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ABSTRACT

Calibrating for direction-dependent ionospheric distortions in visibility data is one of the main technical challenges that must
be overcome to advance low-frequency radio astronomy. In this paper, we propose a novel probabilistic, tomographic approach
that utilises Gaussian processes to calibrate direction-dependent ionospheric phase distortions in low-frequency interferomet-
ric data. We suggest that the ionospheric free electron density can be modelled to good approximation by a Gaussian process
restricted to a thick single layer, and show that under this assumption the differential total electron content must also be a
Gaussian process. We perform a comparison with a number of other widely successful Gaussian processes on simulated dif-
ferential total electron contents over a wide range of experimental conditions, and find that, in all experimental conditions,
our model is better able to represent observed data and generalise to unseen data. The mean equivalent source shift imposed
by our predictive errors are half as large as the best competitor model’s. We find that it is possible to partially constrain the
ionosphere’s hyperparameters from sparse-and-noisy observed data. Our model provides an alternative explanation for ob-
served phase structure functions deviating from Kolmogorov’s 5/3 turbulence, turnover at high baselines, and diffractive scale
anisotropy. We show that our model implicitly cheaply performs tomography of the free electron density. Moreover, we find
that even a fast, low-resolution approximation to our model yields better results than the best alternative Gaussian process,
implying that the geometric coupling between directions and antennae is a powerful prior that should not be ignored.

1. Introduction

Since the dawn of low-frequency radio astronomy, the iono-
sphere has been a confounding factor in astronomers’ inter-
pretations of radio data. This is because the ionosphere has a
spatially and temporally varying refractive index, which per-
turbs radio-frequency radiation that passes through it. This
effect becomes more severe at lower frequencies; see (e.g.
de Gasperin et al. 2018). The functional relation between the
sky brightness distribution – the image – and interferometric
observables – the visibilities – is given by the Radio Interfer-
ometry Measurement Equation (RIME; Hamaker et al. 1996),
which models the propagation of radiation along geodesics,
from source to observer, as an ordered set of linear transfor-
mations (Jones 1941).

A mild ionosphere will act as a weak-scattering layer re-
sulting in a perturbed inferred sky brightness distribution,
analogous to the phenomenon of seeing in optical astron-
omy (Wolf 1969). Furthermore, the perturbation of a geodesic
coming from a bright source will deteriorate the image qual-
ity far more than geodesics coming from faint sources. There-
fore, the image-domain effects of the ionosphere can be de-
pendent on the distribution of bright sources on the celes-
tial sphere, i.e. heteroscedastic. This severely impacts exper-
iments which require sensitivity to faint structures in radio
images. Such studies include the search for the epoch of
reionisation (e.g. Patil et al. 2017), probes of the morphology
of extended galaxy clusters (e.g. van Weeren et al. 2019), ef-
forts to detect the synchrotron cosmic web (e.g. Vernstrom
et al. 2017), and analyses of weak gravitational lensing in the
radio domain (e.g. Harrison et al. 2016). Importantly, these

studies were among the motivations for building the next
generation of low-frequency radio telescopes like the LOFAR,
MWA, and the future SKA. Thus it is of great relevance to prop-
erly calibrate the ionosphere.

Efforts to calibrate interferometric visibilities have
evolved over the years from single-direction, narrow-band,
narrow-field-of-view techniques (Cohen 1973), to more
advanced multi-directional, wide-band, wide-field meth-
ods (e.g. Kazemi et al. 2011; van Weeren et al. 2016; Tasse
et al. 2018). The principle underlying these calibration
schemes is that if you start with a rough initial estimate
of the true sky brightness distribution, you can calibrate
based on this image, generate a revised image, and repeat
this process iteratively. Among the direction-dependent
calibration techniques the most relevant for this paper is
facet-based calibration, which applies the single-direction
method to piece-wise independent patches of sky called
facets. This scheme is possible if there are enough compact
bright sources – calibrators – and if sufficient computational
resources are available. Ultimately, there are a finite number
of calibrators in a field of view and additional techniques
must be considered to calibrate all the geodesics involved in
the RIME. Note, that there are other schemes for ionosphere
calibration that do not apply the facet based approach, such
as image domain warping (Hurley-Walker et al. 2017).

There are two different approaches for calibrating all
geodesics involved in the RIME. The first approach is to
model the interferometric visibilities from first principles and
then solve the joint calibration-and-imaging inversion prob-
lem. This perspective is the more fundamental; however, ap-
plications (e.g. Bouman et al. 2016) of this type are very rare
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and often restricted to small data volumes due to exploding
computational complexity. However, we argue that investing
research capital – in small teams to minimize risk – could be
fruitful and disrupt the status quo (Wu et al. 2019). The sec-
ond approach is to treat the piece-wise independent calibra-
tion solutions as data and predict calibration solutions for
missing geodesics (e.g. Intema et al. 2009; van Weeren et al.
2016; Tasse et al. 2018). In this paper, we consider an infer-
ence problem of the second kind.

In order to perform inference for the calibration along
missing geodesics, a prior must be placed on the model. One
often-used prior is that the Jones operators are constant over
some solution interval. For example, in facet-based calibra-
tion the implicit prior is that two geodesics passing through
the same facet and originating from the same antenna have
the same calibration – which can be thought of a nearest-
neighbour interpolation. One usually neglected prior is the
3D correlation structure of the refractive index of the iono-
sphere. An intuitive motivation for considering this type of
prior is as follows: the ionosphere has some intrinsic 3D cor-
relation structure, and since cosmic radio emission propa-
gates as spatially coherent waves, it follows that the correla-
tion structure of the ionosphere should be present in ground-
based measurements of the electric field correlation – the vis-
ibilities. We thus form the scope of this paper as building the
mathematical prior corresponding to the above intuition.

We arrange this paper by first reviewing some proper-
ties of the ionosphere and its relation to interferometric vis-
ibilities via differential total electron content in Section 2.
In Section 3, we then introduce a flexible model for the free
electron density based on a Gaussian process restricted to a
layer. We derive the general relation between the probability
measure for free electron density and differential total elec-
tron content, and use this to form a strong prior for differ-
ential total electron content along missing geodesics. In Sec-
tion 4 we describe a numerical experiment wherein we test
our model against other widely successful Gaussian process
models readily available in the literature. In Section 5 we show
that our prior outperforms the other widely successful pri-
ors in all noise regimes, and levels of data sparsity. Further-
more, we show that we are able to hierarchically learn the
prior from data. In Section 6 we provide a justification for the
assumptions of the model, and show the equivalence with to-
mographic inference.

2. Ionospheric effects on interferometric
visibilities

The telluric ionosphere is formed by the geomagnetic field
and a turbulent low-density plasma of various ion species,
with bulk flows driven by extreme ultraviolet solar radiation
(Kivelson & Russell 1995). Spatial irregularities in the free
electron density (FED) ne and magnetic field B of the iono-
sphere give rise to a variable refractive index n , described by
the Appleton-Hartree equation (Cargill 2007) – here given in
a Taylor series expansion to order O (ν−5):

n (x)≈1−
ν2

p (x)

2ν2
±
νH (x)ν2

p (x)

2ν3
−
ν4

p (x)−4ν2
H (x)ν

2
p (x)

8ν4
. (1)

Hereνp (x) =
�

ne (x)q 2

4π2ε0m

�1/2
is the plasma frequency,νH (x) =

B (x)q
2πm

is the gyro frequency, and ν is the frequency of radiation. q
is the elementary charge, ε0 is the vacuum permittivity and

m is the effective electron mass. This form of the Appleton-
Hartree equation assumes that the ionospheric plasma is
cold and collisionless, that the magnetic field is parallel to
the radiation wavevector, and that ν � max{νp ,νH }. The
plus sign corresponds to the left-handed circularly polarised
mode of propagation, and the minus sign corresponds to the
right-handed equivalent. Going forward, we will only con-
sider up to second-order effects, and therefore neglect all ef-
fects of polarisation in forthcoming analyses.

In the regime where refractive index variation over one
wavelength is small, we can ignore diffraction and interfer-
ence, or equivalently think about wave propagation as ray
propagation (e.g. Koopmans 2010). This approximation is
known as the Jeffreys-Wentzel–Kramers–Brillouin approxi-
mation (Jeffreys 1925), which is equivalent to treating this as
a scattering problem, and assuming that the scattered wave
amplitude is much smaller than the incident wave amplitude
– the weak scattering limit (e.g. Yeh 1962; Wolf 1969). Light
passing through a varying refractive index n will accumu-
late a wavefront phase proportional to the path length of the
geodesic traversed. Let R k̂

x be a functional of n , so that the

geodesic R k̂
x [n ] : [0,∞)→ R3 maps from some parameter s

to points along it. The geodesic connects an Earth-based spa-
tial location x to a direction on the celestial sphere, indicated
by unit vector k̂. The accumulated wavefront phase along the
path is then given by

φk̂
x =

2πν

c

∫ ∞

0

n
�

R k̂
x [n ](s )

�

−1 ds , (2)

where c is the speed of light in vacuo. Hamilton’s principle
of least-action states that geodesics are defined by paths that
extremise the total variation of Eq. 2.

By substituting Eq. 1 into Eq. 2, and by considering terms
up to second order in ν−1 only, we find that the phase devia-
tion induced by the ionosphere is proportional to the integral

of the FED along the geodesic,φk̂
x ≈

−q 2

4πε0m cντ
k̂
x , where,

τk̂
x ¬

∫ ∞

0

ne

�

R k̂
x [n ](s )

�

ds . (3)

Equation 3 defines the total electron content (TEC).
In radio interferometry, the RIME states that the visibil-

ities, being a measure of coherence, are insensitive to uni-
tary transformations of the electric field associated with an
electromagnetic wave. Thus, the phase deviation associated
with a geodesic is a relative quantity, usually referenced to
the phase deviation from another fixed parallel geodesic – the
origin of which is called the reference antenna. Going forward
we will use Latin subscripts to specify geodesics with origins
at an antenna location; e.g. it shall be understood thatR k̂

i [n ]
is short forR k̂

xi
[n ]. Correspondingly, we introduce the notion

of differential total electron content (∆TEC),

τk̂
i j ¬τ

k̂
i −τ

k̂
j , (4)

which is is the TEC ofR k̂
i [n ] relative toR k̂

j [n ].

3. Probabilistic relation between FED and
∆T E C: Gaussian process layer model

In this section we derive the probability distribution of∆TEC
given a specific probability distribution for FED. It helps to
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first introduce the concept of the ray integral (RI) and the cor-
responding differenced ray integral (DRI). The RI is defined
by the linear operator G k̂

i :V →Rmapping from the space of
all scalar-valued functions overR3 to a scalar value according
to,

G k̂
i f ¬

∫ ∞

0

f
�

R k̂
i [n ](s )

�

ds , (5)

where f ∈ V =
�

g |
∫

R3 g 2(x)d x<∞
	

. Thus, an RI simply in-

tegrates a scalar field along a geodesic. The DRI ∆k̂
i j : V → R

for a scalar field f is straightforwardly defined by

∆k̂
i j f ¬

�

G k̂
i −G k̂

j

�

f . (6)

Both the RI and DRI are linear operators in the usual sense.
Using Eqs. 3 up to 6, we see that

τk̂
i j =∆

k̂
i j ne . (7)

Let us now specify that the FED is a Gaussian process
(GP) restricted to (and indexed by) the set of spatial locations
X =

�

x ∈R3 | (x−x0) · ẑ ∈ [a − b /2, a + b /2]
	

. This defines a
layer of thickness b at height a above some reference point
x0 (see Figure 1). Within this layer the FED is realised from,

ne ∼N [µ, K ], (8)

where µ : X → R>0 is the mean function, and K : X ×
X → R is the covariance kernel function. That is, the iono-
spheric FED is regarded to be a uncountable infinite set of
random variables (RVs) indexed by spatial locations in X ,
such that for any finite subset of such locations the corre-
sponding FEDs have a multivariate normal distribution. In
order to extend the scalar field ne to all ofR3, so that we may
apply the operator in Eq. 6 to FED, we impose that for all
x ∈ R3 \X : ne (x) = 0. This simply means that we take elec-
tron density to be zero outside the layer, and makes G k̂

i well-
defined. To further simplify the model, we will suppose that
the mean FED in the layer is constant; i.e. for all x ∈X :µ(x) =
n̄e .

One immediate question that should be asked is, why use
a GP to model the FED in the ionosphere? Currently, there
is no adequate probabilistic description of the ionosphere
that is valid for all times and at the spatial scales that we re-
quire. The state-of-the-art characterisation of the ionosphere
at the latitude and scales we are concerned with are measure-
ments of the phase structure function, a second order statis-
tic (Mevius et al. 2016). It is well known that second order
statistics alone do not determine a distribution. In general,
all moments are required to characterise a distribution, with a
determinancy criterion known as Carleman’s condition. Fur-
thermore, the ionosphere is highly dynamic and displays a
multitude of behaviours. Jordan et al. (2017) have observed
four distinct behaviours of the ionosphere above the MWA. It
is likely that there are innumerable states of the ionosphere.

Due to the above issue, it is not our intent to precisely
model the ionosphere. We rather seek to describe it with a
flexible and powerful probabilistic framework. Gaussian pro-
cesses have several attractive properties – including being
highly expressive, being easy to interpret, and (in some cases)
allowing closed-form analytic integration over hypotheses
(Rasmussen & Williams 2006).

ẑ

ŷ

x̂

φ1

xi

a

b
ẑ

ŷ

x̂

φ2

x j

k̂1 k̂2

x0

Fig. 1: The geometry of the toy model. The ionosphere is a
layer of thickness b at height a above a reference location x0.
In general, ∆TEC is the TEC along one geodesic minus the
TEC along another parallel geodesic. Usually, these geodesics
are originating at antennae i and j (locations xi and x j ), and

pointing in directions k̂1 and k̂2, respectively. One common
choice is to have a fixed reference antenna for all∆TEC mea-
surements. The corresponding zenith angles areφ1 andφ2.

However, a Gaussian distribution assigns a non-zero
probability density to negative values, which is unphysical.
One might instead consider the FED to be a log-GP, ne (x) =
n̄e expρ (x), where the dimensionless quantityρ (x) is a Gaus-
sian process. In the limit ρ (x)→ 0, we recover that ne is itself
a GP. This is equivalent to saying that the σne

/n̄e � 1. As ex-
plained in Section 4, we determine estimates of σne

and n̄e
by fitting our models to actual observed calibrator data, IRI
and observations taken from Kivelson & Russell (1995). This
places the ratio atσne

/n̄e ® 0.06. This suggests that if the FED
can be accurately described with a log-GP, then to good ap-
proximation it can also be described with a GP.

We now impose that the geodesics are straight rays, a sim-
plification valid in the weak-scattering limit considered here.
The geodesics thus become R k̂

x [n ](s ) = x + s k̂ . In practice,
strong scattering due to small-scale refractive index varia-
tions in the ionosphere is negligible at frequencies far above
the plasma frequency, when the ionosphere is well-behaved,
which is about 90% of the time (Vedantham & Koopmans
2015). For frequencies ® 50 MHz however, this simplifica-
tion becomes problematic. Under the straight-ray assump-
tion, Equation 7 becomes

τk̂
i j =

∫ s k̂+
i

s k̂−
i

ne (xi + s k̂ )d s −
∫ s k̂+

j

s k̂−
j

ne (x j + s ′k̂ )d s ′. (9)

Here, the integration limits come from the extension of the
FED to spatial locations outside the index-set X , and are
given by

s k̂±
i =

�

a ±
b

2
− (xi −x0) · ẑ

�

secφ. (10)

where secφ = (k̂ · ẑ )−1 denotes the secant of the zenith an-
gle. It is convenient to colocate the reference point x0 with
one of the antenna locations, and then to also specify that an-
tenna as the origin of all reference geodesics – the reference
antenna. When this choice is made,∆TEC becomes τk̂

i 0.
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Equation 7 shows directly that if ne is a GP, then ∆TEC
is too. This can be understood by viewing the RI as the limit
of a Riemann sum. Recall that every univariate marginal of a
multivariate Gaussian is also Gaussian, and that every finite
linear combination of Gaussian RVs is again Gaussian. Tak-
ing the Riemann sum to the infinitesimal limit preserves this
property. Since the DRI is a linear combination of two RIs, the
result follows (e.g. Jidling et al. 2018).

The index-set for the∆TEC GP is the product space of all
possible antenna locations and vectors on the unit 2-sphere,
S =

�

(x, k̂ ) | x ∈R3, k̂ ∈ S2
	

. This is analogous to saying that
the coordinates of the ∆TEC GP are a tuple of antenna loca-
tion and calibration direction. Thus, given any y = (x, k̂ ) ∈ S
the∆TEC is denoted by τk̂

x0. Because∆TEC is a GP, its distri-
bution is completely specified by its first two moments.

Since we assume a flat layer geometry, the lengths of two
parallel rays’ intersection with the ionosphere layer are the
same and equal to b secφ. This results in the mean TEC of
two parallel rays being equal, and thus the first moment of
∆TEC is,

m∆TEC(y) =0, (11)

where y= (xi , k̂ ) ∈S . It is important to note that this is not a
trivial result. Indeed, a more realistic, but slightly more com-
plicated, ionosphere layer model would assume the layer fol-
lows the curvature of the Earth. In this case, the lengths of two
parallel rays’ intersection with the ionosphere layer are not
the same, and the first moment of ∆TEC would depend on
the layer geometry and n̄e .

We now derive the second central moment between two
∆TEC along two different geodesics, as visualised in Figure 1.

K∆TEC(y, y′) =E
�

τk̂
i 0τ

k̂′

j 0

�

(12)

=E
�

(G k̂
i ne −G k̂

0 ne )(G
k̂′

j ne −G k̂′

0 ne )
�

(13)

=I k̂k̂′

i j + I k̂k̂′

00 − I k̂k̂′

i 0 − I k̂k̂′

0 j , (14)

where y= (xi , k̂ ) ∈S and y′ = (x j , k̂ ′) ∈S and,

I k̂k̂′

i j =

∫ s k̂+
i

s k̂−
i

∫ s k̂′+
j

s k̂′−
j

K
�

xi + s k̂ , x j + s ′k̂ ′
�

ds ds ′. (15)

We now see that the GP for∆TEC is zero-mean with a kernel
that depends on the kernel of the FED and layer geometry.
The layer geometry of the ionosphere enters through the in-
tegration limits of Eq. 15. Most notably, the physical kernel
is non-stationary even if the FED kernel is. Non-stationarity
means that the ∆TEC model is not statistically homoge-
neous, a fact which is well known since antennas near the ref-
erence antenna typically have small ionospheric phase cor-
rections. Going forward we shall refer to Eq. 14 as the physical
kernel, or our kernel.

3.1. Related work

Modelling the ionosphere with a layer has been used in the
past. Yeh (1962) performed analysis of transverse spatial co-
variances of wavefronts (e.g. Wilcox 1962; Keller et al. 1964)
passing through the ionosphere. Their layer model was moti-
vated based on the observation of scintillation of radio waves
from satellites (Yeh & Swenson 1959). One of their results is

a simplified variance function, which can be related to the
phase structure functions in Section 6.4. In van der Tol (2009),
a theoretical treatment of ionospheric calibration using a lay-
ered ionosphere with Kolmogorov turbulence is done. More
recently, Arora et al. (2016) have attempted to model a vari-
able height ionosphere layer above the MWA using GPS mea-
surements for the purpose of modelling a TEC gradient, how-
ever unfortunately they concluded that the GPS station array
of the MWA is not dense enough to constrain their model.

4. Method

In order to investigate the efficacy of the physical kernel
for the purpose of modelling ∆TEC we devise a simulation-
based experiment. Firstly, we define several observational se-
tups covering a range of calibration pierce-point sparsity and
calibration signal-to-noise. A high signal-to-noise calibration
corresponds to better determination of∆TEC from gains in a
real calibration program. Secondly, we characterise two iono-
sphere varieties as introduced in Section 3. Each ionosphere
variety is defined by its layer height and thickness, and GP
parameters. For each pair of observational setup and iono-
sphere variety we realise FED along each geodesic and nu-
merically evaluate Eq. 7 thereby producing ∆TEC. We then
add an amount of white noise to∆TEC which mimics the un-
certainty in a real calibration program with given calibration
signal-to-noise. Finally, we then compare the performance of
our kernel against several other common kernels used in ma-
chine learning on the problem of Gaussian process regres-
sion, known as Kriging. In order to do this, we generate∆TEC
for extra geodesics and place them in a held-out dataset. This
held-out dataset is used for validation of the predictive per-
formance to new geodesics given the observed ∆TEC. We
shall call the other kernels, which we compare our kernel to,
the competitor kernels, and the models that they induce, the
competitor models.

4.1. Data generation

For all simulations, we have chosen the core and remote sta-
tion configuration of LOFAR (van Haarlem et al. 2013), which
is a state-of-the-art low-frequency radio array centred in the
Netherlands and spread across Europe. The core and remote
stations of LOFAR are located within the Netherlands with
maximal baselines of 70 km, and we term this array the Dutch
LOFAR configuration. We thinned out the array such that no
antennae are within 150 m of others. We made this cutoff
to reduce the data size because nearby antennae add little
new information and inevitably raise computational cost. For
example, antennae like CS001HBA0 and CS001HBA1 are so
close that their joint inclusion was considered redundant.

We consider several different experimental conditions,
with a particular choice denoted by η, under which we com-
pare our model to competitors. We consider five levels of
pierce-point sparsity: {10, 20, 30, 40, 50} directions per field
of view (12.6 deg2). For a given choice of pierce-point spar-
sity we place twice as many directions along a Fibonacci
spiral – scaled to be contained within the field of view –
and randomly select half of the points to be in the observed
dataset and the other half to be in the held-out dataset. The
Fibonacci spiral is slightly overdense in the center of the
field of view, which mimics selecting bright calibrators from
a primary-beam uncorrected radio source model. We con-
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sider a range of calibration signal-to-noise levels, which cor-
responding to Gaussian uncertainties of ∆TEC that would
be inferred from antenna-based gains in a real calibration
program. We therefore consider 11 uncertainty levels on a
logarithmic scale from 0.1 mTECU to 10 mTECU. A typi-
cal state-of-the-art Dutch LOFAR-HBA (high-band antennae)
direction-dependent calibration is able to produce on the or-
der of 30 calibration directions (Shimwell et al. 2019), based
on the number of bright sources in the field of view, and pro-
duce∆TEC with an uncertainty of approximately 1 mTECU,
so these levels of sparsity and noise probe above and below
nominal LOFAR-HBA observing conditions.

We define an ionosphere variety as an ionosphere layer
model with a particular choice of height a , thickness b , mean
electron density n̄e , and FED kernel KFED with associated hy-
perparameters, e.g. length-scale and variance. As mentioned
in Section 3, due to the innumerable states of the ionosphere
our intent is not to exactly simulate the ionosphere, but rather
to derive a flexible model. Therefore, to illustrate the flexi-
bility of our model, we have chosen to experiment with two
very different ionosphere varieties which we will designate
the dawn and dusk ionosphere varieties. These ionosphere
varieties are summarised in Table 1. In Section 6.4 we show
that these ionosphere varieties predict phase structure func-
tions which are indistinguishable from real observations.

In order to select the layer height and thickness parame-
ters for the dawn and dusk varieties we took height profiles
from the International Reference Ionosphere (IRI; Bilitza &
Reinisch 2008) model.

In order to choose the FED GP kernels and hyperparam-
eters we note that it has been suggested that scintillation is
more pronounced during mornings, due to increased FED
variation (e.g. Spoelstra 1983); therefore we chose a rough
FED kernel for our dawn simulation. Roughness corresponds
to how much spectral power is placed on the shorter length-
scales, and also relates to how differentiable realisations from
the process are, e.g. see Figure 2. For the dawn ionosphere we
choose the Matérn-3/2 (M32) kernel,

KM32(x, x′) =σ2
ne

�

1+
p

3

lM32
|x−x′|

�

exp

�

−
p

3

lM32
|x−x′|

�

, (16)

which produces realisations that are only once differentiable
and hence rough. For the dusk ionosphere we choose the ex-
ponentiated quadratic (EQ) kernel,

KEQ(x, x′) =σ2
ne

exp

�

−|x−x′|2

2l 2
EQ

�

, (17)

which produces realisations that are infinitely differentiable
and smooth.

Both kernels have two hyperparameters, varianceσ2
ne

and
length-scale l . In order to estimate the FED variation, σne

,
we used observations from Kivelson & Russell (1995) that
TEC measurements are typically on the order of 10 TECU,
with variations of about 0.1 TECU. Following the observa-
tion that the dawn typically exhibits more scintillation we
choose a twice higher σne

for our dawn simulation. In ad-
dition to the length-scale we consider the half-peak distance
(HPD) h , which corresponds to the distance at which the ker-
nel reaches half of its maximum. This parameter has a consis-
tent meaning across all monotonically decreasing isotropic
kernels, whereas the meaning of l depends on the kernel. It
is related to h by h ≈ 1.177lEQ for the EQ and h ≈ 0.969lM32 for

Table 1: Summary of the parameters of the simulated iono-
spheres.

Variety a (km) b (km) KFED σne
(m−3) HPD (km)

dawn 250 100 M32 6 ·109 15
dusk 350 200 EQ 3 ·109 15

the M32 kernel. The length-scales were chosen by simulating
a set of ionospheres with different length-scales and choosing
the length-scale that resulted in∆TEC screens visually simi-
lar to typical Dutch LOFAR-HBA calibration data.

For a given ionosphere variety, the FED are realised from
the corresponding GP at sampling points along the geodesics.
As per our definition in Section 3, the FED is zero for points
outside the layer. The FED along each geodesic is then nu-
merically integrated using either trapezoid quadrature or
Simpson’s Rule, which produces TEC, cf. Eq. 3. Differential
TEC is computed by spatially referencing the TEC, cf. Eq. 4.
White noise corresponding to calibration signal-to-noise is
added to the ∆TEC in the observed dataset. The spacing of
samples along the geodesic is chosen in order to guarantee
< 1% error in the resulting ∆TEC. Note, that this requires a
much higher relative precision in the absolute TEC calcula-
tions.

Due to computational limits, we only realise one simula-
tion per experimental condition – i.e. we do not average over
multiple realisations per experimental condition – however
given the large number of experimental conditions there is
enough variation to robustly perform analysis.

4.2. Competitor models

For the comparison with competitor models, we compare
the physical kernel with: exponential quadratic (EQ), Matérn-
5/2 (M52), Matérn-3/2 (M32), and Matérn-1/2 (M12) (Ras-
mussen & Williams 2006). The EQ and M32 kernels have al-
ready been introduced as FED kernels. The M52 and M12
are very similar except for having different roughness prop-
erties. Each of these kernels result in models that spatially
smooth – and therefore interpolate – the observed data, but
with a different assumption on the underlying roughness of
the function. In order to use these kernels to model ∆TEC,
we give each subspace ofS its own kernel and take the prod-
uct. For example, if KC is the competitor kernel type, and
(x, k̂ ), (x′, k̂ ′) ∈S , then we form the kernel KC ((x, k̂ ), (x′, k̂ ′)) =
K 1

C (x, x′)K 2
C (k̂ , k̂ ′) thereby giving each subspace of the index-

set,S , its own kernel with associated hyperparameters.

Figure 3 shows each kernel profile with the same HPD and
Figure 2 shows example realisations from the same kernels. It
can be visually verified that the M32 kernel has more small-
scale variation than the EQ kernel, while maintaining similar
large-scale correlation features.

Note, the evaluation of the physical kernel requires per-
forming a double integral, which can be done in several ways
(e.g. Hendriks et al. 2018). In our experiments we tried both
explicit adaptive step-size Runge-Katta quadrature, and two
dimensional trapezoid quadrature. We found, via experimen-
tation, that we could simply use the trapezoid quadrature
with each abscissa partitioned into 4 equal intervals without
loss of effectiveness, however we choose to use 7 partitions.
We discuss this choice in Section 6.5.
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Fig. 2: Example realisations from exponential quadratic, Matérn-5/2, Matérn-3/2, and Matérn-1/2 kernels. The same HPD
was used in all kernels, however the smoothness of the resulting process realisation is different for each.
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Fig. 3: This shows the shape of several kernels as a function of
separation in units of the kernel’s HPD.

4.3. Model comparison

For model comparison, we investigate two key aspects of
each model: the ability to accurately model observed∆TEC,
and the ability to accurately infer the held-out ∆TEC. In the
language of the machine learning community this is often
called respectively minimising the data loss, and the gener-
alisation error respectively. We also investigate the ability to
learn the hyperparameters of the physical kernel from sparse
data. A positive outcome would be all of these aspects being
found to be true.

To measure how well a model, given a particular choice
of kernel K and hyperparameters, represents the observed
data we compute the log-probability of the observed (LPO)
∆TEC data – Bayesian evidence – which gives a measure of
how well a GP fits the data with intrinsically penalised model
complexity. If we have data measured at X ∈ S according to
τobs = τ(X) + ε where ε ∼ N [0,σ2] and τ(X) ∼ N [0, K (X, X)]
then the LPO is,

log PK (τobs) = logN [0, B ] (18)

where B = K (X, X) +σ2I . To measure how well a model gen-
eralises to unseen data, given a particular choice of kernel
K , we compute the conditional log-probability of held-out
(LPH) data given the observed data. That is, if we have a held-
out dataset measured at X∗ ∈S according to τ∗obs =τ(X

∗)+ε∗

with ε∗ ∼N [0,σ2] then the LPH conditional on observedτobs
is,

log PK

�

τ∗obs |τobs

�

= logN [K (X∗, X)B−1τobs,

B ∗−K (X∗, X)B−1K (X, X∗)] (19)

where B ∗ = K (X∗, X∗) +σ2I .
In order to make any claims of model superiority, we will

define the following two figures of merit (FOMs),

∆LPOC(η)¬
P∆TEC

�

τobs |η
�

PC

�

τobs |η
� (20)

∆LPHC(η)¬
P∆TEC

�

τ∗obs |τobs,η
�

PC

�

τ∗obs |τobs,η
� (21)

where P∆TEC is the probability distribution using the physical
kernel and PC is the distribution using a competitor kernel.
The variable η represents a particular choice of experimental
conditions, e.g. pierce point sparsity and noise.

These FOMs specify how much more – or less – proba-
ble the physical kernel model is than a competitor for the
given choice of experimental conditions, and are therefore
useful interpretable numbers capable of discriminating be-
tween two models. For example, a ∆LPOC(η) value of 1 im-
plies that, for the given experimental conditionsη, both mod-
els represent the observed data equally probable, and a value
of 1.5 would imply that the physical kernel representation
is 50% more probable than the competitor kernel. Note that
considering the ratio of marginal probabilities is the canoni-
cal way of model selection (Rasmussen & Williams 2006). For
a rule-of-thumb using these FOMs, we empirically visually
find that models produce noticeably better predictions start-
ing at around 1.10 (10%).

For each choice of experimental conditions η and ker-
nel model, we first infer the maximum a posteriori esti-
mate of the hyperparameters of the kernel by maximising
the marginal log-likelihood of the corresponding GP (Ras-
mussen & Williams 2006), which is equivalent to maximising
the LPO of that model on the available observed dataset. We
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Table 2: Average and standard deviation, over all experimen-
tal conditions, of the difference between the learned physical
hyperparameters and the true hyperparameters.

Variety a b HPD bσne

(km) (km) (km) (1011km m−3)
dawn 10±10 48±18 4±3 1.9±1.2
dusk 16±9 82±20 1±0.5 2.2±0.3

maximise the marginal log-likelihood using the variable met-
ric BFGS method, which uses a low-rank approximation to
the Hessian to perform gradient-based convex optimisation
(Byrd et al. 1995). We use the GPFlow library (Matthews et al.
2017), which simplifies the algorithmic process considerably.
On top of this we perform optimisation from multiple ran-
dom initialisations to avoid potential local minima. For the
physical kernel this corresponds to learning the layer height
a and thickness b , and FED kernel length-scale l , and vari-
ance σ2

ne
, and for the competitor kernels this corresponds to

learning a variance and the length-scales for each subspace.

5. Results
In Table 2 we report the average and standard deviation, over
all experimental conditions, of the difference between the
learned physical hyperparameters and the true hyperparam-
eters, which we term the discrepancy. In all experiments the
optimisation converged. We observe that for both ionosphere
varieties the discrepancy of a is on the order of a ∼ 10 km,
or a few percent, implying that a can be learned from data.
The discrepancy of HPD, is on the order of a 1 km, or around
10%, implying the spectral shape information of the FED can
be constrained from data. We observe that the discrepancy of
layer thickness, b , is large and on the order of 50%. One rea-
son for this is because Eq. 15 will scale to first order with b –
which is degenerate with the function of σne

– and the only
way to break the degeneracy is to have a enough variation in
the secant of the zenith angle. In a sparse and noisy observa-
tion of ∆TEC, the secant variation is poor and it’s expected
that this degeneracy exists. Therefore we also show the prod-
uct bσne

, and we see that this compound value discrepancy
is smaller, on the order of 35%.

In Table 3 we summarise the performance of the physical
kernel against each competitor kernel. We display the mean
of∆LPOC(η), and∆LPHC(η)over all experimental conditions,
as well as their values at the nominal experimental conditions
of 30 directions per 12.6 deg2, and ∆TEC noise of 1 mTECU,
which is indicated with ηnom. We have used bold font in Ta-
ble 3 to indicate the best competitor model, which we term
the best competitor model.

Consider first the ability of each model to represent the
observed data. For the dawn ionosphere, the M52 competitor
kernel has the best (lowest) 〈∆LPOC〉η = 1.55 and∆LPOηnom

C =
1.46, implying that the M52 kernel model is 55% and 46% less
probable than the physical kernel model on average over all
experimental conditions, and at nominal conditions, respec-
tively. Note that the M32 kernel produced similar results. For
the dusk ionosphere, the EQ kernel model is likewise the best
among all competitors, being only 73% and 54% less proba-
ble than the physical kernel model on average over all exper-
imental conditions, and at nominal conditions, respectively.
In all experimental conditions the physical model provides a
significantly more probable explanation of the observed data.

Table 3: Shows the probability ratio FOMs (see text) averaged
over experiemental conditions and at nominal conditions.
Larger values indicate the physical model is more probable.
Bold face indicates the best performing competitor model
(lower number).

〈∆LPOC〉η ∆LPOηnom

C 〈∆LPHC〉η ∆LPHηnom

C
dawn

M12 1.86 1.79 1.82 1.61
M32 1.56 1.49 1.50 1.33
M52 1.55 1.46 1.49 1.31
EQ 1.63 1.48 1.84 1.35

dusk
M12 2.72 2.19 2.24 1.73
M32 1.96 1.69 1.50 1.29
M52 1.82 1.60 1.33 1.20
EQ 1.73 1.54 1.16 1.12

Next, consider the ability of each model to infer the held-
out data. For the dawn ionosphere, the M52 competitor ker-
nel has the best (lowest) 〈∆LPHC〉η = 1.49 and ∆LPOηnom

C =
1.31, implying that the M52 kernel prediction is 49% and 31%
less probable than the physical kernel model on average over
all experimental conditions, and at nominal conditions, re-
spectively. Note that the M32 kernel produced similar results.
For the dusk ionosphere, the EQ kernel model is likewise the
best among all competitors, with predictions only 16% and
12% less probable that the physical kernel model on average
over all experimental conditions, and at nominal conditions,
respectively. In the case of the rougher dawn ionosphere, the
physical model provides a significantly more probable pre-
diction of the held-out data in all experimental conditions,
however for the smoother dusk ionosphere at nominal con-
ditions, the physical model is only 12% more probable than
the EQ kernel model, which is not very significant.

Figure 7 shows a visual comparison of the predictive dis-
tributions of the physical and best competitor kernel for the
dawn ionosphere, for nominal and sparse-and-noisy condi-
tions, for a subset of antennae over the field of view. In the
first row we show the ground truth and observed data. In the
second and third rows we plot the mean of the predictive
distribution with uncertainty contours of the physical and
best competitor models respectively. At nominal conditions,
the best competitor and physical models’ predictive means
both visually appear to follow the shape of the ground truth.
However, for the sparse-and-noisy condition, only the phys-
ical model predictive mean visually follows the shape of the
ground truth. The uncertainty contours of the physical model
vary in height slowly over the field of view, and are on the or-
der of 0.5–1 mTECU. The uncertainty contours for the physi-
cal model indicate that we can trust the predictions near the
edges of the field of view. In comparison, the uncertainty con-
tours of the best competitor model steeply grow in regions
without calibrators, and are on the order of 2–10 mTECU,
indicating that only predictions in densely sampled regions
should be trusted.

The last two rows show the residuals between the poste-
rior means and the ground truth for the physical and best
competitor models respectively. From this we can see that
even when the best competitor predictive mean visually ap-
pears to follow the ground truth the residuals are larger in
magnitude than the physical models’.
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Fig. 4: Example of antenna-based∆TEC screens from the dusk ionosphere simulation. Each plot show the simulated ground
truth (noise-free) ∆TEC for each geodesic originating from that station with axes given in direction components kx and ky .
The inset label gives how far the antenna is from the reference antenna. Antennae further from the reference antenna tend to
have larger magnitude∆TEC as expected. Each plot box bounds a circular 12.6 deg2 field of view.

In order to quantify the effect of the residuals, a∆TEC er-
ror, δτ, can be conveniently represented by the equivalent
source shift for a source at zenith on a baseline of r ,

δl ≈
q 2

ε0meν2r
δτ (22)

≈1.16′′
� r

10km

�−1 � ν

150MHz

�−2
�

δτ

mTECU

�

(23)

In Figure 5 we have plotted the mean linear regression of
the absolute equivalent source shift of the residuals for each
point in the held-out data set, for nominal (left) and sparse-
and-noisy (right) conditions, at 150 MHz on a baseline of
10 km, as a function of the nearest calibrator. For visual clar-
ity we have not plotted confidence intervals, however we
note that for nominal conditions the 1σ confidence width is
about 2′′ and for the sparse-and-noisy conditions it’s about
4′′. Because there are few nearest calibrator distance exceed-
ing 1 degree at nominal conditions, we only perform a linear
regression out to 1 degree.

The upper row shows the source shift for the remote sta-
tions (RS) residuals, which are generally much larger than the
source shifts for core stations (CS) in the bottom row, since
the CS antennae are much closer to the reference antenna
and have smaller∆TEC variance. We observe that the physi-
cal model (dashed line styles) generally have a smaller slope
and the best competitor model (solid line styles). Indeed, for

the CS antennae the physical model source shift is almost in-
dependent of distance from a calibrator. The offset from zero
at 0 degrees of separations comes from the fact that it’s im-
possible on average to do better than the observation noise.
At 1 degrees of separation, the physical model mean equiva-
lent source shift is approximately half of the best competitor
model. At 0 degrees of separation, the mean source shift is the
same for both models as expected.

6. Discussion
6.1. Model selection bias

Our derived model is a probabilistic model informed by the
physics of the problem. We use the same physical model to
simulate the data. Therefore it should be obvious that it would
perform better than any other general purpose model. The
fact that we simulate from the same physical model as used
to derive the probabilistic model does not detract from the
efficacy of the proposed model to represent the data. In fact,
it should be seen as a reason for prefering physics-based ap-
proaches when the physics are rightly known. The Gaussian
random field layer model for the ionosphere has been a use-
ful prescription for the ionosphere for a long time (e.g. Yeh &
Swenson 1959).

One type of bias that should be addressed is the fact that
we assume we know the FED kernel type of the ionosphere.
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Fig. 5: This shows the mean equivalent source shift as a function of angular distance from the nearest calibrator caused by
inference errors from the ground truth for a) remote stations (RS; > 3 km from the reference antenna) at nominal conditions
(30 calibrators for 12.6deg2 and 1 mTECU noise), b) core stations (CS; < 2 km) at nominal conditions, c) RS with sparse-
and-noisy conditions (10 calibrators for 12.6deg2 and 2.6 mTECU noise), and d) CS with sparse-and-noisy conditions. The
solid line styles are the best competitor models (see text), the dashed line styles are the physical model. The red lines are dawn
ionospheres, and the blue lines are dusk ionospheres.

We do not show, for example, what happens when we assume
the wrong FED kernel. However, since we are able to con-
verge on optimal hyper parameters for a given choice of FED
kernel, we can therefore imagine performing model selection
based on the values of the Bayesian evidence (LPO) for dif-
ferent candidate FED kernels. Thus, we can assume that we
could correctly select the right FED kernel in all the experi-
mental conditions that we chose in this work.

6.2. Implicit tomography

The results of Section 5 indicate that the physical model pro-
vides a better explanation of∆TEC data than any of the com-
petitor models. One might ask, why does it perform so well?
The approach we present is closely linked to tomography,
where (possibly non-linear) projections of a physical field
are inverted for a scalar field. In a classical tomographic ap-
proach, the posterior distribution for the FED given observed
∆TEC data, would be inferred and then the predictive∆TEC
would be calculated from the FED, marginalising over all pos-
sible FED,

P (τ |τobs) =

∫

n e

P (τ |n e )P (n e |τobs) dn e , (24)

where, n e = {ne (x) | x ∈ X } is the set of FED over the entire
index-setX , τ= {τk̂

x | (x, k̂ ) ∈S∗ ⊂S } is the∆TEC over some

subsetS∗ of the index-setS ,τobs = {τk̂
x +ε | (x, k̂ ) ∈Sobs ⊂S }

is the observed ∆TEC over a different subset Sobs of S and
ε∼N [0,σ2I ].

In our model, the associated equation for P (τ |τobs) is
found by conditioning the joint distribution on the observed

∆TEC and then marginalising out FED,

P (τ |τobs) =

∫

n e

P (n e ,τ |τobs) dn e (25)

=

∫

n e

P (n e |τobs)P (τ |n e ,τobs) dn e (26)

where in the second line we used the product rule of proba-
bility distributions (Kolmogorov 1956). Equating Eqs. 24 and
26, we discover that if, P (τ |n e ) = P (τ |n e ,τobs) is true, then
our method is equivalent to first inferring FED and then using
that distribution to calculate ∆TEC. In Appendix A we prove
that the expressions in Eqs. 24 and 26 are equal due to the lin-
ear relation between FED and∆TEC and because the sum of
two Gaussian RVs is again Gaussian. Most importantly, this
result would not be true if∆TEC was a non-linear projection
of FED.

We term this implicit tomography as opposed to explicit
tomography, wherein the FED distribution would be com-
puted first and the∆TEC computed second (e.g. Jidling et al.
2018). This explains why our kernel is able to accurately pre-
dict∆TEC in regions without nearby calibrators. The compu-
tational savings of our approach is many-fold compared with
performing explicit tomography, since the amount of mem-
ory that would be required to evaluate the predictive distri-
bution of FED everywhere would be prohibitive. Finally, the
use of GPs to model ray integrals of a GP scalar field is used
in seismic physics community for performing tomography of
the Earth’s interior.
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6.3. Temporal differential TEC correlations

One clearly missing aspect is the temporal evolution of the
ionosphere. In this work we have considered instantaneous
realisations of the FED from a spatial GP; however, the in-
clusion of time in the FED GP is straightforward in principle.
One way to do so is appending a time dimension to the FED
kernel, which would mimic internal (e.g. turbulence-driven)
evolution of the FED field. Another possibility is the appli-
cation of a frozen flow assumption, wherein the ionospheric
time evolution is dominated by a wind of constant velocity
v , so that ne (x, t ) = n 0

e (x − v t ). Here n 0
e represents the FED

at time t = 0, and ne is a translation over the array as time
progresses. In modelling a real dataset with frozen flow the
velocity could be assumed to be piece-wise constant in time.
We briefly experimented with frozen flow and found hyper-
parameter optimisation to be sensitive to the initial starting
point, due to the presence of many local optima far from the
ground truth hyperparameters. We suggest that a different ve-
locity parametrisation might facilitate implementation of the
frozen flow approach.

6.4. Structure function turnover and anisotropic diffractive
scale

Fig. 6: The dotted and dashed lines show the phase structure
function corresponding to the physical kernel, with the dawn
and dusk configurations respectively (see Figure 1). Along
side is the predicted structure function of Kolmogorov turbu-
lence with a diffraction scale of 10 km, and the structure func-
tion constrained from observations in Mevius et al. (2016)
with 1σ confidence region in yellow. Note, that Mevius et al.
(2016) observes a turnover, but does not characterise it, thus
we do not attempt to plot it here.

The power spectrum is often used to characterise the
second-order statistics of a stationary random medium,
since, according to Bochner’s Theorem, the power spectrum
is uniquely related to the covariance function via a Fourier

transform. In 1941, Kolmogorov (translated from Russian in
Kolmogorov 1991) famously postulated that turbulence of in-
compressible fluids with very large Reynolds number dis-
plays self-similarity. From this assumption, he used dimen-
sional analysis to show that the necessary power spectrum of
self-similar turbulence is a power-law with exponent −5/3. A
convenient related measurable function for the ionosphere is
the phase structure function (van der Tol 2009),

D (r ) =〈(φν(R )−φν(r +R ))2〉R (27)

¬
�

r

rdiff

�β

(28)

where the expectation is locally over locations far from the
boundaries of the turbulent medium, which is often char-
acterised by an outer-scale. The quantity rdiff is called the
diffractive scale, and is defined as the length where the struc-
ture function is 1 rad2. Under Kolmogorov’s theory of 1941,
β = 5/3. Observations from 29 LOFAR pointings constrain the
β to be 1.89± 0.1, slightly higher than the one predicted by
Kolmogorov’s theory, and the diffractive scale to range from
5 km to 30 km (Mevius et al. 2016).

In Figure 6 the structure functions of the physical ker-
nel are shown for the dawn and dusk varieties, alongside
Kolmogorov’s β = 5/3 and the Mevius et al. (2016) obser-
vations. Though not plotted, Mevius et al. (2016) also find
that there is a hint of a turnover in the structure functions
they observed, which they suggest might be a result of an
outer-scale in the context of Kolmogorov turbulence, how-
ever they conclude that longer baselines are needed to prop-
erly confirm the turnover and its nature. The dawn and dusk
structure functions are nearly parallel with observations, and
have turnovers that result because the FED covariance func-
tions decaying to zero monotonically and rapidly beyond the
HPD. Interestingly, despite the fact that the FED kernels used
for the dawn and dusk ionospheres have different spectral
shapes, the structure functions have similar slopes. The dif-
ference between the dawn and dusk structure functions can
be seen in the curvature of their turnovers.

We provide here an alternative explanation for the
turnover, and slope deviating from Kolmogorov’s 5/3, viz. that
FED correlations are stationary, isotropic, and monotonically
decreasing (SIMD). Moreover, as shown in Appendix B, our
model in conjunction with SIMD FED kernel is falsifiable by
observing a lack of plateau.

Mevius et al. (2016) also observe anisotropy in the mea-
sured rdiff as a function of pointing direction, and suggest
that it is due to FED structures aligned with magnetic field
lines (Loi et al. 2015). In total, 12 out of 29 (40%) of their ob-
servations show anisotropy unaligned with Earth’s magnetic
field lines. We propose a complementary explanation for the
anisotropy of diffractive scale, without appealing to magnetic
field lines. Our model implies that diffractive scale monoton-
ically decreases with zenith angle. This is a result of the non-
stationarity of the physical kernel even if the FED is station-
ary.

6.5. Low-accuracy numerical integration

The numerical integration required to compute Eq. 14 is per-
formed using the 2D Trapezoid rule. This requires choos-
ing a number of partitions along the ray. The computational
complexity scales quadratically with the number of partitions
chosen, and thus a trade-off between accuracy and speed
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must be chosen. We found the relative error (using the Frobe-
nius norm) to be 80% with 2 partitions, 20% with 3 partitions,
10% with 4 partitions, and 6% with 7 partitions. After experi-
mentation it was surprisingly found that 2 partitions was suf-
ficient to beat all competitor models, and that marginal im-
provement occurs after 5 partitions. This suggests that even
a low accuracy approximation of our model encodes enough
geometric information to make it a powerful tool in describ-
ing the ionosphere. Ultimately, we chose to use 4 partitions
for our trials.

7. Conclusion

In this work, we have put forth a probabilistic description of
antenna-based ionospheric phase distortions, which we call
the physical model. We assumed a single weakly-scattering
ionosphere layer with arbitrary height and thickness, and free
electron density (FED) described by a Gaussian process (GP).
We argue that modelling the FED with a GP locally about
the mean is a strong assumption due to the small ratio of
FED variation to mean as evinced from ionosphere models.
We have shown that under these assumptions the differential
total electron content (∆TEC), which is directly observable,
must also be a GP. We provide a mean and covariance func-
tion that are analytically related to the FED GP mean and co-
variance function, the ionosphere height and thickness, and
the geometry of the interferometric array.

In order to validate our model’s efficacy, we simulated
two varieties of ionosphere – a dawn (rough FED) and dusk
(smooth FED) scenario – and computed the correspond-
ing ∆TEC for the Dutch LOFAR-HBA configuration over a
wide range of experimental conditions including nominal
and sparse-and-noisy conditions. We compared this physi-
cal kernel to other widely successful competitor GP models
that might naively be applied to the same problem. Our re-
sults show that we are always able to learn the FED GP hy-
perparameters and layer height – including from sparse-and-
noisy∆TEC data – and that the layer thickness could likely be
learned if a height prior was provided. In general, the physical
model is better able to represent observed data, and to gen-
eralise to unseen data.

Visual validation of the predictive distributions of ∆TEC
show that the physical model can accurately infer ∆TEC in
regions far from the nearest calibrator. Residuals from the
physical model (0.5–1 mTECU) are smaller and less corre-
lated than those of competitor models (2–10 mTECU). In
terms of mean equivalent source shift resulting from incor-
rect predictions, the physical model mean equivalent source
shift is approximately half of the best competitor models’. We
prove that our model is cheaply performing implicit tomo-
graphic inference, which follows because ∆TEC is a linear
projection of FED and the FED is a GP. We have suggested pos-
sible extensions to incorporate time, including frozen flow
and appending the FED spectrum with a temporal power
spectrum. Our model provides an alternative explanation for
the Mevius et al. (2016) observations deviating from Kol-
mogorov’s 5/3-turbulence, the turnover on large baselines,
and diffractive scale anisotropy.

In the near future, we will apply this model to LOFAR-HBA
datasets and perform precise ionospheric calibration for all
bright sources in the field of view. It is envisioned that this
will lead to clearer views of the sky at the longest wavelengths,
empowering a plethora of science goals.
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Fig. 7: Example visual comparison of the predictive performance of our physical model versus that of the best competitor
model for the dawn ionosphere. First row, is the ground truth∆TEC overlaid noisy draws from the ground truth which are the
observations; Second/third rows, the posterior mean with uncertainty contours for the physical model and best competitor
model respectively. Fourth/fifth rows, the residuals between posterior means and ground truth for the physical model and best
competitor model respectively. First two columns: Results for experimental conditions, (10 directions, 2.5 mTECU noise), for
a central antenna (near to reference antenna) and a remote station (far from reference antenna); Last two columns: Results
for experimental conditions, (30 directions, 1.6 mTECU noise), for a central antenna and a remote station.
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Appendix A: Derivation of tomographic equivalence
We now explicitly prove the assertion that Eq. 24 is equal to Eq. 26, that is,
∫

P (τ |n e )P (n e |τobs) dn e =

∫

P (n e ,τ |τobs) dn e . (A.1)

Note that we’ll sometimes use the notationN [a |ma , Ca ]which is equivalent to a ∼N [ma , Ca ].
We define the matrix representation of the DRI operator in Eq. 6, ∆∗n e = {∆k̂

x ne | (x, k̂ ) ∈ S∗}, and likewise let ∆ be the
matrix representation over the index-set Sobs. Similarly, the matrix representation of the FED kernel – the Gram matrix – is
K = {K (x, x′) | x, x′ ∈X }. Using these matrix representation we have the following joint distribution,

P (n e ,τ,τobs) =N





n̄e
0
0

,
K K∆T

∗ K∆T

∆∗K ∆∗K∆
T
∗ ∆∗K∆

T

∆K ∆K∆T
∗ ∆K∆T +σ2I



 . (A.2)

Let us first work out the left-hand side (LHS) of Eq. A.1. Because τ = ∆∗n e , and using standard Gaussian identities we
have,

P (τ |n e ) =N [∆∗K K −1(n e − n̄e )
︸ ︷︷ ︸

∆∗(n e−n̄e )

,∆∗K∆∗−∆∗K K −1K∆∗
︸ ︷︷ ︸

0

] (A.3)

Similarly, the second distribution on the LHS is,

P (n e |τobs) =N [n̄e +K∆T (∆K∆T +σ2I )−1τobs, K −K∆T (∆K∆T +σ2I )−1∆K ]. (A.4)

We now apply belief propagation of Gaussians (Weiss & Freeman 2001) to evaluate the integral on the LHS,
∫

P (τ |n e )P (n e |τobs) dn e (A.5)

=

∫

N [τ |∆∗(n e − n̄e ), 0]N [n e | n̄e +K∆T (∆K∆T +σ2I )−1τobs, K −K∆T (∆K∆T +σ2I )−1∆K ]dn e (A.6)

=N [−∆∗n̄e +∆∗(n̄e +K∆T (∆K∆T +σ2I )−1τobs)
︸ ︷︷ ︸

∆∗K∆T (∆K∆T +σ2 I )−1τobs

,∆∗K∆
T
∗ −∆∗K∆

T (∆K∆T +σ2I )−1∆K∆T
∗ ] (A.7)

In order to work out the right-hand side (RHS), we simply condition Eq. A.2 on τobs and then marginalise n e by selecting
the corresponding sub-block of the Gaussian,

P (n e ,τ |τobs) (A.8)

=N
��

n̄e
0

�

+
�

K∆T

∆T
∗ K∆T

�

�

∆K∆T +σ2I
�−1
τobs,

�

K̄ ∆K∆T
∗

∆∗K∆
T ∆∗K∆

T
∗

�

−
�

K∆T

∆∗K∆
T

�

�

∆K∆T +σ2I
�−1 �
∆K ∆K∆T

∗

�

�

(A.9)

Marginalising over n e is equivalent to neglecting the sub-block corresponding to n e . Therefore, the RHS is,
∫

P (n e ,τ |τobs) dn e =N
�

∆∗K∆
T
�

∆K∆T +σ2I
�−1
τobs,∆∗K∆

T
∗ −∆∗K∆

T
�

∆K∆T +σ2I
�−1
∆K∆T

∗

�

. (A.10)

�

Appendix B: Derivation of the differential TEC variance function and its limits
We derive the ∆TEC variance function σ2

∆TEC(d ) for zenith observations (k = k ′ = ẑ ) by considering a baseline between an
antenna-of-interest at xi = x j and a reference antenna at x0 = 0. To use the Pythagorean theorem later, we assume that this
baseline lies in the plane of the local horizon, i.e. perpendicular to the zenith. Without loss of generality, we can orient the
coordinate axes such that this baseline lies along the x̂ direction, so that xi − x0 = d x̂. Here d ¬ ||xi || is the distance between
the two antennae. We then take the general covariance function K∆TEC

��

xi , x0, k̂
�

,
�

x j , x0, k̂′
��

, and find that in this particular
case

σ2
∆TEC(d )¬ K∆TEC ([xi , x0, ẑ] , [xi , x0, ẑ]) (B.1)

=
1
∑

p1=0

1
∑

p2=0

(−1)p1+p2

∫ b

0

∫ b

0

Kne

�

||x(1−p1)i −x(1−p2)i + ẑ (s1− s2) ||
�

ds1ds2, (B.2)

Article number, page 13 of 14



A&A proofs: manuscript no. main

where Kne
is an arbitrary stationary and isotropic kernel (such as the Exponentiated Quadratic and Matérn 3

2 kernels consid-
ered earlier) for the FED. The two terms where p1 and p2 are equal give the same contribution, as do the two terms for which
p1 and p2 are unequal. By subsequently applying the Pythagorean theorem in this last case (i.e. p1 = 0 and p2 = 1, and vice
versa), we find

σ2
∆TEC(d ) = 2

∫ b

0

∫ b

0

Kne
(|s1− s2|)−Kne

�q

d 2+ (s1− s2)
2
�

ds1ds2. (B.3)

We manipulate this result to obtain a more insightful expression. First, we note the (implicit) presence of three parameters
with dimension length: ionospheric thickness b , reference antenna distance d , and FED kernel half-peak distance h . We per-
form transformations to dimensionless coordinates u1 =

s1
h and u2 =

s2
h to reveal that the shape - though not the absolute scale

- of the functionσ2
∆TEC(d ) is governed only by the length-scale ratios b

h and d
h , and the particular functional form of Kne

.
Furthermore, for stationary covariance functions, we have Kne

=σ2
ne

Cne
, where Cne

is the corresponding dimensionless cor-
relation function.
These considerations enable us to express the∆TEC structure function as a dimensionless, shape-determining double inte-
gral appended by dimensionful prefactors; i.e.

σ2
∆TEC(d ) = 2σ2

ne
h 2

∫
b
h

0

∫
b
h

0

Cne
(h |u1−u2|)−Cne



h

√

√

√

�

d

h

�2

+ (u1−u2)
2



du1du2. (B.4)

First note that the variance of ∆TEC is simply proportional to the variance of ne . Note also that h |u1−u2| <

h
r

�

d
h

�2
+ (u1−u2)

2 for any non-zero d , so that Cne
(h |u1−u2|) > Cne

�

h
r

�

d
h

�2
+ (u1−u2)

2
�

for all monotonically de-

creasing correlation functions Cne
(or, equivalently, covariance functions Kne

). With the integrand always positive, we see

that the integral must be a strictly increasing function of b
h (which occurs in the integration limits). Thus we conclude

that for stationary, isotropic and monotonically decreasing (SIMD) FED kernels with HPD h , the ∆TEC variance increases
monotonically with the thickness of the ionosphere b . Simply put: thicker SIMD ionospheres cause larger∆TEC variations.

Let us now consider three limits of the ∆TEC zenith variance function, that all do not require KFED to decrease mono-
tonically.

– In the short-baseline limit, i.e. d
h → 0, we have Cne

�

h
r

�

d
h

�2
+ (u1−u2)

2
�

→ Cne
(h |u1−u2|). We therefore find that

σ2
∆TEC→ 0 irrespective of other parameters, recovering that the variance of∆TEC vanishes near the reference antenna.

– In the long-baseline limit, i.e. d
h �

b
h > 1, we see that

r

�

d
h

�2
+ (u1−u2)

2 ≈ d
h , since (u1−u2)

2 <
�

b
h

�2 �
�

d
h

�2
. Assuming

Cne
(d )≈ 0 when d

h � 1, the integrand reduces to Cne
(h |u1−u2|)−Cne

�

h · d
h

�

≈Cne
(h |u1−u2|). We find that in this case,

σ2
∆TEC ≈ 2σ2

ne
h 2

∫
b
h

0

∫
b
h

0

Cne
(h |u1−u2|)du1du2. (B.5)

This is the plateau value of the∆TEC variance that our model predicts for the long-baseline limit.
Another way to arrive at the plateau value expression of Equation B.5 is by considering the statistical properties of TEC
first. In a computation analogous to the one for ∆TEC in Section 3, one can derive the general TEC covariance function
KTEC. The variance of τẑ

i (the TEC of antenna i while observing towards the zenith ẑ ) is straightforwardly shown to be

V
�

τẑ
i

�

=σ2
ne

h 2

∫
b
h

0

∫
b
h

0

Cne
(h |u1−u2|)du1du2. (B.6)

Note the absence of a dependence on i at the RHS. As a ∆TEC is simply a TEC differenced with a TEC for a reference
antenna observing in the same direction, we have

σ2
∆TEC =V

�

τẑ
i −τ

ẑ
0

�

=V
�

τẑ
i

�

+V
�

τẑ
0

�

(B.7)

where the second equality only holds when the TECs are independent. This is exactly the scenario considered in the long-
baseline limit. Plugging in Equation B.6 recovers the plateau level.

– We can find a general upper bound to the variance of ∆TEC in terms of physical parameters. To this end, note that the
integrand in Equation B.4 is maximised when, over the full range of integration, the first term is 1 whilst the second term
equals the infimum of the correlation function. Calling infR {Cne

(r ) : r ∈R>0}¬ I , we find the inequality

σ2
∆TEC ≤ 2σ2

ne
h 2

∫
b
h

0

∫
b
h

0

1− I du1du2 = 2 (1− I )σ2
ne

b 2. (B.8)

For strictly positive FED kernels that decay to 0 at large distances (such as the EQ and Matérn kernels considered in this
work), we thus find σ2

∆TEC ≤ 2σ2
ne

b 2. Kernels resulting in anticorrelated FEDs produce the constraint σ2
∆TEC ≤ 4σ2

ne
b 2 or

tighter. By measuring σ∆TEC(d ), one can bound the product σne
b from below. The strongest bound is obtained for large

d .
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