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ABSTRACT

We present the Atacama Large Millimeter/submillimeter Array (ALMA) observation of the Sub-
millimeter galaxy (SMG) ID 141 at z=4.24 in the [N ii ] 205 µm line (hereafter [N ii ] ) and the underlying

continuum at (rest-frame) 197.6 µm. Benefiting from lensing magnification by a galaxy pair at z=0.595,

ID 141 is one of the brightest z > 4 SMGs. At the angular resolutions of ∼ 1.2′′ to 1.5′′ (1′′∼6.9 kpc),

our observation clearly separates, and moderately resolves the two lensed images in both continuum

and line emission at S/N > 5 . Our continuum-based lensing model implies an averaged amplification

factor of ∼ 5.8 and reveals that the de-lensed continuum image has the Sérsic index'0.95 and the

Sérsic radius of ∼0.18′′ (∼1.24 kpc). Furthermore, the reconstructed [N ii ] velocity field in the source

plane is dominated by a rotation component with a maximum velocity of ∼300 km/s at large radii,

indicating a dark matter halo mass of ∼1012M�. This, together with the reconstructed velocity

dispersion field being smooth and modest in value (<100 km/s) over much of the outer parts of the

galaxy, favours the interpretation of ID 141 being a disk galaxy dynamically supported by rotation.

The observed [N ii ] /CO (7-6) and [N ii ] /[C ii ] 158µm line luminosity ratios, which are consistent with

the corresponding line ratio vs. far-infrared color correlation from local luminous infrared galaxies,
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imply a de-lensed star formation rate of (1.8±0.6)×103M�/yr and provide an independent estimate

on the size of the star-forming region 0.7+0.3
−0.3kpc in radius.

Keywords: galaxies: active — galaxies: ISM — galaxies: star formation — infrared: galaxies — ISM:

molecules — submillimeter: galaxies

1. INTRODUCTION

Star formation regulates the interstellar medium

(ISM) and enriches the chemical composition of a

galaxy; star formation is one of the most fundamen-

tal drivers of the evolution of a galaxy. With the recent

advances in technology on the ground and in space,

more and more luminous star-forming galaxies at z > 2

have been identified in sub-millimeter (sub-mm) bands

(Blain et al. 2002). Sub-millimeter galaxies (SMGs)

are among the infrared-brightest star-forming galaxies in

the early Universe (Casey et al. 2014). However, their

large distances and dusty nature make it difficult to re-

veal their internal galactic structures at kpc or sub-kpc

scale. Consequently, how to effectively and compre-

hensively characterize their star formation rate (SFR),

and determine the dominant star formation mode (e.g.,

merger-induced star formation vs. clumpy star forma-

tion disks; Tacconi et al. 2006, 2008; Agertz et al. 2009;

Dekel et al. 2009; Davé et al. 2010) remains an acute

and yet challenging task.

In view of the unprecedented spectral line mapping

capabilities provided by the recently commissioned At-

acama Large Millimeter/submillimeter Array (ALMA,

Wootten & Thompson 2009), Lu et al. (2015) explored

a new spectroscopic approach for simultaneously infer-

ring the SFR, SFR surface density (ΣSFR) and some

molecular gas properties of a distant galaxy by mea-

suring only the fluxes of the CO (7−6) line (rest-frame

806.652 GHz or 372µm) and either the [N ii ] line at

205µm (1461.134 GHz; hereafter as [N ii ] ) or the [C ii ]

line at 158µm (1900.56 GHz; hereafter as [C ii ] ). For

local luminous infrared galaxies (LIRGs; with an 8-

1000 µm luminosity 1011 L� < LIR < 1012 L�) and

ULIRGs (LIR > 1012 L�), the CO (7−6) line lumi-

nosity, LCO(7−6), can be used to infer the SFR of a

galaxy with a ∼30% accuracy, irrespective of whether

the galaxy hosts an active galactic nucleus (AGN;

Lu et al. 2014, 2015, 2017a; Zhao et al. 2016).

Furthermore, the steep anti-correlation between the

[N ii ] /CO (7−6) (or [C ii ] /CO (7−6)) luminosity ratio

and the rest-frame far-infrared (FIR) color, C(60/100)

(≡ fν(60µm)/fν(100µm)), can be used to estimate

C(60/100) or the dust temperature Tdust (Lu et al.

2015). C(60/100) is in turn related to ΣSFR (Liu et al.

2015; Lutz et al. 2016). Such an indirect approach to

estimating ΣSFR is useful at high redshifts, where it is

often challenging to resolve a galaxy in the FIR/sub-

mm.

In addition, these lines are among the most luminous

gas cooling lines that are widely used to probe differ-

ent gas phases in galaxies. Further, they probe different

gas phases in galaxies. The CO (7−6) line traces the

warm (excitation temperature Tex = 150 K) and dense

(ncrit ∼ 105 cm−3) molecular gas that is in close prox-

imity to the location of current or very recent SF ac-

tivity. As shown in (Lu et al. 2014, 2017a) the spectral

line energy distribution (SLED) of (U)LIRGs is gener-

ally peaking around the CO (7−6) line. Although the

[C ii ] line is considered a primary tracer of photon domi-

nated regions (PDRs, Tielens & Hollenbach 1985a,b), it

can also arise from ionized gas since it only takes ∼11.3

eV to turn C into C+. On the other hand, the [N ii ] line

comes exclusively from ionized gas, and traces mainly

diffuse, warm ISM due to its low critical density (44

cm−3; Oberst et al. 2006). In summary, these lines

form a valuable set of extinction-free probes into the SF

and gas properties in galaxies, especially high-z objects.

Observations of these important gas cooling lines

are still scarce for high-z galaxies. For example, the

[N ii ] line has been detected in only a handful of objects

at z > 3, (e.g., Combes et al. 2012; Nagao et al. 2012;

Béthermin et al. 2016; Pavesi et al. 2016; Cunningham

et al. 2019) and very few of them have been spatially

resolved (e.g., Decarli et al. 2012; Ferkinhoff et al.

2015; Lu et al. 2017b). We have carried out an ALMA

program to complete this line set on a small sample of

SMGs between 4 < z < 5.5 (Lu et al. 2017b, 2018; Zhao

et al. 2020) to attempt to not only characterize their

SF properties but also gain valuable insights into the

physical conditions of their interstellar medium.

In this paper, we present our ALMA observation of

ID 141 (RA = 14:24:13.9; Dec = +02:23:04; J2000) at

z = 4.24. With an on-source exposure time of only ∼ 5

minutes, we have detected and moderately resolved the

[N ii ] emission of this galaxy. Being weakly gravitation-

ally amplified, ID 141 is one of the brightest galaxies dis-

covered by Herschel Astrophysical Terahertz Large Area

Survey (H-ATLAS) project (Eales et al. 2010; Valiante

et al. 2016; Bourne et al. 2016). The galaxy has been

detected in continuum at 250 µm , 350 µm, 500 µm

(Eales et al. 2010), 870 µm, 880 µm, and 1.2 mm (Cox

et al. 2011). These continuum measurements gave an
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estimated Tdust ∼38K and LIR ∼ (8.5±0.3)×1013µ−1
L L�

(Cox et al. 2011), where µL is the amplification factor.

The CO (4-3) and H2O(211−202) (752 GHz) and H2O+

(746GHz) have also been detected with high S/N ratios

(Cox et al. 2011; Omont et al. 2013; Yang et al. 2016).

Bussmann et al. (2012) observed ID 141 with Keck AO

in Ks band (resolution: ∼ 0.1′′) and with SMA in 880

µm continuum (resolution: ∼ 0.5′′), and showed that the

lensing involves a dry merger galaxy pair at z = 0.595.

The de-lensed SFR of ID 141 is about 2000 M�/yr

(Cox et al. 2011; Bussmann et al. 2012), which is

above the SFR upper limit that is estimated from the

observed gas mass in high-z SMGs and the correspond-

ing free fall time scale (Karim et al. 2013), and quite rare

even in high-z SMGs (Barger et al. 2014; Cowie et al.

2018). With the help of the lensing magnification by the

foreground dark matter halo, we can spatially resolve the

dust continuum, and reconstruct the gas velocity field.

However, almost all previous ID 141 observations are

either from single-dish telescopes with large beam size

(e.g. Herschel, APEX or IRAM), or from interferometry

arrays with low spatial resolution (e.g., PdBI observa-

tions with a spatial resolution about 3′′, see Cox et

al. 2011). The only high resolution SMA observations

(angular resolution about 0.6′′) reveals the continuum

morphology (Bussmann et al. 2012), but the spatially

resolved emission line observations of ID 141 are still

scarces. Previous studies show that both galaxy merger

and secular evolution can lead to the high SFR at high-

z (Tadaki et al. 2018). To understand the origin of the

high SFR in ID 141, we observe the [N ii ] and FIR con-

tinuum with ALMA at a resolution of about 1′′, and

model the lensing image carefully to estimate the SFR

region size, obtain a reliable magnification factor, and

recover the gas velocity maps.

In the remainder of this paper, we describe our ob-

servation and data reduction in Sec. 2 and present the

results in Sec. 3. In Sec. 4, we analyze the observed

[N ii ] line and continuum emission, fit the dust contin-

uum data by a gravitational lensing model and infer the

dynamic structures of ID 141. Throughout the paper, we

assume a cosmological model with H0 = 71km/s/Mpc,

Ωm = 0.27, and ΩΛ = 0.73 (Spergel et al. 2007). At z

= 4.24, 1′′corresponds to 6.91 kpc.

2. THE ALMA OBSERVATION AND DATA

REDUCTION

ID 141 is observed in ALMA Band 7. One of the 4

available spectral windows (with a bandwidth of 1.75

GHz ) was centered at the red-shifted [N ii ] line at 277.4

GHz. The remaining 3 spectrum windows (SPWs) are

used to measure the continuum around 277.7, 287.7 and

289.7 GHz, respectively. The on-target exposure time

is 302.4 seconds. Each SPW has 128 channels with a

channel width of 15.6 MHz and a effective spectrum res-

olution of 31.2 MHz. The observation utilizes 45 anten-

nas and the baselines range from 15.1 m to 331 m. The

maximum recoverable angular scale associated with the

smallest baseline used in our observations correspond

to about 9′′, much larger than the angular size of our

target. The phase, bandpass and flux calibrations are

based on the observations of J1359+0159, J1337-1257,

and Callisto, respectively. The total observation time is

25 min. The phase center is at RA =14:24:13.98, Dec

=02:23:03.50. (J2000)

The data reduction was carried out with the Common

Astronomy Software Applications (CASA) 4.5.3 (Mc-

Mullin et al. 2007) and the final images are cleaned using

the natural weighting only on the pixels with value > 3σ,

resulting in a synthesized beam size of 1.46′′×0.88′′ with

a P.A. = 57.7◦ for the continuum, and 1.25′′×0.8′′ with

a P.A. = 57.8◦ for the [N ii ] line data. For the spectral

data cube, the continuum is subtracted using the task

“uvcontsub” with order= 1. The final continuum image

is an average of the 3 continuum SPWs and the RMS

noise is 0.25 mJy/beam. The final [N ii ] spectral cube

has a velocity channel width of 100 km/s, and an RMS

noise about 0.6 mJy/beam per velocity channel.

Table 1. Double gaussian fitting results of the [N ii ] line in
each component

Component line center (km/s) FWHM (km/s) flux (Jy km/s)

south -170 ± 81 401 ± 200 3.1 ± 1.3

358 ± 76 336 ± 175 2.5 ± 1.2

north -181 ± 49 381 ± 113 2.1 ± 0.5

305 ± 68 143 ± 109 0.4 ± 0.3

south+north -180 ± 51 378 ± 123 5.0 ± 1.4

339 ± 67 329 ± 161 2.9 ± 1.3

3. RESULTS

3.1. Dust continuum and [N ii ] images

The continuum and the [N ii ] moment maps of ID 141

are shown in Fig. 1. We denote the two clearly sepa-

rated lensed components in the continuum and moment

maps as the ‘north’ and ‘south’ components. For the

continuum, the full width at half maximum (FWHM)

sizes along the long and short axes are respectively 1.84′′

and 0.96′′ for the south component and 1.78′′ and 1.00′′

for the north component. The corresponding FWHM

dimensions for the [N ii ] emission are 2.23′′ and 1.23′′

for the south component and 1.80′′ and 1.10′′ for the

north component. These results show that the source is
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Figure 1. The continuum and the [N ii ] moment maps for ID 141. The polygon regions in the moment 0 map show our two
spectral extraction apertures. In the moment 1 map, the South component shows a clear rotation dominated features. The
moment 2 map shows the velocity dispersion distribution, which for the South component is peaking at its nucleus, as expected.
The rms of the moment 0 map is 0.2 Jy/beam km/s. The contours in the continuum image are at the [-1, 1, 5, 10, 20, 50]
× rms level. The contours in the moment 0 show the [-1, 1, 3, 5, 7]× rms level. Dash contours stand for the -1 × rms. The
position-velocity diagman along the direction of the black line marked on the moment-0 map is presented in Fig. 2. The line is
selected to pass through the long axis of the South component. 1” corresponds to 6.9 kpc for this target.

moderately resolved along its long axis in both contin-

uum and [N ii ] . We show the position-velocity diagram

in Fig. 2, measured along the black line shown in the

[N ii ] moment 0 map (Fig. 1). The positions with 400

km/s and -250 km/s are separated by more than 1 arc-

sec.

3.2. [N ii ] Spectra

We extract the [N ii ] spectra from the two lensed im-

age components by using polygon-shaped apertures as

outlined in red in the upper-right panel of Fig. 1. Pan-

els (c) and (d) of Fig. 3 are the spectra from the south

and north components respectively, and panel (b) of Fig.

3 is the total spectrum from the two components com-

bined. The flux uncertainty includes the flux calibration

(10% of the flux, Fomalont et al. 2014) and the rms in

the selected region. All spectra are fitted with a double

gaussian function and the results are listed in Table 1.

The total [N ii ] flux is 7.9±1.9 Jy km/s. The FWHM of

the total [N ii ] line emission from this work is consistent,

within the uncertainties, with the FWHM measurements

from the CO and [C ii ] 158 um lines given in Cox et al.

(2011) where the two lensed image components are not

resolved.

3.3. Dust continuum

Cox et al. (2011) provided the continuum fluxes at

a few different wavelengths, but only for the two lensed

components combined. Along with the continuum flux

from this work, these are plotted in the upper-left panel

of Fig. 3. Our new ALMA continuum flux are measured

from both components revealed from Fig. 1 with the res-

olution similar to the SED shown in Cox et al. (2011).

The total continuum flux measured by ALMA is 52.0 ±
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Figure 2. Position-velocity diagram along the black line
in the moment 0 map. Limited by the angular and velocity
resolution, we can only see the trend that the region with
rotation velocity about 400 and -200 km/s is separated by 2
arcsec, which is about 2 times larger than the beam size.

5.2 mJy. We fit the FIR SED with a modified-blackbody

function (Beelen et al. 2006), with a fixed power law

index of the dust emissivity β = 1.8 (Planck Collabo-

ration et al. 2011). The resulting dust temperature is

∼40 K.

We tested the CMB impact on our SED fitting, follow-

ing da Cunha et al. (2013), and found an insignificant

effect, largely due to the fact that the CMB is still much

colder than the dust temperature of ID 141 at z = 4.24.

4. ANALYSIS AND DISCUSSION

4.1. Lensing Modeling and Galaxy Intrinsic Properties

To characterize the intrinsic morphology of the dust

emission of ID 141, we need to trace the observed im-

age from image-plane to source-plane via lens modeling.

For the interferometer data, the incomplete sampling on

the u-v plane will lead to spurious covariance features on

the inverted dirty image. The “Clean” method is usually

taken to correct those pseudo signals before perform-

ing further analysis. However, the “Clean” process will

change the data in a way that is hard to quantify the

uncertainties of cleaned-image and corresponding corre-

lations. Poorly defined image uncertainties may bias the

results of lensing modeling. Therefore, when comparing

the data and model during lens-modeling, it is better

to work on the u-v plane directly. This scenario has

been the preferred modeling strategy when one deals

with interferometric observations (Spilker et al. 2016;

Bussmann et al. 2012; Hezaveh et al. 2013; Rybak et al.

2015; Enia et al. 2018).

In this work, we introduce our code – tiny lens1.

tiny lens is a light-weight galaxy-scale gravitational lens

modeling tool that is originally designed for optical-

band lenses. We add the visibility modeling capabil-

ity to tiny lens, which is based on another open-source

project – Visilens2 (Spilker et al. 2016). We summarize

our modeling procedure here for completeness, and more

technical detail can be found in Hezaveh et al. (2013).

1. Guess a set of possible parameter values associated

with lens modeling, then generate an“ideal image”

based on them via ray-tracing.

2. Transform the “ideal” image from image-plane to

uv-plane by Fourier transformation; this will give

a visibility map on regular uv-grid. We then inter-

polate this “regular” visibility map to the ALMA

uv-coordinates to get the “model visibilities.”

3. The agreement between data and model visibilities

is defined by the χ2 between them. We use the

nested sampling tool – pymultinest(Buchner et al.

2014; Feroz et al. 2009), to iteratively “guess” the

possible values of lens-modeling parameters, and

sample the whole parameter space.

As we have already mentioned before, previous works

show that ID 141 is at redshift 4.24 lensed by two fore-

ground galaxies located at redshift 0.595 (Bussmann et

al. 2012). The “reference model” in Bussmann’s work

adopted two Singular Isothermal Ellipsoids (SIE) for the

mass distribution of the lens galaxies and a Sérsic profile

for the source light model. They also put a constraint

on the mass ratio of two lens galaxies(2:1), since they

found the secondary lens is significantly less luminous

and hence likely to be less massive based on the Ks-band

image of the Keck data.

In this paper, we model this system independently

based on the ALMA 198 µm dust continuum. We take

a similar modeling strategy as the “reference model” in

(Bussmann et al. 2012), which also consists of two

SIEs for the lens and one Sérsic profile for the source.

However, we do not assume the mass ratio of two lens

galaxies to be 2:1 in this work.

Our modeling results are shown in Table 2. In each

row, from left to right, we present parameter names

1 https://gitlab.com/cxylzlx/tiny lens
2 https://github.com/jspilker/visilens

https://gitlab.com/cxylzlx/tiny_lens
https://github.com/jspilker/visilens
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Figure 3. Panel (a): FIR SED of ID 141 as observed on the plane of the sky. The red dot is the new data from our ALMA
observation. The upper triangles are the data from Herschel; the filled squares are the data from the ground-based observations
(Cox et al. 2011). The ALMA flux are measured including both components shown in Fig. 1. The dust emission is modelled by
modified-blackbody function with a power law dust emissivity index β = 1.8, with the result shown by the solid curve. Panel (b):
the total [N ii ] spectrum extracted from the combined northern and southern polygon-shaped apertures shown in the moment 0
image in Fig .1, with the spectrum extracted from a single aperture shown in panel (c) (using the southern aperture) or panel
(d) (the northern aperture). The individual Gaussian components are shown by the curves in blue and purple, respectively; the
combined Gaussian fit is shown by the curve in red. The double peak function can fit the data well. Fitting results are listed
in Table 1.

(units), prior types, prior ranges, median values and

1σ errors of the posterior probability distribution. The

prior type can be uniform prior (type-0), Gaussian prior

(type-1), or log-uniform prior (type-2). The correspond-

ing meanings of prior ranges for each type prior are

[lower bound, upper bound] (type-0 and type-2), [mean,

standard deviation] (type-1). We report the center of

main lens galaxy (xL0, yL0), the Einstein radius (θE0),

two ellipticity parameters (e1L0, e2L0)3. The definition

of ellipticity can be found in Birrer et al. (2015) and

3 In practice, working on ellipticities instead of position angle
and axis ratio can improve the sampling efficiency, especially when
the axis ratio is close to ∼1, of which the position angle effectively
has no constraint.

reproduced here,(
e1, e2

)
=

(
1− q
1 + q

cos(2θ),
1− q
1 + q

sin(2θ)

)
. (1)

Here, e1 and e1 are two ellipticity parameters, q is axis

ratio, and θ is the position angle. We fix the position

offset between the secondary lens and the main lens to (-

0.025′′, -0.327′′) during lens modeling, using the astrom-

etry information provided by Keck image (Bussmann et

al. 2012). The Einstein radius (θE1), two ellipticity pa-

rameters (e1L1, e2L1) of secondary lens are also shown in

Table 2. The brightness distribution of source galaxy are

given by center (xS and yS), Sersic index (nS), two el-

lipticity parameters (e1S and e2S), effective radius (Re),

and intensities at effective radius (Ie). We should note

that the errors reported in Table 2 are purely statistical

and do not include systematic errors. One of the pre-
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dominant sources of systematical error in our case is we

use a single over-simplified Sérsic profile to represent the

brightness distribution of source galaxies. We check the

effect of this systematical error by the mock data test.

We empirically find the single Sérsic source assumption

does introduce some systematics, but the lens parame-

ter we inferred is still correct under the accuracy level

of ∼10%.

We visualize our best-fit results in Fig.4, we find

that our simplified lens model can already capture the

main lensed feature in data. The best-fit model has

χ2 = 757972 with 746981 degrees of freedom in the uv-

plane, which corresponds to a reduced χ2 about 1.01.

There is a ∼5 sigma residual feature on the northeast

of the northern image. We anticipate those residuals

are due to our simplified assumptions that source galax-

ies are represent by a single Sérsic component. When

higher quality data with better signal to noise ratio and

u-v coverage are available in the future, it is possible to

reveal the complex morphology of source galaxies using

the more dedicated pixelized-model(Rybak et al. 2015;

Hezaveh et al. 2016; Enia et al. 2018; Dye et al. 2018).

However, such a task is beyond the scope of this work,

we would like to leave it for future works. We note that

the effective radius of the source galaxy in our results is

0.18′′, which is significantly different from the results in

Bussmann et al. (2012). To further examine this dif-

ference, we fixed the source galaxy size to Bussmann’s

value (0.46′′). Modeling results under this assumption

decrease the Bayesian evidence by a factor of ∼500.

Generally speaking, differences of more than ten might

definitely rule out the model with the lower Bayesian

evidence. Thus our results should be supported better

by the current data. We also check this point indepen-

dently based on the cleaned image, using another lens

modeling tool–PyAutoLens (Nightingale et al. 2018a).

We obtain a result that is similar to our tiny lens code.

Our lensing model result suggests that ID 141 system

is well described by a background Sérsic source lensed by

two foreground SIE lenses. The Einstein radii of the two

foreground SIE lenses are 0.516′′and 0.497′′. These cor-

respond to masses of 6.34×1010M� and 5.88×1010M�,

respectively. The axis ratio of the main lens is 0.71,

which is more elliptical than the secondary lens (axis

ratio:0.94). There is a mass-degeneracy between two

lens galaxies: i.e., increasing the mass of one lens while

decreasing the mass of another can result in a similar

lensed image. This degeneracy implies that the total

mass of two lens galaxies is better constrained than the

individual lens mass given the current data. The Sérsic

index (nS0) of the source galaxy is 0.95, which is between

the 0.5 (corresponding to a Gaussian light profile) and

1.0 (corresponding to an exponential disk), this indicates

the morphology of the source is close to an exponential

disk or a combination of the typical Gaussian and expo-

nential disk profile. A dust morphology composed by a

core plus a disk structure is also found in SMG G09v1.97

at z = 3.63 (Yang et al. 2020). The half-light radius of

the source is 0.18′′, and this is equivalent to 1.24 kpc in

the physical unit.

As a natural telescope, a strong gravitational lensing

system can be used to spatially resolve the velocity field

of background source galaxies (Stark et al. 2008; Jones

et al. 2010; Livermore et al. 2015; Dye et al. 2015; Motta

et al. 2018; Litke et al. 2019; Yang et al. 2019). Follow-

ing the discussions in Dye & Warren (2005), ‘the source

pixel size should be no smaller than Nyquist sampling of

the PSF inverted to the source plane.’ The beam size of

our [N ii ] emission data is 1.25×0.8′′. Considering an av-

erage magnification of ∼5.8, to resolve the target in the

source plane, the request of minimum pixel size is about√
1.25× 0.8/(2×

√
5.8) = 0.21′′. Although this is only a

rough estimation, recall the effective radius of our source

galaxy is about ∼0.2′′, we can get a conclusion that ID

141 is only partially resolved in [N ii ] emission for our

current data. Since the spatial resolution and S/N ra-

tio of the moment map derived from the [N ii ] emission

data is not very high, instead of using slice 3D-data

cube to reconstruct the source velocity field (Dye et al.

2015), or modeling the source kinematics and lens mass

distribution simultaneously (Rizzo et al. 2018), we just

use the lens model derived from continuum to trace the

[N ii ] moment map back to the source plane to get the

velocity field of source galaxy (Livermore et al. 2015).

For the source-plane pixels which have multiple coun-

terparts on image-plane, their values are obtained by

stacking their image-plane values weighted by flux. Al-

though this method doesn’t account for the beam smear-

ing effect properly, it still offers a qualitative illustration

for the kinematics of the source galaxy.

The resulting rotation and dispersion velocity fields

are shown in Fig. 5. The velocity field shows that ID

141 is rotation dominated in the disk region and dis-

persion dominated in the central part, which is com-

monly seen in the local disk galaxies. A few studies

have cautioned that apparent rotational feature in the

first moment images of some high-z galaxies may reflect

a compact merger (Simons et al. 2019; Yang et al.

2019). The Sérsic index of the compact galaxies is usu-

ally larger than 2, while the Sérsic index value of ID 141

is 0.95, which is also commonly seen in disk galaxies.

Therefore, we favor the conclusion that an orderly ro-

tating disk is the source of the observed velocity field of

ID 141. Higher spatial resolution ALMA observations
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Figure 4. Top panels from left to right: the dirty image of the continuum data, model, and residual (data minus model) in
unit of µJy/beam. We show the beam by a white ellipse in the top-left panel. Contours in the ‘data’ and ‘model’ panel indicate
-25, -5, 5, 25, 45, 65, 85, 105, 125, etc. times the 1σ RMS noise level, while Contours in the ‘residual’ panel show -6, -5, -4, -3,
-2, 2, 3, 4, 5, 6, etc. times the 1σ RMS noise level. The position of two lens galaxies and the source galaxy is displayed by the
red-triangles and blue dot in the top-middle panel, respectively. The “Noise-level” in the legend of the top-right panel shows the

sum of visibility weights, i.e.,
√∑N

i=1 1/σ2
i , where the σi represents the noise of each visibility. Bottom-right panel: the ideal

image of the best-fit sky model in arbitrary units, the critical lines are shown by the black dashed line. Bottom-right panel: the
best-fit source model in arbitrary unit, black dashed lines indicate the caustic lines.
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Figure 5. The [N ii ] velocity and velocity dispersion map
of ID 141 on the source plane. The map size is limited to
the 0.36′′, which is twice the half light radius of the source
galaxy in intermediate-axis convention. We can see a clear
rotation pattern in the velocity map. The velocity dispersion
dominates the velocity field in the central region of ID 141
while the rotation dominates the outer regime. The pixel
size in this figure are chosen as 0.052′′. The caustics lines
are marked by the black dashed line. 1′′ corresponds to 6.9
kpc at z = 4.24.

will help us to reveal the gas instability and the origin

of the high SFR density (Tadaki et al. 2018).

The entire galaxy rotation curve spans only about

three ALMA beams, which limits our ability to derive a
detailed rotation curve. However, away from the center

of the galaxy along the major axis, the typical velocity

value is about 300 km/s. If the rotation curve is flat at

large radii, the maximum rotational velocity should be

around this 300 km/s value. The large velocity width ob-

served also indicates a massive dark matter halo (about

4.7× 1012v300M�, where the v300 = vrot/300, Ferrarese

et al. 2002) at redshift 4.24, which is slightly higher

than the typical high-z SMGs (see Fig. 3 in Marrone et

al. 2018). Previous studies of the high-z SMGs (Greve

et al. 2005; Gullberg et al. 2015; Lu et al. 2017b; Jones

et al. 2017; Yang et al. 2017) have shown that the galaxy

emission line FWHM or the maximum rotation velocity

can be as high as 700 km/s, thus as one of the brightest

high-z ULIRGs, ID 141 with such high rotation velocity

may not be rare at high-z.
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Table 2. Lensing model fitting results. We show the initial
prior type and prior range for different lens modeling param-
eters. The median and 1σ errors of the posterior distribution
are presented by the last two columns. The 1σ errors here are
purely statistical errors; no systematical errors are included.
All the positional information in this table are relative to the
ALMA phase center (14:24:13.98, 02:23:03.50).

name (unit) prior type prior range median 1σ

xL0 (′′) 1 [0.35 ,0.40] 0.1796 0.0025

yL0 (′′) 1 [0.75 ,0.40] 0.4721 0.0135

θE0 (′′) 0 [0.10 ,1.50] 0.5162 0.0285

e1L0 0 [-0.50 ,0.50] -0.3722 0.0049

e2L0 0 [-0.50 ,0.50] 0.2932 0.0317

θE1 (′′) 0 [0.10 ,1.50] 0.4970 0.0295

e1L1 0 [-0.50 ,0.50] 0.2013 0.0310

e2L1 0 [-0.50 ,0.50] -0.3034 0.0112

xS (′′) 0 [-2.00 ,2.00] -0.0430 0.0016

yS (′′) 0 [-2.00 ,2.00] 0.0234 0.0039

Ie (Jy/beam) 2 [10−9 ,0.10] 0.0262 0.0007

Re (′′) 0 [0.01 ,1.00] 0.1798 0.0016

nS 0 [0.30 ,8.00] 0.9539 0.0595

e1S 0 [-0.50 ,0.50] 0.1750 0.0125

e2S 0 [-0.50 ,0.50] 0.0276 0.0102

4.2. Line ratio properties

Lu et al. (2015); Zhao et al. (2020) have shown that

the [N ii ] , [C ii ] , and CO line ratios can be used to in-

fer the dust temperature of galaxies at high-z with an

accuracy of . 4K. Previous observations by Cox et al.

(2011) measured the [C ii ] flux at APEX and the CO

(7-6) flux at PdBI with a beam size about 3.6′′ × 3′′.

Our new [N ii ] observation shows a flux of 7.9 ± 1.9 Jy

km/s, together with the [C ii ] flux (107 ± 17 Jy km/s)

and CO (7-6) flux (6.5 ± 1.4 Jy km/s) from Cox et

al. (2011), yielding line ratios of log([N ii ] /[C ii ] ) =

-1.12±0.16 and log([N ii ] /CO(7-6)) = 0.1±0.17. Fig. 6

presents the line ratios [N ii ] /[C ii ] and [N ii ] /CO (7-6)

as a function of the flux ratio between the rest-frame

60 and 100µm, C(60/100). We include previous results

for the local LIRGs (open squares) and high-z targets

(filled triangles, from Lu et al. 2015, 2018). The thick

lines in Fig. 6 are the linear fitting results of the local

LIRGs (Eq. 3, 4 in Lu et al. 2015, where the AGNs

are excluded in the fitting process), while the dot lines

show the 1σ uncertainty. Results of ID 141 line ratios

offset the correlation at 1σ, so we conclude that the cor-

relations between the line ratios and C(60/100) for local

(U)LIRGs, as discussed in Lu et al. (2015) and Lu et

al. (2018), still hold, indicating a valid method to di-

agnose the high-z galaxy FIR color C(60/100) with 1σ

uncertainty.

The line ratio can also help us to probe the gas prop-

erties such as the origin of the [C ii ] and the metal-

licity. The [N ii ] /[C ii ] of ID 141 is ∼0.076, which

is much lower than the typical value of HII regions

([N ii ] /[C ii ] about 0.5, see Decarli et al. 2014; Béther-

min et al. 2016), suggesting that most of the [C ii ] flux

may originate from the neutral gas, where the [N ii ] is

absent (Decarli et al. 2014; Croxall et al. 2017; Sutter

et al. 2019; Cunningham et al. 2019).

On the other hand, based on theoretical models of

the metallicity effects to the line emission (Kewley &

Dopita 2002; Nagao et al. 2012; Béthermin et al. 2016;

Pereira-Santaella et al. 2017), the low [N ii ] /[C ii ] value

of ID 141 may also suggest a sub-solar metallicity of this

high-z SMGs (Nagao et al. 2012; Croxall et al. 2017).

4.3. Star Formation Properties

The FIR SED fitting results a dust temperature about

40 K, which is warm and consistent with the high SFR

of SMGs (Magnelli et al. 2012). We derive the

L8−1000µm
IR,obs = 9.9±2.3×1013µ−1

L L� = 1.7±0.4×1013L�,

where the lensing magnification factor µL = 5.8. The

SFR can be derived from the IR luminosity: SFR=1.08×
10−10L8−1000µm

IR /L� M�/yr (Kennicutt 1998) or from

the CO (7-6) luminosity: 8.18× 10−6LCO (7−6)/L� (Lu

et al. 2015). Both formulae assume a Chabrier ini-

tial mass function (Chabrier 2003), and find SFRFIR =

1843±424M�/yr and SFRCO(7−6) ' 2256±423M�/yr,

after the correction for the magnified factor µL = 5.8.

These SFR estimates are consistent with each other

given the fact that the relative accuracy is ∼30% be-

tween the two SFR estimators (Zhao et al. 2020).

From the grey body fit of the FIR SED, we derive

that C(60/100) is about 1.01, corresponding to a ΣSFR =

530±210M�/yr/kpc2 (Liu et al. 2015; Lutz et al. 2016).

The half-light radius, RSF, of the star-forming region is

given by ΣSFR = 0.5× SFR/(π × R2
SF), resulting to a

RSF = 0.74 ± 0.30 kpc. Here we use the SFR from FIR

SED fitting, and take the difference between SFRFIR

and SFRCO(7−6) into the uncertainty. This SFR surface

density weighted radius is comparable to the half-light

radius (1.24 kpc) from our lensing model. Previous high

resolution FIR continuum observations reveal a positive

correlation between the FIR half-light radius and the

FIR luminosity (Fujimoto et al. 2017) for the SMGs with

12 . log(LFIR/L�) . 13. If we apply the FIR size-

luminosity relation to ID 141, we would obtain an FIR

radius of about 2 kpc for LFIR = 1.7 × 1013L�, which

is twice larger than the FIR radius of ID 141. So ID

141 may have a higher SFR surface density than the

galaxies with similar FIR luminosity. Nevertheless, since

our result is estimated from the ALMA observation with
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Figure 6. Comparisons between the [N ii ] /CO (7-6), and
[N ii ] /[C ii ] against the C(60/100) for the local LIRGs (open
squares), high-z sample (blue triangles from Lu et al. (2018)
and orange dots from Cunningham et al. (2019)) and ID 141
(the red star) presented in this work. The open squares with
open circles represent the AGNs. The thick black line is the
vertical least-squares fitting given in Eq. (4) and (5) in Lu
et al. (2015). The dot lines are the 1 σ uncertainty of the
fitting results. C(60/100) can be used as the dust tempera-
ture indicator (Chanial et al. 2007; Dı́az-Santos et al. 2017),
so we also show the Tdust in the upper axisa. For the local
LIRG sample and the high-z sample from Lu et al. (2018),
the error bars are smaller than the sample scatter, so we
omit them. The large scatter of the sample in Cunningham
et al. (2019) may caused by the presence of AGNs and the
flux uncertainty in the sample.
a We derive the relation between the C(60/100) color and
dust temperature by assuming a single temperature grey

body SED model with the dust emissivity fixed to β = 1.8.

1” beam, additional higher spatial resolution data would

help reveal more detailed star formation structures.

5. CONCLUSION

We present our recent ALMA band-7 observation on

the H-ATLAS selected SMG: ID 141 in the [N ii ] and

continuum at rest-frame 197.6 µm at a spatial resolu-

tion of 1.2′′ and 1.5′′ (1′′ ∼ 6.9 kpc). Taking advent-

age of the gravitational lens, our new ALMA observa-

tion help us to moderately resolve the FIR continuum

and dynamical structures. Our continuum-based lens-

ing model fitting result reveals the FIR continuum has a

Sérsic index about 0.95 and an effective radius ∼ 0.18′′.

The FIR size is about two times smaller than the typ-

ical SMG with the ID 141 intrinsic FIR luminosity of

1.7×1013L�. We further reconstruct the [N ii ] velocity

field on the source plane and find a rotation dominated

dynamical structure. The morphology and dynamics on

the source plane suggest a high-z disk SMG with a fast

rotational velocity (about 300 km/s), indicating a dark

matter halo mass of the order of 5 × 1012M�. We de-

velop our lensing model fitting code, which can apply a

non-informative prior to our lens-modelling parameters,

and shows good potential to study the gas distribution,

gas gravitational instability (e.g. Toomre parameter Q,

Toomre 1964) of ID 141 with higher resolution data.

The observed line ratios ([N ii ] /CO (7-6) and [N ii ] /[C ii ] )

and the FIR color C(60/100) of ID 141 are consistent

with the previous line ratio v.s. the FIR color correla-

tion (Lu et al. 2018). Our method to estimate the high-z

galaxy dust temperature with the line ratio measure-

ments is valid for ID 141 with about 1 σ uncertainty.

Moreover, the [N ii ] /[C ii ] value suggests that most of

the [C ii ] line originate from the neutral gas and the

metallicity of ID 141 would be lower than Z�.

Together with the previous empirical relation between

the star formation surface density and the FIR color,

and the SFR derived from the CO (7-6) and FIR flux, we

estimate a star formation radius of about 1 kpc, which is

consistent with the size derived from our lensing model.
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