can be accumulated at one spot before the peak intensities
disappear, due to the sample surface moving out of the laser focus point.
The sequence of these spectra can be used also for depth profiling of
complex materials (Grimaudo et al., 2015, 2017; Neubeck et al., 2016;
Tulej et al., 2015), but this capability was not used in this study. A raster
software is used to measure at several pre-defined positions in one
measurement campaign automatically. Three detector channels with
different gain factors are used for the data acquisition, resulting in a high
dynamic range up to 8 orders of magnitude (Riedo et al., 2017). After the
measurement, the data are processed with a custom-designed analysis
software (Meyer et al., 2017). The element abundances resulting from
these measurements and the subsequent processing are given in units of
the fraction of the number of atoms of particular element to the total
number of atoms ablated.

3. Results and discussion
3.1. The SaU 169 sample and EDX measurements

Three fragments of the Sayh al Uhaymir 169 meteorite were inves-
tigated. Images of the sample pieces are shown in Fig. 1a. The meteorite
consists of two lithologies, an impact-melted breccia and a regolith
breccia; both of them are present in the meteorite pieces used for this
study. Prior to the mass spectrometric analysis, the samples were addi-
tionally investigated with Energy-Dispersive X-ray Spectroscopy (EDX)
(Russ, 1984). The information obtained from the EDX analysis served as a
guiding study for the spatial distribution of Zr on the KREEP material
surface. Zirconium in lunar material appears in higher abundances only
in the form of the mineral zircon (ZrSiO4). This mineral is unique because
of its chemical and physical durability. Furthermore, it is a common host
for a variety of trace elements such as Hf, Y, REE as well as U, Th and
radiogenic Pb (Gnos et al.,, 2004; Lin et al., 2012), which makes it
especially interesting for radio-isotopic dating methods (Allegre, 2008).
Other trace elements in zircon, such as Ti can be used to estimate its
crystallization temperature (Watson et al., 2006; Ferry and Watson,
2007). Several zircon grains were located on the exposed sample surface

Fig. 1. a.) Optical image of the three SaU 169 samples. b.) Optical image of a zircon grain in the KREEP-rich sample. c.) EDX image of the same zircon grain. d.) SEM

image of the zircon grain.
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during the EDX measurements. The presence of baddeleyite (ZrO») in the
investigated area can be excluded because the mass spectra clearly show
Zr, Si, and O in the proper amounts for zircon (ZrSiO4) (Fig. 2b). Typi-
cally, the zircons in the Sayh al Uhaymir 169 meteorite are 20-50 pm
large (Gnos et al., 2004; Lin et al., 2012), the one used for this study is
almost 500 pm in the long dimension, which is larger than the typical
zircon grain in this meteorite. Panels b-d in Fig. 1 show the optical, EDX
and scanning electron microscope (SEM) images of one zircon grain
located on the KREEP-rich material of the sample.

3.2. Mass spectrometric analysis of SaU 169

3.2.1. Relative sensitivity coefficients

As with most analytic instruments performing quantitative analysis,
the sensitivity of the laser ablation/ionization ion production may differ
for each element and the physical and chemical properties of the sample
materials, including light absorptivity, reflectivity, laser system, subli-
mation temperature, material porosity and chemical composition.
Therefore, typically a calibration is necessary before the quantitative
measurements of element abundances are to be conducted. These cali-
bration factors, called relative sensitivity coefficients (RSCs), are defined
as:

RSC = measured element composition/real element composition

The RSC of an element X is then calculated according to.Equation (1):
RSC calculation

e (2AT /XA
(Px/2P")

where n is the number of measured locations that contain the element X,
A¥ is the peak area in the mass spectrum of the element X for the ith
position, A is the total number of atoms of all the elements in the
spectrum, Py the known atomic fraction of the element in the sample and
pit corresponds to the total fraction of all the measured elements (Neu-
land et al., 2014). The number of atoms of an element or isotope is ob-
tained by the integration of the relevant mass peak area in the mass
spectrum.

In addition, a sufficient number of measurement locations on the
sample is needed to establish a statistically robust set of RSCs. With this

RSCx = (€D)]
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Fig. 2. Typical mass spectra for two positions on the KREEP-rich sample. Top
panel: Position in the matrix area, bottom panel: measurement position inside
the zircon grain.
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method, we determined such a robust set of RSCs by measurements on a
sample of known composition and of similar texture and composition as
the main sample. The material used to determine the RSC values should
be similar in texture and composition to the sample to be investigated.
For this study a set of RSCs for the main rock forming elements was
determined on the regolith part of the SaU 169 meteorite, from which the
bulk composition is known from previous studies (Gnos et al., 2004).
Several locations in the most homogeneous areas were measured on the
rock sample, where only small mineral grains were present.

In earlier investigations, comparisons of LMS with laboratory-sized
instruments (ICP-CRI-MS and LA-ICPMS) showed good agreement with
the LMS results (Grimaudo et al., 2017). Alternatively, a suitable stan-
dard of known composition should be used to establish the RSCs. Using
standards for reference is certainly a viable option also for space appli-
cations. Moreover, duplication of the measurements in space by ones
with the same instruments on the ground is often done to verify the
interpretation of the measurements in space. Once the RSCs were
determined and their accuracy tested on several mineral grains of the
KREEP sample, the main measurements could be conducted.

3.2.2. Elemental analysis and mineral identification

Two typical mass spectra, one from the center of the zircon grain and
one from the surrounding matrix area, are shown in Fig. 2. Mass spectra
accumulated from a total number of 20’000 laser shots at each position
with a laser irradiance of 7.8 TW/cm? were sufficient for accurate
chemical analysis of the sample. The 20’000 laser shots correspond to a
depth of about a few tens of pm.

The mass spectrum obtained from the fine-grained matrix area is
shown in the top panel of Fig. 2. The spectrum shows that high abun-
dances of O, Mg, Al Si, K, Ca, Ti and Fe, common in many rock-forming
minerals, are readily detected. Abundances of Li, Na, and K may be
affected by terrestrial contamination. However, a possible contamination
would be restricted to the near-surface area, thus we excluded the first
500 laser shots from the analysis, i.e., starting the analysis about a pm
below the surface. With a mass resolution of around m/Am =~ 350-400
(FWHM) for most of the measured mass peaks, all the major elements can
be measured with an accuracy of the isotopic ratios at the percent level.
The mass spectrum from the interior parts of the zircon grain (bottom
panel of Fig. 2) shows a distinct element composition. As expected the
elements Zr, O and Si are the most abundant elements in the spectrum,
together with their oxides ZrO and SiO and some doubly charged ions
O™ and Si™", implying pure zircon is present. Hafnium and Y are
common trace elements in zircon and can be measured at every position
in the grain. The heavy REEs Yb, Dy, Gd, and Er can be detected at many
positions in the grain. Also the light elements Al, Na, K and Mg as well as
some Fe have been observed as trace elements in zircon before. The
presence of these impurities in zircon agrees with earlier determinations
of the chemical composition of the zircon grains in the Sayh al Uhaymir
169 meteorite [Lin et al., 2012].

Systematic measurements of the surface composition were done by
investigating a grid of 15 x 15 locations, a total of 225 individual mea-
surement spots. The laser probes an area of @15 pm. The distance be-
tween spots of 30 pm was chosen to avoid any cross contamination of
adjacent measurements. This gives a square area of 450 pum? on the
KREEP-rich sample piece that was analyzed. The area was chosen to
include parts of a zircon grain. Even though this raster pattern does not
give a complete coverage of the investigated area the measurements can
be plotted as 2D composition maps for each element identified in the
mass spectra.

Plotting the element abundances on two-dimensional surface maps
helps identifying regions with different element compositions. Fig. 3a
represents the atomic fraction of the Zr abundances over the measured
area. The map shows a very clear outline of the mineral grain with
element abundances of around 15-16% Zr atomic fraction for the ana-
lyses sampling only the grain. The abundance of Ti on the measured
surface is shown in Fig. 3b. Positions with a Ti abundance of close to 20%
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Fig. 3. Maps showing the element distribution in the KREEP-rich sample. a.) Distribution of Zr. b.) Distribution of Ti. c.) Distribution of (Mg + Fe)/Si, indicating the

presence of pyroxene. c.) Distribution of REEs.

indicate the presence of ilmenite inclusions. The material surrounding
the larger mineral grains consists of different fine-grained minerals. From
the abundance of key elements these minerals can be identified. Fig. 3¢
shows that orthopyroxene, identified by (Mg + Fe)/Si ~ 1, is very
abundant in the matrix material. A surface map of the REE abundances is
shown in Fig. 3d, with the most abundant REEs being Yb and Er in the
zircon and La and Ce in the matrix material. It has to be noted that the
map represents the total abundance of REEs, summing up the pertaining
elements. The concentrations of the REEs outside the grain are highest in
areas containing pyroxene. The light REE show highest abundances in the
fine grained matrix material.

The chemical compositions of individual spot analyses are further
investigated by their display in ternary diagrams shown in Fig. 4: one for
the area on the KREEP part of the sample (Fig. 4a) and one for the spot
analyses conducted on the regolith part of the sample (Fig. 4b). The el-
ements and their ratios were chosen to differentiate between and to
identify the most common minerals in lunar samples. The nominal
element ratios of the components of the minerals correspond to the ideal
chemical formula and are represented in the figures by the green square
symbols, surrounded by a coloured area indicating a chemical variability
of +£10% for all three ratios, since the element compositions of minerals
can vary to a certain degree in natural minerals due to substitution of
different elements. Note that the uncertainties for the determination of
the element ratios plotted in Fig. 4 are about 10%, corresponding
approximately to the size of the marker symbols. Spots measured inside
the zircon grain are specially emphasized by red symbols. It is clearly
visible that the majority of these positions have element ratios close to
the nominal composition of zircon. Red spots outside this area corre-
spond to the positions close to the rim of the zircon grain where other
minerals are present in the spot sampled by the laser. The surrounding
matrix material consists mainly of pyroxene (ortho- and clinopyroxene),
plagioclase (anorthite-rich), K-feldspar as well as some ilmenite. Most of
the measured positions in the matrix material consist of a mixture of
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several minerals as the grains in the matrix are smaller than the diameter
of the laser spot (~15 pm). The data points for these analyses therefore
lie between those of the end-member minerals.

Fig. 4 b shows an area of the matrix with compositions concentrated
in the olivine/orthopyroxene area, thus with much higher homogeneity.
Further analysis was done to determine the Mg + Fe to Si ratio. A ratio
near two is characteristic for olivine whereas a ratio near one corre-
sponds to orthopyroxene. The area proved to be a large olivine grain with
possible small inclusions of other minerals. The small drift towards (Ca +
Ti) in Fig. 4b is due to traces of Ti, present in various positions in the area,
most likely due to small inclusions of ilmenite.

3.3. Crystallization temperature of zircon

Due to its unique chemical and physical durability zircon is
commonly found in rocks other than the ones in which it originally
crystallized. To place the mineral in a geological context it is crucial to
identify the origin of zircon, especially since it is commonly used to
perform radio-isotope dating to obtain time constraints on its formation.
In addition, the trace elements in zircon preserve valuable information
about its formation conditions. It has been found that the Ti concentra-
tion in zircon correlates with the temperature at which the grain origi-
nally crystallized. The log-linear dependence of the amount of Ti in
zircon with its crystallization temperature was first proposed by Watson
et al., in 2006 (Watson et al., 2006). At higher temperatures more Ti ions
can substitute for either Zr or Si during crystallization. Once the tem-
perature decreases, the Ti remains in the crystal structure.

In this study the abundance of Ti in one zircon grain was measured in
56 positions and an approximate crystallization temperature was derived
from these measurements. The estimate is calculated using the revised
dependence of the Ti abundance, log (Ti), on the crystallization tem-
perature T according to Ferry and Watson (2007):

Equation (2): Titanium-temperature dependence
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Fig. 4. Ternary diagrams to visualize the minerals present in the sample: a) Area containing a zircon grain on the KREEP-rich sample; b) Area on the border between

the KREEP-rich and regolith parts of the meteorite.
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log(Ti)=5.711 — % — log(asio, ) + log(ario,) + log(azsio, )- (@3]

The two values asip, and aro, are concentrations corrected for
reduced oxide activities (chemical potential) of Si- and Ti-oxide. They
depend on the composition of the parent magma during crystallization.
The exact composition of the melt from which the zircon crystallized is
not known, but a common SiO5 content of lunar basalts from which
zircon can crystallize is 50-60% wt%. Lunar basalts tend to be saturated
in ilmenite and not rutile, thus the activity of TiO, is lower than unity. In
a silicate melt aryo, is typically 0.6-0.9 (Watson et al., 2006; Ferry and
Watson, 2007).

The azsios takes into account the incorporation of other trace ele-
ments in the zircon grain. Using Raoult’s law it follows that

azsio, = Xzisioy s

where Xz:si04 is the mole fraction of ZrSiOy4 in the grain. To minimize
possible contributions from nearby minerals during analysis, only posi-
tions clearly separated from the grain boundary were used. These ana-
lyses were selected by their molecular fraction of ZrSiO4 being no less
than 95%, thus az;sio4 is close to 1. The element abundances were cali-
brated using the same RSCs determined earlier for the mineralogical
analyses. Using these values, the calculated temperature will likely be a
slight underestimation of the real crystallization temperature. The results
obtained with the Ti-in-zircon thermometer are visualized in a histogram
plot shown in Fig. 5. The temperatures range from 850 to 1450 K, with an
average temperature of 1176 K and a variance of 140 K. The Ti content
varied in the measured positions without showing a consistent pattern.
The thermometer tends to yield a minimum crystallization temperature
because the maximum Ti content is only achieved if sufficient Ti is
available for partitioning into zircon. Thus, lower estimated tempera-
tures can indicate a reduced activity of Ti, that is common if no Ti-phase
is present. However, the KREEP basalt contains ilmenite, minimizing this
problem since it assures constant activity of Ti in the mineral assemblage.
Consequently, the most likely cause for the range in temperatures ob-
tained is crystallization of zircon during magma cooling and
solidification.

The estimated high temperatures are very close to the melting tem-
perature of KREEP-rich basaltic melts. Basaltic melts have a temperature
of around 1200 °C during eruption. It is therefore reasonable to assume
that the analyzed grain could have formed in a slowly cooling and
evolving melt when it reached zircon saturation.

3.4. Measurements of trace elements with the use of a high-voltage pulser
In the last measurement campaign, the ion optics of the LMS instru-

ment was coupled with a high-voltage pulser. The pulser generates a
temporary pulse of variable duration on one electrode of the ion-optical

Mean Temperature:
1176K + 140K
(n=56)

Analysis Spots

700 800 900 1000 1100 1200 1300 1400 1500 1600
Temperature in K

Fig. 5. Histogram of the crystallization temperature derived from the Ti content
in a zircon grain. The determined temperature follows a normal distribution
with p = 1176 + 140 K.
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system, which prevents the ions from reaching the MCP detector. With
this set-up, the high-voltage pulse duration can be chosen in such a way
that the light, high abundant elements are prevented from reaching the
detector system. This leads to an increased detection sensitivity of the
heavy elements due to the increased number of available and fresh pores
for signal amplification of the MCPs of the detector system (Wie-
sendanger et al., 2017).

A set of measurements was then conducted on the KREEP material of
SaU169 using the high-voltage pulser. The pulse duration was adjusted to
detect only elements with masses higher than Fe. Several positions, both
in and around zircon grains were analyzed. It was found that the SNR of
the measured REEs could be increased by a factor of four while
comparing to the previous measurement campaign. This allowed for
resolving of the individual mass peaks. Additionally, 238y and 23%Th,
which have abundances in the ppm range, were readily detected on
several positions in the zircon. Radiogenic Pb, from the decay of U and Th
accumulated in the zircon, was only detected at one location. Even
though a single measurement cannot be statistically significant, a rough
age estimation of the grain was determined from these data using the
ratio of the measured 23U and 2°°Pb peaks according to (Allegre, 2008):

Equation (3) Estimation of the zircon crystallization age

1 Pb
t=—oin{—+1). 3
Aa3g n(U )

The RSC values for Pb and U could not be determined in this mea-
surement. Using a correlation that was found between the RSCs and the
first ionization potential of an element (Neuland et al., 2016; Zhang et al.,
2013) one can obtain an estimation of the RSC values of Pb and U. Using
these RSCs, we determined the crystallization age of t = (3517 + 130)
¢10° a. This age is slightly lower than earlier age determinations with
laboratory instruments. From the 2°’Pb/2%°Pb isotope measurements
Gnos et al. (2004) derived an average age of t = (3909 + 13) ¢10° a from
measurements of 12 zircon grains, and Lin et al. (2012) derived an
average age of t = (3921 + 3) 10° a from 5 zircon grains. From U-Pb
measurements Liu et al. (2009) determined an age t = (3918 + 9) e10°a
from 9 analyses on 4 zircon grains. Since the sample is brecciated, there is
the possibility that the large zircon grain is derived from an external
source and thus the small grains do not record the same age as the large
grain. More measurements at different locations on the sample will be
needed to improve the statistical quality of the age determination in
future measurements with the LMS. Moreover, 207pp,/206p should be
preferred for radio-isotope dating, as the ratio between the different Pb
isotopes are independent of RSC values. Nevertheless, the current mea-
surement demonstrated that using LMS it is possible to conduct relatively
accurate in-situ radio-isotope age determinations on single minerals in a
rock on a planetary surface. Moreover, these in-situ measurements are
valuable to pick suitable samples on a planetary surface for their trans-
port to Earth within a sample return mission.

4. Conclusion and outlook

The lunar meteorite Sayh al Uhaymir 169, that contains KREEP rich
material, was investigated with our miniature laser ablation time-of-
flight mass spectrometer to simulate the expected performance of in-
situ measurements on the surface of a planetary body. The abundances
of the major elements on the KREEP part of the rock were measured and
plotted on a two-dimensional surface map to identify different mineral
phases in the sample. The element distribution maps reveal the grain
boundaries and allow identification of individual minerals and their
major and trace element compositions.

In the second measurement campaign the instrument was coupled
with a HV pulser to increase sensitivity of the measurements. It could be
shown that the detection sensitivity for heavy trace elements can be
significantly improved while removing light elements from the analyzed
ion beam. This study provides also measurements of U, Th and Pb
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elements present inside a single zircon grain. With the abundances of U
and Pb in the zircon grain a preliminary age estimation of the zircon
could be made and was found to be in reasonable agreement with ages
reported in literature. Moreover, from the Ti concentration in the zircon
grain a crystallization temperature was derived. Thus, by employing such
an instrument on a planetary surface, scientific useful in-situ measure-
ments on the element composition, the mineralogy, petrology and dating
of surface samples can be accomplished.
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