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10Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK

11Department of Astronomy, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
12Department of Astronomy and Space Sciences, Ege University, 35100, Izmir, Turkey

13Centre for Advanced Instrumentation, Durham University, UK
14Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio av. 3, 10257 Vilnius, Lithuania
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ABSTRACT

We present optical-infrared photometric and spectroscopic observations of Gaia 18dvy, located in the

Cygnus OB3 association at a distance of 1.88 kpc. The object was noted by the Gaia alerts system when
its lightcurve exhibited a &4 mag rise in 2018-2019. The brightening was also observable at mid-infared

wavelengths. The infrared colors of Gaia 18dvy became bluer as the outburst progressed. Its optical and

near-infrared spectroscopic characteristics in the outburst phase are consistent with those of bona fide

FU Orionis-type young eruptive stars. The progenitor of the outburst is probably a low-mass K-type

star with an optical extinction of ∼3mag. A radiative transfer modeling of the circumstellar structure,
based on the quiescent spectral energy distribution, indicates a disk with a mass of 4×10−3M⊙. Our

simple accretion disk modeling implies that the accretion rate had been exponentially increasing for
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more than 3 years until mid-2019, when it reached a peak value of 6.9 × 10−6M⊙yr
−1. In many

respects, Gaia 18dvy is similar to the FU Ori-type object HBC 722.

Keywords: star formation — protoplanetary disks — accretion — eruptive variable stars

1. INTRODUCTION

FU Orionis-type young eruptive stars (FUors) form
a small but important subclass of Sun-like pre-main-

sequence stars. They exhibit a brightening of up to

5mag during several months or years, followed by a

fading phase of several decades or a century (Herbig

1977; Hartmann & Kenyon 1996; Audard et al. 2014).
Their outbursts are powered by enhanced accretion from

the circumstellar disk onto the star. FUors are of-

ten surrounded by thick envelopes, drive jets and out-

flows, and exhibit a characteristic absorption spectrum
(Connelley & Reipurth 2018).

If all Sun-like young stars undergo eruptive phases,

then a sizeable part of their final stellar mass may build

up during repeated outbursts (e.g. Vorobyov & Basu

2006), and characterizing the FUor phenomenon would
be fundamental to understand the formation of low-mass

stars. The physical origin of the enhanced accretion is

still debated: thermal instability, combination of grav-

itational and magnetorotational instabilities, disk frag-
mentation and environmental triggers are invoked (for

a review see Audard et al. 2014). To decide between

these scenarios, a larger sample of FUors needs to be

analysed, however, their known population is still very

small: Audard et al. (2014) listed only 26 FUors and
FUor-like objects. Therefore any new discovery may

provide important insights into the physics of episodic

accretion.

TheGaia Photometric Science Alerts System (Wyrzykowski et al.
2012; Hodgkin et al. 2013) contributes to the field of

star and planet formation by discovering and publishing

otherwise unnoticed brightenings and fadings of young

stellar objects. Up to now, two alerts were proven to

be young eruptive stars: Gaia 17bpi (Hillenbrand et al.
2018), and Gaia 19ajj (Hillenbrand et al. 2019).

In this paper we present a detailed analysis of

Gaia 18dvy1 (RAJ2000 = 20h05m06.s02, DecJ2000 =

+36◦29′13.′′5, ID: Gaia DR2 2059895933266183936),
a Gaia alert source whose &4 mag brightness increase

was published on 2018 December 19. The timescale and

amplitude of the brightening suggested a FUor outburst.

We carried out optical photometric monitoring of the

source, and obtained optical and infrared spectra. Here
we combine these with archival optical, near- and mid-

1 http://gsaweb.ast.cam.ac.uk/alerts/alert/Gaia18dvy/

infrared data, and apply simple models to understand

the nature of the object and the brightening process.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Photometry

We downloaded multi-epoch Gaia G-band photome-

try for Gaia 18dvy from the alerts service webpage and

plotted the light curve in Fig. 1. We supplemented these

with data available in public databases and with our own
new observations.

The Pan-STARRS (Chambers et al. 2016) survey pro-

vided light curves for Gaia 18dvy in grizy filters be-

tween 2009 July and 2014 June. According to the epoch
photometry, the source was constant during this period

to within 0.1-0.3mag, therefore we only plot the mean

magnitudes in Fig. 1 to indicate the quiescent bright-

ness levels, after we converted the Sloan magnitudes

to Johnson–Cousins magnitudes using equations from
Tonry et al. (2012). In Fig. 2 we show the environment

of Gaia 18dvy using Pan-STARRS images.

Gaia 18dvy was covered by the Zwicky Transient Facil-

ity (ZTF, Bellm et al. 2019), a new time-domain survey
at Palomar Observatory in operation since 2018 Febru-

ary. We downloaded g and r band photometry from

the second data release from the NASA/IPAC Infrared

Science Archive (IRSA), which contains data until June

2019. There are no specific conversion formulae for the
ZTF filters, therefore we converted the ZTF magnitudes

to the Johnson–Cousins system using the equations of

Tonry et al. (2012), considering that the ZTF filter pro-

files are not very different from the Sloan filters. We
plotted the resulting BV RC light curves in Fig. 1.

We observed Gaia 18dvy in the BV RCIC bands be-

tween 2019 June and December using the 60/90/180cm

Schmidt telescope at the Konkoly Observatory (Hun-

gary). Because Gaia 18dvy has two nearby stars within
∼4′′ (marked in Fig. 2), we performed aperture pho-

tometry with a small aperture radius of 2′′ to minimize

contamination. We transformed the instrumental mag-

nitudes to the standard system using comparison stars
from the Pan-STARRS catalog (Chambers et al. 2016),

after transforming the Pan-STARRS magnitudes to the

Johnson–Cousins system as before. These results, high-

lighted with circles, are also plotted in Fig. 1.



Gaia 18dvy: a new FUor in the Cygnus OB3 association 3

We monitored Gaia 18dvy at optical wavelengths us-

ing the OPTICON Time-Domain Follow-up Network2

since 2019 February. All follow-up images were stan-

dardized in an automated fashion by the Cambridge
Photometric Calibration Server (CPCS, Zieliński et al.

2019). To account for differences in filters, comparison

stars, and aperture size, we shifted the photometry ob-

tained by the OPTICON network telescopes to match

with our Konkoly Schmidt data.
Gaia 18dvy was also monitored with the Las Cumbres

Observatory network of robotic telescopes (Brown et al.

2013). About 200 images have been obtained in V

and IC and automatically reduced using the BANZAI
pipeline (McCully & Tewes 2019). Similary to the OP-

TICON data, photometry and calibration has been ob-

tained using the CPCS pipeline.

Gaia 18dvy was observed with the Schmidt-Teleskop-

Kamera (STK, Mugrauer & Berthold 2010) of Univer-
sity Observatory Jena in the Bessell V,R,I-bands. Each

night two frames (60 sec) were taken in each filter. Stan-

dard data reduction was performed with dark frames

and sky- or domeflats taken in each night before or after
the observations in twilight.

Gaia 18dvy was observed by the Transiting Exoplanet

Survey Satellite (TESS, Ricker et al. 2015) during Sec-

tors 14 and 15 (2019 July 18 to 2019 September 10). We

retrieved the full-frame images from the MAST archive
and analyzed using a FITSH-based pipeline (Pál 2012)

providing convolution-based differential imaging algo-

rithms and subsequent photometry on the residual im-

ages. Because the spectral sensitivity of the TESS de-
tectors are close to the IC-band filter, we used our con-

temporaneous Schmidt IC-band data for the absolute

calibration of the TESS photometry. The resulting light

curve is shown in Fig. 3.

We obtained JHKS images of Gaia 18dvy on 2019
July 4 using the Wide Field Camera of the NOT-

Cam instrument on the Nordic Optical Telescope (La

Palma, Spain). The instrumental magnitudes, obtained

2 The OPTICON Time-Domain Follow-up Network includes the
following telescopes: pt5m telescope at the Roque de los Mucha-
chos Observatory on La Palma (Hardy et al. 2015); 0.8 m Tele-
scopi Joan Oro (TJO) at l’Observatori Astronomic del Montsec
in Spain; 1.4 m telescope at the Astronomical Station Vidoje-
vica, near Prokuplje, Serbia; 0.6 m Bia lków Observatory, oper-
ated by the Astronomical Institute of the University of Wroc law,
Poland; 0.35 m Cassegrain and 1.65 m Ritchey–Chretien tele-
scopes of Molėtai Astronomical Observatory in Molėtai, Kulionys,
Lithuania; 2.3 m Aristarchos Telescope at Helmos Observatory,
Peloponnese, Greece; 2 m Ritchey-Chretien and 0.6 m Cassegrain
telescopes at the Terskol Observatory (the North Caucasus, Rus-
sia) operated by ICAMER of NAS of Ukraine; 0.6 m Ritchey-
Chretien telescope of the Michigan State University Observatory
(MPC code 766), USA.

by aperture photometry, were calibrated using 2MASS

magnitudes of bright comparison stars in the field of

view. In the KS band the source was already in the

nonlinear regime of the detector. To correct for this,
we determined an empirical relation based on a set of

stars comparable in brightness to Gaia 18dvy, similarly

to Kóspál et al. (2017). The results are J = 11.25 ±

0.02mag, H = 10.36±0.03mag, andKS = 9.7±0.1mag,

indicating significant brightening compared to photome-
try similarly obtained in UKIDSS (Lawrence et al. 2007)

images from 2009 August (J = 15.73 ± 0.06mag, H =

14.68± 0.07mag, KS = 13.70± 0.08mag).

Gaia 18dvy was monitored with a twice-yearly cadence
by the Wide-field Infrared Survey Explorer (WISE ,

Wright et al. 2010) in the W1 (3.4 µm) and W2 (4.6 µm)

bands between 2015 and 2019, as part of the NEOWISE

Reactivation project. For each epoch, we downloaded

time resolved observations from the NEOWISE-R Sin-
gle Exposure Source Table and computed their seasonal

averages after removing outlier points. Since the beam

size of WISE is ∼6′′ in these bands, contamination from

the neighbouring sources (Fig. 2) had to be taken into
account. We used Spitzer IRAC fluxes of these sources

from the GLIMPSE360 catalog at IRSA (Whitney et al.

2011) and subtracted 1.65mJy at 3.6µm and 1.08mJy

at 4.5µm from the WISE fluxes of Gaia 18dvy, assuming

that the measured fluxes would be very similar in the
Spitzer and WISE systems, and that the neighboring

sources were constant in time.

2.2. Spectroscopy

We obtained an optical spectrum of Gaia 18dvy with

the Isaac Newton Telescope (La Palma, Spain) on 2019

February 20, using the Intermediate Dispersion Spectro-
graph fitted with the R300V grating, which covered the

345− 800nm range, and gave R ∼ 1000 resolution with

the 1′′ slit. The exposure time was 600 s. The spec-

trum was reduced and calibrated using the Starlink

suite of tools. The wavelength solution was derived from

Copper-Neon and Copper-Argon arc lamp exposures.

We took an optical spectrum on 2019 February 28

at the Copernico 1.82m telescope operated by INAF-

Osservatorio Astronomico di Padova (Asiago, Italy), us-
ing the Asiago Faint Object Spectrograph AFOSC). We

acquired spectroscopy with the VPH6 (450–1000nm,

R ∼ 500) and VPH7 (320–700nm, R ∼ 470) grisms

and the 1.′′69 slit. The exposure time was 2×1200 s.
The extracted spectra were wavelength-calibrated us-

ing comparison lamp spectra and flux-calibrated us-

ing spectrophotometric standard stars Feige 66 and

BD+33 2642. Telluric absorption was corrected using



4 Szegedi-Elek et al.

7000 7500 8000 8500
JD − 2,450,000

22

20

18

16

14

12

M
a

g
n

it
u

d
e

2015 2016 2017 2018 2019 2020

W1+3
W2+3

G

B

V

R

I

Figure 1. Optical and infrared light curves of Gaia 18dvy. Green asterisks show Gaia data, purple dots show WISE data, filled
dots indicate ZTF (converted to the Johnson-Cousins system) and OPTICON data, while our photometry from the Konkoly
Observatory is highlighted by black circles. Average Pan-STARRS magnitudes, converted to the Johnson-Cousins system, are
indicated by the horizontal lines at the left side of the figure. Red vertical lines mark when we took optical spectra of Gaia 18dvy,
while the black vertical line indicates the epoch of our NIR spectrum. The two blue vertical lines display the time period when
the TESS satellite observed Gaia 18dvy.
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Figure 2. False color composite image centered on
Gaia 18dvy (white circle) using Pan-STARRS i, z, y images.
The nearby sources whose contribution was subtracted from
the WISE photometry are marked by the yellow circle.

the spectra of both telluric and spectrophotometric stan-

dards.
We obtained a near-infrared (NIR) spectrum of

Gaia 18dvy on 2019 May 21 with NOTCam using the

0.′′6 slit, which provided a resolution of R ∼ 2500. The

total exposure time was 1280 s. Spectra of Xenon and

Argon lamps were observed for wavelength calibration,

and a halogen lamp for flatfielding. The O9.5IV-type

star HD 192001 was observed for telluric correction.

The results of our spectroscopic observations are dis-

played in Fig. 5.

3. RESULTS

3.1. The distance of Gaia 18dvy

The position of Gaia 18dvy is projected on the west

periphery of the Cygnus OB3 association. The star’s

Gaia-based distance, published by Bailer-Jones et al.

(2018), 4.6+3.3
−1.9 kpc, is quite uncertain, because the ob-

ject was faint at the beginning of the Gaia mission.

To study the relationship between Cygnus OB3 and

Gaia 18dvy, we compared the Gaia DR2 proper mo-

tion (Gaia Collaboration et al. 2018) of Gaia 18dvy with
those of bright members of Cygnus OB3 (Humphreys

1978; Garmany & Stencel 1992; Massey et al. 1995),

and found good agreement. This suggests that

Gaia 18dvy can be a member of the Cygnus OB3 associ-

ation. To estimate the distance of Cygnus OB3, we plot-
ted the distribution of distances from Bailer-Jones et al.

(2018) for the bright members of Cygnus OB3, and

found a distinct peak at 1.88 kpc. We adopt this value

as the distance of Gaia 18dvy.

3.2. Light curves and color variations
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Figure 3. Top: TESS light curve of Gaia 18dvy. Bottom:
Lomb–Scargle periodogram of different parts of the TESS
light curve after the subraction of a linear trend.

Pre-outburst photometric observations (IPHAS and
Pan-STARRS at optical, 2MASS and UKIDSS in the

infrared) imply that Gaia 18dvy had been faint at least

for a decade before 2015. The Gaia light curve (Fig. 1)

demonstrates that the quiescent phase continued at op-
tical wavelengths until September 2017, when a gradual

brightening began. The highest brightening rate was

0.42mag/month in the G-band. The rapid rise was also

documented by ZTF with a similar rate, suggesting an

almost wavelength-independent brightening in the opti-
cal.

The outburst of Gaia 18dvy was also seen in the

mid-infrared with WISE (Fig. 1). Between early 2015

and late 2018 the brightening at 3.4 (4.6)µm was 1.3
(1.1)mag, somewhat lower than the G-band rise of

1.6mag for the same period.

Since mid-2019 Gaia 18dvy is almost constant at all

wavelengths, exhibiting a flat maximum. The magni-

tude differences between this maximum and the pre-
outburst Pan-STARRS brightness are: ∆B = 4.5mag,

∆V = 4.3mag, ∆RC = ∆IC = 4.2mag, suggesting

that not only the quickest rising phase, but also the

whole outburst was almost independent of wavelength,

exhibiting only a weak blueing trend as the source be-

came brighter.

The TESS light curve (Fig. 3) outlines stochastic vari-
ability with peak-to-peak amplitude of 0.16mag, occur-

ring on timescales of 2–3 weeks, and also short-time

(several days) events. We calculated the Lomb–Scargle

periodogram for two parts of the TESS light curve: be-

fore and after its maximum at JD = 2,458,708, after
subtracting a linear trend separately for the two parts

(the interval JD = 2,458,717 – 2,458,726 was discarded

due to a stochastic peak). The results (Fig. 3, bottom)

indicate periodic brightness variations in the first part
with a period of P = 2.47±0.03 days that is significant

at the 6σ level. The double period of 4.86±0.26d is

also observed with even higher significance. While the

power spectrum of the second part also shows several

peaks (the strongest one at P = 3.71 d) the frequency
and power of these peaks depend on whether to include

or discard the large stochastic peaks present in this part

of the light curve. Extrapolating the P = 2.47d period

to the second part of the light curve turned out to be
inconsistent with the data. This suggests that the peri-

odic behavior of Gaia18dvy can change rapidly on a few

days time scale. The TESS data samples the flat maxi-

mum brightness phase of the outburst. The light curve

demonstrates that while the source was relatively stable
at this time, smaller scale variability was still present.

Similar variability was observed in FU Ori, and may be

due to flickering or inhomogeneities in the accretion disk

(Kenyon et al. 2000; Siwak et al. 2013).
The left part of Fig. 4 presents a V vs. V − RC

color-magnitude diagram. The data points suggest that

the brightening of the source from the pre-outburst

level, represented by the Pan-STARRS average magni-

tudes before 2014, to the present maximum was almost
wavelength-independent. The colors of the brightening

are clearly different from the extinction path, marked

in the figure, indicating that the outburst was caused

by some other mechanism than the removal of obscur-
ing material in the line-of-sight. As we will show in

Sec. 4, this can be attributed to increasing accretion.

The data points from 2019 exhibit blueing with increas-

ing V band brightness. This behavior is different from

the color changes during the rapid rising part of the out-
burst, suggesting that the small brightness variations in

2019 were not due to fluctuating accretion. Nor it is

caused by variable dust obscuration, as demonstrated by

the significantly different slopes of the extinction path
and the observations.

The NIR color−color diagram (Fig. 4, right) shows

that in the bright state Gaia 18dvy seems to be a red-
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Figure 4. Left: Optical color-magnitude diagram. Filled symbols are observations obtained later than 2019 June with the
Schmidt telescope at Konkoly Observatory, Hungary. Empty circle corresponds to the pre-outburst values based on Pan-
STARRS. The dashed line is the RV =3.1 extinction path from AV =15.5 to AV =18.5 mag. Right: J −H vs. H−KS color-color
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dened T Tauri-type star, whereas in quiescence the NIR
colors shift to the right, slightly beyond the area occu-

pied by reddened Class II young stellar objects. These

color changes are very similar to those of the erup-

tive young star HBC 722 (Kóspál et al. 2011): the star

shifted nearly parallel to the T Tauri locus, indicating
variations in the temperature and/or structure of the

inner disk (Meyer et al. 1997).

3.3. Spectroscopy

Our optical spectra (Fig. 5) were taken during the
brightening phase. The spectra show gradually rising

continuum with the Hα line displaying a P Cygni pro-

file and several distinct absorption features, including

the NaI doublet at 5892 Å and 5898 Å. The absorption
feature at 6497 Å, observed in the spectra of several

FUors and associated with Ba II/Ca I/Fe I blend, and

the youth indicator Li I at 6709 Å are also discernible.

Except for the different profiles of Hα, our two spec-

tra of Gaia 18dvy are very similar. Our NIR spectrum
(Fig. 5) shows several distinct spectral features, most of

them in absorption. The Paschen β line can be identified

with a small P Cygni profile. The drop of the spectrum

around 1.3µm indicates the beginning of a broad water
band. We could identify a few metallic lines: Mg I at

1.57 and 1.58µm, Na I at 2.21µm, and Ca I at 2.26µm.

The detection of Brγ is uncertain. From 2.3µm a very

prominent CO bandhead absorption is visible.
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4. MODELING

To characterize Gaia 18dvy in the pre-outburst state,

we compiled its spectral energy distribution (SED) from

photometric measurements obtained before 2015. In the

optical, we adopted the average Pan-STARRS magni-
tudes. In the infrared, we used UKIDSS JHKs and

WISE 3.4–22µm photometry. For comparison, we also

compiled an SED for the peak brightness in 2019 as well

as for two epochs representative of the rapid brightening

phase in 2019, using ZTF, WISE, and our own photom-
etry. All four SEDs are plotted in Fig. 6.

4.1. The central star

We determined the spectral type and line-of-sight ex-

tinction of the central star by comparing the observed

B−V , V −IC, and IC−J colors to reddened color indices

of pre-main sequence stars from Pecaut & Mamajek

(2013), on a grid of 2880K < Teff < 7280K and
0 < AV < 10mag. At each grid point we reddened

the intrinsic colors according to the extinction law of

Cardelli et al. (1989) using RV = 3.1 and calculated χ2.

Although there is a degeneracy between Teff and AV ,
we found two local minima, one at Teff = 4330K and

AV = 3mag (L∗ = 0.8L⊙), and another at Teff = 6900K

and AV = 5.2mag (L∗ = 2.9L⊙). A comparison

with pre-main sequence evolutionary tracks (e.g. Palla

2012) suggests that the first minimum corresponds to
a few million years old T Tauri star (spectral type K4,

Pecaut & Mamajek 2013), while the second one is an

F1-type star already on the zero age main sequence.

Since Gaia18dvy is still surrounded by a circumstel-
lar disk, and since the known precursors of most FUors

are low-mass objects, we will adopt Teff = 4330K and

AV = 3mag in the subsequent disk models. This

choice is also supported by the fact that its extinction

is broadly consistent with the value of AV ≤ 2mag ex-
tracted from the 3D all-sky maps of Green et al. (2019).

4.2. The quiescent disk

To describe the geometry of the circumstellar matter

in quiescence, we performed radiative transfer model-

ing of the quiescent SED, using the RADMC3D code

(Dullemond et al. 2012). For the central star we used

a Castelli & Kurucz (2004) model with Teff and AV as
above. We fixed the surface gravity to log g = 3.5 and

metallicity to m = 0. For the disk, we assumed power-

law density distribution (Chen et al. 2018), with inner

and outer radii Rin and Rout, surface density power-
law index p, scale height power-law index q, inner di-

mensionless scale height hin, and mid-plane opacity τ .

For dust composition, we assumed 1:1 mixture of amor-

phous carbon and interstellar silicate, and power-law

grain size distribution with index of 3.5, from amin =

0.01µm to amax = 103 µm. Fig. 6 shows our best-fit

quiescent model, which has the following parameters:

L∗ = 0.8L⊙, Rin = 0.2 au, Rout = 300 au, hin = 0.17,
p = −1.0, q = 0.05, i = 30◦. The total (gas+dust) mass

of the disk is ∼3.9×10−3M⊙. The model requires an un-

usually large inner scale height of hin = 0.17, indicating

that, in order to reproduce the measured strong IR ex-

cess, a large fraction of stellar light has to be reprocessed
by the circumstellar material. The inner disk radius in

the best-fit model is larger than the dust sublimation

radius by a factor of ∼5. The modeled bolometric lu-

minosity of the system is ∼1.5 L⊙. We note that all
these values depend on the luminosity of the central ob-

ject: adopting a hotter and more luminous star would

result in somewhat lower inner scale height. We also

caution that the disk mass is poorly constrained with

only optical-IR photometry.

4.3. Accretion disk in the outburst

In a FUor outburst, the optical–mid-infrared
flux is almost exclusively emitted from a hot, lu-

minous accretion disk in the innermost part of

the system (Hartmann & Kenyon 1996). It can

be modeled with a steady, optically thick, geo-

metrically thin viscous gas disk, whose mass ac-
cretion rate is constant in radial direction. The

inner edge of such a disk is usually set to the

stellar radius, while the outer radius is less de-

fined, since it may overlap with the outer cold
passive disk. E.g. modeling the FUor V582 Aur

with a similar geometry, Ábrahám et al. (2018)

adopted 2 au for the outer size of the heavily

accreting gas disk (noting that the exact value

has no noticeable effect on the results), while the
outer cold circumstellar disk extended to much

larger radii.

To determine the accretion rate and separate the ef-

fects of changing extinction and accretion during bright-
ening, we fitted the outburst SEDs (Fig. 6) using the

accretion disk model described above. We cal-

culated the disk’s flux by summing up the blackbody

emission from concentric annuli between the stellar ra-

dius and Racc following Kóspál et al. (2016). We as-
sumed a stellar mass of 1M⊙, and a disk inclination of

30◦. The stellar radius was computed from the effective

temperature and extinction obtained in Sect. 4.1, which

resulted in Rstar = 1.6R⊙. It is an unusual feature
of the accretion disk modeling of Gaia18dvy that

the outer radius, Racc, is well constrained by the

mid-infrared WISE observations: adopting in a

first step Racc=2.0 au led to a significant over-
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estimation of the measured mid-infrared fluxes.

This result may suggest an unusually small in-

ner accretion disk, and that the outer dust disk

has little contribution at these wavelengths. We
could reproduce the WISE fluxes by fixing Racc

to 0.1 au. Thus only two free parameters remained:

the product of the stellar mass and the accretion rate

MṀ , and the line-of-sight extinction AV . We obtained

the best accretion disk model by χ2 minimization, and
computed formal uncertainties of the fitted parameters

with a Monte Carlo approach.

The most complete coverage of the optical-infrared

SED is available for the peak of the outburst (2019
July 4, Fig. 6). We could fit it with Ṁ = 6.9±2.1 ×

10−6M⊙yr
−1, AV = 4.35± 0.4mag, with a reduced χ2

of 1.3. Figure 6 shows our best fit model (red curve).

The derived extinction value is somewhat higher than

what we obtained from the photospheric modeling. The
luminosity of the accretion disk is ∼ 175L⊙. We note

that adopting a central star with higher Teff would im-

ply a smaller stellar radius, and therefore a smaller inner

radius for the disk, and would require the combination
of higher luminosity and larger extinction in the best fit

accretion disk model.

In a second step, we modeled several additional

epochs, where mid-infrared photometric points from

WISE and an interpolated G-band magnitude from
Gaia were available. We fitted these SEDs by fixing the

extinction to the value determined at the peak epoch

(AV = 4.35 mag) and varied only the accretion rate.

This procedure resulted in reasonable fits. The com-
puted accretion rate values are plotted as a function of

time in Fig. 7a.

5. DISCUSSION

Connelley & Reipurth (2018) suggested eight distinc-

tive spectroscopic features for FUors. Out of these,

Gaia 18dvy exhibits five: (1) strong CO bandhead ab-

sorption in the K band; (2) the shape of the H-band
spectrum is “triangular”, due to water vapor bands on

each end of the H-band window; (3) Paβ and Brγ lines

in absorption; (4) only a few emission lines are de-

tectable in the infrared spectra, especially with P Cygni

profiles; and (5) some metallic lines from Na, Mg and Ca
are present. Based on these features and the light curve

shape, we suggest that Gaia 18dvy is a new FU Orionis-

type object.

During a period of 1.5 years, the luminosity of
Gaia 18dvy increased from 1.5L⊙ to 175L⊙, a factor of

more than 100. This outburst luminosity is typical of

FUors (Audard et al. 2014). The accretion rate is some-

what lower than in most FUors, but is close to the value
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Figure 6. Multiepoch SEDs of Gaia 18dvy: quiescence
(black circles), peak of the outburst (red dots), and two
epochs representing the brightening phase (blue and green
dots). The black curve is our best-fitting RADMC3D model
to the quiescent measurements, while the other curves are
our best-fitting accretion disk models in excess of the quies-
cent SED.

computed for HBC 722 (6×10−6M⊙yr
−1, Kóspál et al.

2016). The location and displacement of HBC 722 in

the NIR color-color diagram (Fig. 4) are also similar to

those of Gaia 18dvy.

Our results show that the progenitor of Gaia 18dvy

was a K4-type T Tauri. Using pre-main sequence evo-
lutionary tracks from Palla & Stahler (1999), the mass

of the star is about 1M⊙. The star is surrounded by a

circumstellar disk whose structure and physical parame-

ters in quiescence are typical of T Tauri disks. The only
unusual parameter is the rather large inner scale height,

which is inconsistent with hydrostatic equilibrium (that

would be only ∼0.04 at the inner rim of a T Tauri disk).

During the outburst phase, we fitted the observed

optical-infared light curves using a simple accretion disk
model (Sect. 4.3). Most data points could be reasonably

well reproduced by a sequence of models where both

the line-of-sight extinction and the disk geometry were

fixed, and only the accretion rate was fitted. Figure 7
summarizes our results. The top panel shows the time

evolution of the derived accretion rates, which can be

fitted by an exponential function starting at some low

values at < 10−9 M⊙yr
−1 and reaching ∼10−5 M⊙yr

−1

at the peak of the outburst in mid-2019. Adopting this
exponential function (blue lines in Fig. 7a) to predict

the accretion rate at any given epoch, we computed the

various magnitudes and colors as a function of time from

the accretion disk model. These results are overplotted
in Fig. 7 (b–d).
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Figure 7. (a): Optical Gaia light curve of Gaia 18dvy. (b):
Optical-infrared color evolution, computed from the Gaia G-
band and the WISE Band1 magnitudes. (c): Mid-infrared
color evolution derived from the two WISE bands. (d): Ac-
cretion rates as computed in Sect. 4.3. A simple linear model
to the data points is overplotted in blue. Magnitudes and col-
ors, computed from our accretion disk model using Ṁ values
as predicted by the linear model, are overdrawn in the upper
three panels.

The good match at both optical and infrared wave-

lengths imply that the photometric observations preced-

ing the peak brightness can be explained by a simple ac-

cretion disk model of exponentially increasing accretion

rate. At early phases of the outburst the accretion rate
was low, thus the accretion disk had a low temperature

and contributed only to the mid-IR part of the SED, but

not to the optical. Later, the rising accretion rate led to

higher disk temperatures, and the optical fluxes started
growing rapidly, causing increasingly bluer G–W1 colors

after JD ∼2,458,400.

The observed exponential growth of the accretion rate

that started already more than 3 years before the bright-

ness peak (Fig. 7a) may provide an important constraint
on outburst physics. We calculated the e-folding time

of the increase, and adopted the resulting ∼145 days

as an estimate of the dynamical timescale of the out-

burst. Interpreting it as a Keplerian period, it would

correspond to r∼0.54 au. The geometry of our accre-

tion disk, however, implies that the outburst is confined
to a smaller area than this, to the innermost 0.1 au of

the system. This result should be taken into account in

outburst model calculations.

Finally we mention a similarity between Gaia18dvy

and the young eruptive star HBC 722. Plotting the
V-band light curve of HBC 722 over the Gaia light

curve of Gaia18dvy outlines very similar shapes, but

the timescale of the HBC 722 light curve is three times

shorter, i.e., all changes happened three times faster.
We speculate that the brightening of HBC 722 was also

caused by an exponential rise of the accretion rate, but

with shorter e-folding time. If true, then possibly the

same physical mechanism was responsible for both out-

bursts, suggesting the existence of a general process
whose timescale may change from object to object.
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