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ABSTRACT
Annular structures in proto-planetary discs, such as gaps and rings, are now ubiqui-
tously found by high-resolution ALMA observations. Under the hypothesis that they
are opened by planets, in this paper we investigate how the minimum planet mass
needed to open a gap varies across different stellar host masses and distances from
the star. The dependence on the stellar host mass is particularly interesting because,
at least in principle, gap opening around low mass stars should be possible for lower
mass planets, giving us a look into the young, low mass planet population. Using
dusty hydrodynamical simulations, we find however the opposite behaviour, as a re-
sult of the fact that discs around low mass stars are geometrically thicker: gap opening
around low mass stars can require more massive planets. Depending on the theoretical
isochrone employed to predict the relationship between stellar mass and luminosity,
the gap opening planet mass could also be independent of stellar mass, but in no
case we find that gap opening becomes easier around low mass stars. This would lead
to the expectation of a lower incidence of such structures in lower mass stars, since
exoplanet surveys show that low mass stars have a lower fraction of giant planets.
More generally, our study enables future imaging observations as a function of stellar
mass to be interpreted using information on the mass vs. luminosity relations of the
observed samples.

Key words: accretion, accretion discs — circumstellar matter — protoplanetary
discs — hydrodynamics — submillimetre: planetary systems

1 INTRODUCTION

With the Atacama Large Millimetre Array (ALMA) tele-
scope having reached full operation, the field of proto-
planetary discs is undergoing a rapid observational expan-
sion. Thanks to the order of magnitude improvement in spa-
tial resolution, we now have the possibility of resolving the
signatures of planets in formation in these discs, in this way
transforming planet formation into an observational field.

The most striking result of these observations is the
ubiquity of annular structures, colloquially described as gaps
and rings. While some discs do show alternative structures
like spirals or crescents (e.g., van der Marel et al. 2013;
Casassus et al. 2015; Pérez et al. 2016; Boehler et al. 2018;
Cazzoletti et al. 2018), most of the discs observed at high
resolution are characterised by axisymmetric structures. The
prevalence of axisymmetric structures was already clear from
the publication of several high-resolution observations tar-
geting individual sources (ALMA Partnership et al. 2015;
Isella et al. 2016; Andrews et al. 2016; van der Plas et al.
2017; Fedele et al. 2017; Loomis et al. 2017; Fedele et al.

? E-mail: cas213@cam.ac.uk

2018; Dipierro et al. 2018; Clarke et al. 2018) and from the
survey in Taurus (Long et al. 2018), but recently it was
made even clearer by the publication of DSHARP (Andrews
et al. 2018b; Huang et al. 2018), a homogeneous high res-
olution survey of 20 discs. All the 18 single disc systems
show annular structure; only a minority also exhibit addi-
tional structure superimposed on the background annular
structure, with 3 showing spirals and 2 showing crescents.

Planets naturally create annular structures in discs
(e.g., Paardekooper & Mellema 2004; Pinilla et al. 2012;
Picogna & Kley 2015; Rosotti et al. 2016; Dipierro & Laibe
2017; Zhang et al. 2018) and are therefore the leading ex-
planation for these structures. There are however also alter-
native interpretations. An intriguing idea is that these ob-
served structures do not correspond to real features in the
disc surface density, but they are caused by opacity changes
(Zhang et al. 2015; Okuzumi et al. 2016; Pinilla et al. 2017;
Stammler et al. 2017). In this view the change in opacity
should happen at the locations of snowlines, where the most
abundant molecules change from the solid to the gas phase,
triggering compositional changes in the dust. Recent work
(Huang et al. 2018) however has put this idea into question
since the location of most of the observed gaps do not corre-
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spond to the predicted location of the snowlines. In addition,
some gaps do correspond to physical structures in the gas
surface density, as shown by gas emission line profiles (Isella
et al. 2016; Fedele et al. 2017) and kinematically derived ro-
tation curves (Teague et al. 2018a,b). Some gaps (Guzmán
et al. 2018) are so deep that they cannot be accounted for
by opacity variations, and they must correspond to a real
depletion in surface density. Still open instead is the pos-
sibility that these structures are created by the interplay
between magnetohydrodynamics (MHD) and dust dynam-
ics (e.g., Flock et al. 2015; Dullemond & Penzlin 2018). In a
similar way to planets, MHD processes can also alter the gas
surface density and its pressure profile, causing a variation
in the dust radial velocity and therefore its surface density.
This possibility has received less attention than the planet
hypothesis and it is currently less clear how to distinguish
between the two.

Rather than contributing directly to this debate, in this
paper we will focus on the planet hypothesis and explore
its consequences. One of the fundamental questions in this
case is what is the range of masses of the putative plan-
ets. Broadly speaking, on the upper end of the planet mass
range we can exclude in most cases that these planets are
gas giants of several Jupiter masses. These planets tend to
create non-axisymmetric structures like spiral arms and cres-
cents (see for example the gallery of simulated observations
in Zhang et al. 2018) and allow for very little passage of
dust through the planet orbit (Zhu et al. 2012), depleting
most of the disc interior to the planet location. As such,
they are more commonly invoked to explain the few discs
that show prominent spiral arms (Juhász et al. 2015; Dong
et al. 2016; Meru et al. 2017; Juhász & Rosotti 2018) or the
so-called “transition discs” (e.g., Pinilla et al. 2015; de Juan
Ovelar et al. 2016), rather than the gapped discs (though
with the recent high-resolution observations the distinction
between the two categories is becoming blurred). On the
lower end of the mass range instead, it is well known (Lin &
Papaloizou 1993; Crida et al. 2006) that there is a minimum
threshold mass needed to open a gap. In the gas case, it is
very well known that this depends on the disc aspect ratio
and viscosity; in general, gap opening requires higher-mass
planets if the disc is thicker (i.e., hotter) and more viscous.
ALMA observations however probe the dust. Because it is
easier to open gaps in dust than in gas, this mass threshold
is quantitatively different (lower) than for the conventional
gas case. Ultimately, however, the mass threshold should not
change qualitatively since the the dust morphology is set by
the underlying gas profile. In particular, the gas radial pres-
sure gradient determines the dust radial drift velocity, and
in turn its surface density (Zhu et al. 2012; Rosotti et al.
2016).

While the dependence of the gap-opening mass on the
disc parameters has been extensively studied in previous
works, a less explored aspect is the dependence on the stel-
lar mass. Since the gaps are of dynamical origin, the real
underlying parameter is the planet-star mass ratio, not the
absolute planet mass. Targeting lower mass stars could then
open the exciting possibility of detecting planets signifi-
cantly lower in mass. Since the threshold mass around a so-
lar mass star is typically in the super-Earth regime (Rosotti
et al. 2016), in principle the sensitivity around an ultracool
dwarf should be comparable to an Earth mass. Conceptu-

ally, this is a similar motivation to the study of exoplanets
around mature low mass stars with the conventional tech-
niques of transits and radial velocity, that has led, for exam-
ple, to the discovery of the TRAPPIST1 system (Gillon et al.
2016). However, the dependence on the aspect ratio men-
tioned above also needs to be taken into account. It is well
known (e.g., Mulders & Dominik 2012; Pinilla et al. 2013)
that discs around low mass stars and brown dwarves are ge-
ometrically thicker than those around solar mass stars, as
a consequence of the reduced gravitational potential1. This
effect makes it harder to open gaps around lower mass stars,
in the opposite direction to what we have described before.

Determining which of the two effects is dominant is the
purpose of this paper. Building on the disc-planet interac-
tion dusty simulations presented by Rosotti et al. (2016), in
this work we will explore the dependence of the gap-opening
mass on the stellar mass. This paper is observationally fo-
cused and our definition of gap opening is therefore an ob-
servable gap in the dust. A key aspect of this work is that
we compute the disc temperature rather than leaving it as
a free parameter (as commonly done in hydrodynamic sim-
ulations).

This paper is structured as follows. We explain our
methodology in section 2 and present our results in section 3.
We then discuss the implications of our results for observa-
tions targeting low mass stars and for the planet hypothesys
for the origin of gaps in section 4 and finally draw our con-
clusions in section 5.

2 METHODS

Our methodology consists of running hydrodynamical simu-
lations of the gas and dust dynamics with the code FARGO
to study how these components respond to the presence of
a planet. We then use the radiative transfer code RADMC-
3D2 to compute the disc temperature and generate synthetic
images. Finally, we use the CASA tool to simulate realistic
ALMA observations. We detail this work flow in the follow-
ing sections 2.1, 2.2 and 2.4.

One particular aspect to note is that for the hydrody-
namical simulations the disc temperature, typically parame-
terised through the disc aspect ratio h/r, is a free parameter.
This is particularly important because the aspect ratio has
a major impact on the minimum gap opening planet mass
(MGOPM). To run realistic hydrodynamical simulations, it
is thus necessary to know how the disc aspect ratio varies as
a function of stellar mass and disc radius. To this end, we
perform a preliminary set of calculations with RADMC-3D,
not containing any planet, that we describe in section 2.2.3.

2.1 Hydrodynamical Simulations

The simulations we present in this paper use a custom
version of the fargo-3d code (Beńıtez-Llambay & Masset
2016), modified to include dust dynamics as described in

1 In general, this is is more important than the fact that these

discs are colder due to the fainter central star. We will discuss

this in the detail in the rest of the paper.
2 http://www.ita.uni-heidelberg.de/dullemond/software.

radmc-3d/
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Rosotti et al. (2016); we refer the reader to that paper for
more details on the dust algorithm. Briefly, dust is described
as a pressure-less fluid, evolving because of gravity, gas drag
and diffusion. We implement gas drag using a semi-implicit
algorithm that automatically reduces to the short-friction
time approximation for tightly coupled dust (so that the
timestep does not become vanishingly small) and to an ex-
plicit update for loosely coupled grains. For the diffusion,
we use a diffusion coefficient equal to the shear viscosity co-
efficient of the gas (in other words, the Schmidt number is
1).

We use 2D cylindrical coordinates and dimensionless
units in which the orbital radius of the planet (rp) is at
unity, the unit of mass is that of the central star and the
unit of time is the inverse of the Kepler-frequency of the
planet. The inner radial boundary of our grid is at 0.5 rp and
the outer boundary at 3rp; we use non reflecting boundary
conditions at both boundaries. While Rosotti et al. (2016)
fixed the dust density to its initial value at the inner bound-
ary, here we allow the dust density to drop below this value
(see also Meru et al. 2019). The resolution is 450 and 1024
uniformly spaced cells in the radial and azimuthal direction,
respectively. The planet is kept on a circular orbit whose
orbital parameters are not allowed to vary (see Meru et al.
2019 for a study on the effects of migration). The surface
density profile follows Σ ∝ r−1; since we fix the planet or-
bital parameters the value of the normalisation constant is
arbitrary. Finally, in this paper we use the α prescription of
Shakura & Sunyaev (1973) for what concerns the viscosity
and we assume α = 10−3.

The dynamics of the dust depends on the magnitude of
the acceleration induced by gas drag, i.e. a = ∆v/ts, where
∆v is the relative velocity between the gas and the dust ts is
the stopping time which depends on the grain properties and
chiefly on the grain size. This is typically expressed in units
of the local Keplerain time and called Stokes number St =
ts/Ω−1

K . To keep our simulations scale-free, each dust species
in our simulation has a constant Stokes number. Once the
scaling parameters of the disc have been chosen, it is then
possible to convert the Stokes numbers to physical grain
sizes as we explain in the next section. We use 5 dust sizes,
with Stokes numbers (logarithmically spaced) ranging from
2 × 10−3 to 0.2.

As mentioned before, in this paper the aspect ratio plays
an important role. Therefore, we run a grid of models with
aspect ratios of 0.025, 0.033, 0.04, 0.05, 0.066, 0.085 and 0.1
at the planet location; we discuss in section 2.2.3 the link
with the physical separation of the planet from the star. For
any chosen normalisation, the aspect ratio in the disc varies
in a power-law fashion with a flaring index of 0.25.

The goal of this paper is to study, for any planet loca-
tion, the minimum gap opening planet mass. For this reason,
for every different aspect ratio we run simulations with dif-
ferent planet masses, which for a star of 1 M� correspond
to planet masses of 2.5, 4, 8, 12, 20, 60 and 120 M⊕. Note
that we do not run the full range of planet masses for every
aspect ratio, because in some cases it is already obvious that
a planet of a given mass is able (or not) to open a gap. We
then re-use the grid of simulations when considering differ-
ent stellar masses, but note that, because in any simulation
the planet-star mass ratio is fixed, this leads to different
absolute planet masses.

2.2 Radiative Transfer

Basic Disc Properties In order to simulate images of
discs around stars of different masses we construct disc mod-
els by adopting basic disc properties and scaling laws for
the mass and radius of the disc with stellar mass. All discs
were assumed to have a fixed gas to dust ratio of 100 : 1.
In these calculations we are interested in the disc tempera-
ture, which is mostly set by the small, well-coupled grains;
therefore we do not take into account dust settling. The un-
perturbed surface density profile of each disc was assumed
to be azimuthally symmetric and inversely proportional to
radius:

Σ(r, φ) = Σ(r) ∝ 1
r
, (1)

the same as the relationship adopted by the hydrodynamical
simulations discussed in section 2.1

2.2.1 Scaling Relations

The scaling relation between protoplanetary disc mass (Md)
and stellar mass (M∗) is well constrained by observations:

Md ∝ M1.3
∗ . (2)

These observations (of the Chamaeleon I star forming
region) correct for the variation in stellar luminosity, and
therefore disc temperature, with stellar mass (Pascucci et al.
2016).

Several power laws describing the scaling relationship
between protoplanetary disc radius (Rd) and disc mass have
been proposed (for example, by Tazzari et al. (2017) and Tri-
pathi et al. (2017), among others). For this work we adopt
the scaling derived from temperature corrected data (An-
drews et al. 2018a). Combined with equation 2, this gives:

Rd ∝ M0.6
∗ . (3)

Typical values for the outer disc radii and disc mass for
a 1 M� mass star were adopted as the constants of propor-
tionality, giving the following scaling relations.

Md =

(
M∗
M�

)1.3
0.01 M� (4)

Rd =

(
M∗
M�

)0.61
100 AU (5)

In reality, observations show some spread around these
average values, but we neglect this to reduce the number of
free parameters in our simulations. For what concerns the
outer radius, this serves only as a guide to know how large
the average disc (for a given stellar mass) is; the results we
will present in the following sections contain the necessary
information to know MGOPM at large radii in case the ra-
dius of an individual disc is larger than the average value.
For what concerns the disc mass, it should come as a caveat
that there are instead physical effects that we are neglecting:
namely, the variation of the mid-plane disc temperature with
the disc surface density (which scales as Σ−1/4, see appendix
A) and the variation of the Stokes number with surface den-
sity (although the grain size might also depends on the disc
surface density, e.g. Birnstiel et al. 2012).

MNRAS 000, 1–15 (2019)
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M∗
[
M�

]
L∗

[
L�

]
R∗

[
R�

]
Teff

[
K

]
1.0 2.33 2.62 4278

0.7 1.72 2.54 4024

0.3 0.69 2.32 3360

Table 1. The stellar properties (mass
(
M∗

)
, luminosity

(
L∗

)
, ra-

dius
(
R∗

)
, and effective temperature

(
Te f f

)
) used in the radiative

transfer code RADMC-3D, obtained from the pre-main sequence
evolutionary models at an age of 106 years.
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M* = 1.0M , L* = 2.33L
 fit Tmid r 0.30

M* = 0.7M , L* = 1.72L
 fit Tmid r 0.31

M* = 0.3M , L* = 0.69L
 fit Tmid r 0.30

Figure 1. Mid-plane temperature profiles calculated for the three

stellar masses using the RADMC3D ppdisk model, assuming the
stellar parameters given in table 1. The profile produced by this

model is shown as a solid line, and the power law fit to each profile

is shown as a dashed line.

2.2.2 Pre-main Sequence Evolutionary Models

The properties of the central star, specifically the mass, ra-
dius and effective temperature, are required by the radiative
transfer code. These properties were extracted from a series
of pre-main sequence evolutionary tracks from Siess et al.
(2000), and are shown in table 1. For all discs considered
in this work the age of the system was assumed to be 106

years. We comment on the choice of the pre-main sequence
evolutionary tracks in section 4.3 and 4.4.

2.2.3 Model Disc Aspect Ratio Profiles

The 3D temperature profiles of a series of systems compris-
ing a central star and an empty (containing no planets)
model disc were obtained using the default RADMC-3D
model ppdisk. Mid-plane temperature profiles were calcu-
lated for stellar masses of M∗ = 0.3, 0.7 and 1.0 M�, with
the relevant stellar properties (luminosity, radius and ef-
fective temperature) obtained from the pre-main sequence
evolutionary models discussed in section 2.2.2. A power law
fit was applied to these temperature profiles and used to
calculate the aspect ratio profiles for each system. These
temperature profiles are shown in figure 1.

The aspect ratio is given by the ratio of pressure scale
height, h, to radial position within the disc, r:

h
r
=

cs
vk
=

√
kBT
µmp

r
GM∗

, (6)

where cs is the isothermal sound speed, given by cs =
√

kBT
µmp

where T is the temperature in the disc and µ = 2.3 is the
mean molecular weight.

The locations in each disc at which the aspect ratio
is equal to the values for which hydrodynamical simulation
data were extracted and are shown in table 2. The aspect
ratio at the location of the planet in the hydrodynamical
simulation sets the semi-major axis of the planet in the ra-
diative transfer model, and additionally sets the length scale
of the data.

The relationship between temperature at a given posi-
tion within the disc and stellar mass was investigated using
linear regression and found to scale approximately as:

T
K
∝

(
M∗
M�

)0.15
(7)

We emphasise that the above scaling only holds in the case
of a specific assumption about the stellar mass luminosity
relation; for the particular case used here, L ∝ M1.07

∗ when
measured between 0.3 and 1.0M∗.

2.2.4 Conversion of Hydrodynamical Simulation Data

Extrapolation We use a 3D spherical coordinate system
with Nr = 256 logarithmically spaced points, Nθ = 100 points
distributed linearly in the three intervals [0, π3 ], [

π
3 ,

2π
3 ],

[ 2π3 , π], as Nθ = {10, 80, 10}, and Nφ = 200 grid points lin-
early spaced from 0 to 2π in the azimuthal direction. The
first six radial cells of the hydrodynamical simulation data
were excluded as they show artefacts caused by the inner
boundary condition before the hydrodynamical simulation
data is mapped onto this grid. In some cases the simulation
data does not cover the entire extent of the model disc and
in these situations the surface density was extrapolated out
to the edges of the disc.

Interpolation The dust population was modeled as ten
logarithmically spaced grain size bins between a = 10−5 cm
and 0.1 cm, with a size distribution described by:

dN
da
∝ a−3.5. (8)

The opacities of the dust grain populations are calcu-
lated from the grain size and the mass absorption coeffi-
cients. The mass absorption coefficients used in this work
were calculated using Mie theory, using the optical prop-
erties of astronomical silicates from Weingartner & Draine
(2001).

In order to compute the surface density of each dust
species we compute the Stokes number, St, from the nor-
malised gas surface density. Assuming that all particles are
in the Epstein regime, the Stokes number obeys:

St = tsΩ =
π

2
aρd
Σg

. (9)

We then use the result of the hydrodynamical simula-
tions to interpolate the surface density linearly in terms of
Stokes number. If the calculated Stokes number is smaller
than the smallest value for which there is a hydrodynamical
simulation (St = 2 × 10−3) then the dust is assumed to fol-
low the gas surface density distribution. The largest grains
in the model discs considered typically have St ∼ 0.0037 at

MNRAS 000, 1–15 (2019)



Planet gap opening across stellar masses 5

Semi-Major Axis [AU] Aspect Ratio

Stellar Mass
[
M�

]
0.025 0.033 0.04 0.05 0.066 0.085 0.1

0.3 - 1.1* 1.9 3.6 8.4 17.9 29.5

0.7 1.3* 2.9 5.2 10.1 23.2 50.3 -

1.0 2.5 5.3 9.7 19.8 36.2 75.7 -

Table 2. The semi-major axis (in AU) corresponding to the aspect ratio of the hydrodynamical simulations, for the three different stellar

masses considered in this project. Situations where the aspect ratio profile of the disc does not encompass the simulation aspect ratio are
marked by a dash (-). The values marked by asterisks correspond to semi-major axes for which no radiative transfer simulations were

run, due to their extreme proximity to the inner edges of the discs in question.

the inner edge, and St ∼ 0.4 at their outer edge, so the hy-
drodynamical simulations provide sufficient coverage for the
surface density of these particles to be constructed. The mass
in each dust grain size bin was scaled according to equation
8. The 3D density profiles are calculated from the surface
density as:

ρ(r) = Σ(r, φ)
√

2πH(r)
e
−z2

2H (r )2 , (10)

where z = r cos(θ) is vertical height within the disc and H(r)
is the pressure scale height as a function of position in the
disc, calculated as:

H(r) = h0

(
r
r0

)0.25
r, (11)

where h0 is the reference aspect ratio taken at r0, the planet
location.

2.2.5 RADMC-3D Parameters

The radiative transfer simulations and image generation
were carried out using RADMC-3D. All images were calcu-
lated at a wavelength of 850 µm, equivalently a frequency of
353 GHz which corresponds to ALMA band 7. The radiative
transfer simulations used 2 × 107 photons, and 1 × 107 pho-
tons were used for the image generation. We find that this
number of photons is sufficiently high to show little noise in
the resulting images.

2.3 Gap Analysis

There have been several different methods for characteris-
ing gap properties proposed in the literature (de Juan Ove-
lar et al. (2013) and Akiyama et al. (2016)). In this work
we modify the definition for depth described by Rosotti
et al. (2016), as described here. The data from the simu-
lated images was averaged azimuthally, to give a radial sur-
face brightness profile, Sν(r). All discs were assumed to be
at a distance of 140 pc and face on.

If the surface brightness profile shows an obvious gap
feature then there is no need for further analysis. In some
cases there is a less distinctive feature visible and therefore
a more robust definition of whether a gap exists is needed.
In order to determine the detectability of a gap a linear
fit in log-log space was applied to a region of the surface
brightness profile near the feature to calculate a background

surface brightness profile, Sν,b(r). The depth of a potential
gap is defined to be:

Depth =
���� Sν(rgap) − Sν,b(rgap)

Sν,b(rgap)

���� (12)

where rgap is the location of the gap (where the difference be-
tween the real surface brightness profile and the background
profile was greatest).

We define gaps as detectable if Depth ≥ 0.1, i.e. if the de-
crease in surface brightness is greater than 10%. This method
is illustrated in figure 2, for the case of a system containing
a 20 M⊕ mass planet in the disc around a 1 M� mass star at
semi-major axis of 36.2 AU. The depth of the gap is marked
and the absolute change in surface brightness was found to
be greater than the limit adopted, therefore the feature was
defined as a gap.

2.4 Simulated observations

We use images produced by the radiative transfer code to
generate simulated observations of the system, using the
Common Astronomy Software Application3 (CASA) v5.1.2-
4. The simobserve task was used to simulate the observed
visibilities, from which the simulated observations were pro-
duced using the simanalyse task. The full 12 m array was
used in configuration 24, which gave a resolution at 850 µm
of approximately 0.025′′. We assume an integration time of
6 hours, and use the full bandwidth of 7.5 GHz. Noise was
introduced using the tsym-atm parameter, with the value
for the precipitable water vapour, 0.913 mm, representative
of typical observing conditions.4 As before, all discs are as-
sumed to be at a distance of 140 pc. A gap was defined as
detectable in the simulated images in the same way as for
radiative transfer images, described in section 2.3.

3 RESULTS

3.1 A Single Representative System

The methodology described in section 2 is illustrated here for
the case of a 20 M⊕ mass planet around a 1 M� star at the
location where the aspect ratio is 0.05, which corresponds to
a semi-major axis of 19.8 AU. The FARGO surface density

3 http://casa.nrao.edu/index.shtml
4 https://almascience.eso.org/proposing/

sensitivity-calculator
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Figure 2. The top plot shows the azimuthally averaged surface

brightness profile extracted from the simulation of a 20 M⊕ mass
planet at a semi-major axis of 36.2 AU in the disc around a 1 M�
star. There is a feature visible at approximately 40 AU but it is not
definitively a gap. The bottom plot shows the results of the anal-

ysis carried out on the normalised surface brightness profile, with

the depth of the gap marked by a black arrow. This corresponds
to a depth of ∼ 13% and so the gap is defined as detectable.

data for this simulation is shown in figure 3. From this fig-
ure it can be seen that the dust surface density profiles are
largely azimuthally symmetric, with the exception of a thin
spiral feature that is more pronounced in the gas and dust
species with low Stokes numbers. Previous work by Juhász
et al. (2015) has suggested that, even for extremely massive
planets, spiral features may be challenging to observe in con-
tinuum images as they are narrow and have low contrast. As
a consequence, we use azimuthally averaged profiles of both
surface density and image surface brightness in the remain-
der of this work without further detailed consideration of
any asymmetric features.

The image produced by RADMC-3D is shown in figure
4, and the corresponding simulated observation is shown in
figure 5. The gap created by the planet can clearly be seen,

as can the bright ring produced outside the location of the
planet.

The corresponding azimuthally averaged surface bright-
ness profiles extracted from these images are shown in figure
6. Both show a clear decrease in surface brightness at the
location of the planet below the background level. We can
thus conclude that this planet is gap opening without the
need for further analysis. The thermal noise can be more
clearly seen in the outer portion of the disc, where the sur-
face brightness is low.

3.2 Summary of 1 M� Mass Star Case

For a disc around a 1 M� mass star (for which Rd = 100 AU),
images at 850 µm were simulated for discs containing planets
with masses of 2.5, 4, 8, 12, 20, 60 and 120 M⊕ at six orbital
radii between 2.5 and 75.7 AU. Radiative transfer images and
simulated observations were generated and analysed as de-
scribed in sections 2.2, 2.3 and 2.4.

Radiative Transfer Images For a given semi-major axis
more massive planets create more obvious features within
the disc. This is illustrated in figure 7, which shows the az-
imuthally averaged surface brightness profiles for three discs
containing planets of different masses at 19.8 AU. The most
massive planet, with a mass of 20 M⊕, produces a large de-
crease in surface brightness, as well as a bright ring outside
the location of the planet. These same features can be seen
but are much less pronounced for the smaller planet, with a
mass of 12 M⊕, and no obvious feature can be seen at all for
the least massive, 8 M⊕ mass planet.

For a planet of given mass, the features produced are
more prominent for planets located at smaller semi-major
axes, as illustrated in figure 8. This is due to the lower
aspect ratio at smaller semi-major axes, for which a lower
planet mass is required to open a gap. This plot shows the
azimuthally averaged surface brightness profiles produced
from the simulations of three discs containing 12 M⊕ mass
planets at different semi-major axes. A deep gap and promi-
nent bright ring is produced by the planet at 9.7 AU, while a
smaller gap is produced by the planet at 19.8 AU. The planet
furthest out, at 36.2 AU, produces no visible feature at all.

Simulated Observations For each case in which a de-
tectable gap was opened a simulated ALMA band 7 observa-
tion was generated, as described in section 2.4. From these
we recover the same trends discussed in the images.

Results The results for all simulations performed for the
1 M� case are summarised in figure 9, which distinguishes
between three different results: 1) no gap is present in the
radiative transfer image, 2) a gap is detected in the radiative
transfer image but is not visible in the simulated observa-
tion, 3) a gap is detectable in both the radiative transfer
image and the simulated observation.

This summary figure shows that gaps are opened for
small semi-major axes and/or large planet mass. We find
that the noise introduced by simulating an ALMA obser-
vation has little effect on the detectability of gaps. A more
important effect is the finite resolution of the simulated ob-
servations. For planets with semi-major axes of 5.3 AU or
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Figure 3. Surface density plots of the FARGO simulation data for an example disc, in this case for a 20 M⊕ mass planet for a 1 M� mass

star, and an aspect ratio at unit radius of 0.05. The surface density profiles for the gas and the five different Stokes numbers are shown.
The planet opens a shallow gap in the gas, which is deeper and wider for increasing Stokes number. Spiral features are also visible, and

are more pronounced in the gas and dust species with low Stokes numbers. In the dust species with the largest Stokes number the planet

opens a hole, which extends from the location of the planet to the inner edge of the disc (at half unit radius).

Figure 4. The radiative transfer image of a model disc around a
1 M� star containing a 20M⊕ mass planet at an aspect ratio of

0.05, corresponding to a semi-major axis of 19.8 AU.

less, the gap that was defined as detectable in the radia-
tive transfer image is no longer visible in the data extracted
from the simulated observation. The ALMA configuration
we used gave an angular resolution of 0.025′′, which at a
distance of 140 pc is approximately 5 AU, explaining this re-
sult.

3.3 Changing Stellar Mass

For a disc around a 0.7 M� mass star (Rd = 81 AU), observa-
tions at 850 µm were simulated for discs containing planets
at six orbital radii between 2.9 and 50.3 AU. The images
generated by the radiative transfer code and the simulated
observations were analysed as discussed in sections 2.3 and
2.4 with the results shown in figure 10.
For a disc around a 0.3 M� mass star (Rd = 48 AU), obser-

vations were simulated for discs containing planets at orbital
radii between 1.9 and 29.5 AU. The images generated were
analysed as discussed in sections 2.3 and 2.4 with the results
are shown in figure 11.

In both of these systems, as for the 1 M� case, the gaps
at small semi-major axes visible in the radiative transfer
images are not visible in the simulated observations. Inspec-
tion of these simulated images suggests qualitatively that it
is harder to open gaps in discs around lower mass stars. For
example, the minimum planet mass required to produce a
visible gap at ∼ 10 AU in the disc around a 1 M� mass star
is approximately 5 − 6 M⊕, but in the disc around a 0.3 M�
mass star it is approximately 8 M⊕. We discuss this result
in section 4.1.

4 DEPENDENCE ON THE STELLAR MASS

We now investigate the variation in the MGOPM with, most
importantly, the stellar mass, and also with semi-major axis
within the disc. To do this we assume that the dependence on
these two parameters is a power law and we fit the results
presented in sections 3 to derive the exponents. We also
present analytic scaling arguments and compare these to
our results. We then discuss the robustness of our results,
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Figure 5. Simulated observation in ALMA band 7, at 850µm,

of a model disc around a 1 M� star containing a 20M⊕ mass
planet at an aspect ratio of 0.05, and therefore a semi-major

axis of 19.8 AU. The disc is assumed to be face on at a distance

of 140 pc. It should be noted that the colour scale in this image
is not the same as that used in figure 4
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Figure 6. Azimuthally averaged surface brightness profiles
produced from the radiative transfer image and simulated ob-

servation of a model disc around a 1 M� star containing a

20M⊕ mass planet at an aspect ratio of 0.05, and therefore a
semi-major axis of 19.8 AU.
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Figure 7. Azimuthally averaged surface brightness profiles

showing the effect of varying the planet mass for a fixed semi-

major axis. These profiles were generated from the images
produced by RADMC-3D of three model discs around a 1 M�
star containing three different mass planets (8, 12 and 20 M⊕)

at an aspect ratio of 0.05, and therefore a semi-major axis of
19.8 AU. More massive planets create more notable feature in
the surface brightness profile.
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Figure 8. Illustrative plot showing the effect of varying the

planet semi-major axis for a fixed planet mass. The surface
brightness profiles shown are for the case of a 12 M⊕ mass

planet around a 1 M� star, but at three different locations.

The perturbation induced by the planet becomes stronger at
smaller radii, as a result of the lower disc aspect ratio.

considering especially the effect of the luminosity spread,
and finally discuss the observational implications.

4.1 Results of the numerical simulations

The exponent of the power law relating MGOPM and semi-
major axis is compatible with a value of 0.75, and therefore
we use this value in the following analysis. We will show in
section 4.2 that this value is in agreement with theoretical
arguments.

Figures 9, 10 and 11 show the fits for the three different
stellar masses considered by this work. We also show as a
gray shaded region the allowed range of normalisation con-
stants that are in agreement with our results. In all cases
this power law provides a plausible fit. The range of allowed
normalisation constants is small for the 0.3 M� mass star,
and larger for the 0.7 and 1 M� mass stars. In general the
relation between MGOPM and semi major axis for a given
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Figure 9. A summary of the detectability of gaps created by

planets within the disc around a 1 M� star. A red cross indicates

that no detectable gap was produced. A purple cross indicates
that a detectable gap was visible in the radiative transfer image,

but not in the simulated observation. A green circle indicates

a detectable gap that was visible in both the radiative transfer
image and the simulated observation. The grey shaded region

indicates the Mmin ∝ r0.75 fit supported by these results, which

is in line with the theoretical arguments we present in section 4.2.
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Figure 10. A summary of the detectability of features created
by planets within the disc around a 0.7 M� mass star. See figure

9 for an explanation of colours and symbols.

stellar mass can be expressed as:

1.41 ≤ A0.3M� ≤ 1.47

Mpl,m

M⊕
= AM∗

( rpl
AU

)0.75
where 0.98 ≤ A0.7M� ≤ 1.31

0.85 ≤ A1.0M� ≤ 1.2

(13)

Addressing the main motivation behind this paper, from
these fits it can be seen that AM∗ increases with decreasing
stellar mass. This means that the fact that these discs are
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Figure 11. A summary of the detectability of features created

by planets within the disc around a 0.3 M� mass star. See figure

9 for an explanation of colours and symbols.

geometrically thicker is the dominant effect. We will show
this more formally in the next section 4.2. The scaling of the
MGOPM with stellar mass is consistent with:

AM∗ ∝ Mα
∗ where −0.45 ≤ α ≤ −0.14 (14)

In summary, the MGOPM is larger at greater semi-
major axes for fixed stellar mass, and at fixed semi-major
axes is larger for lower mass stars. Using a representative
value of AM∗ ≈ 1 M−0.33

∗ , the MGOPM can be expressed as
a function of stellar mass and planet semi-major axis as:

Mpl,m

M⊕
≈ 1

(
M∗
M�

)−0.33 ( rpl
AU

)0.75
(15)

The relation given in equation 15 is illustrated in figure
12. The plot also shows the resolution of the simulated ob-
servations, ∼ 5 AU. In addition, while this paper focuses on
ALMA, for reference we plot also the resolution that may
be achieved using the ngVLA5 at 3 mm (5 milliarcsec, which
at a distance of 140 pc corresponds to a distance of 0.7 AU).
See Ricci et al. (2018) for a dedicated study of ngVLA ca-
pabilities in detecting planet-formed gaps.

It can be seen how, at least on average, around a lower
mass star a smaller part of the disc can be resolved by ALMA
(e.g., for a 0.3 M� star the average outer radius is 30 au, i.e.
the dynamical range in radius is a factor of 6). In this region,
the MGOPM is approximately that of Neptune (15-20 M⊕).
Around solar mass stars, the negative scaling with stellar
mass means that the sensitivity improves, and the detection
limit becomes ∼ 5M⊕.

4.2 Analytical expectations for the MGOPM
scaling relations

While the MGOPM we consider in this paper is quantita-
tively different from the conventional gap opening criterion

5 https://science.nrao.edu/futures/ngvla
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Figure 12. A summary of the minimum gap opening planet mass

(MGOPM) as a function of planet semi-major axis and stellar

mass. The black line is the average size of a disc for the given
stellar mass. The estimated resolution of the ALMA configura-

tion used (∼ 5 AU) is shown as a red dashed line. The estimated

resolution of 3 mm observations using the ngVLA (∼ 0.7 AU) is
shown as a blue dashed line. It can be seen that the MGOPM

increases with semi major axis and decreases with stellar mass.

in the gas (Crida et al. 2006; see e.g. Fung et al. 2014; Kana-
gawa et al. 2015 for recent developments), the formation of
a dust gap still requires a perturbation in the gas. For this
reason, although the amplitude of the perturbation is differ-
ent, we can assume that the two criteria should scale in the
same way with the disc parameters. A similar assumption
was also made by Dipierro & Laibe (2017) following the re-
sults of Rosotti et al. (2016), see for example the blue area in
their Figure 2. In this section we validate this assumption,
by showing that it accounts for the scalings found in the sim-
ulations we have run. For what concerns the normalization,
instead, we must rely on numerical simulations.

Proto-planetary discs are characterised by relatively low
values of the viscosity and high values of the aspect ratio.
Therefore, it is safe to assume that the most stringent cri-
terion for gap opening is the pressure criterion, rather than
the viscous one 6. For this reason in the rest of the sec-
tion we will consider only the former (see also discussion in
Rosotti et al. 2016). Following standard arguments (Lin &
Papaloizou 1993), an estimate of the expected scaling of the
MGOPM (Mpl,m) with semi-major axis and stellar mass can
be obtained by equating the Hill radius,

rH = r
( Mpl,m

3M∗

)1/3
, (16)

of the planet with the pressure scale height (H). This gives
the scaling condition that:

Mpl,m

M∗
∝

(
H
r

)3
. (17)

6 This is different in the regime of low viscosity α . 10−4, where
the Crida et al. (2006) criterion is no longer applicable (e.g., Duf-

fell & MacFadyen 2013).

For fixed stellar mass, recalling the expression for the
aspect ratio given by equation 11, this gives:

Mpl,m

M⊕
∝

(
r

AU

)0.75
. (18)

And for a given position in the disc, using equation 7,
the aspect ratio is expected to scale as:

H
r
∝

√
T(M∗)

K

(
M∗
M�

)−1
∝

(
M∗
M�

)−0.425

So, using equation 17, the MGOPM, for fixed position
within the disc is expected to scale with stellar mass as:

Mpl,m

M⊕
∝

(
h

rpl

)3 (
M∗
M�

)
∝

(
M∗
M�

)−0.275
(19)

Combining these equations 18 and 19 gives an expression
for the expected scaling of the MGOPM with both planet
semi-major axis and stellar mass:

Mpl,m

M⊕
∝

(
r

AU

)0.75 (
M∗
M�

)−0.275
(20)

Comparing equations 13 and 20, we conclude that there
is excellent agreement between the results of our simulations
and the analytical arguments. As mentioned, in our analy-
sis we have assumed that the exponent of the scaling of the
MGOPM with radius is 0.75, because it gives a good descrip-
tion of the results. The range of exponent values describing
the scaling with stellar mass are consistent with the value of
−0.275 predicted in section 4.2.

4.3 Robustness of the results to changes in the
stellar mass luminosity relationship

We have demonstrated that, for a particular choice of the re-
lationship between stellar mass and luminosity as detailed in
Table 1 (based on the pre-main sequence evolutionary tracks
of Siess et al. (2000) at an age of 1Myr), the minimum mass
of planets that can be detected at a given radius in the disc
is a decreasing function of stellar mass (equation 20). Thus
planet detection via structure in submm images is appar-
ently harder in the case of lower mass stars. This contrasts
strongly with the situation encountered in the case of other
planet detection methods. For example, in the case of radial
velocity methods, the detectable planet mass scales linearly
with stellar mass, whereas for rocky planets (i.e., with a
roughly constant density) detected by the transit method it
scales as M3

∗ .
We now consider if there is any plausible stellar mass lu-

minosity relation that could result in a positive dependence
of minimum detectable planet mass on stellar mass. Let us
assume that, for some mass-luminosity relation, the scaling
of temperature with stellar mass is T ∝ Ma

∗ (by analogy
with equation (7)). Proceeding as in the previous section we
obtain that

Mpl,m ∝ M(3a−1)/2
∗ . (21)

implying that a positive dependence of detectable
planet mass on stellar mass would correspond to a > 0.33.
The temperature (at a given radius) mostly depends on
the stellar luminosity, but can also depend on the stellar
mass. Therefore, we can parametrise this dependence with
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the form T ∝ LbMc . If we consider a mass luminosity rela-
tion of the form L ∝ Md, we obtain

a = c + bd (22)

To measure the values of the parameters b and c, we
have run another grid of radiative transfer simulations of the
same type of section 2.2.3, i.e. discs that contain no planets,
in which we explored the effect of varying the luminosity
of the central star while keeping the other parameters fixed
(note the difference from the calculations in section 2.2.2,
where we also varied the stellar and disc properties). From
these simulations, we find that for a fixed location within the
disc, the disc temperature Tdisc scales with stellar luminosity
approximately as

Tdisc
K
∝

(
L∗
L�

)0.2
; (23)

we show the results of our calculations in figure 13. There-
fore, b = 0.2. The exponent is slightly flatter than the 1/4
one would naively expect from energy argument; we inter-
pret this as due to the dependence of the Planck mean opac-
ity with temperature (see appendix A).

For what concerns the values of c, from the radiative
transfer grid we deduce a value of c ∼ 0.04; in an alternative
way, we can deduce the value of c = −0.06 from the fact
that a = 0.15 (equation (7)) for the case d = 1.07 (appropri-
ate to the Siess et al isochrone at 1 Myr). This means that
the explicit dependence on the stellar mass is a small effect,
confirming that the temperature is mainly set by the stellar
luminosity. Neglecting c, we obtain that a positive depen-
dence of minimum detectable planet mass on stellar mass
(a > 0.33) requires d > 1.65; alternatively, the limiting value
is 1.45 for the case of c = 0.04. This value is higher than that
predicted by the Siess et al. (2000) tracks, in accord with the
results of the previous sections. However, for another widely
used set of pre-main sequence tracks, the models by Baraffe
et al. (2015), the temperature-luminosity relation is in gen-
eral steeper; for reference, we find a value of 1.47 at 1 Myr.
This value corresponds exactly to the limiting case we iden-
tified before. To inspect this case more closely, we extracted
the values of the disc temperature from the radiative trans-
fer grid at the stellar luminosities predicted by the Baraffe
et al. (2015) tracks. In line with the arguments above, in
this case we find a value of a = 0.32, implying that for the
Baraffe et al. (2015) tracks the dependence of MGOPM with
stellar mass is essentially flat (see Equation 21).

We thus conclude that, depending on the stellar track
used, MGOPM could become flat with stellar mass. Never-
theless, we can also conclude that MGOPM does not improve
towards low stellar masses, in contrast to other planet de-
tection techniques. Therefore, the robust result of this paper
is that there is no benefit in terms of planet mass sensitivity
when observing discs around lower mass stars.

4.4 Effect of the luminosity spread

Up to now we only considered a single luminosity for each
stellar mass. In reality, it is well known that in star form-
ing regions stars of the same mass exhibit a wide range
of luminosities, a phenomenon colloquially called ”luminos-
ity spread”, possibly due to the stellar accretion history
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Figure 13. The variation in mid-plane temperature at fixed ra-

dial position with stellar luminosity, shown for the three stellar
masses and four different locations. From these radiative trans-

fer calculations we deduce a scaling Tdisc ∝ L0.2
∗ , slightly flatter

than the L
1/4
∗ one might naively expect from energy arguments,

as a result of the dependence of the Planck mean opacity with

temperature (see appendix A).

(Hosokawa et al. 2011; Baraffe et al. 2012; Jensen & Haug-
bølle 2018) or an age spread. Since the stellar luminosity af-
fects the disc temperature and therefore MGOPM, we need
to quantify how this effect changes the conclusions of this
paper.

To this end, we consider equation 17 for fixed stellar
mass and semi-major axis; we obtain that:

Mpl,m

M⊕
∝

(
Tdisc

K

)1.5
. (24)

In the previous section we have shown that Tdisc ∝ L0.2
∗ .

Combining these gives us an expected power law index for
the scaling of the MGOPM with stellar luminosity of 0.3,
and so we expect the scaling with both planet semi-major
axis and stellar luminosity to be:

Mpl,m

M⊕
∝

(
r

AU

)0.75 (
L∗
L�

)0.3
. (25)

This predicted MGOPM for three values of the stellar mass
are shown in figure 14.

To quantify the importance of the luminosity spread,
the last ingredient we need is an estimate of how much
the stellar luminosity can vary for a given stellar mass. To
quantify this, we have collected the samples presented in the
recent X-shooter spectral surveys of Chameleon I (Manara
et al. 2017) and Lupus (Alcalá et al. 2017). We extracted
from the two samples the luminosity and stellar mass (note
that Alcalá et al. 2017 reports three different values for the
stellar mass depending on the model used; here we use only
the value derived from the models of Baraffe et al. 2015
since this is the only one employed by Manara et al. 2017
and, as discussed by these authors, there is little difference
between the models in deriving the stellar mass) and then
fitted them with a power-law using the widely-used pack-
age linmix (Kelly 2007). The result of the fit reports a 1-σ
spread of 0.36 dex. To show this on figure 14, we have in-
dicated with the dashed lines the 2-σ spread around the
average value.
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Figure 14. A summary of the minimum gap opening planet mass (MGOPM) as a function of planet semi-major axis and stellar

luminosity, for the three values of stellar mass considered. The luminosity values used for each stellar mass are shown by a red solid line;

we show with the red dashed lines the typical range of variation (2-σ, i.e. 95 per cent of the sources) encountered in observations. The
average disc size for each mass is shown by a black dashed line. The estimated resolution of the ALMA configuration used (∼ 5 AU) is

shown as a black dotted line. It can be seen that the MGOPM increases with both semi major axis and stellar luminosity.

In itself, the effect of the luminosity spread can be signif-
icant: as an illustrative example, a 0.3 M� star with a lumi-
nosity that is 2-σ below the average has a similar MGOPM
(or even smaller) to a 1 M� star with an average luminos-
ity. At the same time, we point out that the luminosity is a
quantity that can easily be estimated from optical observa-
tions and allows one to correct the estimate of MGOPM for
a specific disc.

4.5 Observational implications

In this paper we have presented scaling relations of the
MGOPM with stellar mass, luminosity and planet orbital ra-
dius. These relations, summarised in figure 14, can be read-
ily used when interpreting high-resolution imaging of discs
to set a lower limit on the masses of the putative planets
responsible for annular structures.

As a caveat, in this paper we employed a value of the
viscous parameter α = 10−3. This value was chosen because
it is lower than the current upper limits set by direct mea-
surements of the turbulence (e.g., Flaherty et al. 2018), but
is still in a reasonable range to account for the observed ac-
cretion rates onto young stars without invoking other mech-
anisms for angular momentum transfer, such as disc winds.
The precise value of the MGOPM will depend on the value of
α, but in general we do not expect the trends that we present
here to depend on the value of α. Another caveat is that we
neglected the effect of dust back-reaction on the gas (e.g.,
Kanagawa et al. 2018; Weber et al. 2018; Drazkowska et al.
2019), though this is unlikely to change MGOPM since it
becomes relevant only in presence of a strong dust accumu-
lation. This requires a planet well above gap-opening mass,
at least for the Stokes numbers we simulate here; the situa-
tion might change in presence of significantly larger Stokes
numbers.

Consideration of how the MGOPM varies as a function
of stellar mass is of considerable interest for the interpreta-
tion of the incidence of structure in submm disc images in

different stellar mass ranges . From radial velocity surveys it
is evident that giant planets (loosely defined as being more
massive than Neptune) at distances up to several au are
rarer around lower mass stars (Cumming et al. 2008; John-
son et al. 2010; Bonfils et al. 2013; Clanton & Gaudi 2014;
Winn & Fabrycky 2015)7. While ALMA surveys of disc sub-
structure do not overlap in spatial scales with those probed
by radial velocity surveys of mature planet populations, it is
nevertheless of interest to discover if the incidence of young
planets at large radii is also lower in low mass stars than in
higher mass counterparts.

Our study shows that using canonical relationships be-
tween stellar mass and luminosity, the opening of gaps
around low mass stars is harder, or just as difficult. We
note that this depends on the distribution of masses and
luminosities present in the population; figure 14 also shows,
based on data from Lupus and Chamaeleon, that the differ-
ence in MGOPM due to the luminosity spread can cancel
out the effect due to the stellar mass. Thus future studies of
the relative incidence of discs with substructure as a func-
tion of stellar mass need to be interpreted with care. With
knowledge of the stellar luminosity on a source by source
basis, Figure 14 can be used to assess whether planet for-
mation at young ages and large radii is indeed disfavoured
in the vicinity of lower mass stars.

At the moment, sufficient high resolution imaging data
do not exist to make this test; most of the observations of
discs around very low mass stars (Ricci et al. 2014; Testi
et al. 2016; van der Plas et al. 2016; Ward-Duong et al.
2018) have low spatial resolution. Encouragingly, some high-
resolution observations are taking place, e.g. Pinilla et al.
(2018) for a 0.1-0.2 M� star. The samples of Andrews et al.
(2018a) and Long et al. (2019) also contain a few low-mass

7 There is indication (Bonfils et al. 2013; Dressing & Charbon-
neau 2013; Mulders et al. 2015), both from transit and radial
velocity surveys, that super-Earths in the innermost au are in

fact more abundant around low mass stars than around solar.

MNRAS 000, 1–15 (2019)
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stars, though at the moment there is no correlation be-
tween the sub-structure properties with the stellar proper-
ties (Huang et al. 2018). At the moment it is difficult to say
whether this is due to selection biases (for example Andrews
et al. 2018a targeted the brightest discs), the low number
statistics (even combined, there are only a handful of stars
in these samples below 0.5 M�) or if it is physical. Imaging
these discs might seem harder because they are in general
significantly fainter than around solar-mass stars, since the
disc sub-mm flux strongly correlates with the host stellar
mass (Pascucci et al. 2016). However, it should be kept in
mind that the disc size also correlates with the stellar mass;
in fact, the disc surface brightness is almost constant (Tri-
pathi et al. 2017; Andrews et al. 2018a) across the disc pop-
ulation. Because interferometers like ALMA are sensitive to
surface brightness, rather than absolute flux, the prospect to
image discs around low mass stars looks encouraging. Future
observations will thus provide the datasets necessary to test
how the incidence of planets at 10s of AU in young systems
depends on the mass of the central star.

5 CONCLUSIONS

In this paper we have investigated the planet gap opening
mass, defined as relevant for ALMA continuum observations
(i.e., in the dust, rather than in the gas), across stellar
masses and for different distances from the star. We have
highlighted how the dependence on the stellar mass is the net
result of the competition between the two different effects:
on one hand, gap opening depends on the planet-stellar mass
ratio, favouring gap opening by lower mass planets around
low mass stars. On the other hand, discs around low mass
stars are geometrically thicker due to the reduced gravity,
making gap opening more difficult due to the increased pres-
sure forces.

We have shown that if we assume a dependence of stel-
lar luminosity on stellar mass appropriate to the Siess et al.
(2000) isochrones at 1 Myr, the latter effect is more impor-
tant than the former; in this case we would therefore pre-
dict that the gap opening mass decreases with stellar mass
and that planet induced structure should therefore be more
readily detectable in the case of more massive stars. For the
Baraffe et al. (2015) tracks, the two effects almost exactly
cancel each other; it is therefore a robust conclusion that
there is no benefit in looking for planets around low mass
stars. The gap opening mass also increases with the distance
from the star, as expected in a flaring disc. We provide a sim-
ple scaling relation (see Eq. 15 and figure 12) that expresses
the gap opening mass as a function of orbital radius and
stellar mass, where AM∗ is the gap opening mass in Earth
masses at a distance of 1 au. This relation can readily be
used in the interpretation of observations and is applicable
at angular distances from the star that exceed the beam size.

However the detailed interpretation of future imaging
results needs to take into account the actual stellar lumi-
nosities in the observed sample, since the luminosity spread
at a given mass introduces significant differences for indi-
vidual discs. In general the stellar luminosity of each source
will also be known and we also provide relations to take this
into account when estimating the gap opening mass, see Eq.
25 and figure 14.

Planets are often held responsible for the annular struc-
tures now ubiquitously observed in proto-planetary discs
and future surveys will determine how the incidence of such
structures depends on stellar mass. Our study has provided
the framework within which the results of such surveys
should be interpreted.
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APPENDIX A: DEPENDENCE OF THE
TEMPERATURE ON STELLAR LUMINOSITY

It is common when estimating disc temperatures to assume
the simple relation T ∝ L1/4. There are some refinements to
make to this simplified version (Chiang & Goldreich 1997;
Dullemond et al. 2001), that in practise conspire to make
the relation between temperature and luminosity flatter. If
the disc is optically thin to cooling by its own thermal ra-
diation (as it is common in the outer parts of the disc), the
temperature will also depend on the Planck mean opacity
κp and disc surface density. In addition, the relation should
contain also the flaring angle φ ∝ h/r, setting how much of
the stellar light is intercepted by the disc:

T ∝
(

h
r

L
κpΣ

)1/4
(A1)

Let us exemplify the change introduced by these extra
factors by first considering the variation in Planck mean
opacity. At low temperatures a common behaviour is that
κp ∝ T2 (e.g., Semenov et al. 2003). Using this fact, one gets

that T ∝ L1/6 = L0.17, which is close to the result we get
in section 4.4. The physical interpretation of this relation is
that colder discs are less efficient at cooling due to a reduced
Planck mean opacity.

Note that in section 4.4 we hold Σ constant and we vary
only the stellar luminosity. It is worth noting instead that,
when we vary the stellar mass in section 2.2.3, Σ varies. It is
a reasonable assumption that Σ should increase with stellar
mass, and this is the case for our models. This fact tends
to flatten even further the temperature-luminosity relation
when the stellar mass is varied. Finally, while we do not take
this into account in this paper, the weaker gravity of low-
mass stars (since h/r ∝

√
T/M) tends to flatten the relation

even more, since discs around low mass stars are geometri-
cally thicker and intercept more stellar light.

MNRAS 000, 1–15 (2019)

http://dx.doi.org/10.1088/0004-637X/769/1/41
https://ui.adsabs.harvard.edu/abs/2013ApJ...769...41D
http://dx.doi.org/10.1051/0004-6361/201731878
https://ui.adsabs.harvard.edu/#abs/2018A&A...609A..50D
http://dx.doi.org/10.1086/323057
https://ui.adsabs.harvard.edu/#abs/2001ApJ...560..957D
http://dx.doi.org/10.1051/0004-6361/201629860
https://ui.adsabs.harvard.edu/#abs/2017A&A...600A..72F
http://dx.doi.org/10.1051/0004-6361/201731978
https://ui.adsabs.harvard.edu/#abs/2018A&A...610A..24F
http://dx.doi.org/10.3847/1538-4357/aab615
https://ui.adsabs.harvard.edu/#abs/2018ApJ...856..117F
http://dx.doi.org/10.1051/0004-6361/201424693
https://ui.adsabs.harvard.edu/#abs/2015A&A...574A..68F
http://dx.doi.org/10.1088/0004-637X/782/2/88
https://ui.adsabs.harvard.edu/abs/2014ApJ...782...88F
http://dx.doi.org/10.1038/nature17448
https://ui.adsabs.harvard.edu/#abs/2016Natur.533..221G
http://dx.doi.org/10.3847/2041-8213/aaedae
https://ui.adsabs.harvard.edu/#abs/2018ApJ...869L..48G
http://dx.doi.org/10.1088/0004-637X/738/2/140
https://ui.adsabs.harvard.edu/abs/2011ApJ...738..140H
https://ui.adsabs.harvard.edu/abs/2011ApJ...738..140H
http://dx.doi.org/10.3847/2041-8213/aaf740
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..42H
http://dx.doi.org/10.1103/PhysRevLett.117.251101
https://ui.adsabs.harvard.edu/#abs/2016PhRvL.117y1101I
http://dx.doi.org/10.1093/mnras/stx2844
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.1176J
http://dx.doi.org/10.1086/655775
https://ui.adsabs.harvard.edu/#abs/2010PASP..122..905J
https://ui.adsabs.harvard.edu/#abs/2010PASP..122..905J
http://dx.doi.org/10.1093/mnrasl/slx182
https://ui.adsabs.harvard.edu/#abs/2018MNRAS.474L..32J
http://dx.doi.org/10.1093/mnras/stv1045
https://ui.adsabs.harvard.edu/#abs/2015MNRAS.451.1147J
http://dx.doi.org/10.1093/mnras/stv025
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448..994K
http://dx.doi.org/10.3847/1538-4357/aae837
https://ui.adsabs.harvard.edu/abs/2018ApJ...868...48K
http://dx.doi.org/10.1086/519947
https://ui.adsabs.harvard.edu/abs/2007ApJ...665.1489K
http://dx.doi.org/10.3847/1538-4357/aae8e1
https://ui.adsabs.harvard.edu/#abs/2018ApJ...869...17L
http://dx.doi.org/10.3847/1538-4357/ab2d2d
https://ui.adsabs.harvard.edu/abs/2019ApJ...882...49L
http://dx.doi.org/10.3847/1538-4357/aa6c63
https://ui.adsabs.harvard.edu/#abs/2017ApJ...840...23L
http://dx.doi.org/10.1051/0004-6361/201630147
https://ui.adsabs.harvard.edu/abs/2017A&A...604A.127M
http://dx.doi.org/10.3847/2041-8213/aa6837
https://ui.adsabs.harvard.edu/#abs/2017ApJ...839L..24M
http://dx.doi.org/10.1093/mnras/sty2847
https://ui.adsabs.harvard.edu/#abs/2019MNRAS.482.3678M
http://dx.doi.org/10.1051/0004-6361/201118127
https://ui.adsabs.harvard.edu/#abs/2012A&A...539A...9M
http://dx.doi.org/10.1088/0004-637X/814/2/130
https://ui.adsabs.harvard.edu/#abs/2015ApJ...814..130M
http://dx.doi.org/10.3847/0004-637X/821/2/82
https://ui.adsabs.harvard.edu/#abs/2016ApJ...821...82O
http://dx.doi.org/10.1051/0004-6361:200400053
https://ui.adsabs.harvard.edu/#abs/2004A&A...425L...9P
http://dx.doi.org/10.3847/0004-637X/831/2/125
http://dx.doi.org/10.1126/science.aaf8296
http://adsabs.harvard.edu/abs/2016Sci...353.1519P
http://dx.doi.org/10.1051/0004-6361/201526921
http://dx.doi.org/10.1051/0004-6361/201219315
https://ui.adsabs.harvard.edu/#abs/2012A&A...545A..81P
http://dx.doi.org/10.1051/0004-6361/201220875
https://ui.adsabs.harvard.edu/#abs/2013A&A...554A..95P
http://dx.doi.org/10.1051/0004-6361/201425539
https://ui.adsabs.harvard.edu/#abs/2015A&A...580A.105P
http://dx.doi.org/10.3847/1538-4357/aa7edb
https://ui.adsabs.harvard.edu/#abs/2017ApJ...845...68P
https://ui.adsabs.harvard.edu/#abs/2017ApJ...845...68P
http://dx.doi.org/10.1051/0004-6361/201832690
https://ui.adsabs.harvard.edu/#abs/2018A&A...615A..95P
http://dx.doi.org/10.1088/0004-637X/791/1/20
https://ui.adsabs.harvard.edu/#abs/2014ApJ...791...20R
http://dx.doi.org/10.3847/1538-4357/aaa546
https://ui.adsabs.harvard.edu/#abs/2018ApJ...853..110R
http://dx.doi.org/10.1093/mnras/stw691
http://dx.doi.org/10.1093/mnras/stw691
http://adsabs.harvard.edu/abs/2016MNRAS.459.2790R
http://dx.doi.org/10.1051/0004-6361:20031279
https://ui.adsabs.harvard.edu/#abs/2003A&A...410..611S
https://ui.adsabs.harvard.edu/#abs/1973A&A....24..337S
http://adsabs.harvard.edu/abs/2000A%26A...358..593S
http://dx.doi.org/10.1051/0004-6361/201629041
https://ui.adsabs.harvard.edu/#abs/2017A&A...600A.140S
http://dx.doi.org/10.1051/0004-6361/201730890
http://dx.doi.org/10.3847/2041-8213/aac6d7
https://ui.adsabs.harvard.edu/#abs/2018ApJ...860L..12T
http://dx.doi.org/10.3847/1538-4357/aae836
https://ui.adsabs.harvard.edu/#abs/2018ApJ...868..113T
https://ui.adsabs.harvard.edu/#abs/2018ApJ...868..113T
http://dx.doi.org/10.1051/0004-6361/201628623
https://ui.adsabs.harvard.edu/#abs/2016A&A...593A.111T
http://dx.doi.org/10.3847/1538-4357/aa7c62
http://adsabs.harvard.edu/abs/2017ApJ...845...44T
http://dx.doi.org/10.3847/1538-3881/aaa128
https://ui.adsabs.harvard.edu/#abs/2018AJ....155...54W
http://dx.doi.org/10.3847/1538-4357/aaab63
https://ui.adsabs.harvard.edu/abs/2018ApJ...854..153W
http://dx.doi.org/10.1086/318651
http://dx.doi.org/10.1146/annurev-astro-082214-122246
http://dx.doi.org/10.1146/annurev-astro-082214-122246
https://ui.adsabs.harvard.edu/#abs/2015ARA&A..53..409W
http://dx.doi.org/10.1088/2041-8205/806/1/L7
https://ui.adsabs.harvard.edu/#abs/2015ApJ...806L...7Z
http://dx.doi.org/10.3847/2041-8213/aaf744
https://ui.adsabs.harvard.edu/#abs/2018ApJ...869L..47Z
http://dx.doi.org/10.1088/0004-637X/755/1/6
https://ui.adsabs.harvard.edu/#abs/2012ApJ...755....6Z
http://dx.doi.org/10.1051/0004-6361/201322218
http://dx.doi.org/10.1093/mnrasl/slw051
https://ui.adsabs.harvard.edu/#abs/2016MNRAS.459L..85D
http://dx.doi.org/10.1126/science.1236770
https://ui.adsabs.harvard.edu/#abs/2013Sci...340.1199V
http://dx.doi.org/10.3847/0004-637X/819/2/102
https://ui.adsabs.harvard.edu/#abs/2016ApJ...819..102V
http://dx.doi.org/10.1051/0004-6361/201629523
https://ui.adsabs.harvard.edu/#abs/2017A&A...597A..32V


Planet gap opening across stellar masses 15

This paper has been typeset from a TEX/LATEX file prepared by

the author.

MNRAS 000, 1–15 (2019)


	1 Introduction
	2 Methods
	2.1 Hydrodynamical Simulations
	2.2 Radiative Transfer
	2.3 Gap Analysis
	2.4 Simulated observations

	3 Results
	3.1 A Single Representative System
	3.2 Summary of 1  M Mass Star Case
	3.3 Changing Stellar Mass

	4 Dependence on the stellar mass
	4.1 Results of the numerical simulations
	4.2 Analytical expectations for the MGOPM scaling relations
	4.3 Robustness of the results to changes in the stellar mass luminosity relationship
	4.4 Effect of the luminosity spread
	4.5 Observational implications

	5 Conclusions
	A Dependence of the temperature on stellar luminosity

