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ABSTRACT

Context. The LOFAR Two-metre Sky Survey (LoTSS) will eventually map the complete Northern sky and provide an excellent
opportunity to study the distribution and evolution of the large-scale structure of the Universe.
Aims. We test the quality of LoTSS observations through statistical comparison of the LoTSS first data release (DR1) catalogues to
expectations from the established cosmological model of a statistically isotropic and homogeneous Universe.
Methods. We study the point-source completeness and define several quality cuts, in order to determine the count-in-cell statistics and
differential source counts statistic and measure the angular two-point correlation function. We use the photometric redshift estimates
which are available for about half of the LoTSS-DR1 radio sources, to compare the clustering throughout the history of the Universe.
Results. For the masked LoTSS-DR1 value-added source catalogue we find point-source completeness of 99% above flux densities
of 0.8 mJy. The counts-in-cell statistic reveals that the distribution of radio sources cannot be described by a spatial Poisson process.
Instead, a good fit is provided by a compound Poisson distribution. The differential source counts are in good agreement with previous
findings in deep fields at low radio frequencies. Simulated catalogues from the SKA design study sky match with our findings, in
contrast to the more recent T-RECS models. For angular separations between 0.1 deg and 1 deg we find self-consistency amongst
different estimates of the angular two-point correlation function, while at larger angular scales we see indications of unidentified
systematic issues, likely due to data calibration issues. Based on the distribution of photometric redshifts and the Planck 2018 best-fit
cosmological model, the theoretically predicted angular two-point correlation between 0.1 deg and 1 deg agrees with the measured
clustering for the subsample of radio sources with redshift information.
Conclusions. The deviation from a Poissonian distribution might be a consequence of the multi-component nature of a large number
of resolved radio sources and/or of uncertainties on the flux density calibration. The angular two-point correlation function is < 10−2

at angular scales > 1 deg and up to the largest scales probed. An enhancement compared to NVSS and the theoretical expectation at
angular scales of a few degrees is most likely an effect of correlated noise or fluctuations of the flux density calibration. We conclude
that we find agreement with the expectation of large-scale statistical isotropy of the radio sky at the per cent level and below angular
separations of 1 deg the angular two-point correlation function agrees with the expectation of the cosmological standard model.

Key words. Cosmology: observations, large-scale structure of Universe, Galaxies: statistics, Radio continuum: galaxies

1. Introduction

The LOFAR Two-metre Sky Survey (LoTSS)1 will provide the
deepest and best resolved inventory of the radio sky at low fre-
quencies over the coming decades (Shimwell et al. 2017). Hav-
ing already produced high fidelity images and catalogues over
424 square degrees at a central frequency of 144 MHz (Shimwell

? E-mail: t.siewert@physik.uni-bielefeld.de
1 www.lofar-surveys.org

et al. 2019), LoTSS will continue to produce a catalogue that
is estimated to contain about 15 million radio sources over all
of the Northern hemisphere. A large fraction of those sources
will come with optical identifications (Williams et al. 2019) and
photometric redshifts (Duncan et al. 2019). Already, for the first
data release, about half of the radio sources have measured pho-
tometric redshifts. In addition to this, the WEAVE-LOFAR sur-
vey (Smith et al. 2016) will measure spectroscopic redshifts for
about a million sources from the LoTSS catalogue. The survey is
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therefore expected to provide a rich resource not only for astro-
physics, but also for cosmology, see e.g. Raccanelli et al. (2012),
Camera et al. (2012), Jarvis et al. (2015) and Maartens et al.
(2015). Together with photometric redshifts and, at a later stage,
spectroscopic redshifts, we will be able to measure the luminos-
ity and number density evolution directly, and through a cluster-
ing analysis will also be able to measure the relative bias between
the different radio source populations.

Extragalactic radio sources are tracers of the large scale
structure of the Universe. The evolution of the large scale struc-
ture in turn depends on many fundamental parameters; for exam-
ple it depends on the model of gravity, the proportion of visible
and dark matter as well as dark energy, and the primordial curva-
ture fluctuations. Unfortunately, these dependencies are blended
with unknowns from astrophysics such as the bias factors for ac-
tive galactic nuclei (AGN) and starforming galaxies (SFG), their
number density and luminosity evolutions. The purpose of this
work is to make a first step towards the cosmological analysis of
LoTSS.

For cosmological studies, surveys must cover a sizeable frac-
tion of the sky and sample the sky fairly homogeneously, down
to some minimal flux density. Currently available radio sur-
veys in the LoTSS frequency range are the TIFR GMRT Sky
Survey (TGSS-ADR1; Intema et al. 2017) and GaLactic and
Extragalactic All-sky MWA survey (GLEAM; Hurley-Walker
et al. 2017). The first alternative data release of the TGSS cov-
ers 36 900 square degrees of the sky at a central frequency of
147.5 MHz and at an angular resolution of 25′′. A 7-sigma de-
tection limit with a median rms noise of 3.5 mJy/beam results in
623 604 sources. Comparing the measured TGSS source counts
to SKADS (SKA Design Study, Wilman et al. 2008) sky simu-
lations shows good agreement for flux density thresholds above
100 mJy. The GLEAM catalogue covers 24 831 square degres
and contains 307 455 sources with 20 separate flux density mea-
surements between 72 MHz and 231 MHz, centred at 200 MHz
at an angular resolution of 2′. The catalogue is estimated to be
90% complete at a flux density threshold of 170 mJy in the entire
survey area for a 5-sigma detection limit. The rms noise varies
between 10 mJy/beam and 23 mJy/beam along four declination
ranges, which complicates the measurements of cosmic struc-
tures on large angular scales.

As LoTSS will eventually cover all of the Northern sky and
detect about 15 million radio sources, it will allow us to over-
come statistical limitations due to shot noise and substantially re-
duce cosmic variance in cosmological analysis, two issues from
which contemporary wide area radio continuum catalogues suf-
fer.

In this work we study the one- and two-point statistics for the
sources in the LoTSS data release 1 (DR1). Covering an area of
424 square degress over the HETDEX spring field, DR1 contains
325 694 radio sources, detected by means of PyBDSF (Python
Blob Detector and Source Finder2, Mohan & Rafferty 2015) with
a peak flux density of at least five times the local rms noise. The
median rms noise in the observed area is 71 µJy/beam at an an-
gular resolution of 6′′. The LoTSS-DR1 value-added catalogue,
as described by Williams et al. (2019) removes artefacts and
corrects wrong groupings of Gaussian components. It contains
318 520 sources of which 231 716 have optical/near-IR identifi-
cations in Pan-STARRS/WISE.

Before the LoTSS catalogues can be used for cosmological
analyses, the consistency of the flux density and the complete-
ness and reliability of the detected sources must be carefully ex-

2 http://www.astron.nl/citt/pybdsf/

amined. For cosmological analysis we are interested in the large
scale features on the sky, and large scale instrumental or calibra-
tion effects must be identified and accounted for, before we can
draw credible cosmological conclusions.

The goal of this work is therefore to recover and re-establish
the well known and tested properties of large-scale structure in
the radio sky. The study of the one- and two-point number count
statistics of the LoTSS-DR1 value-added catalogue offers an ex-
cellent opportunity to do so, and the cleaning and quality control
methods presented in this work will provide a good basis for fu-
ture cosmological exploitation of LoTSS.

The potential of radio continuum surveys for cosmology has
been studied in detail in the context of the SKA, see e.g. Jarvis
et al. (2015); Square Kilometre Array Cosmology Science Work-
ing Group et al. (2018) and its precursors, among them LOFAR
(Raccanelli et al. 2012). Some of the cosmological SKA science
cases can already be tackled by LoTSS, even well before regular
SKA surveys will start. In the pre-SKA era, a key topic of inves-
tigation will be to improve our understanding of dark energy and
modified gravity; these can be parametrized so that we can con-
strain e.g. the equation of state of dark energy and its evolution,
the deviation of the relationship between density and potential
from that expected in the Poisson equation, and the ratio of the
space- and time-parts of the metric. These parameters have ob-
servable consequences via their effect on the expansion history
and/or structure growth history of the Universe. This in turn af-
fects the predictions for observable cosmological probes includ-
ing the auto-correlation of source counts, the cross-correlation
of source counts with the CMB (integrated Sachs-Wolfe effect,
Ballardini & Maartens 2019), and the cross-correlation of source
counts at different redshifts (which is activated by gravitational
lensing magnification effects). The radio sky also provides an
opportunity to constrain primordial non-Gaussianity in the distri-
bution of density modes in the Universe (Ferramacho et al. 2014;
Raccanelli et al. 2015); this is observable as an enhanced auto-
correlation at large angular scales. In addition, very wide surveys
can probe the kinematic and matter radio dipole (Bengaly et al.
2019), which can act as a fundamental test of the cosmological
principle. Here we focus on the simplest statistical tests, in par-
ticular the two-point source count statistics.

In Sect. 2 we summarize the theoretical expectation for the
one- and two-point number counts. In Sect. 3 we describe how
we identify the survey regions that are most reliable, estimate
the completeness of LoTSS-DR1 and describe the masks and
flux density cuts that we apply to the data. In order to compare
expectation and data we generate mock catalogues, which are
described in Sect. 4. The properties of the one-point statistics
are discussed in Sect. 5. For this, we ask if the radio sources in a
pixel on the sky are drawn from a Poisson process and we inves-
tigate the differential number counts and then compare them to
other surveys and to simulations. In Sect. 6, we estimate the two-
point statistics, the angular correlation function, which we fit to
a phenomenological model and compare them to findings from
previous surveys, as well as to the theoretically expected angular
two-point correlation function based on the Planck 2018 best-fit
cosmological model, the photometric redshift distribution found
for LoTSS-DR1 radio sources and a bias function from the liter-
ature. We present our conclusions in Sect. 7.

This work is complemented by four Appendices. In App. A
we describe a masking procedure for the TGSS-ADR1 catalogue
that is used for comparison and estimate the corresponding an-
gular two-point correlation function. Five common estimators
for the angular two-point correlation function are described and
compared in the context of LoTSS-DR1 in App. B. We also test
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the accuracy of the software package TreeCorr (Jarvis et al.
2004) that we use for the computation of the angular two-point
correlation function by means of an independent, computation-
ally slow but presumably exact brute force algorithm (App. C).
In App. D we show that the contribution of the kinematic radio
dipole to the angular two-point correlation function is negligible
for the angular scales probed in this work.

2. Large scale structure in radio continuum surveys

Before we investigate the data, we first discuss what the standard
model of cosmology predicts for the statistical tests that we will
consider throughout this work.

2.1. Source counts in cells

The cosmological principle is fundamental to modern cosmol-
ogy, stating that the statistical distribution of matter and light
is isotropic and homogeneous on spatial sections of space-time.
Isotropy on large scales is observed at a wide range of frequen-
cies, from the distribution of radio sources, to the distribution of
gamma-ray bursts, and is most precisely tested by means of the
cosmic microwave sky (see e.g. Peebles 1993; Planck Collab-
oration et al. 2016, 2019). Therefore we also expect to find an
isotropic distribution of extragalactic radio sources for LoTSS,
i.e. the expectation value of the number of radio sources per unit
solid angle, or surface density σ, with flux density above a cer-
tain threshold S min, is independent of the position on the sky e.
The number counts in a pixel (or cell) of solid angle Ωpix centred
at e are

N(e, S min) =

∫
Ωpix

σ(e, S min)dΩ, (1)

with (ensemble) expectation value

〈N(e, S min)〉 = N̄(S min) = σ̄(S min)Ωpix. (2)

The simplest model for the distribution of radio sources as-
sumes that they are (i) identically and (ii) independently dis-
tributed, and (iii) pointlike (i.e. it is possible to reduce the pixel
size until each pixel would contain at most one fully contained
source). These assumptions define what is called a homogenous
Poisson process (see e.g. Peebles 1980). Thus the naive expecta-
tion is that the probability of finding k sources above a flux den-
sity threshold S min in any cell of fixed size is given by a Poisson
distribution with intensity parameter λ, i.e.,

pP
k =

λk

k!
e−λ, (3)

with expectation N̄ ≡ E[k] = λ and variance Var[k] = λ = N̄.
Deviations from a Poisson distribution are expected due to

effects from gravitational clustering of large-scale structure [a
violation of condition (ii)], resolved sources [a violation of con-
dition (iii)], and multi-component sources, such as FRII radio
galaxies in which the radio lobes are not statistically indepen-
dent from each other [violation of condition (ii)]. Different types
of radio sources could follow different statistical distributions,
which would then violate condition (i). These effects and addi-
tional observational systematics are expected in radio continuum
surveys, and thus we must expect that radio sources should not
be perfectly Poisson distributed.

Let us consider the expected modifications due to multiple
radio components and show that this effect can be modelled by
means of a compound Poisson distribution (James 2006), i.e. the
distribution that follows from adding up n identically distributed
and mutually independent random counts ni, with i = 1 to n,
and n itself follows a Poisson distribution with mean β. Let us
first assume that the number of radio components is also Poisson
distributed. Then the probability p to find k sources in a cell
follows from p(k) =

∑∞
n=0 p(k|n)p(n), where the first factor is the

conditional probability to find k radio components, like distinct
hot spots and the core, associated with n galaxies and the second
factor is the probability to have n galaxies. We further assume γ
is the mean number of components per galaxy and thus the mean
of the conditional probability is nγ. This results in

pCP
k =

∞∑
n=0

[
(nγ)ke−nγ

k!
βne−β

n!

]
, (4)

with expectation and variance now given by

N̄ ≡ E[k] = βγ, Var[k] = βγ(1 + γ) = N̄(1 + γ). (5)

Thus we see that unidentified multiple radio components can
increase the variance of the source counts, e.g. for a textbook
FRII with a detected core we would see three components which
would immediately lead to an increase of the variance. This
statement is independent of the size of the cell, but how many
radio components can be identified does depend on the angular
resolution and completeness of the radio continuum survey.

It is useful to define the clustering parameter (Peebles 1980)

nc ≡
Var[k]
E[k]

, (6)

which is a proxy for the number of sources per ‘cluster’. For
the Poisson distribution nc = 1, while nc = 1 + γ for a com-
pound Poisson distribution. Groups of radio sources, like a group
of SFGs, also contribute to nc, and thus nc is also a tracer of
clustering at small angular scales. The measurement of nc alone
can not distinguish between galaxy groups, multi-component
sources and imaging artefacts.

Whilst we believe assuming a Poissonian distribution of ra-
dio components will be appropriate for this work, we can chose
another distribution, which will result in another compound dis-
tribution. To give a second example, assuming a logarithmic
distribution results in a negative binomial distribution (James
2006), which interestingly provides the best fit to three dimen-
sional counts-in-cell in the Sloan digital sky survey (Hurtado-Gil
et al. 2017).

2.2. Differential source counts

While counts in cells provides information on the spatial distri-
bution of radio sources, it is also interesting to study their distri-
bution in flux density. The number of sources per solid angle and
per flux density observed at radio frequency ν, or the so-called
differential source count is given by

dN
dΩdS

(S |ν) =
dσ
dS

(S |ν) (7)

=

∫ ∞

0
dz

(
dL
dS

dσ
dLdz

)
(S , z|ν) (8)

= 4πc
∫ ∞

0
dz

d4
c (z)

H(z)
(1 + z)1+αφ(Lν(S , α, z), α; z), (9)
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where σ is the source density and we assume that the specific lu-
minosity can be written as a power-law, Lν ∝ ν−α, with spectral
index α, and φ(Lν, α; z) is the comoving luminosity density of ra-
dio sources at redshift z. In reality radio sources show a distribu-
tion in α, often assumed to be a fixed value 0.7 to 0.8. A LOFAR
study of radio sources in the Lockman hole compared to NVSS
sources measured a median spectral index α = 0.78 ± 0.015
(Mahony et al. 2016), with errors obtained by bootstrapping. In
a study of spectral indices comparing NRAO VLA Sky Survey
(NVSS, Condon et al. 1998) and TGSS-ADR1 sources an aver-
aged ᾱ = 0.7870 ± 0.0003 (de Gasperin et al. 2018) was found,
which is comparable to measurements by Hurley-Walker et al.
(2017) with median and semi-inter-quartile-range α = 0.78 ±
0.20 for flux densities S < 0.16 Jy at 200 MHz in the GLEAM
survey. This also matches the finding by Tiwari (2016), who es-
timated a mean spectral index of ᾱ = 0.763 ± 0.211 for sources
with flux densities S TGSS ≥ 100 mJy and S NVSS ≥ 20 mJy. For
the sake of simplicity we assume here that all radio sources have
the same spectral index. The relationship between spectral lumi-
nosity and flux density is given by:

Lν = 4πd2
c (z)(1 + z)1+αS . (10)

In Eq. (9) we express the surface density by the luminosity den-
sity and integrate it over the past light-cone. This introduces the
dependence on the Hubble rate at particular redshift H(z) and an
extra factor involving the comoving distance dc(z), which in a
spatially flat, homogeneous and isotropic universe is

dc(z) = c
∫ z

0
dz′

1
H(z′)

. (11)

If we were to live in a static Universe with Euclidean geom-
etry, the differential source counts would be proportional to
S −5/2 (Condon 1988). Observations of source counts are typ-
ically rescaled by this factor to highlight the evolution of the
Universe and of radio sources.

2.3. Angular Two-point correlation function

In order to study the clustering of radio sources and to use them
as a probe of the large-scale structure of the Universe, the third
quantity of interest in this work is the angular two-point correla-
tion function.

We denote the angular two-point correlation function of ra-
dio sources above a given flux density threshold S = S min by
w(e1, e2, S ), which is in principle a function of four position an-
gles and the flux density threshold. It measures how likely it is
to find k1 sources within a solid angle Ω at position e1 and at the
same time find k2 sources around e2 within Ω in excess of what
would be found for a isotropic distribution of sources, i.e.

w(e1, e2, S min) ≡
〈k1, k2〉

〈k1〉〈k2〉
− 1 =

〈σ(e1, S ), σ(e2, S )〉
σ̄(S )2 − 1. (12)

The cosmological principle tells us that the correlation func-
tion should be isotropic, i.e. invariant under rigid rotations of the
sky, and thus should only depend on the angle θ = arccos(e1 ·e2),
such that:

w(e1, e2, S ) = w(θ, S ). (13)

As a square integrable function on the interval cos θ ∈ [−1, 1]
can be expressed as a series of Legendre polynomials P`(cos θ),
this can allow w to be rewritten as:

w(θ, S ) =
1

4π

∞∑
`=0

(2` + 1)C`(S )P`(cos θ). (14)

The coefficients C` are called the angular power spectrum.
In this work we will parametrise the two-point correlation

function by a simple power-law:

w(θ) = A∗
(
θ∗
θ

)γ
, (15)

which is the result of several approximations (Totsuji & Ki-
hara 1969; Peebles 1980), including Limber’s equation (Limber
1953) relating the angular correlation function to its spatial coun-
terpart. A∗ is the amount of correlation at the pivot angular scale
θ∗, which we fix at 1 deg. We arrive at the form in Eq. (15) based
on the following assumptions: the power spectrum of matter den-
sity fluctuations the P(k, z) is assumed to be scale free; the bias,
b(k, z) (Mo & White 1996; Sheth & Tormen 1999; Wilman et al.
2008; Raccanelli et al. 2012; Tiwari & Nusser 2016), is assumed
to preserve the scale-free spectrum; lensing and other relativistic
effects are ignored and we consider only small angular separa-
tions, i.e. θ � 1 rad.

While we use the power-law parametrisation (15) in order
to compare to the two-point correlation function found in other
studies of radio surveys (Kooiman et al. 1995; Rengelink 1999;
Blake & Wall 2002; Overzier et al. 2003; Blake et al. 2004; Rana
& Bagla 2019; Dolfi et al. 2019), we would like to note that this
approximation is not accurate enough to enable the extraction of
interesting information on cosmological parameters. Studies of
the NVSS catalogue measured typical values of A ∼ 10−3 and
γ ∼ 1 (Blake & Wall 2002; Overzier et al. 2003; Blake et al.
2004), while first studies of TGSS-ADR1 data revealed much
larger amplitudes A ∼ 10−2 and comparable values of γ (Rana &
Bagla 2019; Dolfi et al. 2019).

In order to compare the angular two-point correlation func-
tion to the prediction from the standard model of cosmology
and going beyond the approximations that lead to Eq. (15), we
use the publicly available software package CAMB sources3
(Challinor & Lewis 2011); more details are provided in Sect. 6.

The two-point correlation function and angular power spec-
trum for source counts is of great value in informing us about
cosmology. We can fit parametrised theoretical models to the
data, hence finding the range of acceptable parameters. One can-
not constrain cosmological parameters individually, but rather a
combination of parameters which all affect the observable and
include:

(i) bias parameters (Mo & White 1996; Sheth & Tormen
1999; Tiwari & Nusser 2016; Hale et al. 2018), revealing the
relationship between source count fluctuations and underlying
total density fluctuations, as a function of scale and time. These
can give insight into the astrophysics-cosmology interface, in-
forming us about the range of halo masses that radio sources
inhabit. Further to this, with Halo Occupation Distribution Mod-
elling (HOD; see descriptions and uses in e.g. Berlind & Wein-
berg 2002; Zheng et al. 2005; Hatfield et al. 2016), the properties
of how galaxies occupy dark matter haloes can be determined.
This will be especially important with deep radio observations,
such as from the LOFAR deeper tier surveys (Rottgering 2010;
van Haarlem et al. 2013), where it may be possible to observe the
‘2-halo’ clustering (see e.g. Yang et al. 2003; Zehavi et al. 2004),
which describes the clustering between radio sources in different
parent dark matter halos. By observing both the ‘2-halo’ and ‘1-
halo’ term and modelling the observed clustering within a HOD
framework, it is possible to determine quantities which describe
the distribution of central and satellite galaxies for different ra-
dio source populations. Finally, if the cross correlation function

3 http://camb.info/sources/
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Fig. 1. The distribution of radio sources observed in the LoTSS-DR1 HETDEX spring field. Plotted are all individual sources (top), as well as
the number counts per cell in Cartesian projection at HEALPix resolution Nside = 256 (bottom). Observed are nearly 325 000 sources within 58
pointings on the sky covering 424 square degrees. The positions of the five brightest radio sources in terms of integrated flux density are indicated
in black (see Sect. 3.3 for details).

is instead investigated, the clustering observed may also be im-
portant in investigating how different radio sources within single
dark matter haloes may be affected by other galaxies within the
same halo (see e.g. Hatfield & Jarvis 2017).

(ii) Parameters describing the total density of matter, Ωm,
and the amplitude of fluctuations in the density, σ8, which af-
fect P(k, z). Ωm tells us about the degree to which dark matter
dominates the matter budget in the Universe, whilst σ8 relates to
the degree to which structures have grown by the present day.

(iii) Dark energy parameters: the equation of state of dark en-
ergy at scale factor a is given by w = w0+(1−a)wa (Chevallier &
Polarski 2001; Linder 2003), where the present day equation of
state is w0, and its time evolution is parameterised by wa. These
parameters affect the growth of structure and hence enter into
P(k, z).

(iv) Parameters describing modifications to gravity (Amen-
dola et al. 2008; Zhao et al. 2010): we can assess the slip param-
eter η, which is the ratio of the space- and time- perturbations
in the metric. In addition we can examine the Poisson equation
∇2Φ = 4πGa2µρδ, where µ parametrises deviations from the GR
expectation µ = 1. These parameters again enter into P(k, z) as
they affect the growth of structures.

(v) Finally, primordial non-Gaussianity of density modes
affects the measured two-point statistics (Dalal et al. 2008;
Matarrese & Verde 2008; Ferramacho et al. 2014; Raccanelli
et al. 2015). On large scales, the effective bias is greatly in-
creased, leading to a substantial increase in amplitude of the
auto-correlation function or power spectrum. Constraints on the
non-Gaussianity parameter fNL are expected to improve on con-
straints by Planck.

3. LoTSS-DR1: data quality

3.1. Requirements and cell size

To study the cosmic large scale structure, we require three es-
sential properties of a radio survey. First of all, the survey must
cover a sizeable fraction of the sky in order to measure properties
on large angular scales and to ensure that the effects of interest
are not dominated by cosmic variance. Secondly, the survey must
sample the sky fairly homogeneously to some minimal flux den-
sity, which then allows for reliable and complete source counts.
Thirdly, in order to identify foreground effects and to classify
radio sources, identification with an optical or infra-red coun-
terpart and associated photometric or spectroscopic redshift, is
essential.

In order to connect number counts with theoretical predic-
tions we must estimate σ(S , e) by counting radio sources in cells
of equal and non-overlapping areas, a necessary (but not suffi-
cient) condition for the statistical independence of the counts.
Finally, these cells should cover the sky completely. Thus we
need to select a scheme to pixelize the sky and for this pixeli-
sation we need to decide how large those cells should be. The
pixel sizes of the LoTSS imaging pipeline and used by the source
finder PyBDSF are too small to be efficient for cosmological
tests (most of them contain only noise) and it would be com-
putationally expensive to correlate all pixel pairs. On the other
hand the individual LoTSS pointings are too large to define cell
sizes that are useful for cosmological analysis, as there are about
6000 sources per pointing.
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Fig. 2. Left: Estimated point-source completeness for each of the 58 pointings in the HETDEX field as a function of flux density. Blue, green and
red (dotted) lines indicate inner, outer and the five most incomplete pointings, respectively. Right: Mean point source completeness of all pointings
(solid line) and after rejection of the five most incomplete pointings (dotted line).

The scheme in HEALPix4(Górski et al. 2005) is one such
method that satisfies the above requirements (equal area, no
overlap, complete sky coverage) and has been developed for the
purpose of the analysis of the cosmic microwave background.
We use it in the so-called ring scheme, which numbers the cells
in rings of decreasing declination. In order to avoid confusion
with imaging pixels, we will denote HEALPix pixels as cells in
the following. The cell size is specified by means of the parame-
ter Nside, which can take values of 2m, where m is an integer. The
total number of cells on the sky is given by 12N2

side.
For each cell we count the number of radio sources, either in

the catalogue originally produced by PyBDSF (LoTSS-DR1 ra-
dio source catalogue) or in the final LoTSS-DR1 value-added
source catalogue, where radio components of a single source
have been grouped and artefacts removed. The position of each
source was taken as either the output position from PyBDSF or
the RA and Dec value that was assigned in the value-added cat-
alogue (see Williams et al. 2019 for a description of how these
were generated).

The mean number of sources per cell is

N = σΩcell =
Nsurvey

Ωsurvey

4π
12N2

side

, (16)

where Nsurvey and Ωsurvey denote the total number of sources and
the total solid angle covered by the survey. We want to find a
value of Nside, that guarantees that all cells contain at least one
source, if the cell was properly sampled, i.e. each cell area should
be completely within the survey area and we would like to dis-
regard regions with very low completeness. We assume that the
source counts are Poisson distributed and estimate the probabil-
ity that a cell does not contain a source as

p0 = e−N . (17)

The probability that all cells contain at least one source is
then given by P = (1 − p0)Ncell , with Ncell = 12N2

sideΩsurvey/4π is
the number of cells covering the survey area. We wish to keep
the probability to find empty cells, P0(Nside) = 1 − P ≈ p0Ncell
well below one, but at the same time would like to allow for the

4 http://healpix.sourceforge.net

Table 1. Number of included cells and sky coverage for different masks
and flux density thresholds. Unless explicitly stated otherwise, we use
the default ‘mask d’ throughout this work. Thus we highlight the re-
spective entry in bold font. The retained number of sources for each
mask are shown for the LoTSS-DR1 radio source (rs) and value-added
source (vas) catalogues. For detailed explanation see text.

mask Ncell Ω S min Nrs Nvas
[sr] [mJy]

none 8422 0.13458 0.00 325 694 318 520
p 7182 0.11476 0.00 306 684 300 601
d 7176 0.11467 0.00 306 670 300 588

3 7104 0.11352 0.00 305 186 299 311
1.05 101 714 96 404

2 6954 0.11112
0.00 301 527 295 903
0.70 158 226 152 662
1.05 99 411 94 326

1 2957 0.04725

0.00 152 498 150 568
0.35 136 150 134 178
0.70 66 027 64 118
1.05 39 919 38 222

best angular resolution. With Ωsurvey = 424 square degress and
Nrs = 325 694 we find P0(256) = 3 × 10−14, while P0(512) is of
order unity. In a resolution of Nside = 256 the cells have a mean
spacing of θ̄i, j = 0.229 deg and a cell covers Ωpix ≈ 1.60 × 10−5

steradian. The set of all non-empty cells defines the effective sur-
vey area. The number of cells within the survey area for the cho-
sen Nside and after masking can be seen in Table 1. Figure 1
shows the cell counts of the LoTSS-DR1 radio source catalogue
at a resolution of Nside = 256, which is a good compromise be-
tween large enough cell size to make sure that the shot noise in
each cell is not the dominant feature (i.e. all cells contain at least
one source) and to retain as much angular resolution as possible.
One can also see that plotting the number counts per cell has ad-
vantages over a map that shows each radio source as a dot, as
such a map quickly saturates when the surface density of objects
is high (see Fig. 1).
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Table 2. Undersampled pointings with name and position.

Name RA Dec
[deg] [deg]

P164+55 164.633 54.685
P211+50 211.012 49.912
P221+47 221.510 47.461
P225+47 225.340 47.483
P227+53 227.685 52.515

Fig. 3. Top: Completeness of the LoTSS-DR1 catalogue per HEALPix
cell. Bottom: Completeness of cells after applying a flux density thresh-
old of 0.39 mJy, which corresponds to an overall point source complete-
ness of 95%.

3.2. Completeness

The LoTSS-DR1 catalogue was generated by combining 58 in-
dividual LOFAR pointings on the sky. The current LOFAR cali-
bration and imaging pipeline used in DR1 produces sub-standard
images in a few places due to poor ionospheric conditions and/or
due to the presence of bright sources. Such areas are not in-
cluded. Furthermore, in some regions, where the astrometric po-
sition offsets from Pan-STARRS is large, the LoTSS maps are
blanked. This results in an inhomogeneous sampling of the HET-
DEX spring field as is apparent from the source density map pre-
sented in Fig. 1.

We estimated the point source completeness of all pointings
in the HETDEX field by injecting random sources in the residual
maps and using the same PyBDSF set up used for the LoTSS-
DR1 radio source catalogue. Only sources with flux densities
five times greater than the local rms noise are retained. The com-
pleteness itself is estimated by taking the fraction of recovered
sources to the total number of injected sources above a certain
flux density threshold. In total we simulated 50 samples with
6000 sources each for each of the 58 pointings. The complete-
ness of each pointing is shown in Fig. 2, where pointings at the
edge of the survey are marked in green and pointings in the inner
field are marked in blue. Additionally five pointings are marked
in red, which are clearly undersampled, for reference see Table
2. Using all pointings, the survey is 95% point source complete
at 0.43 mJy and reaches 99% completeness at 1.0 mJy. Rejecting
the five most incomplete pointings, the 95% level is at 0.39 mJy
and the 99% level is reduced to 0.80 mJy.

As we use HEALPix cells to determine the source count
statistics, we estimate the completeness for each cell. Without
any flux density threshold the completeness per cell is shown
in Fig. 3. The structure of the completeness across the survey
matches the number density of Fig. 1. Areas with high number
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Fig. 4. Top: Source counts for each pointing within angular distance
θ around the pointing center, normalized by covered area. Pointings
are classified by position in the HETDEX field, with pointings on the
edge (green), in the inner field (blue) and undersampled ones (red, dot-
ted). The mean is shown in black with standard deviation (grey band)
of all pointings. Bottom: Source counts around the five brightest radio
sources in terms of integrated flux density from the radio source (dashed
lines) and value-added source catalogue (solid lines). The mean number
counts around the five brightest sources are shown in black for both cat-
alogues and additionally also the mean over all pointings (dash dotted).

densities appear to be already more complete without assuming
any flux density threshold and underdense regions are compa-
rable to areas with low completeness. Applying a flux density
threshold of 0.39 mJy, corresponding to a point source complete-
ness of 95% in the region without the five pointings of Table 2,
results in a much improved uniformity of the completeness (see
also Fig. 3).

3.3. Consistency of source counts

Completeness and total source counts will be a function of the
distance from the pointing centre, as the sensitivity is not uni-
form across the primary beam. This is investigated by means
of radial source counts around the pointing centers. All sources
within angular distance, θ, from the pointing center are counted
and the sum is normalized by the solid angle of the correspond-
ing disk. We split the pointings into three groups, depending on

Article number, page 7 of 28



A&A proofs: manuscript no. main

Table 3. The five brightest sources of LoTSS-DR1 in terms of total flux
density.

Name RA Dec S int
[deg] [deg] [Jy]

ILTJ114543.39+494608.0 176.43 49.77 14.49
ILTJ134526.39+494632.4 206.36 49.78 14.13
ILTJ144301.53+520138.2 220.76 52.03 14.10
ILTJ121529.77+533553.6 183.87 53.60 11.98
ILTJ125208.61+524530.4 193.04 52.76 8.35

Fig. 5. LoTSS-DR1 HETDEX spring field masks: ‘mask p’ rejects all
cells shown in dark blue and includes 53 pointings modelled by disks of
radius 1.7 deg. Our default ‘mask d’ additionally rejects cells with less
than five sources (yellow cells), see also text in Sec.3.4. For analysis
that includes redshift information ‘mask z’ additionally rejects a strip
shown in light blue. For further details, see the text in Sect. 5.3.

their position and whether they appear undersampled (see Table
2). In Fig. 4 we show source counts for pointings at the edge of
the HETDEX field (green), inner pointings (blue) and pointings
which are excluded from the further analysis (red dotted). The
mean source counts of all pointings is shown in black, with the
1σ region in grey. The source counts of green pointings drop
after the angular distance reaches regions which are not covered
by overlapping pointings of the survey any more. Pointings in the
inner field have more continuous source counts, as they overlap
with other pointings. The five undersampled pointings from the
latter appear in this test also as the undersampled ones.

Additionally we study the source counts around the five
brightest sources. The five sources are listed in Table 3 and are
the same in the LoTSS-DR1 radio source and value-added cat-
alogues. They are displayed in Fig. 1 as black circles to show
the underlying regions. Comparing both catalogues, the radio
source catalogue shows a stronger effect on the source counts
due to limited dynamic range around bright sources. This effect
is visible by eye in Fig. 1 (bottom), where the bright sources are
located in underdense regions. In contrast, in the value-added
catalogue the mean of sources becomes flatter, because many
sources are matched together. Overall we see a deficit of sources
around the five brightest sources compared to the overall mean
of all pointings, but that deficit is well within the variance of
source counts and thus we decided to keep regions that include
bright sources in our analysis.

3.4. Survey area

A proper definition of the survey area directly affects the one-
and two-point statistics, especially the mean surface density. As
we exclude all sources of the five most incomplete pointings (see
Table 2), it is therefore important to define the region being in-
vestigated throughout this work, excluding these pointings.

To remove the sources of those five pointings and to model
the boundaries of the survey we produce a mask (mask p). We
model each pointing as a disc with radius of 1.7 deg, inferred
from the (average) radius of pointings in the mosaic and mask
all cells which are not within the overlap of all discs (see Fig. 5).
We verified that this procedure does not result in a single empty

0 20 40 60 80 100
Source counts per cell

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
la

tiv
e 

fre
qu

en
cy

N= 306670 Poisson
LoTSS DR1

Fig. 6. Histogram of source counts per cell (blue) and binned Poisson
distribution with empirical mean (red line) from the LoTSS-DR1 radio
source catalogue at Nside = 256, masked and including only cells with
at least five sources (mask d).

cell, consistent with the argument that we used to set the value
of Nside.

We test for the robustness of this method by also masking
cells containing fewer than five sources. This results in removing
another six cells and 14 sources. We adopt this slightly stronger
mask (mask d) as the basis of our analysis. The total number of
sources and the effective survey area for the various masks and
cuts can be found in Table 1. Our base mask (mask d) applied to
the LoTSS-DR1 catalogue results in a mean number of sources
per cell of n̄ = 42.0 and a mean surface density of σ̄ = 2.6215 ×
106/ sr = 798.6/ deg2 = 0.2218/ arcmin2.

The histogram for the masking that excludes the five bad
pointings and all cells with less than five sources is shown in
Fig. 6. For comparison we also plot a Poisson distribution with
identical mean. We observe a broadening of the source count
distribution when compared to a Poisson distribution, which ob-
viously is not a good fit to the data. Thus we see that the naive
expectation about the number count distribution is not met.

3.5. Local rms noise

To further characterize the properties of LoTSS-DR1, we take a
closer look at the properties of the local rms noise. We define a
set of tiered masks to reject cells with noise above certain noise
thresholds.

Fluctuations in the local rms noise are expected for several
reasons. In the vicinity of bright sources, limitations of dynamic
range give rise to an increase of the local rms noise. Directions
and epochs with unfavorable ionospheric conditions will also
result in higher noise levels. To find regions of higher noise
we therefore produced a HEALPix map of the local rms per
HEALPix cell, as well as the corresponding histogram of the
local rms noise distribution (see Fig. 7). The map is produced
by averaging the local rms noise associated to each source in the
cell, which is defined as the averaged background rms value of
the corresponding island, obtained from the LoTSS-DR1 cata-
logue.

Using the local rms noise attached to each source gives rise
to a slightly larger cell average, than doing cell averages on
the noise maps themselves. This effect is due to bright sources,
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Fig. 7. Local rms noise per HEALPix cell, calculated via the mean of the
local rms around each LoTSS-DR1 radio source. The heat map (top) and
histogram (bottom) of the local rms is clipped at an upper limit of five
times the median rms noise. The median rms noise of 0.07 mJy/beam,
as well as the values of two and three times the median rms noise are
marked in the histogram with black dashed lines.

Fig. 8. The three local rms noise masks. The red cells are included for
an average noise < 0.07 mJy/beam in the HEALPix cells (‘mask 1’), red
and yellow pixels are included for an average noise of < 0.14 mJy/beam
(‘mask 2’) and red, yellow and light blue cells are included for an aver-
age noise of < 0.21 mJy/beam (‘mask 3’). Dark blue cells are addition-
ally included in ‘mask d’. Regions in grey are excluded by all masks.

which increase the noise. The mean local rms noise of the
HEALPix cells is 94 µJy/beam and median local rms noise in
a cell is 76 µJy/beam, which is in good agreement with the me-
dian rms noise 71 µJy/beam in the total observed area based on
the much smaller mosaic pixels (Shimwell et al. 2019).

To produce a tiered set of noise masks we require the local
rms noise to be below one, two and three times the median rms
noise of 0.07 mJy/beam and denote the resulting masks by mask
1, mask 2 and mask 3, respectively. Most of the sources are un-
affected with the 0.21 mJy/beam and 0.14 mJy/beam rms mask,
but for the upper limit of 0.07 mJy/beam rms noise (mask 1), we
obtained less than 50 percent of the original number of sources
(see Table 1). The difference in the masking can also be seen
in the remaining number of cells Ncell and sky coverage Ω (see
Table 1). These noise masks are shown in Fig. 8.

We also checked that the variance of the number count dis-
tribution becomes smaller with decreasing the upper rms noise
limit. We return to more details of the statistical evaluation in
Sect. 5.

Fig. 9. Mock catalogue of random sources that are detectable at five
times the local rms noise and masked with ‘mask d’.

In the analysis below we combine spatial masking with flux
density thresholds in order to improve the completeness and re-
liability of the studied sample of radio sources. The faintest, at
five times signal to local noise, observed radio sources in the
LoTSS-DR1 survey have a flux density of around 0.1 mJy, and,
as shown above, the survey is certainly not complete at such low
flux densities. Thus, below we test different flux density thresh-
olds to increase the completeness and reliability of the survey.
The source counts corresponding to flux density thresholds (for
unresolved sources) of five, ten and fifteen times the rms noise of
the masked survey are listed in Table 1 for both the LoTSS-DR1
radio source and the value-added source catalogue. We can eas-
ily see that a cosmological data analysis has to find a good com-
promise between high demands on data quality (more aggressive
masking and higher flux density thresholds) and the demand for
statistics (large number of radio sources).

4. Mock catalogues

As discussed in Section 2.3, the two-point correlation function
quantifies the excess in clustering observed within a galaxy cat-
alogue at different separation scales compared to that of a uni-
form distribution of galaxies. As such, it is necessary to con-
struct a mock random catalogue which is a realistic distribution
of sources that could be observed but has no knowledge of large
scale structure. With a uniform noise distribution, this would in-
volve constructing a catalogue where random positions across
the observable survey area are selected. However as can be seen
in Fig. 7, the noise across the field of view is non-uniform. This
will affect how sources of different flux densities can be detected
across the field of view. To account for this non-uniform noise,
therefore, and its effect on the detection of sources when con-
structing a random catalogue, we follow the method of Hale et al.
(2018).

Following Hale et al. (2018), to obtain a mock catalogue that
accurately reflects radio sources that could be observed with LO-
FAR. We make use of the SKA Design Study Simulated Skies
(SKADS; Wilman et al. 2008, 2010). These extragalactic simu-
lated catalogues provide a realistic distribution of sources that
could be observed across 100 square degrees, with flux den-
sity measurements at five frequencies ranging from 151 MHz
to 18 GHz. These sources are a mixture of both AGN as well
as SFGs and have further information on the type of AGN (Fa-
naroff & Riley (1974) Type I/II sources as well as radio quiet
quasars) or SFG (i.e. normal star forming galaxy or starburst).
As these SKADS catalogues have realistic radio flux density dis-
tributions, they are used to construct a mock catalogue by com-
paring whether the flux density of a randomly generated source
from the SKADS catalogue could be observed above the noise
within the LoTSS image.

Therefore, the rms maps from LoTSS were used to determine
whether a randomly generated source would be detectable above
the noise and could realistically be observed. As the image of the
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entire sky is large, each pointing was investigated separately and
a mock catalogue for each pointing was determined. To gener-
ate a mock catalogue, a random position within the pointing was
generated and a flux density from the SKADS catalogue 5 was
also assigned to the source. Under the assumption that the source
is unresolved, the flux density from SKADS was combined with
a randomly generated flux density to account for the noise at the
position (see Hale et al. 2018) to form a total “measured" flux
density. This measured flux density was then compared to the
rms noise at the location of the source. A source only remained
within the mock catalogue if this measured flux density was at
least five times greater than the rms value at its position. Other-
wise the source was not included within the mock catalogue and
a new random position and flux was generated. This process was
repeated until the mock catalogue had a total of 20 × the number
of detected sources within that pointing.

Once the mock catalogue for each pointing had been con-
structed, these were combined together to form a single com-
plete mock catalogue for the entire of the LoTSS observing area.
The distribution of the sources within this mock catalogue (after
masking has been applied) can be seen in Fig. 9.

5. One-point statistics

5.1. Distribution of radio source counts

As shown in Sect. 3, the distribution of number counts is broader
than expected for a Poisson distribution. The naive assumption
of a Poisson distribution arises from the expectation of a ho-
mogeneous and isotropic universe and independent, identically
distributed and point-like radio sources.

There are at least four contributions to a deviation from a ho-
mogeneous spatial Poisson process: a) multi-component sources
(Magliocchetti et al. 1998), b) fluctuations of the calibration,
c) confused sources (several sources are counted as a single
source), d) cosmic structure. Here we investigate the statistical
properties of the counts in cell by measuring moments of the
empirical counts-in-cell distribution and comparing it to theoret-
ical models.

Let ki denote the counts in the ith cell. Then the central mo-
ments of a sample map are given by:

m j =
1

Ncell

Ncell∑
i=1

(ki − µ) j, (18)

with the sample mean:

µ =
1

Ncell

Ncell∑
i=1

ki. (19)

To analyse the counts-in-cell statistics, we calculate the clus-
tering parameter nc (see Eq. 6) as a function of the flux density
threshold. We also calculate the coefficients of skewness (g1) and
excess kurtosis (g2 − 3) (Zwillinger & Kokoska 2000):

g1 ≡
m3

m3/2
2

, g2 − 3 ≡
m4

m2
2

− 3. (20)

For the Poisson distribution, Eq. (3), with λ = µ, we find:

gP
1 = µ−1/2, gP

2 − 3 = µ−1, (21)

5 Using the 1.4 GHz fluxes scaled to the frequency of LoTSS using
α = 0.7

Table 4. Pearson χ2-test statistic for the masked LoTSS-DR1 value-
added source catalogue with ‘mask d’ for four flux density thresholds.
For each threshold value, we provide the number of sources in the cat-
alogue, the clustering parameter nc, the reduced χ2-values (χ2/dof) and
the degrees of freedom (dof = number of histogram bins minus number
of parameters of distribution) for both statistical models.

S min N nc
χ2

P
dofP

dofP
χ2

CP
dofCP

dofCP

[mJy]
1 102 940 1.44 30.67 32 0.76 31
2 51 288 1.22 11.67 20 1.12 19
4 30 556 1.15 7.69 14 1.38 13
8 19 612 1.11 3.52 11 0.46 10

and nP
c = 1.

For the compound Poisson distribution (Eq. 4),

gCP
1 =

γ2 + 3γ + 1
(βγ)1/2(γ + 1)3/2 , gCP

2 − 3 =
γ3 + 6γ2 + 7γ + 1

γβ(γ + 1)2 , (22)

and nc = 1 + γ. With βγ = µ we can rewrite the coefficients as:

gCP
1 =

1
√
µ

[
n2

c + nc − 1

n3/2
c

]
, (23)

gCP
2 − 3 =

1
µ

[
n3

c + 3n2
c − 2nc − 1
n2

c

]
. (24)

In Fig. 10 we show the clustering parameter nc and the coeffi-
cients of skewness and excess kurtosis for the LoTSS-DR1 radio
source and the LoTSS-DR1 value-added source catalogues as a
function of flux density threshold and for three different masks
(mask d, mask 2 and mask 1). It can be seen that for the lowest
flux density thresholds nc is well above unity, but at flux den-
sity thresholds above 1 mJy, the clustering parameter is almost
constant and only slightly above unity. It approaches unity faster
for the value added catalogue. It is also interesting to observe
that the radio source catalogue shows a strong evolution of ex-
cess kurtosis g2−3 with increasing flux density threshold, except
for noise mask 1, which masks all but the cleanest cells. In con-
trast, the value-added catalogue shows the qualitatively expected
behaviour for excess kurtosis and skewness for all masks consid-
ered. The value-added catalogue differs from the original radio
source catalogue in a statistically significant way, especially with
respect to higher moments, despite the fact that the number of
sources in both catalogues differs by less than 2 per cent.

In Fig. 11 we compare the observed coefficients of skew-
ness and excess kurtosis to their theoretical expected values for
a Poisson and a compound Poisson distribution. We observe that
the compound Poisson distribution provides a significant im-
provement over the Poisson distribution, which extends to values
well into the regime in which we can regard the catalogue to be
complete.

To further quantify the quality of fit, we tested both dis-
tributions with a Pearson chi-square test for four different flux
density thresholds applied on the LoTSS-DR1 value-added cat-
alogue with mask d. The results of that test are shown in Fig. 12
and Table 4. While the coefficient of skewness shows very nice
agreement between the compound Poisson distribution and the
data, the coefficient of excess kurtosis shows better agreement
with the compound Poisson distribution compared with the Pois-
son distribution. In terms of the Pearson χ2-test the compound
Poisson distribution describes the data significantly better than
the Poisson distribution, see Table 4. Values of χ2/dof of order
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Fig. 10. Sample statistics of number counts in cells as a function of flux density threshold. Shown are the clustering parameter nc (variance over
mean), which is expected to be one for the Poisson distribution, the skewness g1 and excess kurtosis g2 − 3. On the left hand side for the LoTSS-
DR1 radio source catalogue, on the right hand side for the LoTSS-DR1 value-added source catalogue. From top to bottom: mask d and masks 2
and 1.

unity indicate a good fit. For the 1 mJy sample, this ratio is 30.7
and 0.76 for the Poisson and compound Poisson distributions,
respectively.

We conclude that the counts-in-cell distribution of the
LoTSS-DR1 value-added catalogue is not Poissonian. The com-
pound Poisson distribution provides an excellent fit to the data,
but other distributions (not studied in this work) might also pro-
vide a good fit to the data.

We can also test if the mock catalogue show the same sta-
tistical behaviour as the data. Their clustering parameter and co-
efficients of skewness and excess kurtosis are shown in Fig. 13.
In order to compare the mock catalogue to the LoTSS-DR1, we
randomly draw subsamples of the mock catalogue that contain
the same number of data points as the LoTSS-DR1 value-added
source catalogue. At S > 1 mJy, we find that the clustering pa-
rameter in the mocks is closer to one and the higher statistical
moments are closer to a Poisson distribution than the LoTSS-
DR1 value-added source catalogue. We checked that fitting a
compound Poisson distribution to the mocks also improves the
fits (as there are more free parameters), but not by as much in the
case of the LoTSS-DR1 value added source catalogue. We thus
conclude that there are indeed clustering effects in the LoTSS-

DR1 data on top of the effects that are taken care of in the mock
catalogue.

5.2. Differential source counts

Let us now turn our attention to the differential source counts as a
function of flux density (we use the integrated flux density for all
sources). In Fig. 14 we plot the differential number counts of the
LoTSS-DR1 value-added source catalogue with Euclidean nor-
malisation, i.e. in a static, homogeneous and spatially flat Uni-
verse the normalised counts would be constant as a function of
flux density. The bins in the differential number counts plot have
equal step width in log10(S ). We determine the source counts for
four masks (masks d, 1, 2, and 3) applied.

The errors are assumed to follow Poisson noise in each bin.
This assumption seems to be in contradiction to our findings
from the previous section. Therefore, we alternatively estimated
the errors by means of 100 bootstrap samples of the masked sur-
vey. Sample mean and standard deviation of the 100 bootstrap
samples turn out to be in agreement with analysis that just as-
sumes Poisson noise for each bin. Surprisingly, the bootstrap
sample variance tends to be slightly smaller over the complete
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Fig. 11. Shown are the skewness (g1) and excess kurtosis (g2 − 3) of the
masked LoTSS DR1 value-added source catalogue, also plotted are the
expected moments of a Poisson and compound Poisson distribution.

flux density range. For simplicity and to be on the safe side we
thus show the Poisson noise only. Stating the fact that the value-
added and masked source catalogue is 95% point-source com-
plete at 0.39 mJy (note that this is for the total source counts, the
differential counts at that flux density are already incomplete),
we refrain from applying any completeness corrections to the
differential number counts, but instead work with flux density
thresholds.

Figure 14 shows that all three noise masks (masks 1, 2, and 3)
result in a lack of sources at high flux densities. This can be eas-
ily understood as masking regions with larger rms noise selects
regions that include the high-flux density sources, since limited
dynamic range leads to increased rms noise in their neighbour-
hood. At low flux densities, applying the strongest noise mask
(mask 1), the differential number counts show increased com-
pleteness at low flux densities compared to all other masks. This
difference shows up below 1 mJy. This is an independent confir-
mation that the value-added source catalogue has a high degree
of completeness at S > 1 mJy. This test also allows us to argue
that it is not only point source complete, but also shows a high
degree of completeness for extended sources, as this test does
not distinguish between point sources and resolved sources. In-
dependently from the arguments given in the previous section
we arrive at the conclusion that we can trust the source counts at
S > 1 mJy.

For comparison we also plot the masked source counts for
the TGSS-ADR1 radio source catalogue, which agree very well
with the LoTSS-DR1 value-added source counts for flux densi-
ties between 80 mJy and 20 Jy. In order to obtain the differential
number counts of the TGSS-ADR1, we masked the Milky Way
with a cut in galactic latitude at |b| ≤ 10 deg, discarded unob-
served regions and missing pointings with a HEALPix mask at
Nside = 32. On top we applied a noise mask with an upper cut in
local rms noise of 5 mJy/beam (see App. A and Fig. A.1 ). For
the TGSS there are more sources detected at higher flux densities
than shown in the differential source counts as we focus on the
available flux density range defined by the LoTSS-DR1 sample.
The decreasing trend of the source counts at higher flux densities
is not physical and can be explained by the masking procedure.
Masking with larger cells at the same noise levels will average
over larger regions and therefore samples over larger number of

sources. Therefore bright and noisy sources will be more often
taken into account in the analysis than by masking with higher
resolutions.

Additionally we also plot the differential source counts from
Franzen et al. (2016) obtained with the MWA 154 MHz sur-
vey and from Williams et al. (2016) obtained with LOFAR at
150 MHz from the Boötes field. We find that the LoTSS-DR1
value-added source catalogue agrees well with these existing
studies. Note that no completeness corrections (besides mask-
ing) are applied to the LoTSS data, while the Boötes and MWA
analysis do include such corrections. Remaining discrepancies
might be due to the 20 per cent uncertainty of the LoTSS-DR1
flux density scale calibration (Shimwell et al. 2019).

Finally, we compare the LoTSS-DR1 data to two simulations
of the radio sky, the SKA Design Study simulations (SKADS,
Wilman et al. 2008) and the Tiered Radio Extragalactic Con-
tinuum Simulations (T-RECS, Bonaldi et al. 2018), see Fig. 15.
We find that the SKADS simulations seem to be in much bet-
ter agreement with LoTSS-DR1 than T-RECS. We also indicate
the systematic uncertainty of the LoTSS-DR1 flux density scale,
discussed in detail in Shimwell et al. (2019), on the mean values
of the differential source counts and show it as a grey band in the
figure. Note that the flux density scale uncertainty is larger than
the uncertainty from Poisson noise at most flux densities, except
for a few bins at the highest flux densities.

The sample we choose for the SKADS simulations covers
100 square degrees of the sky, with a minimum flux density of
1 µJy at 1.4 GHz. It contains 6.1 × 106 sources in total, which
we consider at frequencies of 151, 610 and 1400 MHz. Samples
at higher frequencies are scaled to a frequency of 150 MHz by
means of a power law, S ∝ ν−α, with a spectral index of α = 0.7.
There is a small discrepancy in the flux density range from 3 to
12 mJy (see middle panel of Fig. 15), otherwise the agreement is
excellent down to 0.7 mJy. In the light of the already mentioned
20 per cent error on the flux density calibration, the discrepancy
does not seem to be significant.

Three different settings are available from T-RECS for the
two main radio source populations (active galactic nuclei and
star-forming galaxies). For our analysis we use the ‘wide’ cat-
alogue, which simulates a sky coverage of 400 square degress
with a lower flux density limit of 100 nJy at 1.4 GHz. The T-
RECS ‘wide’ catalogue does not include effects of clustering
(Bonaldi et al. 2018), while the ‘medium’ T-RECS catalogue
does. We checked that this does not result in any significant dif-
ferences for the differential source counts for the range of flux
densities considered in this work. For all T-RECS catalogues fre-
quency bands between 150 MHz and 20 GHz are provided. Here
we use the flux densities at 150 MHz. In Fig. 15 the differential
source counts of AGNs and SFGs are shown, as well as the sum
of both populations. We find that T-RECS shows a tilt of the to-
tal differential source counts compared to LoTSS-DR1 data and
SKADS simulations.

A more detailed analysis reveals that this seems to be due
to an underestimate of the number of AGNs at low radio fre-
quencies and an overestimate of the number of SFGs (see top
and bottom panels in Fig. 15). It is as large as a factor of 2 at
1 mJy and a factor of 1/2 at 0.5 Jy. It seems that this cannot be
explained by a possible 20 per cent offset in flux density cali-
bration. Further studies are needed to understand the mismatch
between T-RECS and existing data from different instruments
and also SKADS simulations at 150 MHz.
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Fig. 12. Histograms of LoTSS-DR1 counts-in-cell for the flux density thresholds 1, 2, 4 and 8 mJy. Also shown are the best-fit Poisson and
compound Poisson distributions.
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for a subsample of the mock catalogue, which matches the size of the
value-added source catalogue.

5.3. Consistency based on photometric redshift information

As already mentioned in the introduction, a large fraction of
LoTSS-DR1 radio sources have identified infrared (72.7%) and
optical (51.5%) counterparts, which allow for an estimate of a
photometric redshift for around half of LoTSS sources (Duncan
et al. 2019). Some of the identified objects also have spectro-
scopic redshift information available. Below we use the ‘z_best’

Table 5. Number of sources of the masked (mask z) LoTSS-DR1 value-
added source catalogue for various flux density thresholds and for dif-
ferent values of minimum redshift z. Nz denotes the number of radio
sources with redshift information ‘z_best’ and N is the total number of
sources for the given cuts. Objects without redshift information are in-
cluded in N. There are 145 839 radio sources without redshift estimate
at any S and 50 358 radio sources with S > 1 mJy. Also shown is the
fraction of sources with redshift information fz = Nz/N.

z S min N Nz fz
[mJy]

all

0 298 950 153 111 0.512
1 102 370 52 012 0.508
2 50 977 24 420 0.479
4 30 372 14 506 0.478
8 19 499 9591 0.492

> 0.2 0 276 410 130 571 0.472
1 90 653 40 295 0.445

> 0.5 0 227 779 81 940 0.360
1 76 372 26 014 0.341

> 1.0 0 164 693 18 854 0.115
1 57 009 6651 0.117

redshift information, which is the spectroscopic redshift when it
is available and a photometric estimate in all other cases, from
the LoTSS-DR1 value-added source catalogue to learn more
about the contribution of local structure to the one- and two-
point statistics.
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Fig. 14. Differential number counts per flux density interval of the masked LoTSS-DR1 value-added source catalogue for four different masks.
Additionally the masked TGSS-ADR1 (147.5 MHz; this work, blue circle), the LOFAR Boötes field (Williams et al. 2016, orange triangle) and
the MWA (154 MHz; Franzen et al. 2016, green box) are shown. Error bars for the LoTSS and TGSS counts are due to Poisson noise in each flux
density bin, which have equal step width in log10(S ).

The photometric redshifts in the catalogue are extracted
from a combination of infrared/optical data from WISE/Pan-
STARRS. Due to missing Pan-STARRS information in the strip
55.0000 deg < Dec < 55.2245 deg and RA < 184.4450 deg,
we lack photometric redshifts from that strip. The only available
data would be redshifts inferred from spectroscopic information
of sources that match to a WISE catalogue source. To account for
that effect, we additionally mask that strip (see Fig. 5), whenever
we use redshift information and will denote this as ‘mask z’.

Applying cuts in redshift rejects radio sources and the source
density per cell decreases significantly. In Table 5 we show how
the total number of LoTSS-DR1 value-added sources changes
after applying ‘mask z’ for different minimal values of redshift,
without and with a flux density threshold of 1 mJy. For about
51% of all radio sources redshift information is available and
this number does not change significantly when we restrict the
analysis to radio sources with flux densities above 1 mJy.

The distribution of radio sources with available redshift esti-
mate is shown in Fig. 16 for the four samples with flux density
thresholds of 1, 2, 4 and 8 mJy, respectively. The brighter sam-
ples show the mode of the distribution at z ≈ 0.7, while the 2 mJy
sample is bimodal and the 1 mJy sample has its mode at z ≈ 0.1.
This is in good qualitative agreement with the expectation (sup-
ported also by the simulations discussed above), that the brighter
samples are dominated by AGNs at relatively high redshift while
in the faintest sample SFGs at lower redshift start to dominate the
statistics. First classifications of AGNs and SFGs in the LoTSS-
DR1 catalogue have been done by Hardcastle et al. (2019) and
Sabater et al. (2019). We additionally separated all sources with
available redshift information after masking with ‘mask z’ by the

33 and 66 percentiles, which are:

z33 = 0.376 and z66 = 0.705, (25)

respectively. From these three samples we inferred the differen-
tial source counts, which are presented in Fig. 17. These differen-
tial source counts support the above expectation, that the source
distribution at fainter flux densities is dominated by objects at
lower redshift and vice versa at brighter flux densities by objects
at higher redshift.

Radio sources with redshift information are very likely (non-
zero probability of misidentification) to be real sources and so
we can consider that sample of radio sources as an independently
confirmed sample. It is then interesting to compare its statistical
properties with those of the sample without redshift information.

In Fig. 18 we show the clustering parameter nc as a function
of flux density threshold after applying ‘mask z’. In the top panel
we compare the radio sources with redshift information to those
without redshift information. We see that the values for nc agree
very well with each other for all considered flux density thresh-
olds. At flux densities below 1 mJy, both sets of sources seem to
cluster less than the sum of both sets.

We also show in the bottom panel of Fig. 18 how nc changes
when we exclude all sources estimated to be below a certain red-
shift, while keeping all sources without redshift information in
the sample. Interestingly, we find that excluding radio sources
from the local neighbourhood (z < 0.2) decreases the clustering
parameter nc. The effect increases if we exclude radio sources
from a larger volume and is strongest if we exclude all objects
in the local Hubble volume (z < 1). This effect is seen for all
flux density thresholds, but is most prominent for thresholds be-
low 1 mJy. This is consistent with the expectation that there

Article number, page 14 of 28



Siewert et al.: LoTSS – Statistics

10-4 10-3 10-2 10-1 100 101 102

S [Jy]
10-1

100

101

102

103

104

105

S
5/

2
d
N
/d

Ω
d
S
 [J

y3
/
2
 sr

−
1
]

LoTSS
T-Recs
SKADS

10-3 10-2 10-1

S [Jy]

100

101

102

103

S
5/

2
d
N
/d

Ω
d
S
 [J

y3
/
2
 sr

−
1
]

SKADS 1400
SKADS 610
SKADS 151
LoTSS

10-3 10-2 10-1

S [Jy]

100

101

102

103

S
5/

2
d
N
/d

Ω
d
S
 [J

y3/
2
 sr

−
1
]

T-Recs SFG
T-Recs AGN
T-Recs sum
LoTSS

Fig. 15. Top: Comparison of LoTSS-DR1 differential source counts us-
ing ‘mask d’ and SKADS 151 MHz and T-RECS ‘wide’ 150 MHz sim-
ulations. The grey band corresponds to a ±20% variation of the LoTSS
flux density scale due to uncertainties in the flux density calibration.
Middle: Comparison at S < 100 mJy with SKADS at 151 MHz and
power-law scaled results for two larger frequencies (α = 0.7). Bottom:
Contributions from AGNs and SFGs in the T-RECS ‘wide’ differential
source counts as compared to the total LoTSS-DR1 differential source
counts. All: Error bars are due to Poisson noise in each flux density bin,
which have equal bin width in log10(S ).

is more clustering in the late Universe, but a much more de-
tailed study will be necessary to make quantitative statements,
which we leave for a future work. We dismiss radio sources be-
low 1 mJy in the following section when we study the two-point
correlation function.

We conclude our study of the one-point statistics by pointing
out that LoTSS-DR1 produces reliable radio source counts and
shows statistical properties that are self-consistent and consistent
with previous observations and simulations above integrated flux
densities of 1 mJy. The corresponding counts-in-cell map (mask
d and S > 1 mJy) is shown in Fig. 19.
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Fig. 16. Number of radio sources as a function of available z for four
different flux density thresholds. Only sources with available redshift
(‘z_best’) of the LoTSS-DR1 value added source catalogue after apply-
ing ‘mask z’ are considered here.
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Fig. 17. Differential source counts of the LoTSS-DR1 value-added
sources masked with ‘mask z’ separated by redshift percentiles, z33 =
0.376 and z66 = 0.705. Additionally the differential source counts of all
sources (‘All’) and of all sources with redshift information (‘Any z’) are
shown.

6. Two-point statistics

6.1. The angular two-point correlation function

In order to estimate the angular two-point correlation of radio
sources we make use of the estimator proposed by Landy & Sza-
lay (1993),

ŵ(θ) =
DD − 2DR + RR

RR
, (26)

where DD,DR and RR denote the normalised pair counts at sep-
aration angle θ for data-data, data-random and random-random
source pairs (see App. B for more details). A number of other
estimators are available for the same purpose, but in theory the
Landy-Szalay (LS) estimator has minimal bias and minimal vari-
ance at the same time and is claimed to be more robust (see Ker-
scher et al. 2000). Data points are taken from the LoTSS-DR1
value-added source catalogue and random points either from the
mock catalogue described in Sect. 4, or from a purely random
sample. Data and random catalogues are masked with ‘mask d’,
unless otherwise stated.
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For a large enough random source catalogue, the expectation
value of the LS estimator is (Landy & Szalay 1993):

〈ŵ(θ)〉 =
1 + w(θ)
1 + wΩ

− 1 ≈ w(θ) − wΩ, (27)

where wΩ =
∫

Gp(θ)w(θ)dθ, with Gp(θ) being the normalized
count of pairs of ‘atomic’ cells (cells that are small enough to
contain at most one point source) at separation θ in the anal-
ysed survey area. Thus the LS estimator (as well as all other
estimators that have been proposed in the literature) is biased.
The function Gp(θ) depends on the binning.

This bias is due to the so-called integral constraint, which is
an effect of the finite survey area and reflects the fact that we
cannot measure an unbiased estimate of the two-point correla-
tion based on a single estimate of the total number of sources in
the survey region. Given a model for w(θ), we can estimate the
bias from the random source catalogue via:

wΩ =

∑
bins RR(θ)w(θ)∑

bins RR(θ)
. (28)

The theoretical variance of the estimator is (Landy & Szalay
1993)

Var[ŵ(θ)] =

(
1 + w(θ)
1 + wΩ

)2 2
Nd(Nd − 1)Gp(θ)

(29)

≈
2

Nd(Nd − 1)Gp(θ)
, (30)

where Nd denotes the number of data points in the survey. The
second expression holds for the assumption that the two-point
correlation is small compared to unity. The factor Nd(Nd − 1)/2
scales the Poisson noise with the overall number of pairs and the
factor Gp(θ) accounts for how many independent pairs can be
probed at angular separation θ.

For calculating the correlations we make use of the publicly
available code TreeCorr6 in version 3.3 (Jarvis et al. 2004).
6 http://github.com/rmjarvis/TreeCorr

TreeCorr uses an algorithm that structures the sources in cells
according to a logarithmic binning of cell separation. In that
way the numerical problem of calculating the two-point corre-
lations for objects in cells with N1 and N2 members is reduced
from scaling with O(N1N2) to O(N1 + N2), which leads to a huge
speed-up compared to a naive algorithm. As it is advised to use
mock catalogues that are much larger than the data catalogues,
the computational time scales linearly with the number of mock
sources considered. Using TreeCorr, we fix the range to 0.1 deg
≤ θ ≤ 32 deg with equal bin width of ∆ ln(θ/1 deg) = 0.1. The
bin centers are estimated by using the mean value of ln(θ/1 deg)
for all pairs in the bin. The TreeCorr parameter bin_slop
controls the accuracy of the computation. It turns out that one
must take care to change its default setting to obtain the re-
quired accuracy once the two-point correlations are at or be-
low O(10−2), as discussed and demonstrated in some detail in
App. C. bin_slop=0, which gives the best possible result. It
should also be stressed that for angles exceeding a few degrees it
is important to compute angular distances on great circles, which
is achieved be setting the TreeCorr parameter metric=‘Arc’.
We have verified that using the Euclidean metric instead makes
a noticeable difference at the largest angular scales accessible in
LoTSS-DR1.

We base our analysis on the LoTSS-DR1 value-added source
catalogue, masked by ‘mask d’ and use a minimal value of the
flux density threshold of 1 mJy. We also use the 2 and 4 mJy
samples. These choices are motivated by our findings in Sect. 5.
At flux density thresholds larger than 1 mJy we expect the point
source completeness to be well above 99 per cent. We also ap-
ply corresponding flux density thresholds on the mock catalogue
(Sect. 4), which then contain 1 751 557, 915 492, and 502 063
mock sources, respectively.

The angular two-point correlation function w(θ) with statis-
tical errors calculated by TreeCorr is shown in Fig. 20 for three
different values of flux density thresholds. The error estimation
of TreeCorr is based on the Poisson noise in each separation
bin. We additionally tested error estimations in terms of boot-
strapping and found no large difference in both estimations. See
App. C for more details. Note that previous radio continuum
surveys showed larger bootstrap errors than Poisson errors, see
Cress et al. (1996) for the FIRST survey. They found the Poisson
error to be less than the bootstrap estimate by a factor of two for
small scales around θ ∼ 0.05 deg and even larger for increasing
separations.

We observe consistent behaviour for all three flux density
samples shown in the top panel of Fig. 20 with a trend of de-
creasing correlation for increasing flux density threshold. The
bottom panel of that figure explores what happens if we restrict
our analysis to the low-noise region of the survey after applying
‘mask 1’ (see Sec. 3.5). Again all three samples are consistent
with each other but the number of sources has been reduced by
about a factor of two in each sample. This leads to a significant
increase of the error bars, but reduces the amount of correlation
seen at angular scales of a degree and above.

To investigate this point further, we also perform a jack-knife
test to get a sense of fluctuations in our measurements. We split
up the survey into three regions namely ‘Left’, ‘Center’, and
‘Right’. These lie within the following right ascension intervals:
(161, 184), (184, 208), (208, 230) deg respectively. We then com-
pute w(θ) and errors as mentioned above and compare the results,
shown in Fig. 21. We observe that the angular two-point corre-
lation function has smaller values for the central region as com-
pared to the left and the right region. This finding reflects that the
central part of the survey has the more complete and lower rms
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Fig. 19. Counts-in-cell map of the LoTSS-DR1 value-added source catalogue for S > 1.0 mJy and after applying ‘mask d’.
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Fig. 20. Angular two-point correlation of sources from the LoTSS-DR1
value-added source catalogue after masking with ‘mask d’ (top) and
‘mask 1’ (bottom) and at flux densities above 1, 2 and 4 mJy.

noise pointings than the outer parts and gives another indication
that the results at θ > 1 deg are upper limits on the cosmological
two-point correlation function rather than measurements thereof.

In order to better understand the physical meaning of our
measurement we also look at the correlation function of the
mock catalogue compared to a pure random sample (spatial Pois-
son process). The results of that test are shown in Fig. 22. We
see that there is a non-vanishing correlation between 1 to 2 per
cent below the typical size of an individual pointing (1.7 deg in
radius). Above angular separations of 3 deg and below 6 deg,
the mock catalogue shows a constant correlation at the 10−3
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Fig. 21. Angular two-point correlation function of sources from the
LoTSS-DR1 value-added source catalogue with ‘mask d’ and flux den-
sity threshold 1 mJy, for three regions namely ‘Left’, ‘Center’, and
‘Right’. w(θ) for the non-partitioned region with 1 mJy threshold and
mask d is also plotted. Positive and negative values are shown with full
and open symbols, respectively.

level and shows no correlations at larger angular separations, but
becomes correlated again at the largest possible separations of
about 30 deg.

We also show in Fig. 22 the data-mock and data-random
(spatial Poisson process) measurements. It is interesting to ob-
serve that data-random and data-mock results agree at the small-
est scales (< 0.2 deg). On larger scales the mock sources are
more correlated than the real radio sources, which is probably
due to to the fact that we are unable to produce mocks that per-
fectly account for the noise fluctuations. This relates to the fact
that we create the mock catalogue in the image plane with in-
sufficient knowledge of the surface brightness distribution of the
underlying population.

Thus, the agreement of data-mock and data-random corre-
lations below 2 deg for S > 1 mJy (1 deg for S > 2 mJy) in
Fig. 22 suggests that we can trust the results for angular scales
up to 1 deg. For angular scales > 1 deg, a better understanding
of the noise fluctuations and of the fluctuations in flux density
calibration will be required before we wish to use those scales to
compare to cosmological models.

The procedure of generating mocks (Sect. 4) does not ac-
count for the inhomogeneity of completeness, which is an issue
for sources close to the 5σ detection threshold. However, when
applying flux thresholds that are significantly above the averaged
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Fig. 22. Comparison of two-point angular (auto-)correlation functions
for ‘mask d’ for different random catalogues: mock catalogue based on
LoTSS local rms noise (data-mock), homogeneous random catalogue
accounting for survey geometry only (data-random), and the correlation
of the mock catalogue (mock-random) for flux densities above 1 mJy
(top) and 2 mJy (bottom). We fit the data to the power-law model de-
scribed in the text. Positive and negative values are shown with full and
open symbols, respectively.

95% completeness flux density of 0.39 mJy, variations in com-
pleteness do not affect our results at a significant level.

Our understanding of data and mock catalogues can be fur-
ther investigated by comparing the data-mock and data-random
correlation results for three different masks (‘1’, ‘2’, and ‘d’) in
Fig. 23. We can see that for angular scales below 0.5 deg all vari-
ants of the data analysis agree within error bars. For scales above
0.5 deg up to 2 deg only the data-mock correlation for mask ‘1’
is smaller than all other combinations of masks and random sam-
ple. For even larger angular separation the results for data-mock
with masks ‘d’ and ‘2’ agree with each other as do the results
for data-random with masks ‘d’ and ‘2’. We also see that the
data-mock results are above the data-random results, which is
unexpected as the mocks are supposed to take care of correla-
tions that are introduced via correlations in the rms noise levels.
This seems to indicate that it is quite important to construct the
mock catalogue carefully. For mask ‘1’, which includes sources
that are detected at around 15σ and even higher significance in
the 1 mJy sample, we find the expected behaviour. In that case
the data-mock correlation is actually below the data-random cor-
relation. This shows again that the angular two-point correlation
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Fig. 23. Angular two-point correlation from the LoTSS-DR1 value-
added source catalogue after masking with ‘mask d’, ‘mask 1’ and
‘mask 2’ at flux density above 1 mJy; see caption of Fig. 22 for fur-
ther details.

obtained in this analysis also contains non-cosmological contri-
butions at scales larger than one degree.

We conclude that more work on how to generate the mock
catalogues will be necessary to answer the question whether the
correlations seen above the degree scale are physical or not.

In order to ease the comparison with angular two-point corre-
lation functions published elsewhere (Kooiman et al. 1995; Ren-
gelink 1999; Blake & Wall 2002; Overzier et al. 2003; Blake
et al. 2004; Rana & Bagla 2019; Dolfi et al. 2019), we fit the
data points in Fig. 20 to a power-law model of the form:

w(θ) = A
(
θ/1 deg

)−γ . (31)

The value of such a power-law fit for a cosmological analysis is
limited, as it holds at best for a small range of angular scales.
For fitting we make use of the publicly available Python LM-
FIT7 package (Newville et al. 2016), where we used the default
Levenberg-Marquardt method. We fit the data points in the range
of 0.2 ≤ θ ≤ 2.0 deg. We then explicitly compute wΩ using Eq.
(28) from the initial fit parameters and re-do the fitting but this
time by selecting only those data points which are greater than
wΩ. The entire process is re-iterated until a constant value for wΩ

is obtained. Best-fit results obtained in such a manner are sum-
marized in Table 6 and are shown in Fig. 22. This procedure is
done for the 1, 2 and 4 mJy flux density thresholds with ‘mask
d’, as well as for ‘mask 1’.

We find that the values of A and γ depend a lot on the de-
tailed cuts and flux density thresholds applied. Higher flux den-
sity threshold means smaller correlation amplitude, which is ex-
pected since brighter sources tend to be located at higher red-
shifts (as seen in Sect. 5) and we would thus expect that we
see less correlated structure. In Table 6, we also provide the
goodness-of-fit in terms of χ2 over number of degrees of free-
dom. Mask 1 gives rise to better goodness-of-fit and the best-fit
values of A and γ, especially for 2 mJy and 4 mJy, are in good
statistical agreement with the corresponding values found for
NVSS, e.g. A = (1.49±0.15)×10−3, γ = 1.05±0.10 from Blake
et al. (2004) at S NVSS > 10 mJy and A = (1.0 ± 0.2) × 10−3, γ =
0.8 from Overzier et al. (2003) at same flux density threshold.
This also confirms the hypothesis that the 2 and 4 mJy LoTSS-
DR1 samples are dominated by AGNs, which also dominate the
7 http://lmfit.github.io/lmfit-py/index
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Table 6. Best-fit values of w(θ) = A(θ/1 deg)−γ for the LoTSS-DR1 value-added source catalogue after appropriate masking and for the TGSS-
ADR1 catalogue, with 68% confidence intervals. For both catalogues various flux density thresholds are shown.

Survey S min z A(×10−3) γ χ2/dof N
[mJy]

LoTSS-DR1 1 n.a. 7.90+0.18
−0.18 0.58+0.04

−0.04 4.43 102 940
mask d 2 n.a. 6.69+0.23

−0.23 0.54+0.06
−0.06 1.80 51 288

4 n.a. 5.40+0.39
−0.39 0.55+0.12

−0.11 1.76 30 556

LoTSS-DR1 1 n.a. 3.53+0.29
−0.29 0.95+0.10

−0.10 2.65 40 599
mask 1 2 n.a. 0.98+0.44

−0.43 1.39+0.42
−0.50 1.21 19 719

4 n.a. 2.00+0.53
−0.54 0.55+0.52

−0.43 0.73 11 269

LoTSS-DR1 1 Any z 10.73+0.16
−0.16 0.56+0.02

−0.02 0.89 52 012
mask z 2 Any z 9.36+0.37

−0.37 0.62+0.06
−0.06 1.01 24 420

4 Any z 7.15+0.73
−0.74 0.54+0.18

−0.17 1.42 14 506

LoTSS-DR1 1 z < 0.376 15.42+0.54
−0.54 0.82+0.05

−0.05 1.45 20 377
mask z 1 0.376 ≤ z < 0.705 17.38+0.61

−0.61 0.64+0.06
−0.06 1.00 14 727

1 0.705 ≤ z 11.97+0.41
−0.41 0.58+0.06

−0.06 0.60 16 908

2 z < 0.376 18.24+1.44
−1.45 0.89+0.10

−0.10 1.76 8 430
2 0.376 ≤ z < 0.705 16.47+0.94

−0.95 0.58+0.10
−0.09 0.57 7 189

2 0.705 ≤ z 10.85+0.90
−0.90 0.51+0.14

−0.14 0.78 8 801

TGSS-ADR1 100 n.a. 10.16+0.44
−0.44 0.59+0.07

−0.07 1.83 219 303
This work App. A 200 n.a. 11.65+0.70

−0.70 0.51+0.11
−0.11 1.35 119 021

TGSS RB19 100 n.a. 8.4 ± 0.1 0.72 ± 0.11 - 163 654

References. RB19: Rana & Bagla (2019)

NVSS sample. The LoTSS-DR1 data at 1 mJy shows an en-
hanced correlation, as presumably more local SFGs make up a
large fraction in that sample. Below we also make use of the pho-
tometric redshift distribution of about half of the radio sources,
which allows us to get an extra handle on the amount of corre-
lation that we expect. Results found for lower frequencies in the
WENSS survey, e.g. A = (2.0 ± 0.5) × 10−3, γ = 0.8 from Ren-
gelink (1999) and A = (1.01 ± 0.35) × 10−3, γ = 1.22 ± 0.33
from Blake et al. (2004) at S WENSS > 35 mJy are also broadly
consistent with our results. Results in the same frequency range
as LoTSS have been obtained from the TGSS-ADR1 catalogue
and are shown in Table 6.

6.2. The angular two-point correlation function for redshift
sub-samples

We further make use of the available redshift information in the
LoTSS-DR1 catalogue, namely the ‘z_best’ values. We first di-
vide the LoTSS-DR1 catalogue into two sub-samples based on
the information whether a ‘z_best’ value for a given radio source
is available or not. We then compute the angular two-point corre-
lation function for each sub-sample, which are shown in Figs. 24
and 25. The plot with label ‘Any z’ corresponds to the sub-
sample having a ‘z_best’ value and ‘No z’ to the sub-sample
with no ‘z_best’ value available for a given radio source. At this
point we note that the angular two-point correlation appears to be
stronger for radio sources in the ‘Any z’ sub-sample as compared

to the ‘No z’ sub-sample. Additionally we test different redshift
subsamples defined in Eq. (25) in Sect. 5.3, where the survey is
split up into three parts, namely z1: z < z33, z2: z33 ≤ z < z66,
and z3: z66 ≤ z. These parts are separated by the 33 and 66 per-
centiles, defined in terms of the survey without any flux density
thresholds and are kept the same for higher flux density thresh-
olds. The measured angular two-point correlations for a flux den-
sity threshold of 1 mJy for the three redshift bins are presented
in Fig. 26.

Fitting a power law, as defined in Eq. (31), gives the results
shown in Table 6. We can see that the goodness-of-fit is close
to one in all cases. We see stronger correlation for the lowest
and intermediate redshift bins. The exponent γ is smaller and
the amplitude A larger as compared to the best-fit LoTSS-DR1
mask 1 and to the NVSS values. And the amplitudes increase fur-
ther if we consider individual bins in redshift as compared to the
study that includes any value of the redshifts. Over all using only
sources with redshift information seems to probe more structure,
as the correlation of these sources exceed the correlation seen in
the ‘No z’ sample.

However, a disclaimer is in order: We did not estimate and
propagate errors on the redshift estimation. Thus the error bars
shown assume that the redshift estimates used here are exact.
We expect that the errors for the ‘Any z’ sample are nevertheless
realistic, as only the fact is used that those sources have optical
and infrared counterparts and the photometric redshift estimator
found a solution. But when we split up the radio sources with
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Fig. 24. Angular two-point correlation of sources from the LoTSS-DR1
value-added source catalogue for sources with existing redshift estimate
(top panel) and without redshift information (bottom panel) at flux den-
sities above 1, 2 and 4 mJy. For both estimates, ‘mask z’ is used.

photometric redshift into three bins, the reliability of the redshift
estimate becomes an issue. It is well known that there is a finite
and non-negligible probability that AGNs from bin z3 would be
misestimated and end up as sources in bin z1, see Duncan et al.
(2019). Propagating this effect through our analysis pipeline and
correcting for it was beyond the scope of this work. Since only
half of the LoTSS-DR1 radio sources have redshift information
available, it is currently impossible to measure the bias evolution
of the complete sample.

6.3. Comparison of angular two-point correlations to
expectation of cosmological standard model

In order to compare our measured angular two-point correla-
tion function to expectations, we rely on the publicly available
CAMB sources code (Challinor & Lewis 2011) to calculate the
angular power spectrum Cl for 2 ≤ l ≤ 2000. From this power
spectrum we infer the two-point correlation function w(θ) by
using Eq. (14). In doing so we assume a vanishing monopole
and dipole. The theoretical monopole vanishes by definition and
the theoretically expected dipole is the sum of a structure dipole
and the kinematic dipole (Ellis & Baldwin 1984) caused by the
proper motion of the Solar system. We have checked with a sim-
ulation that the survey area of LoTSS-DR1 would pick up that
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Fig. 25. Comparison of the angular two-point correlation function es-
timated from the LoTSS-DR1 value-added source catalogue for radio
sources with redshift information and theoretical expectations (solid
lines) for the best-fit ΛCDM cosmological parameters from Planck,
generated using CAMB sources. Positive values are shown with full
symbols and solid lines, whereas negative values are shown with open
symbols and dashed lines.

dipole at a level that is about an order of magnitude below the
actually observed signal and we thus neglect the dipole contribu-
tion in this analysis (see App. D for further details). The dipole
contribution will become more important at larger angular sepa-
rations for larger survey areas (Bengaly et al. 2018).

In order to predict the angular two-point correlation, we have
to specify a cosmological model, the redshift distribution of the
observed sources and how well they trace the underlying matter
density distribution, which is expressed as a bias function. We fix
the cosmological parameters to the best-fit ΛCDM cosmology of
the Planck 2018 analysis (based on TT,TE,EE+lowE+lensing)
(Planck Collaboration et al. 2018a,b), which are:

H0 = 67.32 km s−1 Mpc−1,

Ωbh2 = 0.022383,Ωch2 = 0.12011,

ln(1010As) = 3.0448, ns = 0.96605,

the optical depth, which is usually also reported, is of no con-
cern for the prediction of the angular power spectrum of mat-
ter. The redshift distribution of radio sources is estimated from
the histogram of the measured photo-z from the LoTSS-DR1
value-added source catalogue, shown in Fig. 16, which is used
as source window function for the three different flux density
threshold samples. For the galaxy bias, b(z), we use a parametri-
sation introduced by Nusser & Tiwari (2015); Tiwari & Nusser
(2016), which was adapted by Bengaly et al. (2018) and Dolfi
et al. (2019):

b(z) = 1.6 + 0.85z + 0.33z2. (32)

The CAMB package allows to include the effects of gravita-
tional lensing and it allows users to include effects of non-linear
structure formation via its halo-fit option (Takahashi et al. 2012;
Mead et al. 2015).

In Fig. 25 we show the two-point correlations from radio
sources with available redshift information for the three samples
of flux density thresholds and compare them to the predictions
of linear theory, including the count lensing option of the CAMB
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Fig. 26. Angular two-point correlation function for three redshift bins
z1, z2 and z3 for a flux density threshold of 1 mJy. The lines show the
expectations for the cosmological standard model. In the top panel the
linear matter power spectrum as computed with CAMB sources and the
bias function (32) is used. The bottom panel uses the Halofit option of
CAMB sources, which accounts for the non-linear evolution of large
scale structure and assumes that there is no bias. Positive values are
shown with full symbols and solid lines, whereas negative values are
shown with open symbols and dashed lines.

package and the bias from Eq. (32). We find good agreement for
angular separations below one degree for all three flux density
thresholds and for the 4 mJy sample even for larger separations.
This is remarkable as we did not adjust any parameter and it is in
good agreement with our conclusion above that we can trust the
results for angular scales between 0.1 and 1 deg. We expect that
there is a yet not properly understood (systematic) effect at an-
gular scales above one degree. But we also have to keep in mind,
that the measured distribution of photometric redshifts might be
inaccurate, which would also affect the model prediction.

Besides varying the flux density threshold, we can also put
the data into several redshift bins, as done previously in Sect. 5.3
and 6.2, which allows us to test the bias model in more detail. We
compare two scenarios. For the first one we use the same CAMB
settings as above, which means we boost the linear power spec-
trum with the bias function b(z) and include the effect of lensing.
We see in the top panel of Fig. 26 that the CAMB predictions for
redshift bins z1 and z2 seem to overestimate the amount of corre-

lation while we obtain a reasonable agreement for bin z3 at small
angular scales. A possible explanation is that the bias function
(32), which is based on NVSS data, overestimates the amount of
bias at lower redshifts for a population mix that includes many
more SFGs compared to NVSS.

In order to test this hypothesis, we compute a second sce-
nario, where we use a constant, trivial bias (b = 1) and in-
stead make use of the Halofit option of CAMB. Doing so, the
expectation of the first redshift bin agree more reasonable with
the estimated two-point correlation function. This indicates that
LoTSS-DR1 radio sources at small photometric redshift are al-
most unbiased tracers of the large scale structure, which is to be
expected if the sample is dominated by SFGs. This is in stark
contrast to the bins at higher redshift, where presumably AGNs
dominate and a model with b = 1 cannot fit the data. A more
detailed study including the measurement of the bias functions
and cosmological parameters like e.g. σ8 are beyond the scope
of this work, as a good understanding of the uncertainties of the
photometric redshift distribution is needed to do so.

7. Conclusions

We have presented the first statistical analysis of the spatial dis-
tribution of radio sources from LoTSS, based on the observation
of 424 square degrees of the sky. We did so in order to charac-
terise the global properties of the survey, check the quality of
the LoTSS-DR1 catalogues and test whether upcoming data re-
leases will provide promising opportunities to probe cosmology.
We achieved all three of those goals.

The data quality was assessed by a suite of tests on top of
those already presented in Shimwell et al. (2019) and Williams
et al. (2019). We measured the point-source completeness of the
survey and found it to be complete to better than 99 per cent
above a flux density of 1 mJy. We demonstrated that within in-
dividual pointings, source counts are independent from the dis-
tance from the pointing centre out to an angular separation of
approximately 1.6 deg, which corresponds almost to the aver-
age effective pointing radius of 1.7 deg, see Fig. 4. We also
showed that source counts around the five brightest objects (i.e.
> 10 Jy) in the LoTSS-DR1 value-added source catalogue do
not show a statistically significant deficit of sources, though they
are at the lower end of the spread of source counts. Combined
with our results for point-source completeness we conclude that
LoTSS-DR1 allows us to probe the radio sky over more than
four orders of magnitude in flux density. We also demonstrated
that the statistical moments of the counts-in-cells distribution of
the LoTSS-DR1 value-added source catalogue with only the five
most incomplete pointings and a hand full of pixels with less
than 5 sources removed, are in excellent agreement with those
from the LoTSS-DR1 radio source catalogue masked with our
most aggressive noise mask that restricts the analysis to low-
noise cells (below the median cell-averaged rms noise). This as-
sures us of the excellent quality of the pipeline described in detail
in Williams et al. (2019) and Duncan et al. (2019) to construct
the value-added source catalogue.

The next step was to measure the statistical moments of the
distribution of the radio sources in various aspects. We tested if
the counts-in-cell tests show any indication of clustering or if
they agree with a Poisson distribution, the most naive expecta-
tion for any sky survey. We can exclude with very high confi-
dence that the counts-in-cell are consistent with a Poission dis-
tribution. The counts-in-cell statistics shows a clear signature of
clustering, quantified by the clustering parameter nc, which is
a proxy for the number of cluster members. Comparing the ra-
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dio source catalogue and the value-added source catalogue, in
which many multi-component sources have been identified and
assigned to a single radio source and many artefacts have been
removed, shows a significant difference in nc and also in higher
statistical moments. Note that as one increases the flux den-
sity threshold, the deviation from a Poisson distribution becomes
smaller. However, for S > 10 mJy and the available 424 square
degrees of survey area the counts per cell become so small that
measuring a deviation from a Poisson distribution is difficult.

For the value-added source catalogue we showed that the
simplest compound Poisson distribution in which each cluster
contains a random number of objects that are again Poisson dis-
tributed fits the data very well. A possible explanation for that
finding is that this is due to multiple component radio sources,
but here the reader should be aware that the statistical test is not
able to distinguish real multi-component sources, e.g. lobes of
radio galaxies, from a SFG with a radio artefact in its vicinity or
a group of SFGs. As the deviation from the Poisson distribution
is strongest below flux densities of 1 mJy, it is unlikely that all
of the clustering is due to real radio sources, at least some of that
clustering might still be due to artefacts, as presumably the reli-
ability of the LoTSS-DR1 value-added source catalogue reduces
when the noise level is approached. This hypothesis is also sup-
ported by the reduction of nc when only sources with photomet-
ric redshift information are used in the data analysis. The clearly
detected deviation from the Poisson distribution suggest an ad-
ditional contribution to the observed large variance of counts of
sub-mJy radio sources at higher frequencies, additional to cos-
mic variance and sample variance (Heywood et al. 2013).

We further studied the differential source counts of LoTSS-
DR1 and compared them to other data at low radio frequencies.
They are in good agreement above 1 mJy and follow the expec-
tations from the SKADS simulations. The photometric redshift
estimates for about half of all radio sources obtained from cross-
matching with optical and infra-red observations allow us to get
a first impression of the redshift distribution of the LoTSS-DR1
sample. It will be important to figure out how representative they
are also for the other half of the sample. An important step for-
ward in that respect will be the WEAVE-LOFAR survey, which
will obtain about a million spectroscopic redshifts.

We also estimated the angular two-point correlation of the
LoTSS-DR1 value-added sources in Sect. 6. Different flux den-
sity thresholds and masking strategies lead to slightly varying
results, the least amount of fluctuation is observed at the angular
scales between 0.1 deg and 1 deg. We thus conclude that this is
the most reliable range. Especially when we use the more aggres-
sive masking we find good agreement with results obtained in the
analysis of NVSS data (Blake & Wall 2002; Overzier et al. 2003;
Blake et al. 2004). We find less correlation than in the analysis of
TGSS-ADR data (Rana & Bagla 2019; Dolfi et al. 2019) on all
scales accessible by LoTSS-DR1, see also Fig. A.2. The effect
of multiple radio components was already noticed in the context
of NVSS some time ago and it has been argued that it is impor-
tant below 0.1 deg. Here we did not investigate angular scales
at scales smaller than 0.1 deg and we found good consistency
of a single power-law fit to the angular two-point correlation be-
tween 0.2 deg and 2 deg, in agreement with previous findings
from NVSS.

However, on angular scales above 1 deg, we observe that the
mock catalogues, which are prepared to model the inhomoge-
neous nature of imaging noise, are not perfectly accurate and
there are fluctuations in the flux density calibration. A possible
reason for correlations of mocks at angular separation on scales
that involve more than a single pointing might lie in the sur-

vey strategy: for each 8 hour track two pointings are actually
observed at the same time, while the pointing in between them
is left out to avoid pointings that overlap (i.e. have correlated
noise). Nevertheless, these pairs of observations are done under
very similar ionospheric conditions and that might explain why
there can be a small correlation of noise fluctuations between
pointings up to angular scales of 10 deg. Another issue might
be that we fix the number of mock sources per pointing at 20
times the number of observed sources, which might mask some
of the true large-scale structures at scales larger than a few de-
grees. However, the flux density thresholds are also applied to
the mock catalogue, which leads to a smearing of the structure
induced by the pointings. We verified that the pointing structure
cannot be spotted by eye in count-in-cell maps of mock sources
with a flux density threshold of 1 mJy. The difference between
the angular two-point correlation obtained by means of the mock
and the pure random catalogue provides a conservative estimate
of the systematic uncertainty associated with the procedure to
generate the mock catalogue.

We finally used the distribution of photometric redshifts for
about half of all LoTSS-DR1 value-added sources to also com-
pare to the Planck 2018 best-fit cosmology, using an off-the shelf
bias model. For the angular scales between 0.1 deg and 1 deg
we find very good agreement between our measurements and
the expectation (no fitted parameters) for all three flux density
thresholds that we tested. A more detailed comparison that also
makes use of binned redshift information reveals problems with
the bias model, which are probably due to the fact that we do
not account for the difference between AGNs and SFGs in that
analysis.

To conclude, we recover that the radio sky is statistically
isotropic at better than one per cent at angular scales above 1 deg
and we find that large-scale structures as probed with LoTSS-
DR1 are in agreement with the Planck 2018 best-fit cosmol-
ogy. A measurement of cosmological parameters was beyond the
scope of this work. A next step will be to improve the consis-
tency of the flux density calibration and to quantify and estimate
the errors of the measured distribution of photometric redshifts.
With those two elements improved, in combination with a vastly
improved imaging pipeline for DR2 and a much larger sky cov-
erage of 2500 square degrees, we expect that we will start to be
able to make interesting cosmological tests and measure cosmo-
logical parameters based on LoTSS radio sources.
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Fig. A.1. Source count map of the TGSS-ADR1 radio source catalogue
with a lower flux density threshold of 100 mJy shown in equatorial co-
ordinates and Mollweide projection, the cell size is given by Nside = 32.

Appendix A: Masking of the TGSS-ADR1 radio
source catalogue and comparison of angular
two-point correlation function

In order to compare the LoTSS-DR1 value-added catalogue with
the TGSS-ADR1 source catalogue (Intema et al. 2017), it is nec-
essary to also define a mask for TGSS-ADR1. This mask and
the source counts per cell at S > 100 mJy of the TGSS-ADR1
source catalogue are shown in Fig. A.1, with a sky coverage
fraction after masking of fsky ' 0.64. Since the surface density
of sources from TGSS-ADR1 is significantly smaller than from
LoTSS-DR1 catalogues, we decided to use Nside = 32. Grey re-
gions in Fig. A.1 are masked due to a galaxy cut (|b| ≤ 10 deg),
unobserved regions, incompletely observed HEALPix cells at
the boundaries of the survey (Dec < −53 deg), missing point-
ings, and cell averaged local noise above 5 mJy/beam. The rms
noise is stated to typically deviate between 2.5 and 5 mJy/beam,
with a median of 3.5 mJy/beam (Intema et al. 2017).

The corresponding differential source count is shown in
Fig. 14 and compared to our results from LoTSS-DR1. Above
100 mJy both source counts agree very well. This also confirms
the estimates of completeness in Intema et al. (2017). Figure 10
of that work shows a plot of the completeness of the TGSS-
ADR1 source catalogue which we read off to be 95 % at a
flux density threshold of 100 mJy. This completeness estimate
is based on the detection fraction, which is the fraction of TGSS
source counts and SKADS sources counts and the completeness
is stated to be 50 % at 25 mJy.

We also compare our results for the angular two-point corre-
lation function for the LoTSS-DR1 4 mJy sample (see Sect. 6)
to the masked TGSS-ADR1 at flux density thresholds of S min =
100 and 200 mJy (see Fig. A.2). We made use of the error es-
timations computed by TreeCorr using the same settings as in
Sect. 6. The different flux density thresholds give self-consistent
results and show stronger angular correlations than found from
LoTSS-DR1. For separations between one and 10 degrees, the
results of LoTSS and TGSS differ significantly. Additionally, we
fit with a power-law model w(θ) = A(θ/1 deg)−γ in linear space
in the range 0.2 deg ≤ θ ≤ 2 deg using LMFIT. The results of the
fit are included in Table 6. We find somewhat larger angular cor-
relations compared to the results in Rana & Bagla (2019), which
is probably due to the fact that we include cells with averaged
rms noise of up to 5 mJy/beam, whereas Rana & Bagla (2019)
exclude all cells in Nside = 1024 resolution that exceed averaged
rms noise of 4 mJy/beam. Thus we keep more radio sources for

10-1 100 101

θ [deg]
10-3

10-2

10-1

w(
θ)

TGSS 200 mJy
TGSS 100 mJy
LoTSS 4 mJy
Fit
Rana & Bagla 100 mJy

Fig. A.2. Comparison of the two-point correlation function w(θ) for the
TGSS-ADR1 source catalogue for different flux density thresholds and
for the LoTSS-DR1 value-added source catalogue. In case of the TGSS-
ADR1 samples, the errors shown are estimates by means of TreeCorr
and represent just statistical errors. The LoTSS-DR1 error estimates are
based on bootstrap sampling. We fit w(θ) by a power-law in the range
0.2 deg ≤ θ ≤ 2 deg.

the analysis, as can be seen in Tab. 6. Another approach to es-
timate the angular two point correlation function of the TGSS-
ADR1 catalogue was presented by Dolfi et al. (2019). They fitted
a power law to small angular seperations θ ≤ 0.1 deg only and
thus no quantitative comparison is shown here. To produce a ref-
erence catalogue of the TGSS, they masked regions and sources
with greater rms noise than 5 mJy/beam, declination < −45 deg
and Galactic latitude |b| < 10 deg in a resolution of Nside = 512
and included sources with flux density S ∈ [200, 1000] mJy.
They find a smaller amplitude A = (6.5 ± 0.6) × 10−5, but much
steeper slope γ = 2.87±0.02 at θ < 0.1 deg. At θ > 0.1 deg, they
also find a much flatter slope and see an excess of correlation
with respect to the NVSS catalogue, but this result is just shown
in a figure without quantifying the excess by a number.

Appendix B: Comparison of different estimators for
w(θ)

Several estimators have been suggested in the literature for the
determination of the two-point correlation function. All those es-
timators are based on counting pairs per bin in angular separation
θ and bin width ∆θ. These pairs are denoted by

DD(θ) =
number of data-data pairs at θ ± ∆θ/2

Nd(Nd − 1)/2
, (B.1)

DR(θ) =
number of data-random pairs at θ ± ∆θ/2

NdNr
, (B.2)

RR(θ) =
number of random-random pairs at θ ± ∆θ/2

Nr(Nr − 1)/2
, (B.3)

where Nd and Nr are the numbers of radio sources (data) and
random (or mock) sources respectively.

We have written a brute force code to determine DD,DR and
RR exactly and to allow us to compare the performance of those
estimators for the particular LoTSS-DR1 survey geometry and
to test the accuracy of the software package TreeCorr (see App.
C). As a brute force computation of the two-point correlation
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Fig. B.1. Comparison of five different estimators of the angular two-
point correlation function w(θ). We evaluate it for the LoTSS-DR1
value-added source catalogue with S > 4 mJy after applying ‘mask d’.
Here we compare to a truly random catalogue with Nr = 20Nd, rather
than to the mock catalogue of Sect. 4. The errors are obtained via the
variances from Table B.1.

function is numerically expensive (the estimation of the two-
point correlation scales with N2

r and the estimation of its variance
scales with N3

r ), we restricted this tests to the S > 4 mJy sam-
ple of the LoTSS-DR1 value-added source catalogue with ‘mask
d’, which had Nd = 30 556 and we used Nr = 20Nd. We also in-
vestigated how the performance of different estimators scales for
smaller random samples.

Fig. B.1 shows the results for the following estimators:

ŵPH ≡
DD − RR

RR
Peebles & Hauser (1974), (B.4)

ŵHew ≡
DD − DR

RR
Hewett (1982), (B.5)

ŵDP ≡
DD − DR

DR
Davis & Peebles (1983), (B.6)

ŵHam ≡
DD × RR − DR2

DR2 Hamilton (1993), (B.7)

ŵLS ≡
DD − 2DR + RR

RR
Landy & Szalay (1993), (B.8)

For most data bins we find that |ŵPH| > |ŵHew| ≈ |ŵDP| >
|ŵHam| ≈ |ŵLS|.

The expected biases and variances of the five estimators are
tabulated in Table B.1. The results are expressed in terms of the
quantities

p =
2

Nd(Nd − 1)

 1
Gp
− 2

Gt

G2
p

+ 1
 ≈ 2

Nd(Nd − 1)
1

Gp
, (B.9)

t =
1

Nd

 Gt

G2
p
− 1

 , (B.10)

where Gp is the fraction of pixel pairs separated by a given an-
gular separation for pixels small enough such that they contain
at most a single source. Gt is the fraction of triplets given one
source at the center and two other at a given angular separation,
respectively.

Between 2 and 8 degrees, all estimators give very similar
results, c.f. Fig. B.1. However, for separations larger than 10 de-
grees, the PH estimator shows a significant deviation compared

Table B.1. Bias and variance of the five considered estimators of the an-
gular two-point correlation function for the case Nr � Nd and assuming
|w(θ)| and |wΩ| are both small compared to unity.

estimator bias variance

PH −wΩ p + 4t
Hew −wΩ p + t
DP −wΩ − t p + t

Ham −wΩ − t p
LS −wΩ p
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Fig. B.2. Estimated variance of different estimators for the LoTSS-DR1
value-added source catalogue at S > 4 mJy. The Landy & Szalay and
Hamilton estimators have identical variance as well as the estimators by
Hewett and Davis & Peebles.

to the results obtained with the Landy & Szalay estimator and
with the Hamilton Estimator. The shown errors are underesti-
mates since they are obtained via the variances from Table B.1.
Hence, we assume that Nr � Nd and |w(θ)| and |wΩ| are both
small compared to unity.

Fig. B.2 shows this expected variance for the different esti-
mators. Since Gp is equivalent to RR, the random pair counts re-
sulting from the use of the random catalogue with 620 440 points
can be used to estimate Gp. However, the estimation of Gt scales
with N3

r . Due to the necessary computing time, Gt is estimated
via 12 runs with 3 000 points each. It can be seen that the contri-
bution of t to the variance is significant at all angular scales and
dominates over the contribution of p.

Our findings confirm previous studies of the performance of
different estimators (Pons-Bordería et al. 1999; Kerscher et al.
2000; Vargas-Magaña et al. 2013), including the estimators stud-
ied in this work. These previous studies showed that the LS es-
timator operates best in almost every application, especially for
wide separation ranges extending to the large scales, a typical
feature of current surveys. However, the previous studies had its
focus on the study of the three dimensional two-point correlation
and investigated them in the context of galaxy redshift surveys
rather than in the context of radio continuum surveys.

We also investigated how the results for the Landy and Sza-
lay estimator depend on the sample size of the random cata-
logues. As can be seen in Fig. B.3, there is more fluctuation if
small random samples are used. Especially at angular separa-
tions above 1 deg, Nr = 5Nd does already give rise to reliable
estimates. Therefore, it would be a computational advantage to
calculate the two-point correlation function with small random
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Fig. B.3. Comparison of the results for the two-point correlation func-
tion using the LS estimator and various sizes of random catalogues. For
separations larger than 1 degree smaller random catalogues give results
very similar to those from large random catalogues with Nr = 20Nd.

catalogues (but Nr > Nd) if only large separations are from in-
terest.

Appendix C: Testing of the TreeCorr Software
Package

The TreeCorr software package (version 3.3) provides vari-
ous parameters for setting options that enhance the accuracy of
its computations. By default, TreeCorr uses metric distances
which are only accurate for small separations but are fast to
calculate. In this work we also examine the two-point corre-
lation function for larger separations up to 32 degrees. There-
fore, great-circle distances are used to obtain accurate distance
measurements on larger scales. TreeCorr takes this option via
metric=‘Arc’, which is used throughout the following analy-
sis.

Furthermore, the accuracy of the algorithm depends on the
configuration parameter bin_slop. This parameter controls the
accuracy of TreeCorr to put pairs in the correct angular bin
when identifying the many ‘trees’. For the chosen bin width of
∆ ln(θ/1 deg) = 0.1 the default value is 1. If this parameter is set
to zero, as we do for the analysis presented in Sect. 6, TreeCorr
should give the most accurate result (more information can be
found in the TreeCorr-documentation8). Fig. C.1 shows the val-
ues for the two-point correlation function when calculated from
an exact brute force code (documented in Biermann (2019)), cal-
culated with TreeCorr’s default value for bin_slop and using
the best possible TreeCorr precision, i.e. bin_slop=0. By eye,
the most precise TreeCorr results are indistinguishable from the
exact values. In contrast, the default settings give results that lead
to misestimates that are of the order of the expected signal at an-
gular scales of 1 deg. It is clear that the accuracy of the estimates
should be at least an order of magnitude better than the expected
signal. The analysis of NVSS (Condon et al. 1998) data sug-
gests, that it should be at the level of 10−3 to 10−4 at angular
scales above 1 deg (Blake & Wall 2002; Overzier et al. 2003).
Hence, it is essential to modify the default settings of TreeCorr
to calculate accurate results.

8 http://rmjarvis.github.io/TreeCorr/html/index.html
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Fig. C.1. Test of the accuracy of TreeCorr. We compare the TreeCorr
default settings (orange crosses) and the best possible TreeCorr preci-
sion (bin_slop=0) to the results from an exact brute force code (black
dots).

Using a smaller value for bin_slop extends the computing
time, obviously. Using the default accuracy yields a comput-
ing time of a few seconds9, when using the 4 mJy flux density
threshold and a random catalogue containing Nr = 20Nd points,
whereas using the brute force setting (bin_slop=0) takes about
70 minutes. However, obtaining the most accurate results possi-
ble with TreeCorr is still roughly 12 times faster than using our
own brute force algorithm that we used for the purpose to check
the performance of TreeCorr.

Nonetheless, it is relevant to test other settings for
TreeCorr’s accuracy since, using lower flux density thresholds
results in a higher number of sources and larger mock catalogues
as mentioned in Sect. 5 and 6. Hence, the computational time in-
creases significantly. Note also that a brute force estimate of the
variance of ŵ scales as N3

r , which poses substantial computa-
tional challenges for small flux density thresholds in upcoming
data releases (we expect to lower our flux density threshold be-
low 1 mJy for a cosmology analyis of LoTSS-DR2). Fig. C.2
shows the absolute error of TreeCorr results using values for the
bin_slop of 1, 0.1, 0.05 and 0. Setting the value of bin_slop
to 0.05 is ∼ 9 times faster and using a value of 0.1 is ∼ 24
faster than using the most exact settings. Brute force settings
for TreeCorr yield an absolute error of about 3.5 × 10−5 as it
is almost constant over the considered separations. The origin
of this constant offset is not further examined. It could be either
caused by limitations of TreeCorr or of the brute force algo-
rithm or of both algorithms. A small value for the bin_slop
can give more precise results in some cases, i.e. for some sep-
arations, however, the absolute error shows clear fluctuations.
Using bin_slop=0.1 could result in absolute errors as high as
the correlation function at separations of 3 deg and larger.

In order to test the error computation by TreeCorr we addi-
tionally estimate the error in our measurement of w(θ) for each
bin via bootstrap re-sampling method as described by Ling et al.
(1986). For this we use 100 pseudo-random samples, of the same
size as the original catalogue, generated by randomly choosing
sources with replacement from the original catalogue. We then
compute the angular two-point correlation function (wi

boot(θ)) for
each sub-sample and the bootstrap errors as the standard devia-

9 16GB RAM, 2.4 GHz Quad-Core Intel Xeon CPUs, using 7 cores
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Fig. C.3. Comparison of errors calculated by TreeCorr and by means
of 100 bootstraps for the LoTSS-DR1 value-added catalogue after
masking with ‘mask d’.

tion given by the following equation.,

σw(θ) =

√√√
1

N − 1

N∑
i=1

(
wi

boot(θ) − w0(θ)
)2
. (C.1)

where w0(θ) is the mean value for the sub-samples and N the
total count. Both error estimations for the LoTSS-DR1 value-
added catalogue, masked with ‘mask d’ and flux density thresh-
olds of 1, 2 and 4 mJy are shown in Fig. C.3. The error estimate
by TreeCorr and bootstrapping agree within all three flux den-
sity thresholds and the difference between both is in maximum
of order 4 × 10−4 in the range 0.1 ≤ θ ≤ 2 deg and of order 10−5

for larger separations. Therefore we decide to use error estimates
done by TreeCorr in our analysis.

The above findings are valid when using LoTSS-DR1 data
and may vary for different surveys.
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Fig. D.1. Comparison of the two-point correlation function w(θ) for the
1 mJy ‘Any z’ sample of the LoTSS-DR1 value added source catalogue
and a simulated sky with contribution from a kinematic dipole. Negative
values are shown with open symbols.

Appendix D: Kinematic radio dipole

Following Ellis & Baldwin (1984), the kinematic radio dipole,
which is due to the proper motion of the Solar system, con-
tributes to the source counts per steradian with a Doppler shift
of the emitted radiation from a source and the aberration of the
observed source positions, i.e.(

dN
dΩ

)
obs

=

(
dN
dΩ

)
rest

[
1 + [2 + x(1 + α)]β cos θ

]
, (D.1)

with β = v�/c and x defined as:

x ≡ −
d ln N
d ln S

. (D.2)

The amplitude of the kinematic dipole is given by

d = [2 + x(1 + α)]β, (D.3)

and θ measures the angle between the position of a source and
the direction of Sun’s proper motion.

To estimate the contribution of the kinematic radio dipole to
the angular two-point correlation function we follow the proce-
dure of Rubart & Schwarz (2013) and first generate a sky of ran-
dom sources with associated random flux densities. The spher-
ical coordinate positions (Φ,Θ) of simulated sources are drawn
randomly by:

Φ = 2π · random(0,1) (D.4)
Θ = arccos(1 − 2 · random(0,1)) (D.5)

Using this definition, we already fulfil the convention of Co-
Latitude necessary for HEALPix. Additionally we generate ran-
dom flux densities:

S = S 0(1 − random(0,1))−x. (D.6)

We fix S 0 = 0.9 mJy, such that we can apply a flux density
threshold after boosting of 1 mJy.

We then calculate boost and aberration for each individ-
ual source, where we use the latest findings of Planck (Planck
Collaboration et al. 2018b). They infer the proper motion of
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the Sun to be v� = 369.82 ± 0.11 km/s towards (167.942 ±
0.011, −6.944 ± 0.005) deg in Equatorial coordinates (J2000),
which results in a kinematic radio dipole amplitude of:

d = 4.63 × 10−3, (D.7)

where we assumed typical values of x = 1 and α = 0.75 for the
boosting.

From this boosted simulation we estimate the angular two-
point correlation using the same settings as described in Sect.
2.3, where the total number of simulated sources is fixed to the
amount of sources in the LoTSS-DR1 ‘Any z’ sample, together
with a pure random sample. The results of this estimation is com-
pared in Fig. D.1 to the LoTSS-DR1 ‘Any z’ sample with a 1 mJy
flux density threshold. We see an order of magnitude lower cor-
relation than observed in the actual data sample and therefore
neglect the dipole term in our theoretical expectation.
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