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ABSTRACT

Context. Future weak lensing surveys, such as the Euclid mission, will attempt to measure the shapes of billions of galaxies in order to derive
cosmological information. These surveys will attain very low levels of statistical error and systematic errors must be extremely well controlled. In
particular, the point spread function (PSF) must be estimated using stars in the field, and recovered with high accuracy.
Aims. This paper’s contributions are twofold. First, we take steps toward a non-parametric method to address the issue of recovering the PSF field,
namely that of finding the correct PSF at the position of any galaxy in the field, applicable to Euclid. Our approach relies solely on the data, as
opposed to parametric methods that make use of our knowledge of the instrument. Second, we study the impact of imperfect PSF models on the
shape measurement of galaxies themselves, and whether common assumptions about this impact hold true in a Euclid scenario.
Methods. We use the recently proposed Resolved Components Analysis approach to deal with the undersampling of observed star images. We
then estimate the PSF at the positions of galaxies by interpolation on a set of graphs that contain information relative to its spatial variations. We
compare our approach to PSFEx, then quantify the impact of PSF recovery errors on galaxy shape measurements through image simulations.
Results. Our approach yields an improvement over PSFEx in terms of PSF model and on observed galaxy shape errors, though it is at present not
sufficient to reach the required Euclid accuracy. We also find that different shape measurements approaches can react differently to the same PSF
modelling errors.
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1. Introduction

As light from background galaxies travels through the universe,
it gets deflected due to variations of the gravitational potential. In
the vast majority of cases, distortions due to gravitational lens-
ing are of very small amplitude, and are largely dominated by the
observed objects’ intrinsic ellipticities: this is the weak lensing
regime. By observing a great number of sources, one can how-
ever retrieve the lensing signal, probe the Large Scale Structure
of the Universe and derive information about the matter distribu-
tion. This makes weak lensing a very interesting cosmological
probe (see e.g. Kilbinger 2015).

Galaxy shape measurement for weak lensing has been car-
ried out in several past surveys such as CFHTLenS (Miller et al.
2013). Several ground-based surveys are currently ongoing as
well, and have already led to tighter cosmological constraints.
These include the Kilo-Degree Survey (KiDS, Kuijken et al.
2015), the Dark Energy Survey (DES, Jarvis et al. 2016), and
the HyperSuprime Cam (HSC, Mandelbaum et al. 2017). Fu-
ture, Stage IV surveys will allow the cosmological information
extracted from the weak lensing signal to achieve unprecedented
accuracies, and include both ground-based observations with the
Large Synoptic Survey Telescope (LSST, LSST Science Collab-
oration et al. 2009), and space telescopes such as the Wide-Field
Infrared Survey Telescope (WFIRST, Green et al. 2012) and

? This paper is published on behalf of the Euclid Consortium.

Euclid (Laureijs et al. 2011), which is the focus of the present
work.

In order to fully exploit the potential of these surveys, the
level of systematic errors must be kept below that of statistical
uncertainty. In the case of Euclid, where the number of mea-
sured objects will be extremely high, this leads to drastic re-
quirements on the various sources of systematic errors. The point
spread function (PSF) can induce important systematic effects,
since the PSF distorts object shapes, which could lead to very
strong bias in ellipticity measurements if not correctly accounted
for (Paulin-Henriksson et al. 2008; Massey et al. 2012; Cropper
et al. 2013).

Two approaches are possible to estimate the PSF. In the para-
metric approach, a PSF model is derived using the known infor-
mation about the instrument (and the observed sources), typi-
cally yielding a simulator that can recreate, based on a set of pa-
rameters, the instrument’s PSF at any position in the field. These
parameters are then chosen by fitting observed stars in the field
to yield an accurate PSF model. These methods thus fall in the
forward modelling category. An example of such is the TinyTim
software (Krist 1995) for the Hubble Space Telescope. The sec-
ond, or non-parametric, approach is based on data only, using
unresolved stars in the field as direct measurements of the PSF
and estimating the PSF at galaxy positions from these measure-
ments. The PSFEx software (Bertin 2011) is a typical example
of such an approach, and has been successfully applied to real
data in the context of weak lensing shape measurement (for in-
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stance in the DES survey: Jarvis et al. 2016; Zuntz et al. 2018).
The PSF modelling approach used in CFHTLenS (Miller et al.
2013) and KiDS (Kuijken et al. 2015) similarly falls in this cat-
egory, though unlike PSFEx, it allows for discontinuities in the
PSF variations at CCD boundaries and can thus be fitted on the
whole field at once rather than on each detector individually.

The latter class of methods are ultimately limited by the
amount of information that can be recovered from available data.
In particular, the maximum accuracy they can achieve is directly
limited by the number of observed stars. In the case of Euclid,
the requirement on the multiplicative shear bias is that it should
be lower than 2 × 10−3, which in turn leads to stringent require-
ments on the PSF model accuracy: the root mean square (RMS)
error on each ellipticity component

(
ePSF

i

)
i∈{1,2}

should be lower

than 5×10−5, and that on the relative size δR2
PSF/R

2
PSF (as defined

from quadrupole moments) lower than 5 × 10−4. Achieving this
accuracy is further complicated by stars suffering from under-
sampling, and our experiments indeed show the non-parametric
approach proposed in this work is not yet at the level to fulfill
these requirements. Because of these considerations, a forward
modelling approach of the Euclid VIS Visible instrument (VIS)
PSF capable of achieving these requirements is being developed
(Duncan et al., in prep.), and is already at a more mature state
of implementation. Nonetheless, also having a non-parametric
PSF model available remains advantageous, as the combination
of the two approaches could lead to a PSF model that outper-
forms either individually. This however requires developing a
non-parametric PSF model that can handle all of Euclid VIS’
specificities while striving to be as accurate as possible given its
intrinsic limitations. The present work offers a solution to take
steps toward a full non-parametric PSF modelling applicable to
Euclid.

To that end, we consider a simplified setting that includes
some of the complexity arising in modelling the VIS PSF (in-
cluding undersampling). Binary stars can impact the PSF model
if they are not removed from those objects used to fit the PSF
model. Since previous work (Kuntzer et al. 2016; Kuntzer &
Courbin 2017) deals with the identification of such objects, we
will assume in the present work they have already been removed
(and, more generally, that our star catalogues are empty from
contamination). Other aspects that will also need to be handled
but that are left for future work are:

– chromatic variations of the PSF (Cypriano et al. 2010; Erik-
sen & Hoekstra 2018);

– effects due to the satellite’s Attitude and Orbit Control Sub-
system (AOCS) and guiding errors;

– detector effects such as charge transfer inefficiency (CTI) and
the brighter-fatter effect (for which Coulton et al. (2018) re-
cently proposed a model);

– manufacturing and polishing errors.

The latter can induce variations of the PSF that occur on very
small spatial scales. While these are not included in the simu-
lated VIS PSF used in the present work, as discussed below, the
proposed method can by construction handle these high-spatial
frequency variations (with the strong caveat that observations
need to fall within the area of variation for our model to ac-
count for it). Handling detector effects within the PSF model
might prove hard, as they are flux-dependent and not convolu-
tional (though they could potentially be corrected for prior to fit-
ting the PSF model). Lastly, the work we carry out in the present
work is done at a single point in time, with a low number of ob-
served stars. The telescope will in truth vary with time, which

means the PSF modelling should be performed on each expo-
sure separately (or on a set of exposures taken closely enough
in time that the temporal variation can be neglected). However,
another approach is to include the temporal variation within the
non-parametric model itself, and fit it either to several exposures
simultaneously, or in an online way, updating the model with
each new available exposure. Not only could this improve the
quality of the PSF model, it might also help mitigate two serious
limitations of the non-parametric method: its quality depending
on the number of stars available, and the aforementioned need to
observe one precisely at the position of high-spatial frequency
variations (which should be constant with time).

Many non-parametric methods have been proposed to model
the PSF from observed stars. Gentile et al. (2013) reviewed,
in the context of GREAT3 (Mandelbaum et al. 2014, 2015),
several traditional interpolation approaches to deal with spa-
tial variations of the PSF. Other, more recent methods rely
on Optimal Transport (Ngolè & Starck 2017) or deep learn-
ing (Kuntzer 2018; Herbel et al. 2018). PSFEx remains the most
widely used method and is, to the best of our knowledge, the
only one to deal with both the super-resolution and the spa-
tial variation steps at the same time. Mandelbaum et al. (2017)
found the PSFEx-based model of the HSC PSF to perform poorly
when seeing becomes better than a certain value, close to the
threshold at which PSFEx automatically switches to the super-
resolution mode (Bosch et al. 2017), and could indicate issues
with PSFEx’s handling of super-resolution (and the need for
other non-parametric methods to deal with this problem). Super-
resolution is a well-studied problem in image processing, where
sparsity-based methods (Starck et al. 2015) have been shown to
perform extremely well. Ngolè et al. (2015) showed this to hold
true in the particular case of PSFs. However, contrary to the typ-
ical setting of the super-resolution problem where the object of
interest is observed several times with slight shifts (Rowe et al.
2011), in the case of Euclid, we instead have several undersam-
pled observations of the PSF at different positions in the field of
view (FOV). Ngolè et al. (2016) recently introduced Resolved
Components Analysis (RCA), a method specifically designed to
handle such a problem, but estimating the PSFs only at star po-
sitions.

An early study of the impact of PSF modelling errors was
carried out by Hoekstra (2004), where the PSF was modelled
solely through its anisotropy. Paulin-Henriksson et al. (2008)
introduced a mathematical description of PSF errors and their
impact on galaxy shape measurements, which was further ex-
plored in Massey et al. (2012). This formalism has been widely
used in the context of weak lensing to set requirements on future
surveys (Cropper et al. 2013), such as the minimum number of
stars in the field required to achieve a given accuracy (Paulin-
Henriksson et al. 2009), or to validate the PSF quality on actual
data (Rowe 2010; Jarvis et al. 2016). These studies rely on the
use of unweighted quadrupole moments. The addition of weight-
ing functions to avoid divergent moments leads to mixing with
higher-order moments. This is a well-studied issue in the case
of galaxy shape measurement (see e.g. Semboloni et al. 2013,
for the particular case of color gradients). In the case of the PSF
errors, however, the assumption that unweighted moments can
be used is still widely made. This was reasonable in the case of
ground surveys, where the PSF has a simpler profile. In the Eu-
clid case, however, the PSF profile will have divergent moments.
While this is not a concern when considering galaxy shape mea-
surements, as the galaxy’s light profile then effectively acts like
a weighting function, it raises the question of whether the usual
expression for the propagation of PSF errors still holds, since
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the quantities involved are the unweighted PSF moments. If that
were not the case, it could be more difficult to disentangle the
shape measurement errors due to an imperfect PSF model from
other effects such as bias due to the method used to derive the
galaxy shapes. Bias on shape measurements were investigated in
several papers (Hoekstra et al. 2015, 2017; Pujol et al. 2017),
but under the assumption that the PSF was perfectly known.

In this paper, we expand the RCA method by capturing spa-
tial variations of the PSF through a set of PSF graphs. We can
thus estimate the PSF at any arbitrary position in the field, while
preserving all the properties of the RCA-recovered PSF field.
This leads to a new approach that can deal, similarly to PSFEx,
with both super-resolution and spatial variations. The python
library is freely available1. While our model cannot currently
achieve the Euclid PSF requirements, we use the opportunity
provided by the comparison of two imperfect PSF models in a
Euclid-like setting to explore the impact of PSF errors on galaxy
shape measurement. In particular, by propagating the errors of
both PSF models through different shape measurement methods,
we examine whether the assumption that these two issues can be
treated separately still holds for Euclid.

The rest of the paper is organized as follows: Sect. 2 de-
scribes the formalism of the PSF recovery field problem we
adopted, Sect. 3 gives a quick overview of the RCA method and
Sect. 4 presents the new PSF field recovery method. In Sect. 5,
we apply both PSFEx and our approach to recover simplified Eu-
clid-like PSFs and compare the resulting models. We then use
them for galaxy shape measurement and study the impact of PSF
modelling errors in Sect. 6. We conclude and offer some perspec-
tives in Sect. 7.

2. Modelling the PSF field from stars

2.1. Notations

Let us first describe the problem at hand. Let H(u) denote the
(unknown) PSF that we wish to estimate; H is a function of
u = (x, y), a 2-dimensional vector containing the position within
the image. It is the full, untruncated PSF intensity profile, and
thus outputs a continuous image at any position u. Here and
throughout this paper, all such positions will be given in “im-
age” coordinates (i.e. within the instrument’s CCDs), since the
position of objects on the sky has no influence on the PSF they
are affected by. Similarly, here we considerH to be a single PSF
that aggregates all effects (e.g. diffraction, imperfect optical ele-
ments, jitter of the telescope). In particular, we do not consider
the intermediary, relative position of incoming light rays from a
given object on each individual optical component. We also con-
sider the spatial variations of the PSF to be slow enough that the
entirety of an object whose center lies at position u is affected by
the sameH(u).

Assume we observe a set of nstars stars across the FOV, at
positions Ustars :=

(
u1, . . . , unstars

)
. Each star i gives us a noisy,

undersampled observation ofH :

Yi = F (H(ui)) + Ni , (1)

where Ni is a noise vector and F is the degradation operator,
i.e. the effect of the realization on the instrument’s CCDs. In our
case, we separate its effects in two distinct operators,

F = Fd ◦ Fs . (2)

1 https://github.com/CosmoStat/rca

Fs is a discrete sampling into a finite number of pixels, which
turns each continuous image H(u) into a truncated p × p image
sampled at our target pixel size. Fd is composed of a sub-pixel
shift, and a further downsampling matrix M (i.e. the pixel re-
sponse of our instrument) that can lead to undersampling. De-
noting by D the downsampling factor caused by M, the available
observations Yi are thus Dp × Dp images. In the following, we
will treat them as flattened vectors of size D2 p2.

The problem at hand is composed of the two following parts:

– from observations Y := (Y1, . . . ,Ynstars ), build an estimator Ĥ
of the true PSFH at corresponding positionsUstars;

– recover the PSF at the galaxy positions,Ugal , Ustars.

In our present case of undersampled observations, while still dis-
cretized, we want our PSF model Ĥ to be sampled on a finer grid
than observations (Yi)i, that is, to counter the effect of Fd.

2.2. PSFEx

Before introducing our proposed approach to solve this PSF field
reconstruction problem, we give a quick overview of the PSFEx
method (Bertin 2011) that we will use in our experiments for
comparison purposes.

In its default configuration (and the one typically used in
weak lensing surveys, e.g. Zuntz et al. 2018), PSFEx uses the
stars in the field to fit a model directly in the pixel domain. Users
can specify any Source Extractor (Bertin & Arnouts 1996)
parameter to be used, as well as the maximum polynomial de-
gree d allowed for their corresponding components. These pa-
rameters are usually chosen to be position parameters u = (x, y),
leading to PSF reconstructions of the form

ĤPSFEx(u) =
∑
p,q≥0
p+q≤d

xpyqS pq . (3)

The reconstructed PSFs at the positions of the stars Ustars can
thus be rewritten as follows:

∀i ∈ {1, . . . , nstars}, ĤPSFEx
i := ĤPSFEx(ui) = S Ai , (4)

which in turn allows us to recast the PSFEx model as one of
matrix factorization, that is, as a way of finding two matrices S
and A such that Y ≈ Fd(S A). In this case, the matrix A is then
chosen to be

∀i, Ai =
(
xp

i y
q
i

)
p+q≤d

. (5)

The components that make up S are obtained through the mini-
mization of a function of the form

min
∆S

χ2(∆S ) + ‖T∆S ‖2F , (6)

where S := S 0 + ∆S , S 0 being a first guess obtained from a
median image of the shifted observations, T is chosen to be a
scalar weighting, and the χ2 data fidelity term is

χ2(∆S ) =

nstars∑
i=1

∥∥∥∥∥Yi − Fd ([S 0 + ∆S ]Ai)
σ̂i

∥∥∥∥∥2

2
, (7)
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Fig. 1: RCA’s matrix factorization.

where σ̂2
i contains the estimated per-pixel variances. The

‖T∆S ‖2F term is a regularization. Often referred to as Tikhonov
regularization, it favours certain solutions among all those pos-
sible (in the present case of a scalar T , those with a smaller l2
norm). Here, we include the flux normalization, sub-pixel shift-
ing and potential downsampling (if super-resolution is required)
operators in Fd. Shifting of the PSF models to the same grid as
those of the observed stars is performed, both within PSFEx and
for our proposed approach in the upcoming section, through the
use of a Lanczos interpolant.

3. Resolved Components Analysis

3.1. Overview

RCA (Ngolè et al. 2016), like many other methods (including
PSFEx, as shown in Sect. 2.2), achieves super-resolution through
matrix factorization. The PSF at the position ui of each star is re-
constructed through a linear combination of a set of eigenPSFs,
S j:

ĤRCA
i := ĤRCA(ui) =

r∑
j=1

S jAi j = S Ai , (8)

where each eigenPSF S j is an image of the same size as the PSF
images. Introducing the set of all reconstructed PSFs at star posi-
tions, Ĥ =

(
Ĥ1, . . . , Ĥnstars

)
, we thus have the matrix formulation

illustrated in Fig. 1.
Because our data is undersampled, a strong degeneracy

needs to be broken: infinitely many finely sampled PSFs would
manage to reproduce the observed undersampled stars. RCA
manages to break this degeneracy by enforcing several con-
straints on both S and A that reflect known properties of the PSF
field.

1. Low rank: the PSF variations across the field should be cap-
turable through a small number of eigenPSFs r. This can
be enforced by choosing S to be of dimension p2 × r, with
r � p2.

2. Sparsity: the PSF should have a sparse representation in an
appropriate basis, which can be enforced through a sparsity
constraint on the eigenPSFs.

3. Positivity: the final PSF model should contain no negative
pixel values.

4. Spatial constraints: variations of the PSF across the field
are highly structured, and the smaller the difference between
two PSFs’ positions ui, u j, the smaller the difference between
their representations Ĥi, Ĥ j should be.

The last of these constraints is achieved through a further factor-
ization of A itself, described in the following subsection.

3.2. Spatial regularization on graph

The spatial variations of the PSF across the FOV is highly struc-
tured, with both smooth variations that take place across the
whole field, and some much more localized changes that only af-
fect PSFs in a small part of it. If we had access to evenly spaced
samples, this would amount to variations occurring at different
(spatial) frequencies. We could then capture these variations by
making each of our eigenPSFs contain information related to a
given spatial frequency. Our sampling of the PSF is, however,
dependent on the position of stars in the field over which we
have no control.

RCA overcomes this hurdle through the introduction of
graph harmonics: each row Ak of A, which contains the weights
given to all observed star positions for eigenPSF k, is associated
with a graph. For k ∈ {1, . . . , r}, let Pek ,ak denote the Laplacian
(up to a constant multiplication on the diagonal, see Appendix A)
of the graph associated with Ak (and thus to the kth eigenPSF).
We define it as

(
Pek ,ak

)
i j :=

−1
‖ui − u j‖

ek
2

if i , j ,

(
Pek ,ak

)
ii :=

nstars∑
j=1
j,i

ak

‖ui − u j‖
ek
2
. (9)

In other words, each of our r PSF graphs are fully connected
graphs with the edge between positions ui and u j given a weight
of 1/‖ui − u j‖

ek
2 .

By carefully choosing the parameters of our set of graphs,
(ek, ak)k∈{1,...,nstars}

, we make each of them sensitive to different
ranges of distances, which leads to the harmonic interpretation.
See Ngolè et al. (2016, particularly §5.2, 5.5.3 and Appendix
A) for more details, as well as a scheme to select appropriate
(ek, ak)k from the data.

We enforce the link between A’s rows and their correspond-
ing graph through the addition of a constraint on the former.
Namely, we want to preserve the graph’s geometry through A
so that the amplitude of coefficients associated with a certain
eigenPSF varies with the right spatial harmonics. We achieve this
as follows: since Pek ,ak is real and symmetric, we decompose it
as

Pek ,ak := Vek ,ak Σek ,ak V
>
ek ,ak

, (10)

where Σek ,ak is diagonal. Let V :=
(
Ve1,a1 , . . . ,Ver ,ar

)
the matrix

made up of the eigenvectors associated with each of our r PSF
graphs. Our spatial constraint can now be expressed by further
factorizing A by V>, and forcing the resulting coefficients α to
be sparse. This is illustrated in Fig. 2. For a quick introduction to
the necessary graph theory concepts (and more insight into the
construction of this spatial regularization), see Appendix A.
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Fig. 2: Matrices involved in the spatial constraints.

As mentioned in the introduction, manufacturing and polish-
ing defects in the VIS instrument will inevitably lead to very
localized, but strong variations of the PSF at some (fixed) posi-
tions. While these are not yet included in the simulated PSFs we
use in Sect. 5, they should be naturally handled by our proposed
approach with the addition of extra eigenPSFs. Each of these ad-
ditions would diminish the role of constraint 1 (low rankness),
but the added graph (and corresponding eigenPSF) would cap-
ture only those very localized changes in the PSF. However, all
this can only be accomplished if some of the observed stars do
fall within the area where these variations occur. As discussed in
the introduction, this caveat could be alleviated by adding a tem-
poral component to our model, and fitting it on stars extracted
from several different exposures.

3.3. Optimization problem

Combining the factorizations illustrated in Figs. 1 and 2, re-
construction of the PSF field at the star positions through RCA
amounts to solving the following problem:

min
S ,α

(
1
2
‖Y − Fd(SαV>)‖2F

+

r∑
i=1

‖wi � Φsi‖1 + ι+(SαV>) + ιΩ(α)
)
, (11)

where (wi)i are weights, � denotes the Hadamard (or entry-wise)
product, Φ is a transform through which our eigenPSFs should
have a sparse representation (in our case, Φ will always be the
Starlet transform, Starck et al. 2011), ι+ is the positivity indicator
function, that is,

ι+ : X 7→
{

0 if no entry of X is strictly negative,
+∞ otherwise.

(12)

Similarly, ιΩ is 0 if α ∈ Ω and +∞ otherwise, and Ω is a sparsity
enforcing set:

Ω :=
{
α,∀i ∈ {1, . . . , r} , ‖(α>)i‖0 ≤ ηi

}
, (13)

where ‖.‖0 is the “norm” that returns the number of non-zero
entries of a vector. Here, α belongs to Ω if each of its row i has
at most ηi non-zero entries.

Breaking down Eq. (11) into its four summands, we can get a
sense of how solving it would yield a PSF model that fits the ob-
servations while satisfying the list of constraints we introduced
at the end of Sect. 3.1. Indeed, the first term is the data fidelity
term, which ensures we recover the observed star images after
applying the correct undersampling operator. The second term
promotes the sparsity of our eigenPSFs, thus satisfying con-
straint 2. The third term ensures our PSF model only contains
positive pixel values, enforcing constraint 3. The fourth term
forces the learned α to be sparse, in turn satisfying constraint
4 as detailed in Sect. 3.2. Lastly, as mentioned above, constraint
1 is achieved by setting a low enough number of eigenPSFs r.

Finding the eigenPSFs and their associated coefficients for
each star amounts to solving Eq. (11). This can be done through
alternated minimization, that is, by solving in turn for S then for
α iteratively. Each minimization is performed through the use of
proximal methods. Examples of such algorithms adequate to our
set up (where we have several constraints) include the Gener-
alized forward backward splitting (Raguet et al. 2013) and that
proposed by Condat (2013). For more details on solving the op-
timization problem, as well as how parameters (ek, ak)k, r, (wi)i
and (ηi)i are set, we refer the reader to Ngolè et al. (2016).

4. PSF Field Recovery from Graph Harmonics

4.1. Spatial interpolation of the PSF

We now turn to the problem of interpolating our PSF model from
the positions of stars,Ustars, to that of galaxies,Ugal.

Several standard methods exist to perform spatial interpola-
tion, that is, to estimate the (unknown) value of some function
f at a new position u = (x, y) given its measurements at several
other positions: ( f (uk))k. See Gentile et al. (2013) for a review of
such methods in the particular framework of PSF spatial interpo-
lation. The most natural (and the one used by PSFEx) is probably
the use of a polynomial function of positions, i.e.

f̂ (u) =
∑
i, j≥0
i+ j≤d

xiy jQi j , (14)

where the maximum polynomial degree d is a user selected pa-
rameter and the (Qi j)i, j are chosen such that f̂ (uk) ≈ f (uk) at
every position where f was observed (in our case, uk ∈ Ustars).
Note that the particular set-up of PSFEx shown in Eq. (3) can
be recovered when choosing f := ĤPSFEx and Qi j the PSFEx-
learned, image-sized components.

An alternative to the polynomial approach is the use of ra-
dial basis functions (RBF, Buhmann 2003). An RBF is a kernel
ϕ that only depends on the distance between two points. The
polynomial formulation of Eq. (14) can then be replaced by

f̂ (u) =

nneighbors∑
i=1

Qiϕ(‖u − ui‖) , (15)

where we sum over observed positions of the closest neighbors
of u, and the (Qi)i are, once again, chosen so that f̂ coincides
with the observed f at all sampled positions. Broadly speaking,
the idea behind these schemes is that the closer a position ui is,
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the more its observed value f (ui) should contribute to the esti-
mated f̂ (u), and RBF interpolation can be thought of as a gen-
eralization of inverse distance weighting schemes. Note that an
assumption underlying the use of RBFs is that the PSF’s amount
of similarity to its neighbors in f is isotropic, i.e., the same in
every direction.

Because of its simplicity and good performance exhibited
in Gentile et al. (2013), we chose to use RBF interpolation in the
present work, and selected the commonly used thin plate RBF
kernel (see Ngolè & Starck 2017, §3.2, for a quick discussion
of its physical interpretation). In what follows, we always set
nneighbors to 15.

4.2. Spatial Regularity using RCA Graph Harmonics

Aside from the choice of the spatial interpolator discussed in
the previous subsection, one must also decide which function
f to interpolate. In our case, where the PSFs are images of p2

pixels, the simplest approach would be to consider each of these
pixels as a scalar function and interpolate it independently from
the others. While simple, this approach is extremely sensitive to
single-pixel fluctuations, which are not unexpected in our data-
driven estimations of the PSF, for instance if some noise-related
artefacts remain.

As mentioned, instead of using p2 different f scalar func-
tions, PSFEx instead considers f to be Rp2

-valued. By construc-
tion, it performs a polynomial interpolation of its learned compo-
nents. Spatial interpolation can also be carried within any chosen
basis of representation – a typical example being the use of Prin-
cipal Components Analysis (PCA), wherein the inputs are first
decomposed using a PCA, and the spatial interpolation is car-
ried over the coefficients associated with the first few principal
components.

Our proposed approach is to perform this spatial interpola-
tion step within the Graph Harmonics framework of RCA. We
showed in Sect. 3.2 that the rows of matrix A are functions on
a set of graphs, each containing the spatial informations related
to one particular eigenPSF. This is illustrated in Fig. 3: the coef-
ficients related to eigenPSF S k encode the spatial variations for
a given range of distances. By performing the spatial interpola-
tion in each of the r rows of the RCA-learned A matrix, we are
moving along each of the corresponding PSF graphs. For any
new position u, we can then reconstruct a new set of coefficients
Au ∈ R

p through r RBF applications as in Eq. (15), and recon-
struct the PSF as

Ĥ(u) := S Au . (16)

This amounts to adding a new point on the PSF graphs, as shown
in red in Fig. 3. Since S was learned from the observed stars
and Au preserves the graph harmonics, this step ensures the con-
straints we highlighted at the end of Sect. 3.1 are still applied
to the new PSF at the galaxy positions. In particular, the spatial
constraints are preserved thanks to the PSF graphs.

Note that an additional advantage to this approach lies in
the fact that the most computation-intensive steps are performed
during the reconstruction of the PSF field through RCA (Sect. 3).
In a Euclid-like framework where star images are undersampled,
if we were to use RCA to perform the necessary super-resolution
step, the dictionary S and the graph harmonics encoded in A
would already be computed. The proposed method can thus per-
form the spatial interpolation step in a particularly appropriate
representation at no additional computational cost save for that
of fitting the RBF weights. Conversely, if one wanted to use any

Fig. 3: Graphical representation of the PSF graph associated with
eigenPSF S k. The height of the vertical bar at each position ui
corresponds to the amplitude of coefficient Aki.

other representation, even one as simple as PCA would require
some extra computation (spectral value decomposition, in this
case).

5. Comparison of PSF models

5.1. Data set

The PSFs we use are simulations of Euclid’s VIS instrument’s
PSFs (as described in Ngolè et al. 2015, §4.1), located in the cen-
tral part of the FOV, sampled at a single wavelength of 600 nm.
As mentioned in Sect. 1, this is a simplification of the true Euclid
PSF, since we neglect its chromatic variations, and the detector
and guiding effects are absent from the simulations. This data set
contains 597 such PSFs, each consisting of a 512 × 512 stamp
with a pixel size of approximately 0.0083 arcsecond, i.e. sam-
pled on a much finer grid than the Euclid pixel size. See Fig. 4
for two examples chosen at some of the top-right- and bottom-
left-most positions.

As previously discussed, in a real-life observing situation,
the only information (in the non-parametric framework of this
work) from which we would derive our PSF models would be
obtained from stars within the field, which lie at positions differ-
ent from those where we wish to estimate it. We thus randomly
split our sample of PSFs into two parts:

– a training set of 300 PSFs, the position of which we will refer
to as ‘star positions’;

– a test set with the remaining 297 PSFs, the position of which
we will refer to as ‘galaxy positions’.

The number of stars in our training sample is of order 10 times
smaller than the expected average number of usable stars present
in a VIS science exposure, though using all the available stars
simultaneously would require taking into account the variations
of the PSF across different CCDs. In Sect. 5.2, we will only use
the PSFs at star positions to try and produce estimations of the
PSF at the galaxy positions. Conversely, from Sect. 6.1 on, we
will solely focus on and use objects at the galaxy positions.

Euclid’s sampling frequency is at 0.688 of the Nyquist rate,
which sets our goal in terms of super-resolution at achieving an
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upsampling factor of 1/D = 2 (Cropper et al. 2013). To simu-
late observed stars, we sample all 300 PSFs in the training set at
the nominal Euclid pixel scale of 0.1 arcsecond. This is achieved
by first applying a mean filter (which amounts to the approx-
imation that the VIS pixel response is a perfect top hat), then
sampling pixels at the correct rate. We apply a random sub-pixel
shift to each resulting image, then truncate the stamps to be of
size 21 × 21 around the pixel closest to the object’s centroid.
Indeed, in observing situations, our PSF models would likely
(definitely, in the cases of both PSFEx and RCA) be fitted on im-
age stamps containing a suitable star extracted from the full im-
age. Our models would thus necessarily need to deal with the re-
sulting truncation effects. Lastly, we add various levels of white
Gaussian noise with standard deviation σ, yielding five different
sets of observed stars at average Signal-to-Noise Ratios (SNR)
of 10, 20, 35 and 50, where SNR is defined as

SNR =
‖x‖22
σ2 p2 , (17)

for image x of size p×p. An example of the resulting star images
is shown in Fig. 5.

From these, we will estimate the PSF at twice the Euclid
pixel sampling and at the galaxy positions in Sect. 5.2. Because
of the upsampling, the resulting PSFs will be stored in stamps of
42 × 42 pixels.

For comparison purposes, we also prepare a set of “known”
PSFs Ĥkn at those positions, by sampling the 297 test PSFs at
half of Euclid’s pixel size and truncating the resulting images to
42 × 42 pixels. While not the ideal case (where the continuous
PSF image would be perfectly known), this fiducial, unattain-
able case amounts to the best possible PSF our approaches to
super-resolution, denoising and spatial interpolation could pos-
sibly achieve. Note that this would require some extra conditions
to be met, e.g. by the population of random shifts undergone by
the undersampled images (which is, under the safe assumption
that shifts are randomly distributed, also directly related to the
number of observed stars). Using the notations of Sect. 2.1, Ĥkn

would be the the PSF obtained if only Fs remained while Fd had
been perfectly corrected for. In other words, the only effects de-
grading these PSFs are those of sampling (at our target of half
Euclid’s pixel size), and truncation at the best possible stamp
size given that of our star images.

5.2. PSF modelling

We first assume the star images described in Sect. 5.1 were al-
ready extracted, and we perform both super-resolution and spa-
tial interpolation using RCA, as described in Sects. 3 and 4. This
yields a set of 297 RCA-estimated 42×42 PSFs, ĤRCA, at galaxy
positions per SNR level.
PSFEx was designed to run on catalogs extracted using com-

panion software Source Extractor, and thus requires a lit-
tle more setting up. For each SNR level, we first create a fake
full image of 12 000 × 12 000 pixels, into which the 300 stars
are placed at their respective positions. We then run Source
Extractor on the resulting images, with parameters selected so
that all stars are detected and extracted correctly, and no spuri-
ous detections occur. When ran, PSFEx performs a further selec-
tion across all objects extracted by Source Extractor, which
is usually desirable to have the PSF model fitted to appropriate
stars. In our case, however, since we already know our Source
Extractor catalog to be perfect, we tune PSFEx’s selection

parameters so that as many stars as possible are used. One is
nonetheless rejected at SNR 50. The parameters related to the
model are the following:

PSF_SAMPLING .5
PSF_SIZE 42,42
PSFVAR_KEYS X_IMAGE,Y_IMAGE
PSFVAR_GROUPS 1,1
PSFVAR_DEGREES 2

Namely, PSFEx learns a set of PSF basis elements
(
S i j

)
i, j

such
that the PSF at position x, y is estimated as in Eq. (3), with d = 2
(repeating the experiments with d = 3 led to very poor PSF mod-
els). All other PSFEx parameters are left to their default value.
Again, this gives us one set of estimated PSFs per SNR level,
ĤPSFEx, with the same stamp and pixel sizes as Ĥkn and ĤRCA.

Examples of Ĥkn, ĤRCA and ĤPSFEx, at the galaxy position
corresponding to the simulated PSF on the left-hand side of
Fig. 4, are given in Fig. 6 for the worst and best-case noise sce-
narii.

5.3. Results

Paulin-Henriksson et al. (2008) established a basis for study-
ing the impact of imperfect PSF models on the shape mea-
surement of galaxies. Working in the framework of unweighted
quadrupole moments, they find that the error on the measured
galaxy ellipticity is

êi = ei

1 +
δ(R2

PSF)

R2
gal

 − R2
PSF

R2
gal

δePSF
i +

δ(R2
PSF)

R2
gal

ePSF
i

 , (18)

where R2
obj is the size of obj (which can be either a PSF or

a galaxy) defined from quadrupole moments, and δ indicates
the difference between a quantity of the true PSF and that of
the model. Following Eq. (18), we can first quantify the qual-
ity of our PSF by looking at the errors in size and ellipticity,
δ(R2

PSF), δePSF
i , for both models, on the 297 test PSFs.

For the former, both models tend to overestimate the size of
the PSF, likely because the super-resolution is performed on a
small sample of very narrow objects. This size error has a much
stronger contribution to the quantities in (18) than the elliptic-
ity error. RCA already reduces this bias in our current set-up,
with an improvement of about 24% at all noise levels. This still
leads to a RMS on the relative size δ(R2

PSF)/R2
PSF that is about

104 times too high to match the requirements. Beyond the need
to use more stars simultaneously to build the model, which also
emerges from every other current shortcoming of our approach,
this strong bias will already be greatly reduced in a more realis-
tic Euclid scenario, since a broadband PSF is necessarily broader
than the monochromatic PSF we are considering in this work, re-
gardless of the target object’s spectral energy distribution (SED).

The values of the true PSF ellipticity at each “galaxy posi-
tion” in our test set is shown in Fig. 7. The corresponding el-
lipticity residuals for each PSF model, δePSF

i , and their distribu-
tion across all positions are shown respectively in Figs. 8 and 9,
when computed on stars with SNR 35. Noticeable residuals are
present for both methods, though they are of lower amplitude in
the case of RCA. Fig. 7 shows a strong asymmetry between the
two ellipticity components, with most objects showing mostly
horizontally- or vertically-oriented sticks. This indicates the first
ellipticity component has both higher values, and much stronger
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Fig. 4: Visual examples of the simulated Euclid PSF in the natural (top row) and logarithmic (bottom row) domains, at the original
pixel sampling of the simulation (about 12 times finer than Euclid). Each stamp is approximately 4.25 arcsecond across.

(a) SNR 10 (b) SNR 20 (c) SNR 35 (d) SNR 50

Fig. 5: Example observed (undersampled) star stamps, at the various noise levels considered, from which the PSF models will be
estimated. Each stamp is approximately 2.1 arcsecond across.

variations across the field than the second (which contributes to
diagonal orientations). Residuals in Figs. 8 and 9 are in turn sim-
ilarly dominated by the 1st component. This is due to the pixel
grid on which the input simulated PSFs were sampled. A simple
rotation of the reference frame before sampling would reduce
(or invert, through a π/4-rotation) the difference in amplitudes
between the two ellipticity components.

As could already be glimpsed from Fig. 8, Fig. 9a shows
PSFEx leads to a strong bias in the first ellipticity component
that is systematically overestimated. This occurs at all SNRs and
indicates that PSFEx, as it is, cannot capture the variations of the
Euclid PSF model from undersampled stars.

The RMS error per star SNR level is shown in Fig. 10. We
observe the same overall behavior of both PSF models at all star
SNRs, with RCA performing better at e1 recovery, and worse
at capturing the much smaller e2 variations. As mentioned in
Sect. 1, Euclid’s requirements for weak lensing are that the RMS
on both PSF ellipticity component should be lower than 5×10−5.
As expected, our purely non-parametric approach is far (at a fac-

tor of 100-300) from achieving these requirements on its own
and with such few stars, though it already yields a significant
improvement over PSFEx.

The RMS on the first ellipticity component gets increasingly
worse for higher SNR values in the case of PSFEx, which might
indicate the presence of spurious effects in the model that get at-
tenuated by higher levels of noise. It might seem puzzling that
the error we observe in the case of RCA is lower for a SNR of
35 than it is for one of 50. We observe the same effect when re-
running RCA on several different realizations of noise at those
levels. A natural concern would be that this could indicate the
quality of our PSF model gets worse with decreasing levels of
noise; however, the pixel error between our RCA PSFs and the
“known” ones does get smaller, as shown in Fig. 11. These ef-
fects illustrate an important point: when building the PSF model,
neither RCA nor PSFEx explicitly aim at matching the observed
stars’ shapes. It is therefore possible that a “better” model, as
defined from the actual functionals both approaches aim at min-
imizing (in Eqs. 11 and 6, respectively), leads to a poorer el-
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(a) Ĥkn (b) Ĥkn

(c) ĤRCA (SNR 10) (d) ĤRCA (SNR 50)

(e) ĤPSFEx (SNR 10) (f) ĤPSFEx (SNR 50)

Fig. 6: Examples from the three sets of estimated PSFs described in Sect. 5.1. Each stamp is approximately 2.1 arcsecond across.
Note that the only difference between (a) and (b) is the color map, matched to be the same as that of ĤRCA and ĤPSFEx estimated
from stars with SNR 10 and 50, respectively.

lipticity component. This is what we observe in Fig. 10: the
PSF model outputted by RCA, when run on given stars, varies
smoothly as a function of their noise level. The overall qual-
ity of the model monotonically increases with SNR, as seen in
Fig. 11, eventually converging to the model that would be ob-
tained if there were no noise in the input stars. The ellipticity of
the model at any arbitrary position also varies smoothly, but there
is no guarantee these variations monotonically tend to the true el-
lipticity. While the effect we observe here is much smaller (and
is, in fact, not identifiable visually when comparing the models
obtained at SNRs of 35 and 50), as a crude illustration, consider

a PSF with two outer rings: the first one having a dampening ef-
fect on the full PSF’s first component ellipticity δ(einner

1 ) < 0, and
the second leading to an increase δ(eouter

1 ) = −δ(einner
1 ) > 0. For

a given number of stars, suppose the best possible error achiev-
able (with no noise) is δ(e∗1) > 0. Let us assume the quality of
the reconstruction of the central part of the PSF is unchanged
regardless of input noise levels, and both rings are completely
lost to noise at low SNR. As we increase the SNR of input stars,
the model would eventually capture the inner ring, while still
completely missing the outer one. At this stage, the dampening
effect of the first ring would counteract the overestimation of the
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Fig. 7: True PSF ellipticity as a function of position.

central part’s ellipticity, thus leading to a smaller ellipticity error
0 < δ(e∗1) + δ(einner

1 ) < δ(e∗1). If the SNR was to keep increas-
ing, however, the outer ring would eventually be captured by the
model, increasing once again the overestimation of the first com-
ponent ellipticity.

6. Impact on galaxy shape measurement

Eq. (18) is exact in the case of unweighted moments. However,
the Euclid PSF has divergent second-order moments and a com-
plex profile that leads to strong ellipticity gradients, which fur-
ther complicates the use of weight functions, as shown by Hoek-
stra et al. (1998). Their necessary addition introduces mixing
with higher-order moments, as seen e.g. in the DEIMOS (Mel-
chior et al. 2011) formalism. Massey et al. (2012) extended the
study of Paulin-Henriksson et al. (2008) to include these new
terms, which result in prefactors:

êi = ei

1 +
δ(R2

PSF)

PRR2
gal

 − 1
PRPe

R2
PSF

R2
gal

δePSF
i +

δ(R2
PSF)

R2
gal

ePSF
i

 ,
(19)

where we only introduce the terms that have a direct impact
on the contribution of the PSF modelling errors (Massey et al.
2012, also include those due to non-convolutive detector ef-
fects, and those introduced by the shape measurement process).
If the PSF is Gaussian, PR and Pe are exactly equal to 1. If
this holds, or is a good approximation (e.g. for ground-based
PSF), Eq. (19) reverts to the Paulin-Henriksson et al. (2008)
case, i.e. our Eq. (18), and the PSF modelling errors can thus
be considered separately from the shape measurement applied.
To test whether this remains true in our present case of a Eu-
clid-like PSF, in this section, we perform image simulations and
galaxy shape measurement using each PSF model. In particular,
in Sect. 6.2, we will apply both a moments-based shape mea-
surement method, and one based on model-fitting. While each

comes with its own method-dependent biases, we would expect
the contribution of the PSF modelling errors to be the same in
both cases if the assumption that the prefactors in Eq. (19) van-
ish held true.

6.1. Galaxies and observations

We perform galaxy image simulations using the freely available
GalSim software2 (Rowe et al. 2015). The galaxy parameters are
identical to those used in several branches of the GREAT3 chal-
lenge (Mandelbaum et al. 2014), themselves based on fitting the
COSMOS population. This gives us a population of 2 040 000
galaxies that are either drawn from a single Sersic profile, or
composed of both a bulge (following a de Vaucouleurs’ profile)
and a disk (with an exponential profile). We apply 204 different
random shear values, each of them to a set of 10 000 different
galaxies. These sets include the 90-degree rotated counterpart to
each galaxy, so as to ensure intrinsic ellipticity truly averages to
0.

The main difference between our image simulations and
those used in GREAT3 is, naturally, the PSF used. For our study,
we randomly assign one of the 297 Euclid PSFs (at galaxy po-
sitions) to each of the galaxies, import them in GalSim and per-
form the convolution with the galaxy profile.

Our observations are then generated by sampling the result-
ing convolved profile on stamps of 42×42 pixels at half the nom-
inal VIS pixel scale, to match our super-resolved PSFs. Note that
in a real-life Euclid setting, the observed galaxies would also suf-
fer from undersampling; however, we choose not to take it into
account in this work in order to better isolate the effects of imper-
fect PSF modelling on shape measurement. Similarly, rather than
matching the observations’ noise level to those we used for the
stars, we instead always add white Gaussian noise with σ = 0.01
(leading to an average SNR of about 50).

6.2. Shape measurement

With both the estimated PSFs and observed galaxies described
in the previous sections, we can now perform the actual shape
measurement step. For a given galaxy of intrinsic ellipticity
eint = (eint

1 , e
int
2 ) and having undergone a shear (g1, g2), our shape

measurement method yields

êi ≈ eint
i + gi . (20)

The shear itself can then be obtained by averaging over sets of
objects:

ĝ = 〈ê〉 ≈ 〈eint〉 + 〈g〉 = g . (21)

In our case, we know 〈eint〉 is exactly 0. Numerous shape mea-
surement methods that yield ê (and thus ĝ) exist. However, they
are known to be imperfect and introduce bias. Since we are inter-
ested in the impact of imperfect PSF models, in order to quantify
the amount of error that is introduced by the shape measurement
itself, we start by measuring the shape of each observed galaxy
using the corresponding known PSF Ĥkn. Then, for each of our
star noise levels, we repeat the measurement of the same object,
both with the RCA-estimated ĤRCA and the PSFEx ĤPSFEx.

Broadly speaking, shape measurement methods used in weak
lensing studies fall into one of two categories: moments-based

2 https://github.com/GalSim-developers/GalSim
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Fig. 8: PSF ellipticity residuals as a function of position, for both PSF models. Left: RCA; right: PSFEx.

approaches and model-fitting. The former rely on computing
estimates of the shape of the object from their second-order
quadrupole moments, and PSF correction is typically carried out
by also computing the PSF model image’s moments and correct-
ing for these. On the other hand, model-fitting methods assume
some analytical model for the profile of the galaxies. The pa-
rameters of the model are then selected on a per-object basis, by
fitting the observations with a sampled profile, convolved with
the PSF (hence the process sometimes being referred to as “for-
ward" fitting).

Because of the considerable difference between those two
approaches, especially with regards to how the PSF is taken into
account, we perform our experiments with one method of each
type. The most well-known moments-based approach is the KSB
method, first introduced by Kaiser et al. (1995). Various im-
provements and implementations of the KSB method have since
then been proposed. In the present work, we use its implementa-
tion within the HSM (Hirata & Seljak 2003; Mandelbaum et al.
2005) library of GalSim, where the size of the (circular) Gaus-
sian window function is matched to that of the observed galaxy.
For model-fitting, we use the freely available im3shape pack-
age3 described in Zuntz et al. (2013). In the results shown in
Sect. 6.3, im3shape was ran with most parameters left to de-
fault, except for those related to the images stamp size, noise
level, ranges for the estimation of the object’s centroid and PSF
handling (see Appendix B for a complete list).

A particular consequence of this is that the model chosen
for galaxies is a de Vaucouleurs bulge combined with an expo-
nential disk, which in turn is the exact model used for gener-

3 https://bitbucket.org/joezuntz/im3shape-git

ating some of our observations (though some others are com-
posed of a Single Sersic profile with index n < {1, 4}). However,
im3shape thus configured assumes the bulge and disk to have
the exact same ellipticity, orientation and relative size, which
is not necessarily the case for our simulated galaxies. Nonethe-
less, this means the actual galaxy profiles used by im3shape
are fairly close to that of the observations, perhaps more so
than what could be expected from real data. In other words, our
model-fitting experiments may not suffer from so-called model
bias quite as much as could be expected in a more realistic
setting (Voigt & Bridle 2010). However, our emphasis on the
present work is on the effect of PSF modelling errors on galaxy
shape measurement, and whether both approaches are similarly
affected by them. For a study of the impact of model bias on
shape measurement, see Pujol et al. (2017).

In some cases, the KSB implementation we used fails to
compute the shapes of certain objects, or returns ellipticity es-
timates with an absolute value of more than 1. When this oc-
curs with any of our three PSFs, we remove these objects from
the analysis. This leads to about 72 000 objects being put aside.
The exact amount of objects removed per SNR and PSF type are
given in Appendix C. Note the model-fitting approach always
provides an estimate of the shape, and thus all 2 040 000 objects
are used.

6.3. Results

6.3.1. Ellipticity measurements

We first consider the measured shape of galaxies themselves. Re-
gardless of the PSF model and shape measurement method ap-
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Fig. 9: Distribution of the ellipticity residuals for both PSF mod-
els. Measurements were made with star SNR 35.

Fig. 10: RMS error on each PSF ellipticity component for the
two models, as a function of input star SNR. Continuous lines
are for the first ellipticity component, dashed for the second.

plied, we obtain an estimate of the overall galaxy shape, which
includes both its intrinsic ellipticity and the undergone shear as
shown in Eq. (20). Despite their differences, both approaches
suffer from some form of model bias.

Fig. 11: Average pixel error as a function of star SNR.

Quadrupole moments are extremely sensitive to noise ef-
fects. To overcome this sensitivity, KSB uses a (matched, in our
case) Gaussian window function. This of course induces bias,
which has been compared to the effect of model bias in the case
of model-fitting methods, for instance by Viola et al. (2014). As
discussed at the end of Sect. 6.2, in our current set-up, im3shape
measurements are on the contrary fairly exempt from model bias.
Regardless, these potentially strong biases are due solely to the
shape measurement methods themselves, and should be indepen-
dent from the PSF modelling. Since the impact of the latter is our
focus here, we thus study the relative ellipticity error of the var-
ious combinations of PSF models and shape measurements, that
is,

〈(êkn
i − êRCA

i )2〉, 〈(êkn
i − êPSFEx

i )2〉 , (22)

where the average is taken over all objects. The results are shown
in Fig. 12. Note the overall amplitude of errors is still related to
the intrinsic biases of each shape measurement method, which
could be alleviated by a proper calibration scheme. However,
these results can still be used to inform us about the two PSF
models and their impact on galaxy shape estimation.

When using KSB, there is a clear improvement of order 50-
60% in the shape error when using the proposed approach over
PSFEx. Similarly to results shown on the PSF models themselves
in Sect. 5.3, this seems to indicate that both models yield signifi-
cantly different PSFs, and that our RCA-based approach is more
successful at reconstructing the true PSF.

Yet, interestingly, the observed difference is much smaller
(of order 10-20%) between the two PSF models when shapes
are measured through model-fitting. This would seem to imply
that these methods are less sensitive to PSF modelling errors than
moments-based methods, which was not an especially expected
outcome: for instance, Pujol et al. (2017) found no significant
difference in sensitivity on various other potential factors when
comparing methods of each type. This difference in behaviour
when faced with imperfect PSF models could be related to ef-
fects due to mixing with higher-order moments discussed at the
beginning of Sect. 6. This will be further studied in Sect. 6.3.3.
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Fig. 12: Relative ellipticity error on the measured galaxy shapes,
for both PSF models, as a function of the star SNR at which they
were fitted. The lines indicate errors made when applying KSB,
the scattered points errors made when using model-fitting.

6.3.2. Shear bias

A second way to study the impact of PSF models is to look at
the actual inferred shear itself. In our case, since we know the
intrinsic galaxy ellipticities average to 0 (and we can correct for
it if not, e.g. if some objects were tagged as outliers and removed
from the analysis), we only have to average across a set of 10 000
objects with the same applied shear to obtain our shear estimator,
as shown in Eq. (21).

A common way to parametrize the bias made on shear mea-
surement is to extend it to first order:

ĝi ≈ (1 + mi)gi + ci , (23)

where mi, ci are the multiplicative and additive shear bias, re-
spectively, for shear component i ∈ {1, 2}. As in the previous
section, we compute the value of those two parameters for each
combination of PSF and shape measurement technique. Once
again, we emphasize that the goal of the present work is not to
compare shape measurement methods per se, but rather how PSF
model errors impact them. The focus should thus be on the dif-
ferences of c and m values between different PSF models, rather
than on the actual values themselves.
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Fig. 13: 2D density of true and measured shear; the colours cor-
respond to the number of occurrences of measured shear values
when using the “known” PSF, each from approximatively 10,000
galaxies, for the corresponding input shear. The line shows the
best fit linear regression, yielding the bias values. Shapes were
measured with KSB.

In the case of KSB, the distributions of the first component of
measured and true shears, as well as the best fit linear regression
yielding the two bias values, are shown in Fig. 13 for the known
PSF. The same figures for both our models, with star SNR of 35,
are shown in Fig. 14, with the line corresponding to shear bias in
the ideal case shown in black for comparison.

PSF modelling induces a stronger shear bias in both cases,
with over a factor of 2 gain in multiplicative bias compared to
the ideal scenario. The RCA-based PSF leads to an improve-
ment, in both components, of the multiplicative bias compared
to PSFEx, as seen on Fig. 15 (where, similarly to the ellipticities
in Sect. 6.3.1, we show the relative biases ∆mi,∆ci after subtract-
ing that measured using the known PSF).

Conversely, Fig. 14 indicates our RCA-based PSFs lead to a
higher additive bias than the PSFEx ones. This additive bias is
present at every star SNR, as shown in Fig. 16, though it under-
goes strong variations. This higher RCA additive bias is espe-
cially noticeable on the first of the two shear components, de-
spite both the bias and RMS error on the first component PSF
ellipticity being smaller as shown in Sect. 5.3. A common way
to investigate the relationship between PSF and additive bias is
to reparametrize Eq. (23) thus:

ĝi ≈ (1 + mi)gi + c′i + αePSF
i , (24)

where α then quantifies the amount of PSF leakage. Note, how-
ever, that this quantity can contain both PSF effects that were not
fully captured by the shape measurement step, and effects ema-
nating from errors in the PSF model itself. It would therefore not
be informative in our present case, where the additive bias ap-
pears stronger for the PSF model with the smallest errors despite
the same shape measurement being applied in both cases.

A study of the shear biases obtained with our different PSF
models when using im3shape also seems to indicate the pres-
ence of a slight additive bias when using the RCA PSF. This is
illustrated in Fig. 17, which features the same shear 2D densities
and linear fit as Fig. 14, also at star SNR 35, when the shape
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ĝRCA
1 ≈ (1 + 0.197)g1 − 0.002

0

2

4

6

8

10

12

(a) RCA

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
True shear

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

K
S

B
es

ti
m

at
ed

KSB
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(b) PSFEx

Fig. 14: Similar to Fig. 13, 2D density of true and measured
shear, using the PSF models for the latter. The line correspond-
ing to first order shear bias is shown for both the PSF models (in
color) and the best case scenario (in black). Shape measurement
is performed using KSB.

measurement is performed by model fitting. In terms of multi-
plicative bias, the difference between the known and modeled
PSFs is much smaller than it was with KSB, and insignificant
in between models, which once again seems to indicate a lower
sensitivity to PSF modelling errors of model-fitting methods.

6.3.3. Comparison to analytical predictions

The results shown in Sect. 6.3.2 are already at odds with those
predicted by Eq. (18), since we observe different relative bi-
ases introduced by the same PSF model errors depending on the
shape measurement used. To better illustrate this discrepancy,
following from Eq. (18), for any set of galaxy, true PSF and
PSF model, we define the expected contribution to multiplica-
tive bias,

Fig. 15: KSB-induced multiplicative shear bias m as a function
of the SNR of stars on which the PSF models were fitted. Straight
lines correspond to the first component, dashed lines to the sec-
ond.

Fig. 16: Same as Fig. 15, for additive bias c.

mPH :=
δ(R2

PSF)

R2
gal

, (25)

that is the same for both ellipticity components, and the contri-
bution to each component of the additive bias

cPH
i := −

R2
PSF

R2
gal

δePSF
i +

δ(R2
PSF)

R2
gal

ePSF
i

 . (26)

These are shown in Figs. 18 and 19, respectively, for a range
of galaxy sizes. Here and throughout this section, we use PSFs
modelled at star SNR 35. The error bars correspond to the vari-
ations across our 297 estimated PSFs. Starting from our full ex-
periment, we separate the pure-Sersic galaxies, split them by
size, and recompute the shear biases we observe per galaxy size
bin. Similar to Sect. 6.3.2, we then compute the relative biases,
∆m,∆ci, by removing the bias measured with the “known” PSFs
to those of both PSF models. These values are then overplotted
for each galaxy size bin in Figs. 18 and 19, and show strong
deviations from the analytical predictions.

For instance, we showed in Sect. 5.3 that the RCA model
led to smaller errors in both the first PSF ellipticity component,
δePSF

1 , and its size, δ
(
R2

PSF

)
. It follows that we expect a lower rel-

ative (positive) additive bias when using the RCA PSFs, which

Article number, page 14 of 20



M.A. Schmitz et al.: Non-parametric PSF field recovery

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
True shear

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

im
3s

h
ap

e
es

ti
m

at
ed

im3shape
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(b) PSFEx

Fig. 17: Same as Fig. 14, when shape measurement is performed
using model-fitting.

is the opposite of what we observe with our full experiment. The
worse performance in ePSF

2 recovery is compensated by RCA’s
smaller δ(R2

PSF), which, as previously mentioned, largely out-
weighs the contribution of the ellipticity error term here. This
leads to smaller cPH

2 values when compared with the prediction
for PSFEx. However, we see that the biases we observe in prac-
tice are strongly dependent on the shape measurement method.
With im3shape, the c2 contribution is indeed smaller for RCA,
though they were overestimated by the analytical prediction for
both PSF models. With KSB, it is higher for RCA than it is for
PSFEx, and while cPH

2 < 0 for both PSF models, they lead to a
positive contribution when propagated to KSB-measured shapes.

As discussed at the beginning of Sect. 6, we know the analyt-
ical predictions are exact when the prefactors in Eq. (19) vanish.
In order to test whether these are the reason for the differences
we observed, we generate a new set of simulations. The galaxies
have the same properties (size, shape, applied shear) as those de-
scribed in Sect. 6.1, but are drawn from a 2D Gaussian distribu-
tion. Similarly, the PSF applied have identical shape properties
as our Euclid PSFs, but are also Gaussian. Lastly, we recreate a
set of “RCA” and a set of “PSFEx” PSFs, Gaussian as well, but

Fig. 18: Multiplicative bias induced by the PSF models, as pre-
dicted from Eq. (25) (continuous line and error bars) and ob-
served when measuring galaxy shapes with KSB (empty points)
or im3shape (filled points).

(a) First ellipticity component.

(b) Second ellipticity component.

Fig. 19: Similar to Fig. 18, for the additive biases predicted from
Eq. (26) (continuous line and error bars), and those observed
with KSB (empty points) and im3shape (filled points). Note that
in this case, the analytical predictions are different for each el-
lipticity component because of the left-hand term in Eq. (26).
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Fig. 20: Same as Fig. 18, when PSFs and galaxies are Gaussian.

with the same shape errors δePSF
i , δ

(
R2

PSF

)
as those measured on

our actual star-fitted models. While we have access to the true
galaxy sizes from the GREAT3 input catalogues, the PSF shapes
have to be measured in all three cases. We once again used the
HSM library of GalSim, which matches the size of the weighting
function to the object being measured. We chose the size of our
Gaussian PSFs to be the same as that of the matched window,
which leads to a constant factor of two in their unweighted R2

PSF.
The results are shown in Figs. 20 and 21 for the multi-

plicative and additive components, respectively, and show good
agreement with the predicted values. The first few galaxy size
bins lead to smaller measured multiplicative biases, though these
are only due to the small number of galaxies at these sizes.

7. Conclusion

In this work, we extended a previously proposed approach for
PSF estimation, taking necessary steps toward a fully non-
parametric approach applicable in the context of the upcom-
ing Euclid survey. A study of the PSF models and their resid-
uals shows our model outperforms the proven and widely used
PSFEx. This could indicate a better handling of the super-
resolution, as hints at potential issues with PSFEx’s super-
resolution mode were recently observed in HSC (Bosch et al.
2017). Our method is still, however, far from achieving the Eu-
clid requirements. As a non-parametric approach, its main lim-
itation lies in the number of available stars, and a natural path
of improvement is thus simultaneous use of stars from different
exposures, that is, taking into account the temporal variability of
the PSF. Another approach is that of a parametric PSF model,
which is under development for Euclid (Duncan et al., in prep.)
and should allow to reach the requirements. Ultimately, the com-
bination of both approaches will likely do better than each taken
separately, which warrants further study of non-parametric mod-
els, how to improve them, and make them capable of handling
the specificities of Euclid’s PSF.

As mentioned in the introduction, in the present work we
have made many simplifying assumptions regarding the VIS
PSF. In particular, we considered a single monochromatic PSF.
This will no longer be an acceptable assumption in the case of
Euclid (Eriksen & Hoekstra 2018), and aside from the need to
use a greater number of stars, a necessary improvement to the
presented method and focus for future work will be to take those
chromatic variations into account. Dealing with this issue in the

(a) First ellipticity component.

(b) Second ellipticity component.

Fig. 21: Same as Fig. 19, when PSFs and galaxies are Gaussian.

non-parametric framework is of considerable difficulty, since the
observed stars give measurements of the PSF integrated with
their own SED. However, we recently showed (Schmitz et al.
2018) that Optimal Transport tools were particularly well suited
to represent the chromatic variations undergone by the VIS PSF.
Introducing these tools into our non-parametric model could al-
low us to break the additional degeneracy caused by the chro-
matic variations of the PSF being integrated with the stars’ SED,
and to extract monochromatic components that could then be re-
combined with the galaxies’ SED.

Despite the improvement in model quality, the use of our
approach as the PSF in galaxy shape measurement unexpectedly
led to stronger additive shear biases than when using PSFEx. Fol-
lowing this observation, as well as other observed discrepancies,
this paper also showed that in the case of Euclid, the way the PSF
modelling errors impact shear measurement can be more com-
plicated than previously thought and method-dependent. In par-
ticular, the Paulin-Henriksson et al. (2008) formalism no longer
holds. Our experiments show this is likely coming from addi-
tional terms arising from the necessary addition of a window
function to compute quadrupole moments. Similar effects could
thus occur for any diffraction-limited telescope.
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Fig. A.1: An example unweighted graph.

Appendix A: A primer on graph theory

In this appendix, we give a very brief introduction to some graph
theory concepts relevant to our method. Let us first define the
Laplacian matrix. Consider an unweighted graph such as that
shown in Fig. A.1 (where each vertex i is identified through ui
in order to keep the notations consistent, though there is no no-
tion of position here). We define the degree, d(i), of vertex i as
the number of edges connected to it. In our example, we have
d(1) = d(4) = 3, d(2) = d(5) = 1 and d(3) = 2. The degree
matrix D is simply the diagonal matrix with Dii = d(i). It con-
tains information about the graph’s connectivity, but none about
its actual structure (as we cannot know which vertices contribute
to another’s degree). This is contained in the adjacency matrix
A, which in the unweighted case is simply defined as

Ai j =

{
1 if there is an edge between vertices i and j,
0 otherwise.

(A.1)

We can now define the Laplacian matrix of a graph as

L = D − A . (A.2)

In the example of Fig. A.1, the Laplacian would be

L =


3 −1 −1 −1 0
−1 1 0 0 0
−1 0 2 −1 0
−1 0 −1 3 −1
0 0 0 −1 1

 . (A.3)

The Laplacian matrix is a central tool to graph theory. In our
case, the edges are weighted by a function of the distance be-
tween the stars corresponding to the vertices. Generalizing the
definition of L to the weighted case is an intuitive procedure.
While the adjacency matrix entries up to now only contained a
binary information (either two vertices are connected, or they
are not), in the weighted case we replace that with the weight
on the corresponding edge: the entries of A now tell us quantita-
tively how connected two vertices are. Similarly, for the degree
matrix to quantify the amount of connectivity of a given vertex
rather than just count the number of edges, we define the degree

of node i as d(i) =
∑

j Ai j, that is, the sum of the weights carried
by all edges connected to vertex i. From that definition, it fol-
lows immediately that our matrices Pek ,ak defined in Eq. (9) are
precisely the Laplacian matrices of a fully connected graph with
the edge between i and j weighted by 1/‖ui − u j‖

ek
2 , multiplied

(entry-wise) by a matrix L̃D, defined as

L̃D := akId −


0 −1 −1 . . . −1
−1 0 −1 . . . −1
...

. . .
...

−1 . . . −1 0 −1
−1 . . . −1 −1 0

 , (A.4)

where Id is the identity matrix.
The role of ek in associating each of our graphs to a cer-

tain spatial frequency is straightforward: the higher its value, the
stronger the decay in edge weight as the distance between two
vertices increases, leading to the graph capturing lower spatial
frequencies. Comparing Eq. (A.4) to Eq. (A.2) gives an intuitive
(though unrigorous) interpretation as to the role of ak: it amounts
to multiplying the degree matrix of our graph by ak, in turn af-
fecting its overall connectivity.

As a pathway toward defining wavelets on graphs, Hammond
et al. (2011) introduced, by analogy with the usual transform,
the Fourier transform on graphs. For a graph G with Laplacian
L, let (Vl)l denote its eigenvectors. For any function f defined on
the vertices of G (like, in our case, each row Ak containing the
coefficients of each star for a particular eigenPSF), we define its
Fourier transform as

f̂ (l) := 〈Vl, f 〉 . (A.5)

The matrix V introduced in Sect. 3.2 is nothing but the concate-
nation of the eigenvectors associated to each eigenPSF’s graph.
Factorizing A by V> and imposing the rows of the resulting ma-
trix α to be sparse thus simply amounts to imposing the coef-
ficients associated to our eigenPSFs to be sparse in the Fourier
domain of each associated graph (themselves capturing, by con-
struction, a particular spatial frequency).

Appendix B: Model-fitting configuration

Below is the configuration file used when running im3shape in
our experiments:

noise_sigma = 0.01
background_subtract = NO
psf_truncation_pixels = 50.0
stamp_size = 42

sersics_x0_start = 21.0
sersics_y0_start = 21.0
sersics_x0_min = 18.0
sersics_y0_min = 18.0
sersics_x0_max = 24.0
sersics_y0_max = 24.0

psf_input = psf_image_cube
perform_pixel_integration = NO
upsampling = 1
central_pixel_upsampling = NO
padding = 0

Note that default values are used for all parameters not specified
in this config file.
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SNR 10 SNR20 SNR35 SNR50
Known 26 741 26 702 26 787 26 798
PSFEx 63 541 63 356 63 236 63 111
RCA 54 345 51 664 52 100 51 739
Total 72 951 71 551 71 128 70 902

Table C.1: Number of objects where the HSM implementation
of KSB fails to compute the PSF-corrected shapes per star SNR
level. The total amount corresponds to the union of the 3 PSF-
specific sets of such outliers.

Appendix C: KSB-HSM outlier counts

Table C.1 contains the number of objects removed from the anal-
ysis when using KSB.
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