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Abstract. Photons traveling cosmological distances through the inhomogeneous
Universe experience a great variation in their in-medium induced effective mass. Using
the eagle suite of hydrodynamical simulations, we infer the free electron distribution
and thereby the effective photon mass after reionization. We use this data to study the
inter-conversion of kinetically mixed photons and dark photons, which may occur at a
great number of resonance redshifts, and obtain the “optical depth” against conversion
along random lines-of-sight. Using COBE/FIRAS, Planck, and SPT measurements,
we constrain the dark photon parameter space from the depletion of CMB photons
into dark photons that causes both spectral distortions and additional anisotropies
in the CMB. Finally, we also consider the conversion of sub-eV dark radiation into
ordinary photons. We make the line-of-sight distributions of both, free electrons and
dark matter, publicly available.
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1 Introduction

The dispersive properties of photons change inside media, a phenomenon generally
referred to as refraction. If the medium is locally isotropic, the propagation of trans-
versely polarized photons may be understood as them carrying an effective mass [1].
The latter depends on the plasma frequency which in turn is principally determined
by the density of free electrons,1

mA(ne) ≈
√

4παne
me

. (1.1)

Here ne is the free electron number density, α is the fine-structure constant, and me is
the electron mass.

The Universe is filled with free electrons, and for the better part of its history it resides
in a highly ionized state. Hence, whenever the photon frequency ω approaches (1.1)
or falls below, medium effects in the propagation of photons cannot be neglected.
In the early Universe (for redshift z & 100) the electron number density is largely
homogeneous and is well-described by its spatial average value 〈ne〉. However, at lower
redshifts, inhomogeneities become large and structure formation enters the non-linear
phase. In the past two decades, numerical simulations have allowed to build the bridge

1See Appendix A for discussion on corrections to (1.1).
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Figure 1: Free electron number density as a function of redshift (red line) and aver-
age baryon number density (blue dotted line). The ratio between the two thick lines
describes the average degree of ionisation. For z < 6 the fluctuating electron number
density along an exemplary random continuous LOS through the eagle simulation
volume is shown. The red dot-dashed lines schematically indicate the era of reioniza-
tion [6, 7], unknown in detail and not further considered in this work. Above z > 20
we tie the fluctuations of electron density directly to the one of DM.

between linear and non-linear regimes of gravitational collapse and to gain a detailed
understanding of the dynamics of structure formation, from cosmological scales down
to the scales of galactic astrophysics. Properties of the structures in the Universe
at largest scales are captured well by dark matter (DM)-only simulations [2] as it
is the dominant component of matter in the Universe. However, at smaller scales,
the feedback from baryonic matter is important (see e.g. [3]). Both components can
influence each other and must therefore be evolved self-consistently.

Hydrodynamical simulations such as the Evolution and Assembly of GaLaxies and their
Environments (eagle) suite have been devised to capture such baryonic feedback
processes using sub-grid physics inputs for radiative cooling, star formation, stellar
mass loss, energy feedback from star formation, AGN feedback and so forth [4, 5].
Extracted quantities such as galaxy stellar mass function, star formation rates, Tully-
Fisher relation, total stellar luminosities of galaxy clusters can then be compared to
observations. In this paper we use a cosmological representative volume (100 cMpc)3

from the eagle simulation to extract the number density distribution of free electrons.
This simulation self-consistently evolves the baryonic profiles, and hence contains the
information of ne because of overall charge neutrality.

An example for the electron density along a random continuous line-of-sight (LOS) is
shown in Fig. 1. The thick red (blue dotted) line shows the average density of free
electrons (baryons) as a function of redshift. After recombination, at z ∼ 1100, the
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average free electron fraction is ∼ 10−3 and both lines depart from each other until
reionization, which concluded by z = 6 and may have started as early as z . 20 [6, 7].
In the latter period, the average density of free electrons grows (region between dashed
red lines) and the Universe transitions from mostly neutral to predominantly ionized
again. This process leads to highly inhomogeneous electron density distributions, as
reionization happens in patches (e.g. in the form of bubbles of ionized gas around the
sources of ionizing radiation). Post reionization, as can be seen by the spikes in Fig. 1,
the electron density fluctuates significantly while following the cosmological (1 + z)3

trend of the mean density of the Universe. Structure formation leads to a large density
contrast of the plasma in compact galaxy clusters, cosmic filaments, and volume filling
voids, resulting in the highly inhomogeneous electron density distribution.

One of the main goals of this paper is to describe the properties of the effective photon
mass in the low-redshift Universe z < 6 in a form convenient for applications. We
make the density distribution of free electrons among random LOS on the sky as well
as DM density publicly available at [8]. Also, as the effective photon mass depends on
the chosen LOS we calculate the fluctuations associated with different directions on
the sky and extract observables from that.

As a natural application of our results we consider models of new physics containing
dark photons that are kinetically mixed with the Standard Model photon [9–11]. In
this setup both states can undergo vacuum oscillations into each other—a feature that
can be constrained by the measurements of the cosmic microwave background (CMB)
radiation when the dark photon mass is below the eV-scale [12, 13]. The medium effect
on photons, however, allow for a large enhancement of this conversion probability,
namely, once mA(ne) equals the dark photon mass. The mixing between both states
becomes maximal, and resonant flavor conversion between the states becomes possible.
Applied to the CMB, in [14–16] this was used to constrain dark photons under the
assumption of a homogeneous Universe, where the electron density in (1.1) was taken
to be the cosmological averaged one, 〈ne〉.2 The results of our simulations will allow
to lift such simplifying restrictions and study dark photon-photon conversion in the
cosmological context and under realistic conditions of an inhomogeneous Universe,
and extend and solidify previously derived CMB constraints.3 Our results can also
be applied to the case in which a significant abundance of dark photons is present
or is being generated as the Universe evolves, allowing for conversion from the hidden
sector into the low-energy part of the CMB spectrum. A companion paper [26] exploits
this and uses our results to constrain the scenario put forward in [27] that proposes a
solution of the EDGES anomaly [28] using such conversion of dark photons during the
dark ages.

The paper is organized as follows: in Section 2 we describe the procedure of extracting
of the free electron number density and DM density from simulations and of con-

2The cosmology and astrophysics of sub-eV dark photons has further been studied in [17–24].
3A similar approach was recently taken in [25]. Whereas we use the direct input from simulations

to extract ne, [25] uses probability distribution functions (informed from numerical simulations).
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structing a random continuous LOS thereof. In Section 3 we describe the model of a
kinetically mixed dark photon and discuss properties of the resonant conversion. In
Section 4 we discuss the impact of conversion on the CMB spectrum and put con-
straints on the on the mixing between dark and ordinary photons. In Section 5 we
consider a model where dark photons are created from DM decays and describe the
properties of the signal that is expected in this case.

2 Description of simulations

The eagle simulation [4, 5] is a suite of smoothed particle hydrodynamic (SPH)
simulations that follow the cosmological structure formation from z = 127 to z = 0
with the Planck 2013 cosmological parameters [29]. For this work, we use the reference
simulation L100N1504 with a box size of L = 100 comoving Mpc (cMpc). Dark matter
and baryons are both modelled with N = 15043 particles with an initial particle mass
of 1.81×106 M� for baryons and 9.7×106 M� for dark matter. eagle therefore resolves
baryonic (DM) structures down to masses of ≈ 108 M� (≈ 109 M�).

The properties of all 6.8 billion particles in the simulation are stored at 29 discrete
points in time (“snapshots”), unequally spaced in redshifts between z = 20 and z = 0
and publicly released [30]. For additional information on the dark matter density at
z > 20 the simulation was re-run with identical initial conditions but without hydro-
dynamics until z = 20. A full list of the snapshots used in this work can be found in
Table 1.

Table 1: Redshifts (column 1), their corresponding lookback times in Gyr (column
2) and expansion factors (column 3) of simulation outputs (“snapshots”) used in this
work. We do not use the eagle snapshots during or before reionization (z ≥ 6)
(marked with an asterisk) for the electron density, but still include them for the DM
distribution. The eagle public data release includes snapshots for z ≤ 20 and we
supplement this data with snapshots of a dark matter only simulation with the same
initial conditions as in eagle (marked with two asterisks).

Redshift Lookback time Expansion factor

0.00 0.00 1.000
0.10 1.34 0.909
0.18 2.29 0.846
0.27 3.23 0.787
0.37 4.16 0.732
0.50 5.19 0.665
0.62 6.01 0.619
0.74 6.71 0.576
0.87 7.37 0.536
1.00 7.93 0.499
1.26 8.86 0.443
1.49 9.49 0.402

– 4 –



Table 1 – continued from previous page

Redshift Lookback time Expansion factor

1.74 10.05 0.365
2.01 10.53 0.332
2.24 10.86 0.309
2.48 11.16 0.207
3.02 11.66 0.249
3.53 12.01 0.221
3.98 12.25 0.201
4.49 12.46 0.182
5.04 12.63 0.166
5.49 12.75 0.154
5.97 12.86 0.143
7.05* 13.04 0.124
8.07* 13.16 0.110
8.99* 13.25 0.100
9.99* 13.32 0.091
15.13* 13.53 0.062
20.00* 13.59 0.047
22.50** 13.61 0.042
25.00** 13.63 0.038
30.00** 13.66 0.032
40.00** 13.70 0.024
50.00** 13.72 0.019
75.00** 13.739 0.013
100.0** 13.748 0.009
125.0** 13.752 0.007

We extract random electron number density lines of sight (LOS) through the simulation
boxes to calculate the conversion of CMB photons into dark photons in Section 4. As
eagle does not include radiative transfer nor neutral gas physics, the gas properties
are modelled inaccurately before and during re-ionization. We therefore limit the
electron number density LOS to z < 6, after re-ionization is completed [31]. At these
redshifts, neutral gas contributes only at the per cent level to the energy density of the
Universe [32].

In Section 5 we explore the signal expected if dark photons are sourced through dark
matter decay and later resonantly convert into photons. For this, we extract dark
matter LOS for all snapshots listed in Table 1, including the high-redshift (z > 6)
snapshots.

While we assume a homogeneous electron density between recombination (z ≈ 1100)
and z = 20 in Section 4, the validity of this assumption is verified by approximating the
electron density distribution in the redshift range 20 < z < 125 from the dark matter
distribution, normalized to the mean ionization fraction from RECFAST [33, 34]. An
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example for this renormalized electron density LOS is illustrated in Fig 1 for 20 < z <
125.

The left panel of Fig. 2 shows a 25 ckpc slice of the resulting electron density dis-
tribution within the simulation box at z = 0, smoothed onto a grid with pixels of
20 ckpc×20 ckpc×25 ckpc4. Each pixel row (or column) of the resulting electron den-
sity image corresponds to one potential line of sight. For illustration purposes the right
panel of Fig. 2 shows the electron density along a specific LOS that passes through
the center of the most massive cluster at this redshift (indicated as white dotted line
in the left panel).

The electron density is not directly available from the eagle data. Assuming that the
contribution from neutral gas is negligible for z < 6, the free electron number density
can be calculated from the hydrogen and helium number densities, nH and nHe and
their ionization states. The contributions from the various ionization stages of other
elements are negligible. The ion fractions of hydrogen and helium are calculated with
the spectral synthesis code Cloudy v17.01 [36] for gas exposed to a redshift-dependent
UV background [37].

Note that eagle does not directly model neutral gas and the neutral fraction of dense
gas would have to be modeled separately. This can be done for example with fitting
functions from radiative transfer simulations [38]. As we do not focus here on gas
inside galaxies, this correction is not necessary.5

Higher electron density peaks, such as the centres of galaxy clusters are rare and cover
only a small area. The probability of a random LOS to pass through a high-density
peak is therefore � 1 for each snapshot. In fact, at redshift z = 0, our simulation
volume contains 10 galaxy clusters, each of which has a total mass of > 1014 M� and
the projected area of their centres (with radius rc ≈ 500 kpc) cover less than 0.1
percent of the cross section of the simulation box.

For each snapshot, 100 LOS were randomly selected, each with 5000 points along the
x-axis. An example of the electron and DM number densities for the redshifts z = 0,
z = 1 and z = 3 is shown in Fig. 3. The average electron number density and DM
density in all used snapshots (z < 6 for ne, z ≤ 125 for ρDM) is shown in Fig. 4. In
the left panel we see that the average values in our simulations agree well with the
cosmological average in the assumption that for z < 6 the gas is fully ionized.

4We use py-sphviewer [35], a public python package for fast SPH interpolation of parti-
cle properties onto a predefined grid. We also produce data for thicker LOS with pixel size
20 ckpc×20 ckpc×250 ckpc. They give similar results, see Appendix B for discussion. Later in
this work we will use only thinner LOS.

5 The cosmic fraction of neutral hydrogen after reionization is at the per-mile (per-cent) level at
z=0(5.9) [31, 32]. Significant amounts of HI and H2 are found in the ISM where their fraction is larger
than 90% for nH & 0.01 cm−3 [39, 40]. However, galaxies are typically irrelevant when considering
random line of sight, as we do in this work, and we are not affected by the complications of galactic
astrophysics.
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Figure 2: Electron number density image (left) at z = 0 with dimensions of 100
cMpc × 100 cMpc × 25 ckpc. A line of sight from the snapshot (dotted white line)
is calculated in an over-dense region. The ne along this LOS is shown in the right
panel, where the peaks correspond to the brighter regions in the density image, Lx is
a distance along the line of sight within simulation box. As this slice and LOS are
selected to pass through the center of the most massive cluster of this snapshot for
illustration, the average density of the LOS (“LOS average”) is higher than the average
density of the full slice (“slice average”), which is still elevated compared to the mean
density of the Universe (“theoretical average”).
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Figure 3: Electron number density (left panel) and DM density (right panel) for the
same LOS at 3 different redshifts z = 0, 1, 3. Lx is a distance along the line of sight
within simulation box.

2.1 Construction of continuous lines of sight

In our simulation data, the total comoving distance of all available snapshot constitutes
∼ 30% of the total comoving length of a line of sight. To fill the gaps between snap-
shots we take random lines of sight from the closest available snapshots and use them,
properly re-scaled, to generate continuous LOS for ne(z) and ρDM(z). The algorithm
is the following:

1. We divide the line of sight by boxes (zk, zk+1), each has the comoving length that
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Figure 4: Mean density of electrons (left) and DM (right) averaged over 100 LOS
from the snapshots listed in Table 1 (blue dots); red lines show the cosmological mean
densities.
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Figure 5: Electron number density (left panel) and DM density (right panel) for the
same LOS from 3 neighbouring snapshots with z = 0, 0.1, 0.18. The densities are scaled
as (1 + z)−3, Lx is a distance along the line of sight within simulation box.

same as a size of the simulation L.

2. For each box, we find the nearest available simulation snapshot.

3. In this simulation snapshot at redshift zsim, we take a random LOS and multiply
it by the factor

ne/ρDM(zk) = ne/ρDM(zsim)

(
1 + zk

1 + zsim

)3

. (2.1)

4. Finally, we take the transformed data and insert it between (zk, zk+1). In this
way we generate continuous lines of sight.

To check the validity of this procedure, we compare three nearest snapshots and checked
that indeed, the density fluctuation in the neighboring snapshots scales as (1 + z)−3,
see Fig. 5 where we see a good agreement between scaled LOS. This means that scaling
of the nearest snapshot used in our procedure is a good approximation.

We apply this procedure to both the electron number density ne and DM density ρDM.
The example of the continuous LOS are shown in Fig. 6. We make the data on the
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Figure 6: Electron (left) and DM (right) densities for one random continuous LOS
extracted by combining all available snapshots. Red lines show the cosmological mean
densities.

electron number density and DM density as well a code for the construction of the
continuous LOS publicly available [8].

3 Photon - dark photon conversions

The prototype scenario for which the effective photon mass plays an important role
is a kinetically mixed vector, or “dark photon” A′. It interacts with the photon A
via the kinetic mixing of their field strength tensors F ′µν and Fµν with a dimensionless
coupling ε [9–11]:

L = −1

4
F 2
µν −

1

4
(F ′µν)

2 − ε

2
FµνF

′µν +
1

2
m2
A′(A′µ)2 + eAµJ

µ
em. (3.1)

Here mA′ is the dark photon mass and the last term is the photon interaction with the
electromagnetic current Jµem, which is ultimately responsible for the medium-induced
mixing modification. The origin of mA′ is phenomenologically irrelevant for the pur-
pose of this work; it may arise from the spontaneous breaking of the U(1)′ or be of
Stückelberg type.

Inside a medium, the forward scattering of photons on its constituents affects both
the mixing between transversely polarized states A and A′ as well as the photon’s
dispersion relation. As a result (see e.g. [41] for details) the mixing constant ε should
be substituted by an effective mixing angle εeff ,

ε2eff =
ε2m4

A′

(Re ΠT −m2
A′)2 + (Im ΠT )2

, (3.2)

where ΠT is the in-medium photon self energy for transversely polarized states. In the
case that is relevant here the dispersion relation of a photon of energy ω and momentum
~k can be written as ω2 − ~k2 = Re ΠT ' m2

A(z, ne) where mA is the effective photon
mass. As can be seen, at m2

A(z, ne) = m2
A′ the effective mixing becomes maximal
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and resonant conversion is possible. The probability of A′ → A conversion is then
PA′→A(ω) = 1− p [14] where p = exp[−πε2m2

A′R/ω] is the level-crossing probability of
the two-state system with scale parameter R; p = 0 for adiabatic transition and p→ 1
for non-adiabatic transitions. In the non-adiabatic regime the conversion probability
is given by

PA′→A = PA→A′ ' ε2
πm2

A′

ω
R, (3.3)

where ω is an angular frequency of the photon at the time of conversion. Whenever
PA′→A reaches unity, one should use the full expression for the transition probability,
however in this work we always stay in the regime PA′→A � 1.

While a photon (dark photon) propagates through the Universe, the condition of res-
onant conversion m2

A(z) = m2
A′ can be satisfied many times. The total probability of

conversion Ptot along some continuous LOS has contributions from a potentially large
number of resonances. Let us denote redshifts of conversion by zi and the probability
of conversion by Pi. As long as the individual probabilities Pi � 1, we can express the
total conversion probability as

Ptot(ω) =
∑
i

Pi −
∑
i 6=j

PiPj + · · · ' πε2m2
A′

ω

∑
i

Ri

(1 + zi)
θ(zmax − zi) (3.4)

where any terms that are of higher order in Pi correspond to back-and-forth conversion
of quanta yielding small corrections to the overall probability which have been neglected
in the last equality as they are of order ε4; for later convenience we have also introduced
a cutoff redshift zmax that corresponds to the redshift where the initial photon (dark
photon) was created. The scale parameter is given by [14]

Ri =

∣∣∣∣d lnm2
A

d`

∣∣∣∣−1

`=`(zi)

=

∣∣∣∣d lnne
d`

∣∣∣∣−1

`=`(zi)

, (3.5)

where ` is the distance traveled by a photon (dark photon) along the line of sight and
we used Eq. (1.1) in the second equality.

It is clear that Ptot depends on the distribution of matter encountered along a particular
continuous LOS. Therefore, Ptot (and any signal that is produced from conversion)
will have an anisotropy that is reflective of the variance of Ptot as one scans through
(simulated) directions on the sky. This effect is important during the reionization
that happens in the redshift interval 6 . z . 20 [6, 7], for which the resonance
condition can re-occur as 〈Xe〉 changes from 10−3 to practically unity. In fact, because
of its patchy nature, inhomogeneities in ne may be significant during reionization.
However, our knowledge about reionization history is quite uncertain, and we exclude
this region from our analysis, resulting in a conservative estimation of the overall
conversion probability. Our principal investigations start with redshift z = 6, below
which the resonant density may be achieved at a great number of redshifts zi along
each continuous LOS (see Fig. 6) because of structure formation.
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Figure 8: The ratio of the standard deviation and the average value of the probability
of conversion, as a function of zmax (left panel) and the resonant electron number
density ne,res (right panel). Parameters are chosen in the same way as in Fig. 7.

From Eq. (3.4) follows that Ptot is inversely proportional to the frequency ω, favoring
the conversion of low energy quanta, and that it depends on the resonant concentration
ne,res (fixed by mA′) and redshift zmax. The average value of Ptot, obtained as the
mean from 100 random continuous LOS, and divided by ε2 as a function of the cutoff
redshift zmax and for three choices of resonant electron number density is shown in the
left panel of Fig. 7.6 As can be seen, 〈Ptot〉 saturates with the earliest encountered
resonance either before or at redshift z = 6 beyond which we stop the continuous LOS
simulation for ne. In the right panel of Fig. 7 we show average conversion probability
as a function of the resonant electron number density for zmax = 6. It has maximum
at ne,res ∼ 3×10−5 cm−3, where we expect the largest number of resonant conversions,

6 We have checked the convergence of the averaging procedure by taking random subsets with 30,
50 and 80 continuous LOS of these 100 LOS and found that the standard deviation did not change
by more than 10%, which is sufficient for our purposes.
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see Fig. 6.

In Fig. 8 we show the standard deviation of the conversion probability, δPtot/〈Ptot〉. It
has a minimum at the resonance number density ∼ 10−6 cm−3, i.e. for a value of mA′

where a particularly large number of resonant points along each LOS is encountered.
For lower and higher resonant number density, the variance grows. The scatter in
〈Ptot〉 will translate into anisotropies of the observed photon flux, and is always in
excess of 5%. This number, however, is intrinsic to the LOS size, for which we chose
a cross-sectional area of (25 × 20) ckpc2, with a physical area that is dependent on
redshift (see Section 4 for more detailed discussion).

In our simulations we also have DM data between redshifts 20 and 125, where the
Universe was assumed homogeneous in the previous works [14, 15]. We use scaled DM
data as the electron number density (as it is shown in Fig. 1) and calculate conversion
conversion probability for such 100 LOS. The result for the ratio of conversion prob-
ability including inhomogeneities and conversion probability in the assumption of the
homogeneous Universe is shown in Fig. 9. We see that this ratio is close to unity, so
the assumption of a homogeneous conversion works well for z > 20.

In the next sections we will use the obtained result on the conversion probability to
predict spatial and spectral properties of observable signals that result from A ↔ A′

conversions. We consider two scenarios: i) the conversion of CMB photons into dark
photons which is insensitive to a pre-existing dark photon abundance, and ii) the
conversion of A′ fluxes into usual photons. For both cases, the total probability of
conversion is given by Eq. (3.4) with an appropriate choice of zmax to be discussed
below.
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Figure 10: Constraints on the dark photon parameter space from distortions of the
CMB spectrum measured by the COBE/FIRAS (blue line). The gray dashed and
black dot-dashed line show the constraints obtained in [14, 15] under the assumption
of a homogeneous electron number density. The red dotted line is a result of recent [25]
that uses a semi-analytic approach to inhomgeneous conversion employing PDFs for
the distribution of electron density; the results are in good agreement. The shaded
region indicates the excluded parameter space.

4 Conversion of CMB photons into dark photons

The resonant conversion of photons will result in distortions of the CMB spectrum,
which in turn limits the photon-dark photon interaction [14, 15]. Previous constraints
were obtained using the conversion in the homogeneous limit. It was assumed that
after recombination, for z & 20, the density of free electrons follows the cosmological
average with the resonance condition inferred from the spatially averaged version,
mA(z, 〈ne(zres)〉) = mA′ at a single redshift zres. As we discussed in the previous
section, this assumption works well in the high-redshift Universe, where it was also
applied in the context of the cosmological 21 cm signal [27]. Here we discuss the late-
time inhomogeneous conversions that give rise not only to modifications of the CMB
spectrum, but also to additional angular anisotropies in the CMB that are probed
through precision cosmological observations [26].

The loss of CMB photons through resonant conversion induces spectral modifications
and departures from the blackbody law. With its strength regulated by ε and its
occurrence governed by mA′ we can derive limits on the combination of those two
parameters. Departures of the absolute flux of photons are constrained from measure-
ments of COBE/FIRAS [42], which determined the CMB spectrum in the frequency
range 68 to 637 GHz with a precision of 10−4. In addition, as we have seen above, the
conversion probability is anisotropic. At the end of this Section we will hence place
additional constraints on excess variations of the photon flux from Planck and South
Pole Telescope (SPT).
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Because of the resonant conversion some part of the CMB photons will become dark
photons and will be lost,

Bω(ω) = BCMB
ω (ω)[1− 〈Ptot(ω)〉], (4.1)

where BCMB
ω is the spectral radiance of the unmodified CMB and Ptot(ω) is given

by (3.4) using zmax = 1700 and averaged as described above. We then fit Eq. (4.1) to
the COBE/FIRAS data, for which the overall temperature of the CMB is allowed to
float in BCMB

ω .

In Fig. 10 we present the excluded region of parameter space with 2σ confidence level
(shaded region above blue line). For comparison, previous results obtained in [14, 15]
and [25] are shown as labeled. The former set of papers calculated the constraint
under the assumption of a homogeneous Universe, while the latter paper (red line) is
the result of a recent work that included information about inhomogenities using a
semi-analytic approach adopting various probability distribution functions (PDFs) for
the electron number density. Note that the difference in the gray and black lines in
the region of dark photon mass from 10−14 to 6×10−13 eV is coming from the different
assumptions about redshift of reonization considered in works [14, 15], see right Fig. 1
in [14] and Fig. 2 in [15]. As can be seen, the main benefit of using inhomogeneous
conversion is the extended reach in mA′ , corresponding to values of ne,res that are
simply not met when using cosmological average values for the electron density. For
mA′ > 10−11 eV, i.e., ne,res & 0.1 cm−3, there are no resonances in our simulations at
low redshift, and the constraint is derived from the high-redshift conversion at z > 20
in the homogeneous limit and with 〈Xe〉 obtained with RECFAST [33, 34]. In the
region where we set the constraint from simulations our result agrees with [25] in the
interval 3 × 10−15 ≤ mA′/ eV ≤ 3 × 10−12. In the small adjacent regions outside that
interval our results differ, presumably because the method used in [25] does not take
into account the largest under- and overdensities, as they restrict their analysis to
10−2 < 1 + δ < 102.

As alluded to above, a qualitatively different constraint can be obtained from measured
CMB anisotropies, that are mapped with a high precision by the Planck satellite [43]
and the SPT [44], among other probes. To put a constraint, we use the obtained
variance in Ptot and follow the same procedure that is described in the companion
paper [26] where anisotropies were used to limit dark photon conversion instead. Con-
cretely, we calculate the standard deviation for the spectral radiance along random
continuous LOS,

δBω(ω) = BCMB
ω δPtot(ω) (4.2)

and compare with the CMB flux variance measured by all-sky surveys at the exemplary
frequencies ν = 70 GHz (Planck) and ν = 150 GHz (SPT). It is important to note,
that the LOS width at a cosmological distance away from z = 0 is typically smaller
than the width that corresponds to the best angular resolution of Planck (SPT). To
make an estimate we assume that LOS within the angular resolution of Planck (SPT)
are independent and we divide the variance by a factor NLOS(z = 6) that corresponds
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Figure 11: Constraints on the dark photon parameter space from the distortions
of the CMB spectrum measured by COBE/FIRAS (blue line and shaded region, as
in Fig. 10), and estimates of the constraints from CMB anisotropies measured by
Planck (green line) and SPT (red line). The solid green and red lines assume that
the variance of the converted flux is smaller by a factor NLOS mimicking the finite
resolution of Planck (SPT), while dashed lines show the exclusion without penalty, see
text for details.

to the number of continuous LOS that are required to fill “one Planck (SPT) angular
pixel” at z = 6, NLOS ' 43000 (670) for Planck (SPT).

The contours where the CMB flux variance is equal to the variance induced by the
loss of CMB photons from resonant conversion is shown in Fig. 11. Two contours are
shown: one for which the conversion variance was divided by the number of LOS in
one pixel (solid lines) and one, where the variance of our simulations is left unchanged
(dashed lines). We expect that the actual sensitivity lies in between both contours,
likely closer to the solid lines.

There are two possible improvements on the CMB anisotropy constraint. Firstly, in
the estimate above we used the all-sky variance of the CMB flux that corresponds to
the all-sky temperature anisotropy δTCMB/TCMB =

∑
`(2` + 1)/(4π)C` ≈ 4 × 10−5.

However, if the signal is most prominent on an angular scale θ < θmax, a stronger
constraint using Planck (SPT) data can be put using multipoles ` & π/θmax in the
above sum. Secondly, we use a very simple and robust exclusion condition in that the
total variance in the flux of converted photons should be smaller than the total CMB
anisotropy. One may, however, instead compute the power spectrum of converted flux
and hence constrain excess power in individual `-modes. For a more detailed discussion
on using CMB anisotropies as a probe for dark photon conversion, see the companion
paper [26].
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5 Conversion of dark photon into usual photons

The phenomenology of resonant conversion becomes richer when considering pre-existing
fluxes of dark photons that can be converted into the visible sector. A simple possi-
bility is to source such dark radiation through DM decays. For example, a realization
that was considered in [27] is to use an axion-like particle a as DM. Supplementing
(3.1) with

L′ = 1

2
(∂µa)2 − m2

a

2
a2 +

a

4fa
F ′µνF̃

′µν (5.1)

induces a two-body decay a→ A′A′ that sources dark radiation in form of A′ particles.
Here, ma is the DM mass and fa is the axion decay constant. Note that since the
DM decay rate Γa→A′A′ ∝ m3

af
−2
a , sub-eV mass DM requires a low-scale axion with

fa . 1 TeV to obtain any appreciable decay rate (that still satisfies Γa→A′A′/H0 . 0.1
in agreement with general bounds on decaying DM [45]). As the link to the Standard
Model is protected through the kinetic mixing portal, the stellar cooling constraints
only require ε/fa . 2× 10−9 GeV [27].

The model above was considered to explain the EDGES anomaly [28]. In this work we
derive detailed spectral and spatial properties of this signal without relation to EDGES
by making use of dark matter and free electron density maps obtained from the eagle
simulation. The application of these results to EDGES and corresponding constraints
are reported in ourr companion paper [26].

A dark photon created from DM 2-body decay at redshift zdec will have an initial energy
ma/2. Propagating towards Earth, it may then be converted to a normal photon at
some redshift zres. Once the photon, created in this way, arrives at Earth, its frequency
ω will be given by

ω =
ma

2(1 + zdec)
. (5.2)

Photons that are produced by resonances before recombination, zdec ≥ 1700, may be
lost by free-free absorption (inverse Bremsstrahlung), inducing y-type spectral distor-
tions instead [46]. The optical depth against absorption is inversely proportional to the
cubic power of the photon energy, and the Universe becomes transparent to photons
that are born with initial energy in excess of ∼ 1 GHz at recombination [46] (hence,
in principle, observable at MHz frequencies today.) As we are concerned with higher
energy quanta, we may consider the Universe as transparent post recombination.

The observed differential flux of photons at Earth can then be written as

FA(ω) = Fno conv
A′ (ω)Ptot(ω), (5.3)

where for brevity we have introduced a notation for the frequency- and angle-differential
flux, F(ω) ≡ dF/dωdΩ(ω) and generally suppressed the dependence on the LOS direc-
tion in all quantities. The first factor, Fno conv

A′ , describes the differential flux of dark
photons from DM decays in the case if no conversion happened between decay point
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Figure 12: The expected photon flux at Earth as a function of frequency for different
values of resonance number density. To produce this figure we fixed ma = 10−4 eV,
ε = 10−9, Γa→A′A′ = (10 t0)−1, where t0 = 13.8 Gyr is the age of the Universe.

and Earth, while Ptot is the total probability that a dark photon is converted into a
photon while it propagates from zdec to Earth, given by Eq. (3.4) with zmax = zdec.

The dark photon flux is given by (a derivation is provided in Appendix C; see also
previous works [27, 47])

Fno conv
A′ (ω) =

Γa→A′A′

2πH(zdec)ma

ρDM(zdec)

ω(1 + zdec)3
θ
(ma

2
− ω

)
, (5.4)

where zdec is expressed via the frequency ω and axion mass ma through Eq. (5.2),
ρDM(z) is the DM density along the line of sight and θ is a unit step function. Note
that while in previous contexts this formula has been applied to the cosmological
distribution of DM, here it is written in a way that is suitable to be evaluated for the
actual DM distribution along a continuous LOS.

The photon flux in Eq. (5.3) is proportional to the DM density at the decay redshift
zdec, that is connected to the photon frequency via (5.2). Therefore, the spectral shape
of the signal is proportional to the DM density distribution along the line of sight
ρDM(z). The details of ρDM(z) affect only the spectrum of the signal, but not the
overall number of dark photons produced.

We now use our simulation to obtain properties of the signal in this model. Figure 12
shows examples of converted photon flux as a function of frequency for 6 values of
resonance number densities (dark photon mass). To elucidate the dependence on the
model parameters, let us introduce the dimensionless variable x = 2ω/ma. The photon
flux at Earth (5.3) can be rewritten as

FA(ω) = 2ε2Γa→A′A′
m2
A′

m3
a

f

(
2ω

ma

)
, f(x) = x

ρDM[zdec(x)]

H[zdec(x)]

∑
i

Ri

1 + zi
. (5.5)

The dependence on ma enters through the ratio x = 2ω/ma and, additionally, ma de-
fines the overall amplitude ∝ m−3

a . The dependence on the frequency is more involved.
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Figure 13: An example of photon flux generated along an exemplary LOS (red line)
for the resonant electron number density ne,res = 10−5 cm−3. The blue line shows the
flux where one LOS segment has been replaced in order to cross through a cluster at
z = 0.1. The parameters of the model are chosen as in Fig. 12.

Let zmax
res,low be the redshift of the last resonance in the low-redshift region z < 6 and

zres,high the redshift of the resonance in the high-redshift region z > 20. Consider then
a region where there are no resonances (for which zdec is between zmax

res,low and zres,high

or above zres,high). In this region the frequency dependence in Eq. (5.5) is defined
only by the factor xρDM[zdec(x)]/H[zdec(x)]. Here ρDM ∝ (1 + zdec)

3 ∝ x−3, while
H ∝ (1 + zdec)

3/2 ∝ x−3/2 in the matter dominated epoch and H ∝ (1 + zdec)
2 ∝ x−2

in the radiation dominated epoch. Therefore,

FA(ω) ∝
{

1/
√
ω, zmax

res,low < zdec < zres,high or zres,high < zdec � zeq,
const, zdec � zeq,

(5.6)

where zeq is the redshift of matter-radiation equality. For larger frequencies for which
zdec < zmax

res,low decays happen inside the region of low-redshift resonances, less resonances
contribute to the conversion and the spectrum is steeper than ∝ 1/

√
ω.

Another effect that we observe in Fig. 12 is that for large resonant electron number
densities the signal cuts off before the frequency reaches its maximal allowed value
ma/2. This happens because in our random LOS approach, the electron number den-
sity does not reach the required ne,res value at low enough redshift, see Fig. 6. Such
conversion is contingent on the LOS passing through the centers of galaxy clusters,
which is associated with a small probability as discussed above.

For concreteness, we shall consider the example of a rare LOS that passes through
the center of the most massive cluster in our simulation at z = 0.1. Given that the
signal is proportional to DM density along continuous LOS, one expects a significant
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Figure 14: The standard deviation of the DM density normalized to the average
DM density as a function of decay redshift. To produce this figure we generated 1000
random LOS for DM density in each snapshot.

increase in flux from DM decays inside the cluster. This translates to a peak at a
characteristic frequency, shown by the blue line in Fig. 13. Such a signal can be
searched for by telescopes with high energy resolution. Nevertheless, the encounter of
a cluster does not change much the overall conversion probability of the signal from
higher redshifts.

Finally, along different spatial directions on the sky the flux of converted photons at
a given frequency will fluctuate because of variations in the DM density and in the
probability of conversion. For a given direction on the sky, the flux, normalized to its
mean value is given by

FA(ω)

〈FA(ω)〉
=

ρDM(zdec)

〈ρDM(zdec)〉
× Ptot

〈Ptot〉
, (5.7)

where 〈. . . 〉 is the all-sky average for fixed zdec and ne,res. On the RHS we used that DM
density and the probability of conversion are statistically independent, as DM decay
and dark photon conversion tends to happen at spatially well separated locations. We
hence can investigate the fluctuations in both factors independently.

The variance of the second factor in Eq. (5.7) we have already investigated, see Fig. 8.
To calculate fluctuations originating from the spatial distribution of DM, we used
1000 × 5000 points at each redshift, corresponding to 1000 LOS. The result is shown
in Fig. 14. We see that fluctuations of the DM density decrease with redshift as the
Universe becomes more homogeneous. The variances of both factors in Eq. (5.7) are
used in our companion paper [26] to constrain the model proposed in [27] that is able
to resolve the EDGES anomaly.

6 Conclusions and discussion

In this paper we study the cosmological distribution of the value of effective photon
mass and its effect on the propagation of light through the Universe. Using eagle
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simulations, we extract the electron number density along random LOS for the low-
redshift, post-reionization Universe at z < 6. It is tied to the number density of
baryons and the growth of non-linear structure make it a highly fluctuating quantity.
We find, that a given value of ne, within a broad interval 10−9 . ne/cm−3 . 10−1, is
met a great number of redshifts when intersecting voids and filaments. In contrast,
collapsed structures like galaxy clusters are rarely met in a random LOS with a cross-
sectional area of (25 × 20) ckpc2. For higher redshifts, 20 ≤ z ≤ 125, we use DM
density as a proxy to infer the value of ne. In this work, we stay clear from the epoch
of reionization at 6 . z . 20, as the detailed nature of its progression is uncertain. We
note, however, that we expect the electron density to be fluctuating significantly at the
process of transitioning from a largely charge neutral to ionized Universe proceeds by
the growth of patches. More advanced simulations which take into account radiative
transfer, such as Aurora [48] are needed in this case. We leave a study of latter point
for future work.

The effective mass of the photon can be important for models where photons kinetically
mix with a dark vector particle, generally referred to as dark photon. The value of the
effective photon mass after recombination is in the the range 10−15 . mA/ eV . 10−9,
and the mere presence of a dark photon with a mass in that interval allows for the
resonant conversion between both states.

In a first part, we study generic constraints on the ε-mA′ parameter space that are
independent on any cosmological population of dark photons. Using the CMB as
a precision probe, we study the loss CMB radiation quanta during propagation and
investigate additional anisotropies that are being imprinted in this process. Using the
spectral measurements of the COBE/FIRAS instrument, values of ε in the ballpark
of 10−6 are constrained by deviations from the blackbody law, Fig. 10. Resolving the
inhomogeneities in the late time Universe, allows us to improve previous constraints [14,
15] on three decades in dark photon mass, and in good agreement with independent
similar recent work [25].

In Figure 11 we then present the estimate of the constraint that can be derived from
conversion-induced excess temperature anisotropy in the all-sky observed variance in
the 70 GHz and 150 GHz channels of Planck and SPT, respectively. This is the first
constraint of this sort on the dark photon model, and kinetic mixing angles ε & 10−4 are
conservatively excluded in the range 10−15 . mA′/ eV . 10−11. The latter constraint
can be (significantly) strengthened by computing the angular power-spectrum of the
modified signal and comparing it to the observed values of C`, mode by mode in `; we
leave such investigation for future work.

In a second part, we consider the case of a dark radiation component in form of dark
photons. For concreteness, we assume that A′ were sourced monochromatically, in the
2-body decay of DM with cosmologically long lifetime, τa � H−1

0 . The great num-
ber of resonances together with the instantaneous conversion into ordinary photons,
produce observable fluxes that carry tomographic imprints of the intervening electron
density along any random LOS, Fig. 12. The overall flux amplitude depends on ε2/τa.
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Depending on the value of this combination, the signal from late-time conversion can
be constrained both from the measurements of the value of CMB temperature as a
function of frequency by COBE/FIRAS and from CMB anisotropies by Planck, SPT,
among others. These constraints are explored in the companion paper [26]. Finally, we
note that the predicted signal can be also probed by lower-frequency radio telescopes
like LOFAR [49] or SKA [50].

Probing larger values of dark photon mass through cosmological resonant conversion
in the late time Universe hinges on the values of maximal encountered electron density.
In our simulations we resolve regions with . 0.1 cm−3. However, these high values are
present along LOS that we consider only at z = 4 − 6, where the average density is
high, so these values of ne do not correspond large overdensities. At lower redshifts,
regions of high electron densities are associated with the central regions of galaxy
clusters and within galaxies. This will result in an additional contributions to the
expected signals from many point-like sources, and constitutes another avenue for
further investigation.

The simulated data on ne(z) and ρDM(z) as well as the Mathematica notebook that
is able to access this data is made publicly available at the Zenodo platform [8]. We
provide functions for the calculation of conversion probability along continuous LOS
and for the signal-generation in the explored model with DM.
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A Effective photon mass in the medium

In this work, we are interested in the conversion between physical one-particle states,
hence only transverse polarizations are relevant. The general dispersion relation of a
photon with energy ω and three momentum ~k is the solution to ω2−~k2−Re ΠT,L(ω,~k) =

0 where ΠT(ω,~k) is the in-medium polarization function, see e.g. [51]. Notwithstanding

a generally complicated dependence of frequency ω(~k) and “effective photon mass” on
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Figure 15: Left panel : comparison of the constraint from FIRAS discussed in Section 4
without effects from the neutral hydrogen (blue line) and with neutral hydrogen (red
line). Right panel : the ratio between the constraints on ε shown on the left panel.

photon momentum, away from resonances of bound electrons and in an isotropic, non-
degenerate and non-relativistic medium and to leading order in α the latter takes a
constant form, Re ΠT,L ' ω2

p where ω2
p ' 4παne/me is the squared plasma frequency.

Hence, we identify m2
A = ω2

p from Eq. (1.1). For sub-eV frequencies, when including
the contribution from neutral hydrogen, the expression is modified to [14]

m2
A ' ω2

p − 2ω2(n− 1)|H. (A.1)

Here, (n − 1)|H ' 13.6 × 10−5 (ω ≤ 1 eV) is the neutral hydrogen gas index of
refraction [52]. Corrections to (A.1) arise from the finite temperature of the gas, from
ions, as well as from neutral helium. All these contributions are suppressed and can
be neglected for the purpose of this paper. Figure 15 explores the influence of the
neutral hydrogen component on the resulting constraints from COBE/FIRAS. As can
be seen, results are practically identical with at most a 10% correction, and we may
take m2

A = ω2
p, justifying Eq. (1.1).

B Dependence on LOS averaging width

In this work we use LOS that are extracted from simulation slices of constant comoving
width of 25 ckpc. In our companion paper [26] we use thicker slices of 250 ckpc width.
Both yield identical results on the average conversion probability within their standard
errors.

Figure 16 shows the electron number density and the DM density along the same LOS
at redshift z = 0. Although the thinner LOS contains more small-scale fluctuations
than the thicker one, it has practically no effect on the overall conversion probablity, as
demonstrated in Fig. 17. This is concordant with the observation that even in presence
of a large number of resonance crossings, Ptot is at most a factor of unity different from
the probability inferred from cosmologically averaged densities, see Fig. 9.
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Figure 16: An example of the electron number density (left panel) and DM density
(right panel) for the same LOS at z = 0, calculated using a thicker 250 ckpc (gray
dashed line) and thiner 25 ckpc (blue line) averaging width. Lx is a distance along the
LOS within the simulation box.
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Figure 17: Comparison of the total conversion probability calculated over 100 con-
tinuous LOS from two samples of simulations with thin (25 ckpc, red dots) and thick
(250 ckpc, black dots) LOS. The error bars show the standard deviation.

C Photon flux from dark photon conversion

For completeness, here we present a derivation of the photon flux from conversion of
dark photons that were created in DM decays. Consider a telescope with effective area
dA and angular resolution dΩ� 1 that is located at a redshift of observation zobs. The
photon flux depends on the number density of decaying DM, nDM(`), its mass ma, its
decay rate Γa→A′A′ , on the electron number density ne(`) and on the kinetic mixing
strength ε, where ` is a distance between the telescope and the given point along the
line of sight at the time of observation.

Given the negligible kinetic energy of DM with respect to its rest mass (a ratio of
10−4 − 10−6), A′ are always created with the same initial energy ma/2 in the assumed
2-body decay. The energy during conversion does not change, and assuming relativis-
tic particles throughout, neither does their momentum. The frequency of converted
photons ω measured by the telescope depends on the decay redshift zdec at which A′

– 23 –



was injected,

ω =
ma(1 + zobs)

2(1 + zdec)
. (C.1)

The flux of photons near the telescope is equal to the flux of dark photons near the
telescope without conversion, times the total probability of dark photon conversion
along its LOS until it reaches the observer

dFA
dωdΩ

(ω) =
dF no conversion

A′

dωdΩ
(ω)Ptot(ω). (C.2)

Consider a DM region with a number density nDM(zdec) that is located in the infinites-
imal redshift interval zdec and zdec + dzdec. Let us find the flux of dark photons near
the telescope considering that there is no conversion. The number of DM particles in
this region is

dNDM(zdec) = nDM(zdec)dV = nDM(zdec)`
2
decd`decdΩ, (C.3)

where `dec is the distance between the telescope and the DM region at the time of
decay, `dec = `(1 + zobs)/(1 + zdec), so

dNDM(zdec) =
(1 + zobs)

3nDM(zdec)

(1 + zdec)3
`2d`dΩ. (C.4)

The number of dark photons produced per time and energy is

dNA′

dtdE
(zdec) = 2Γa→A′A′dNDMδ

(
E(zdec)−

ma

2

)
. (C.5)

The number of dark photons that were emitted in the direction of the telescope with
area dA is

dNA′→telescope

dtdE
(zdec) =

dA

4π`2

dNA′

dtdE
(zdec) = (C.6)

=
Γa→A′A′(1 + zobs)

3nDM(zdec)

2π(1 + zdec)3
δ
(
E(zdec)−

ma

2

)
d`dΩdA. (C.7)

The frequency of emitted dark photons at arrival reads,

ω(zobs) =
1 + zobs

1 + zdec

E(zdec). (C.8)

The time interval dt between photons increases as

dt(zobs) =
1 + zdec

1 + zobs

dt(zdec). (C.9)
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Changing variables, the flux of dark photons at arrival reads

dNA′→telescope

dtdωdΩdA
=

Γa→A′A′(1 + zobs)
4nDM(z)

2π(1 + zdec)3

1

ω
δ

(
zdec −

ma(1 + zobs)

2ω
+ 1

)
d`. (C.10)

The physical distance along LOS to the point of DM decay (given by zdec), at the time
of observation, is given by

` =
1

1 + zobs

zdec∫
zobs

dz

H(z)
, (C.11)

where H(z) is a Hubble rate. Using this relation, we find the total flux of dark photons
at arrival at the telescope, F no conversion

A′ = dNA′→telescope/(dtdA), from all regions along
the line of sight in its energy and angular-differential form

dF no conversion
A′

dωdΩ
(ω) =

∞∫
0

Γa→A′A′(1 + zobs)
4nDM(zdec)

2π(1 + zdec)3

1

ω
δ

(
zdec −

ma(1 + zobs)

2ω
+ 1

)
d`

(C.12)

=
Γa→A′A′(1 + zobs)

3

2πH(zdec[ω, zobs])

nDM(zdec[ω, zobs])

(1 + zdec[ω, zobs])3

θ
(
ma

2
− ω

)
ω

, (C.13)

where θ(x) is a Heaviside step function and

zdec[ω, zobs] =
ma(1 + zobs)

2ω
− 1. (C.14)

At a resonance at redshift zres, a dark photon of energy ω converts to an ordinary
photon with probability

PA′→A =
πε2m2

A′

ω
R, R =

∣∣∣∣d log ne
d`

∣∣∣∣−1

zres

, (C.15)

Let us find the total conversion probability for dark photons of frequency ω at arrival.
For this, assume that the probability in each conversion is much smaller than unity
and the total conversion probability Ptot(ω) . 1. Then we can ignore back-conversions
and sum up the individual probabilities along the LOS,

Ptot(ω) =
πε2m2

A′

ω

∑
i

Ri

(1 + zi)
θ(zdec − zi). (C.16)

Finally, substituting (C.13) and (C.16) in (C.2) we arrive at the formula for the photon
flux near the telescope, in agreement with previous expressions [27],

dFA
dωdΩ

(ω) =
Γa→A′A′

2πωH(zdec[ω, zobs])

(1 + zobs)
3nDM(zdec[ω, zobs])

(1 + zdec[ω, zobs])3
Ptot(ω). (C.17)
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