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ABSTRACT

We simultaneously present constraints on the stellar-to-halo mass relation for central and satellite galaxies through a weak lensing
analysis of spectroscopically classified galaxies. Using overlapping data from the fourth data release of the Kilo-Degree Survey
(KiDS), and the Galaxy And Mass Assembly survey (GAMA), we find that satellite galaxies are hosted by halo masses that are
0.53 ± 0.39 dex (68% confidence, 3σ detection) smaller than those of central galaxies of the same stellar mass (for a stellar mass of
log(M?/M�) = 10.6). This is consistent with galaxy formation models, whereby infalling satellite galaxies are preferentially stripped
of their dark matter. We find consistent results with similar uncertainties when comparing constraints from a standard azimuthally
averaged galaxy-galaxy lensing analysis and a two-dimensional likelihood analysis of the full shear field. As the latter approach is
somewhat biased due to the lens incompleteness and as it does not provide any improvement to the precision when applied to actual
data, we conclude that stacked tangential shear measurements are best-suited for studies of the galaxy-halo connection.

Key words. gravitational lensing: weak – methods: statistical – surveys – galaxies: halos – large-scale structure of Universe –
dark matter

1. Introduction

According to the hierarchical galaxy formation model, galaxy
groups and clusters form by the accretion of isolated galaxies
and groups. This type of assembly process tidally strips mass
from the infalling satellite galaxies and haloes. Because the dark
matter is dissipationless (to a good approximation), it is more
easily stripped from the subhalo than the baryons, which dissi-
pate some of their energy and sink to the centre of their poten-
tial more efficiently than the dark matter, well before forming
stars (White & Rees 1978). Because the dark matter is not that
centrally concentrated, it is thus more susceptible to tidal strip-
ping than the baryons, even after a galaxy forms its stars, which
are, to the first order, dissipationless as well. This model thus
predicts that the satellite galaxies will be preferentially stripped
of their dark matter and the effect can be observed as higher
stellar mass to halo mass ratios of satellite galaxies compared
to their central counterparts of a similar stellar mass. While
some stars may be lost, relatively more dark matter will be
stripped and the result is a higher stellar-to-halo mass (SMHM)
ratio for satellites in dense environments, compared to centrals
and/or less dense environments. Previous simulation studies (see
for example Bower et al. 2006) show that the SMHM relation
of satellite galaxies is significantly different from the SMHM

relation of central galaxies. Further evidence for different
SMHM relations for central and satellite galaxies comes from
abundance matching methods, which show that the satellites
typically have more stellar mass than the central galaxies for
a given halo mass (Reddick et al. 2013), and they have similar
or in some cases even larger stellar masses than at the infall
time (Reddick et al. 2013; Wechsler & Tinker 2018, and the ref-
erences therein), while their halo masses do not.

While the SMHM relation of central galaxies has been
successfully measured by many studies (for instance by
Hoekstra et al. 2005; Mandelbaum et al. 2006; More et al. 2011;
van Uitert et al. 2011; Leauthaud et al. 2012), this is not the case
for satellite galaxies whose SMHM relation remains essentially
unconstrained (Sifón et al. 2018). Recently, several weak grav-
itational lensing studies using galaxy groups and clusters have
been undertaken (such as the ones by Limousin et al. 2007;
Li et al. 2014, 2016; Sifón et al. 2015, 2018), all of them find-
ing that the satellite galaxies’ haloes are heavily truncated with
respect to the central and field ones.

Weak gravitational lensing, through the lensing of back-
ground sources by a sample of galaxies, which is commonly
called galaxy-galaxy lensing, directly measures the total mass
of lensing galaxies, without assuming their dynamical state
(Bartelmann & Schneider 2001; Courteau et al. 2014), and it is
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currently the only method available to measure the total mass
of samples of galaxies directly. Measuring the lensing signal
around satellite galaxies, however, can be particularly challeng-
ing for several reasons: their small contribution to the lensing
signal by the host galaxy group, source blending at small separa-
tions, and sensitivity to field galaxy contamination (Sifón et al.
2018). As pointed out by Sifón et al. (2015), the latter point
is rather important as the field galaxies are not stripped and
their contamination therefore complicates the interpretation of
the lensing signal.

These studies were based on tangentially averaging the shear,
which washes out information for satellites to some extent. In
Dvornik et al. (2019), we revisit the two-dimensional galaxy-
galaxy lensing method (Schneider & Rix 1997; Heymans et al.
2006). This method, which tries to fit a two-dimensional shear
field directly to the galaxy ellipticity measurements, was shown
on simulated data to perform significantly better than the tra-
ditional one-dimensional analysis of stacked tangential shear
profiles or the closely related excess surface density (ESD).
One important advantage of the two-dimensional method lies
in the fact that it exploits all of the information regarding the
actual image configuration (the model predicts the shear for
each individual background galaxy image) using the galaxies’
exact positions, ellipticities, magnitudes, luminosities, stellar
masses, group membership information, etc., rather than only
using the ensemble properties of statistically equivalent samples
(Schneider & Rix 1997). Moreover, the clustering of the lenses
is naturally taken into account, although it is more difficult to
account for the expected diversity in density profiles (Hoekstra
2014).

This method went out of fashion due to the unavailability
of galaxy grouping information that would accurately classify
galaxies as centrals and satellites (Hoekstra 2014), that is, the
same information needed to robustly study the stellar mass to
halo mass relation of satellite galaxies (Sifón et al. 2015). Treat-
ing the galaxies as centrals and satellites in a statistical way when
considering the stacked signal could be naturally accounted
for with the halo model (Seljak 2000; Peacock & Smith 2000;
Cooray & Sheth 2002), thus overcoming the observational
shortcomings. In recent years, this type of galaxy grouping
information has become available thanks to the power of over-
lapping wide-field photometric surveys with highly complete
spectroscopic surveys which allow one to treat central and satel-
lite galaxies deterministically. The Kilo-Degree Survey (KiDS,
Kuijken et al. 2015; de Jong et al. 2015) in combination with
the overlapping Galaxy And Mass Assembly survey (hereafter
GAMA, Driver et al. 2011; Robotham et al. 2011) provide an
optimal data set for this type of analysis.

In this paper we present a two-dimensional galaxy-galaxy
lensing measurement of the stellar-to-halo mass relation for
central and satellite galaxies by combining a sample of spec-
trocopically confirmed galaxy groups from the GAMA sur-
vey and background galaxies from the fourth data release of
KiDS (Kuijken et al. 2019). We use these measurements to con-
strain the stellar-to-halo mass relation, comparing the standard
one-dimensional stacked tangential shear profiles with the two-
dimensional galaxy-galaxy lensing method from Dvornik et al.
(2019).

The outline of this paper is as follows. In Sect. 2 we present
the lens and source samples used in this analysis. In Sect. 3 we
present the specific lens model used in the paper and in Sect. 4
we describe the two-dimensional galaxy-galaxy lensing formal-
ism. The parameter inference procedure is presented in Sect. 5.
We show the results in Sect. 6, compare our results with the

literature in Sect. 8, and conclude with Sect. 9. Throughout
the paper we use the following cosmological parameters, which
enter into the calculation of the distances and other relevant
properties (Planck Collaboration XVI 2013): Ωm = 0.307, ΩΛ =
0.693, σ8 = 0.8288, ns = 0.9611, Ωb = 0.04825, and h =
0.6777. The halo masses are defined as M = 4πr3

∆
∆ ρm/3, the

mass enclosed by the radius r∆ within which the mean density
of the halo is ∆ times the mean density of the Universe ρm, with
∆ = 200. All of the measurements presented in the paper are in
co-moving units.

2. Data and sample selection

The foreground galaxies used in this lensing analysis are
taken from GAMA, a spectroscopic survey carried out on the
Anglo-Australian Telescope with the AAOmega spectrograph.
Specifically, we use the information of GAMA galaxies from
three equatorial regions, G9, G12, and G15 from GAMA II
(Liske et al. 2015). We do not use the G02 and G23 regions, as
G02 does not overlap with KiDS and G23 uses an inconsistent
target selection. These equatorial regions encompass ∼180 deg2,
contain 180 960 galaxies (with nQ ≥ 3, where the nQ is an
indicator of redshift quality), and are highly complete down to
a Petrosian r-band magnitude of r = 19.8. We make use of
the GAMA galaxy group catalogue by Robotham et al. (2011),
which provides information on the galaxy’s group membership
which is used to separate them into central and satellite galax-
ies. The GAMA galaxy group catalogue was constructed using
a three-dimensional Friends-of-Friends (FoF) algorithm, link-
ing galaxies in projected and line-of-sight separation. We use
version 10 of the group catalogue (G3Cv10), which contains
26 194 groups with at least two members. All of the galaxies
that are not grouped in any of the 26 194 groups are consid-
ered as centrals, which is shown to be a correct assumption
in Brouwer et al. (2017). The GAMA survey is 98% complete
down to the observed magnitude limit. The group catalogue
purity reaches 90% for high multiplicity groups (Robotham et al.
2011), out of which 70–75% of centrals are correctly identified
(Robotham et al. 2011; Sifón et al. 2015). We consider all galax-
ies whose stellar mass is between 108 M� and 1012 M�. Stellar
masses are taken from version 20 of the LAMBDAR stellar mass
catalogue, described in Wright et al. (2017). The final selection
of galaxies can be seen in Figs. 1 and 2, and all of the relevant
properties we need in our analysis are presented in Table 1. The
stellar mass binning is only used for the one-dimensional galaxy-
galaxy lensing case in order to obtain stacks of tangential shear
signal, and it is chosen in such way that we have a similar signal-
to-noise ratio in each stellar mass bin. In the two-dimensional
case, we directly use the relevant individual galaxy quantities in
the model.

We use imaging data from the 180 deg2 of the fourth KiDS
data release (Kuijken et al. 2019) that overlaps with the three
equatorial patches of the GAMA survey to obtain shape mea-
surements of background galaxies. KiDS is a four-band imaging
survey conducted with the OmegaCAM CCD mosaic camera
mounted at the Cassegrain focus of the VLT Survey Telescope
(VST); the camera and telescope combination provide us with
a fairly uniform point spread function across the field-of-view.
The companion VISTA-VIKING (Edge et al. 2013) survey has
provided complementary imaging in near-infrared bands (Z, Y ,
J, H, Ks), resulting in a deep, wide, nine-band imaging dataset
(Wright et al. 2019).

We use shape measurements based on the r-band images,
which have an average seeing of 0.66 arcsec. The image
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Fig. 1. Stellar mass versus redshift of galaxies in the equatorial regions
of the GAMA survey that overlap with KiDS. The full sample is shown
with the hexagonal density plot and the dashed lines show the cuts for
the stellar mass bins used in our analysis.
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Fig. 2. Stellar mass distributions in our six bins used for one-
dimensional stacked tangential shear measurements. The exact bin val-
ues are presented in Table 1.

reduction, photometric redshift calibration, and shape measure-
ment analysis is described in detail in Hildebrandt et al. (2020)
and Kuijken et al. (2019). We measure galaxy shapes using
lensfit (Miller et al. 2013), which has been calibrated using
image simulations described in Kannawadi et al. (2019). This
provides galaxy ellipticities (ε1, ε2) with respect to an equato-
rial coordinate system, and an optimal weight.

3. Lens model

The most widely assumed density profile for dark matter haloes
is the Navarro–Frenk–White (NFW) profile (Navarro et al.

Table 1. Overview of the number of lens galaxies, median stellar masses
of the galaxies, and median redshifts in each selected mass bin used for
our one-dimensional stacked tangential shear analysis.

Bin Range Ntot Ncen Nsat M?,med zmed

1 (8.0,10.0] 39 012 25 908 13 104 9.61 0.122
2 (10.0,10.5] 45 416 28 725 16 691 10.29 0.193
3 (10.5,10.75] 34 027 20 819 13 208 10.63 0.245
4 (10.75,11.0] 34 714 20 332 14 382 10.87 0.285
5 (11.0,11.25] 22 908 12 594 10 314 11.10 0.324
6 (11.25,12.0] 10 705 5 468 5 237 11.36 0.380

Notes. Stellar masses are given in units of
[
log(M?/[M�])

]
.

1996). Using simple scaling relations, this profile can be
matched to simulated dark matter haloes over a wide range
of masses and was found to be consistent with observations
(Navarro et al. 1996). The NFW profile is defined as:

ρNFW(r) =
δc ρm

(r/rs) (1 + r/rs)2 , (1)

where the free parameters δc and rs are called the overdensity
and the scale radius, respectively, r is the radius, and ρm is the
mean density of the Universe, where ρm = Ωmρc and ρc is the
critical density of the Universe, defined by

ρc ≡
3H2

0

8πG
, (2)

where H0 is the present-day Hubble parameter.
Some thought is warranted when choosing how to model

stripped satellites galaxies. In numerical simulations, the satellite
galaxies are heavily stripped by their host halo, but the effect of
stripping on their density profile is not that severe. Even though
tidal stripping removes mass from the outskirts of the halo, tidal
heating causes the subhalo to expand, and the resulting density
profile is similar in shape to that of a central galaxy which has
not been subject to tidal stripping (Hayashi et al. 2003). Simi-
larly, Pastor Mira et al. (2011) found that the NFW profile is a
better fit than truncated profiles for subhaloes in the Millennium
Simulation (Springel et al. 2005), and that the reduction in mass
produced by tidal stripping is simply reflected as a change in the
NFW concentration of subhaloes. Following Sifón et al. (2018),
we have decided to model both centrals and satellites using the
NFW profile, but while allowing the concentrations to differ.

The NFW profile in its usual parametrisation has two free
parameters for each halo, halo mass Mh, and concentration c,
and using those is the conventional way of modelling halo pro-
files. However, having two free parameters for each halo is com-
putationally very expensive. Instead, we would like to describe
these parameters through relations that depend on halo proper-
ties and then fit to a few free parameters in these global relations
instead of hundreds or thousands of free, halo-specific parame-
ters. To do so, we adopt the halo mass – concentration relation
of Duffy et al. (2008), with the free concentration normalisation
fc:

c(Mh, z) = fc 10.14
[

Mh

(2 × 1012 M�/h)

]−0.081

(1 + z)−1.01 . (3)

We describe the stellar mass to halo mass relation as an expo-
nential function:

Mh/M� =

(
α − log(M?/M�)

eγ

)β
, (4)
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where1 α = 12.0, and β and γ are the free parameters we will
be fitting. We note that the functional form presented here stems
from Matthee et al. (2017), but we have redefined some of the
quantities2. We use separate relations for the central and satellite
galaxies, thus we have two sets of β and γ parameters since we
want to constrain the SMHM relation for those populations sepa-
rately. The choice of this type of parametrisation for the SMHM
relation is motivated by reducing the number of free parameters
required for the fit, while to first order maintaining the shape
of the relation that is similar to the more widely adopted dou-
ble power law parametrisations (as presented by Leauthaud et al.
2012; Moster et al. 2013; van Uitert et al. 2016).

The gravitational shear and convergence profiles are cal-
culated using Eqs. (14)–(16) from Wright & Brainerd (2000),
from which the predicted ellipticities for all of the lenses are
calculated according to the weak lensing relations presented in
Schneider (2003). We first calculate the reduced shear for our
NFW profiles:

g(xi, zs) =
γ(xi, zs)

1 − κ(xi, zs)
, (5)

from which the ellipticities are calculated according to the fol-
lowing equation:

ε =

{
g if |g| ≤ 1
1/g∗ if |g| > 1,

(6)

where we have assumed that the intrinsic ellipticities of the
sources average to 0 due to their random nature. Intrinsic align-
ments are not thought to contribute significantly to the signal at
the current signal-to-noise ratio (Blazek et al. 2012).

We compute the effective critical surface mass density that
we need in our lens model for each lens using the spectroscopic
redshift of the lens zl and the full normalised redshift probability
density of the sources, n(zs), calculated using the direct calibra-
tion method presented in Hildebrandt et al. (2017, 2020). The
effective inverse critical surface density3 can be written as:

Σ−1
cr,ls =

4πG
c2 (1 + zl)2D(zl)

∫ ∞

zl

D(zl, zs)
D(zs)

n(zs) dzs , (7)

where D(zl) is the angular diameter distance to the lens, D(zl, zs)
is the angular diameter distance between the lens and the source,
and D(zs) is the angular diameter distance to the source.

The galaxy source sample is specific to each lens redshift
with a minimum photometric redshift zs = zl + δz, with δz = 0.2,
where δz is an offset to mitigate the effects of contamination
from the group galaxies (for details, see also the methods section
and Appendix of Dvornik et al. 2017). We determine the source
redshift distribution n(zs) for each sample by applying the sam-
ple photometric redshift selection to a spectroscopic catalogue
that has been weighted to reproduce the correct galaxy colour-
distributions in KiDS (for details see Hildebrandt et al. 2020).
The accuracy of this method, which is determined through mock
data analysis, is sufficient for our study (Wright et al. 2019). We
correct the measured ellipticities for the multiplicative shear bias

1 We note that α is set empirically as the stellar-to-halo mass function
diverges at that value, thus we set it at the value that is higher than the
largest stellar mass in our sample.
2 Our parameter β is the same quantity as 1/β log(e)) in Matthee et al.
(2017), from the equation in their footnote 4.
3 We refer the reader to Dvornik et al. (2018), Appendix C for a full
discussion on the different definitions of Σcr that have been adopted in
the literature.

per source galaxy per redshift bin as defined in Hildebrandt et al.
(2020) with the (small) correction values estimated from image
simulations (Kannawadi et al. 2019).

4. Galaxy-galaxy lensing formalism

In this study of satellite galaxy-galaxy lensing, we use the two-
dimensional galaxy-galaxy lensing formalism as presented in
Dvornik et al. (2019); we follow their model and adapted it
to KiDS+GAMA by taking into account the survey’s specific
requirements. Generally, for both the one-dimensional and two-
dimensional cases, the likelihood of a model with a set of param-
eters θ given data d can be parametrised in the following form:

L(d | θ) =
1√

(2π)n |C|
exp

[
−

1
2

(m(θ) − d)T C−1 (m(θ) − d)
]
,

(8)

where m(θ) is the value of d predicted by the model with param-
eters θ. We assume the measured data points d = [d1, . . . , dn]
are drawn from a normal distribution with a mean equal to the
true values of the data, and n is the dimensionality of the data.
In principle, the likelihood does not need to be Gaussian, but in
practice it is a very good approximation due to ellipticity dis-
tribution being nearly Gaussian as well. The likelihood function
accounts for correlated data points through the covariance matrix
C of shape n × n. The covariance matrix C generally consists of
two parts, the first arising from shape noise and the second from
the presence of a cosmic structure between the observer and the
source (Hoekstra 2003):

C = Cshape + CLSS . (9)

In the case when one wants to fit one-dimensional tangential
shear profiles, which are stacked over a sample of lenses, the
likelihood function can be written as:

L(gobs
t |Mh,M?, c) (10)

=

n∏
i=1

1

σgt ,i
√

2π
exp

−1
2

gt,i(Mh,Ri, z) − gobs
t,i

σgt ,i

2 ,
where we have used mi = gt,i(Mh,Ri, z) (see Eq. (5)) as the model
prediction given halo mass Mh, radial bin Ri, and redshift of the
lens z, and di = gobs

t,i as the tangentially averaged reduced shear of
a sample of lenses measured from observations. The halo mass
Mh and stellar mass M? are connected through Eq. (4), and the
concentration c is defined in Eq. (3). Here we have also used
the uncertainty of our measurement, given by the σgt ,i calculated
from the intrinsic shape noise of sources in each radial bin. The
product runs over all radial annuli i. Moreover we only account
for the diagonal terms of the covariance matrix and only include
the error due to the shape noise, that is to say

√
|C| =

n∏
i=1

σi . (11)

This is done to reduce the computational complexity of the
problem, and it is justified due to the covariance matrix being
shape noise dominated. The above equation describes the one-
dimensional method; the two-dimensional method differs only
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Table 2. Parameter space ranges and marginalised posterior estimates of
the free parameters used in our lens model, for both the one-dimensional
method and the two-dimensional method.

γcen βcen fc,cen

Parameter range [7.5, 11] [−5,−2] [0, 1.1]
1D results 10.08+0.49

−0.57 −2.95+0.42
−0.43 –

2D results 8.97+0.58
−0.76 −3.26+0.63

−0.56 –
γsat βsat fcsat

Parameter range [8, 12.5] [−5,−2] [0, 1.1]
1D results 10.84+0.60

−0.61 −2.63+0.46
−0.38 –

2D results 10.37+0.81
−0.70 −2.63+0.32

−0.39 –

Notes. We note that γ and β are the free parameters of the SMHM rela-
tion (Eq. (4)) and fc is the concentration-mass relation normalisation
parameter (Eq. (3)). Furthermore, fc parameters recover the prior range,
thus we do not provide their values.

in the following significant way:

L(εobs |Mh,M?, c) (12)

=

n∏
i=1

1

σε,i
√

2π
exp

−1
2

gi(Mh, xi, z) − εobs
i

σε,i

2 ,
where gi(Mh, xi, z) are the model reduced shears evaluated at
each source position xi, εobs

i is the observed elipticities of real
galaxies, and σε,i is the intrinsic shape noise of our galaxy sam-
ple per component, calculated from the lensfit weights follow-
ing the description by Heymans et al. (2012). The same lensfit
weights are used to weight εobs

i as well (Heymans et al. 2012). In
practice, the two-dimensional fit to the ellipticities is carried out
for each Cartesian component of ellipticity ε1 and ε2 with respect
to the equatorial coordinate system. Here the product runs over
all of the individual source galaxies i.

5. Parameter inference procedure

Due to the computational complexity of the analysis, we do
not use the Markov chain Monte Carlo (MCMC) method
for parameter inference for any of our methods. Our model
parameter inference procedure and the fit to the data is per-
formed using three steps for both the one-dimensional and two-
dimensional cases. We first sample 100 points using the latin
hypercube method (McKay et al. 1979) in the six-dimensional
model parameter space (see Table 2 for the ranges of all of the
parameters). We picked these types of ranges for the parame-
ters in order to sample the likelihood surface in the 5σ range
that we found using an MCMC fit of the 1D model in prelimi-
nary tests. This minimises the need for having a larger number of
points in the latin hypercube as well as reducing the number of
interpolation points at the later step. For each of the 100 points,
we calculate the likelihood value L(d | θ) according to Eqs. (10)
and (12). We created 10 000 realisations of the latin hypercube
and select one that maximises the euclidean distance between all
of the points (similarly to what it was done by Heitmann et al.
2009). We have also checked the influence of different realisa-
tions on the obtained results by evaluating the one-dimensional
method on different realisations, and we always obtain the same
resulting likelihoods.

The second step requires the construction of an interpolator,
for which we use the Gaussian process (GP) regression method

0 25 50 75 100
Sampling point

−0.10

−0.05

0.00

0.05

0.10

(L
tr

u
e
−
L i

n
te

rp
)/
L i

n
te

rp

1D

2D

Fig. 3. Fractional differences between the interpolated likelihood and
true likelihood value at each sampled point in the latin hypercube. We
do not show the cases where one of the interpolated points is exactly on
one of the edges of the latin hypercube since the interpolator is unable
to properly perform for those edge cases. The remaining high value out-
liers are the points in the latin hypercube that are close to the edges of
the parameter space.

with a multi-dimensional radial basis function (RBF) kernel4.
The interpolated value is the likelihoodL(d | θ) as obtained from
the latin-hypercube samples. Interpolation is performed with the
same ranges as used in the construction of the latin hypercube
using 206 (64 million) equally spaced grid points. We test the
accuracy of the interpolation by choosing one point as a test
point, and we use the remaining 99 likelihoods to construct the
interpolator. We then compare the prediction at the test point to
the actual likelihood value. This is repeated for all likelihood val-
ues of our latin hypercube. We show the fractional differences
between the interpolated likelihood and true likelihood value at
each point in Fig. 3. The majority of sampled points are accurate
to better than 1%. The use of the latin hypercube to construct the
initial grid to sample the likelihood surface does not increase the
uncertainty in recovering the true values due to the properties
of latin hypercube sampling compared to the usual grid search
minimisation (McKay et al. 1979).

In the third step, we calculate the marginalised distributions
from the interpolated points. First we normalise the probability
grid P6D, such that:∑
θ

P6D(d | θ) =
∑
θ

L(d | θ) = 1, (13)

which also sets the normalisation term in Bayes’ theorem, so
we can, from the resulting values, calculate the one-dimensional
and two-dimensional marginalised distributions of all of the
parameters.

6. Results

We fit the lens model as described in Sect. 3 to the stacked
tangential shear measurements in our six stellar mass bins (our
1D result) and to the full two-dimensional shear field (our 2D
result). An example of a single stacked tangential shear profile
for the GAMA lenses in the 1010.5–1010.75 M� stellar mass bin
is shown in Fig. 4, with the measurements and their respec-
tive 1σ errors5. The measured lens model best-fit parameters

4 We compute GP interpolation using the scikit-learn package
(http://scikit-learn.org).
5 For our two-dimensional analysis, there is no corresponding visual-
isation for the data vector d, other than the noisy residual shear field,
which is not shown because it is not pertinent.
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Fig. 4. Stacked tangential shear profile for the GAMA lenses (blue
points) in the 1010.5–1010.75 M� stellar mass bin, compared to the best
fitting lensing model for the 1D method, with contributions from both
centrals and satellites. The orange band encloses the 68% credible
interval.

(median of the marginalised posterior estimate), together with
their 68% credible intervals are presented in Table 2 for both
the one-dimensional and two-dimensional analysis. The con-
strains from the two approaches can be compared in terms of
the full posterior distributions shown in Fig. 5. Even though
none of our parameters are constrained to within 5σ of the pre-
liminary test, the prior ranges are still good, given that mod-
els outside of the prior range for γ and β parameters would be
unphysical.

For both methods, we find that the SMHM relations are com-
pletely described with two parameters each (two for centrals and
two for satellites): the normalisation γ and slope β, for which the
obtained one-dimensional values for centrals and satellites are
presented in Table 2. In the same table, we present the obtained
values for centrals and satellites in the case when using the
two-dimensional galaxy-galaxy lensing. These constraints are
consistent with those from the one-dimensional analysis with
the highest discrepancy in the γcen parameter, which differs by
1σ. This shows that the two methods perform equally well
statistically.

The normalisations of the concentration-halo mass relation
are essentially unconstrained in the adopted prior range. The
other values of the SMHM relation are not correlated with
these values, and the prior does not influence our results in
a substantive way. The wide range is somewhat driven by the
imperfect modelling for both the one-dimensional and the two-
dimensional case, as the model does not properly account for
the two-halo term. The prior ranges are comparable to the val-
ues found in hydrodynamical simulations (Dvornik et al. 2019).
These values are also consistent with the observational findings
that prefer lower normalisations than expected in simulations,
such as in the studies of Viola et al. (2015), Sifón et al. (2015),
and Dvornik et al. (2017). Since there are no strong covariances
between fc and the other parameters, any small systematic error
in fc probably does not propagate through to a bias in other
parameters of the SMHM relation.

We show a typical halo mass for a central and satellite
galaxy with a stellar mass of log(M?/M�) = 10.6 in Fig. 6,
obtained from propagating the best fit parameters through the
SMHM relation. We find that the SMHM relations are differ-
ent for the central and satellite galaxies, showing that the strip-
ping of the dark matter does indeed take place; the SMHM
relation of satellite galaxies is higher than the relation for the
centrals, as is also seen in Fig. 6. We find that satellite galax-
ies are hosted by halo masses that are systematically 0.53 ±
0.39 dex (for 1D) and 0.23 ± 0.18 dex (for 2D) smaller than
those of central galaxies at this stellar mass. The uncertainty
of the inferred SMHM relation is similar to the intrinsic scat-
ter present in simulations, for instance by the EAGLE hydrody-
namical simulation (Schaye et al. 2015; Matthee et al. 2017, see
Figs. 8 and 9). While we see the same qualitative conclusions
between the one-dimensional and two-dimensional analysis, the
quantitative halo masses inferred are inconsistent at the ∼1σ
level.

7. Assessment of completeness bias in 2D
galaxy-galaxy lensing

As is shown in Dvornik et al. (2019), the two-dimensional anal-
ysis relies on a complete sample of lenses. If lenses are miss-
ing from the model, the bias in halo mass can be as much as
20%. Although we used all of the galaxies with redshifts from
the GAMA data, at a given redshift, the magnitude limit implies
a limit in stellar mass. Galaxies with that stellar mass but at
higher redshifts are not included in the catalogue, but they do
contribute to the lensing signal. The contribution to the lens-
ing signal is small for very high redshift lenses; however, not
including lenses near the magnitude limit of GAMA may bias
our measurements. Moreover, the process of labelling galaxies
into centrals and satellites is not perfect. The GAMA group cat-
alogue is only pure up to 90% for high multiplicity groups, and
it is known to be contaminated by the misidentification of the
central galaxy in a group to such an extent that only 70 – 75% of
central galaxies are correctly identified (Robotham et al. 2011).
Thus the true central galaxy would be included in the satellite
sample, which can introduce a bias of about 15% in the inferred
masses (Sifón et al. 2015). This effect is even more pronounced
in the GAMA group catalogue for pairs of galaxies, where both
components are likely to be centrals and not a central galaxy
and one satellite galaxy. What is more, the satellite stellar-to-
halo mass relation at a high stellar mass is possibly driven by
this misidentification of satellite galaxies, which should actually
be classified as centrals, given the high halo masses measured;
satellite galaxies with stellar masses up to log(M?/M�) = 12
should not be common. This is a likely consequence of the
observed problem with the FoF algorithm used to identify galaxy
groups in the GAMA survey, but it does not seem to substan-
tially affect the results. The FoF algorithm separates groups
into a number of smaller groups or smaller, aggregate, unre-
lated groups into one large group, which would then host more
than one central galaxy with them being classified as a satellite
(Jakobs et al. 2018).

In order to assess the possible bias due to missing galax-
ies in a magnitude limited survey, such as GAMA, we use the
MICE-GC N-body simulation from which the MICE collabora-
tion constructed a lightcone spanning a full octant on the sky
(Fosalba et al. 2015a,b). The MICE lightcone has a maximum
redshift of 1.4. The haloes found in the simulation were popu-
lated using a hybrid halo occupation distribution (HOD) and halo
abundance matching (HAM) prescription (Carretero et al. 2015;
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Fig. 5. Full posterior distributions of the model parameters γcen, βcen, fc,cen, γsat, βsat, and fc,sat, for both the one-dimensional stacked tangential shear
measurements (in blue) as well as the two-dimensional galaxy-galaxy lensing method (in orange). The contours indicate the 1σ and 2σ credible
regions. We note that γ and β are the free parameters of the SMHM relation (Eq. (4)) and fc is the concentration-mass relation normalisation
parameter (Eq. (3)).

Crocce et al. 2015; Hoffmann et al. 2015. For our assessment,
we use the MICECATv2.0 catalogue6, from which we take the
positions of galaxies within a 4 deg2 cutout of the lightcone with
a redshift limit of z < 0.5 and an SDSS r-band magnitude of
mr < 22. We also select galaxies with a stellar mass between
107 M�/h and 1013 M�/h. This selection of galaxies results in
a distribution of stellar masses and redshifts similar to that of
GAMA, which also has a similar number density. On this sample
of galaxies, we apply an additional magnitude cut of mr < 19.8,
which is the magnitude limit of the GAMA survey (Driver et al.
2011).

6 The MICECATv2.0 catalogue is available through CosmoHub
https://cosmohub.pic.es.

We generate a noiseless mock shear field resembling
a typical KiDS observation using the procedure shown in
Dvornik et al. (2019). We populate the mock shear field with
haloes at the locations of galaxies from MICE mocks by assign-
ing the stellar-to-halo mass relation from Matthee et al. (2017),
using the redshifts we have in the MICE mocks. We fit for the
concentration and SMHM normalisations, using the two mock
samples (the mr < 22 and the mr < 19.8 magnitude limited
samples) as our input lenses for the fits. The parameter infer-
ence method is the same as described in Sect. 5. We show the
comparison of the inferred parameters in Fig. 7, between the
full sample of MICE galaxies (blue) and analysis for lens galax-
ies with mr < 19.8 (orange). The model is able to accurately
recover the input relation for the full sample of galaxies, while
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Fig. 6. Halo masses for a galaxy with a stellar mass of log(M?/M�) =
10.6 for the one-dimensional and two-dimensional analyses for both
central and satellite galaxies.

that is no longer the case for a magnitude limited sample. Due
to a smaller number of lenses, the uncertainty increases but also
the retrieved concentrations and halo masses are biased towards
lower values. The effect is present at the 10% level, which is
consistent with what we have found for a mock dataset of ran-
domly placed lenses at a fixed redshift (Dvornik et al. 2019), but
it is more representative of a real galaxy distribution and the
observed effects due to the magnitude limit. The 10% change
seems to be consistent with a statistical fluctuation, given that the
recovered values lie within the 1σ contours. We do need to point
out that this test is performed on noiseless data, for which we can
choose the size of the contours, and the change in values reflects
the true bias. Given the bias in the two-dimensional analysis
and the comparable statistical performance of the two methods,
our one-dimensional constraints are our preferred result for this
analysis.

8. Comparison with previous studies

In Fig. 8 we show various published determinations of the rela-
tionship between the total and stellar mass of central galaxies
(Leauthaud et al. 2012; Moster et al. 2013; Velander et al. 2014;
Hudson et al. 2015; Zu & Mandelbaum 2015; van Uitert et al.
2016; Mandelbaum et al. 2016) as well as the EAGLE and Illus-
tris TNG simulations (Engler et al. 2020). We scale all of these
relations to our adopted values of H0 and the definition of halo
mass, that is to say the halo mass is defined with respect to
200 times the average density in the Universe, as is adopted in
this paper. Furthermore, we also compare our results with the
central and satellite properties from the hydrodynamical simula-
tion EAGLE (Schaye et al. 2015; McAlpine et al. 2016). Specif-
ically, we use the AGN model, from which we select galaxies
with stellar masses ranging from 109.6 M� to 1011.2 M� and their
halo properties from which we can plot the mean SMHM rela-
tion and its scatter.

All of the relations between the total and stellar mass of cen-
tral galaxies are in broad agreement and they all use galaxy-
galaxy lensing to constrain the SMHM relation (in the case of
Zu & Mandelbaum 2015; van Uitert et al. 2016, also in com-
bination with galaxy clustering and the stellar mass function,
respectively). For Velander et al. (2014) and Mandelbaum et al.
(2016), we show their SMHM relation of red galaxies; as in
the GAMA sample, central galaxies are mostly identified as
red. Our measurements are also in agreement with the previous
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Fig. 7. Comparison of the inferred parameters between the full sample
of MICE galaxies (blue) and for galaxies with mr < 19.8 (orange). The
model is able to accurately recover the input relation for the full sample
of galaxies (dashed line), while the magnitude limited sample is biased
at the 10% level.

results. We also need to point out, as mentioned by Sifón et al.
(2018), that the measurements from Zu & Mandelbaum (2015)
and Mandelbaum et al. (2016) agree perfectly when the galaxies
between the two samples are matched. The SMHM relations of
Leauthaud et al. (2012), Moster et al. (2013), and Hudson et al.
(2015) can be considered as better comparisons than the ones
from the EAGLE or Illustris TNG simulations since they are
obtained at redshifts comparable to the redshifts of the GAMA
galaxies.

Similarly, for satellites, we show in Fig. 9 the comparison
of the results from Rodríguez-Puebla et al. (2013), Sifón et al.
(2018), and the EAGLE simulation with our two methods. How-
ever, the definitions of the halo mass of satellite galaxies in
both Rodríguez-Puebla et al. (2013) and Sifón et al. (2018) are
not equivalent to the one we use throughout this paper and it is
also hard to correct this in order to compare the same quantities.
Rodríguez-Puebla et al. (2013) use the definition of the subhalo
mass that is defined as a mass of a satellite halo at the observed
time (present time), and Sifón et al. (2018) use the definition of
the subhalo mass as the mass within a radius for which the sub-
halo density matches the background density of the cluster at the
distance of the subhalo in question. The closest definition to ours
is the definition from the EAGLE simulation. Our results are
similar to the behaviour of satellite galaxies therein. As for the
comparison with Rodríguez-Puebla et al. (2013) and Sifón et al.
(2018), all of the studies show lower satellite masses compared
to the central galaxies at the same stellar mass. The same also
holds true for the overall trend as a function of stellar mass. In
Fig. 10 we also show the ratio between the satellite and cen-
tral halo mass as a function of stellar mass. We observe that for
the low stellar mass galaxies, the ratio is around 0.4 and drops
towards 0.2 for high stellar mass galaxies, although the uncer-
tainties on the ratio are quite large. This result directly shows us
that more than ~80% of the dark matter of satellite galaxies is
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and stellar mass of central galaxies. All of the relations between the total and stellar mass of central galaxies are in broad agreement and are all
using galaxy-galaxy lensing to constrain the SMHM relation, excluding the simulations where those quantities are measured directly from the
particle data.

stripped (but with a large uncertainty), when they are accreted
by a massive central galaxy.

Some studies of cosmological N-body simulations find that
the ratio of satellite galaxy masses over central galaxy masses is
Mh,sat/Mh,cen � 1 (van den Bosch & Ogiya 2018, and the ref-
erences therein), which means that the majority of dark mat-
ter haloes that merge with a central halo would be completely
tidally disrupted. The tidal stripping and disruption of subhaloes
in numerical simulations was mostly shown to be of numeri-
cal origin, emphasising that the cosmological simulations still
suffer from overmerging (van den Bosch & Ogiya 2018). Even
though our ratio of halo masses between the satellites and cen-
trals show large uncertainties, with a refined analysis, it would
be possible to use this type of measurement as an independent
observational confirmation for the lack (or presence) of numer-
ical convergence in the simulations. Given our results, as pre-
sented in Fig. 10, we cannot make a clear statement, although
the results hint that less stripping is present in the observational
data. On the other hand, the hydrodynamical simulations, such
as EAGLE, show that the artificial stripping of haloes is not sig-
nificant (Chaves-Montero et al. 2016), but we need to caution for
the survivor bias in this case since completely disrupted haloes
would not be present in the sample.

All of the previous results, together with our findings show
that the satellite galaxies are indeed preferentially stripped of
their dark matter and the effect can be observed as higher stel-
lar mass to halo mass ratios compared to their central counter-
parts of a similar stellar mass. All of the measurements show a
statistically different SMHM relation for the central and satellite
galaxies, which furthermore shows that two-dimensional galaxy-
galaxy lensing can measure the SMHM relation for different
populations of galaxies.

9. Discussion and conclusions

We have measured the stellar-to-halo mass relation of central
and satellite galaxies in the GAMA survey. In this analysis,
we use the more advanced two-dimensional galaxy-galaxy lens-
ing method to constrain the SMHM relation, which has poten-
tial benefits over the traditionally used stacked tangential shear
method (also referred to as one-dimensional galaxy-galaxy lens-
ing here, Dvornik et al. 2019).

We use the three equatorial GAMA patches that overlap with
the KiDS data in order to measure both the tangential shear
signal around the central and satellite galaxies as well as the
two-dimensional galaxy-galaxy lensing constraints on the same
lenses and sources. The shear signals are then used to constrain
the SMHM relation of central and satellite galaxies.

We model the lensing signal using an NFW profile together
with the concentration-mass relation by Duffy et al. (2008),
scaled by a normalisation factor for which we took the fit into
account. We assume a functional form for the SMHM relation in
the form of an exponential function, which was motivated by the
observed behaviour in the simulations, and we fold it through
our model, thus directly fitting for the normalisation and slope
of the SMHM relation. The lens model is used to calculate the
tangential shear profile, which is then fitted to the measured tan-
gential shear profile from the GAMA and KiDS data, as well as
to directly predict the two Cartesian components of the galaxies’
ellipticities used in our two-dimensional method.

We find that the SMHM relation can be successfully mea-
sured using the two-dimensional method, with a comparable sta-
tistical power to the traditional one-dimensional method using
the stacked tangential shear measurements. Both methods give
us similar results for the SMHM relations, showing that the
two-dimensional method is indeed a robust way to measure
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properties of the galaxy–halo connection, without using statis-
tically equivalent samples as in the case of the one-dimensional
method, nor using more complicated halo models or relying on
support from other probes. The resulting SMHM relations are
broadly in agreement with the literature, and our results show
that the satellite galaxies are indeed preferentially stripped of
their dark matter and the effect can be observed as higher stellar
mass to halo mass ratios compared to their central counterparts
of a similar stellar mass.

By comparing the results of this paper with the findings
of our previous paper (Dvornik et al. 2019), we are able to
recognize that the comparable constraining power of the one-
dimensional and two-dimensional method, shown in Fig. 5, is
unexpected. In the Dvornik et al. (2019) paper, we predicted a
factor of 3 improvement. As seen in the results, the statistical
powers of both methods are comparable. Dvornik et al. (2019)
explores an idealised mock dataset as well as noiseless and com-
plete simulations, where the exact galaxy classification was also

known. As mentioned in Sect. 6, multiple effects can and will
cause differences from this idealised mock. First, the increased
uncertainty of the two-dimensional method is directly dependent
on how well one can identify central and satellite galaxies and
how robust this identification and selection is. Even though the
GAMA group catalogue (Robotham et al. 2011) is highly robust,
this does not mean it is perfect and even a small number of incor-
rect classifications of galaxies would cause excessive scatter in
the resulting SMHM relations, impacting the ability of the two-
dimensional model to constrain the parameters. Secondly, the
results of the two-dimensional galaxy-galaxy lensing seems to
be biased due to the completeness limit of the GAMA survey.
We have shown that slight incompleteness of the lens sample
can cause biases in the inferred parameters, which can be as
large as 10% (as is shown in Fig. 7). This can be somewhat seen
in Fig. 5, where the γcen parameters are most noticeably differ-
ent. The two-dimensional analysis is still computationally and
resource expensive compared to the one-dimensional method.
This further reduces the usability of the method, and our pre-
ferred galaxy-galaxy lensing analysis thus remains the standard
one-dimensional approach.
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