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ABSTRACT

Time-delay cosmography of lensed quasars has achieved 2.4% precision on the measurement of the Hubble Constant, H0. As part of an ongoing
effort to uncover and control systematic uncertainties, we investigate three potential sources: 1- stellar kinematics, 2- line-of-sight effects, 3-
deflector mass model. To meet this goal in a quantitative way, we mimic closely the H0LiCOW/SHARP/STRIDES procedures (i.e., TDCOSMO),
and we find the following. First, stellar kinematics cannot be a dominant source of error or bias given current uncertainties. Second, we find no
bias arising from incorrect estimation of the line-of-sight effects. Third, we show that elliptical composite (stars + dark matter halo), power-law,
and cored power-law mass profiles have the flexibility to yield a broad range in H0 values. However, the TDCOSMO procedures to model the data
with both composite and power-law mass profiles are informative. If the models agree, as we observe in real systems owing to the "bulge-halo"
conspiracy, H0 is recovered precisely by both models. If the two models disagreed, as in the case of some pathological models illustrated here, the
TDCOSMO procedure would either be able to discriminate between them through the goodness of fit, or account for the discrepancy in the final
error bars provided by the analysis. This conclusion is consistent with a reanalysis of the TDCOSMO (real) lenses: the composite model yields H0
=74.2+1.6

−1.6 km s−1 Mpc−1, while the power-law model yields 74.0+1.7
−1.8 km s−1 Mpc−1. In conclusion, we find no evidence of bias or errors larger than

the current statistical uncertainties reported by TDCOSMO.

Key words. methods: data analysis – gravitational lensing: strong

1. Introduction

The time-delay method in gravitationally lensed quasars (Refs-
dal 1964) provides a perhaps unrivalled combination of high sen-
sitivity to the Hubble Constant, H0 and minimal dependence on
the other cosmological parameters, while relying only on well
known physics, i.e., gravity. These qualities make this method
particularly important in the present context, where there is
growing evidence for tension in H0 measurements using cosmo-
logical probes based on the early Universe and the late Universe
(Verde et al. 2019).

The power of the method in providing reliable H0 measure-
ments depends on three main ingredients: 1- precise time-delay
measurements, 2- well constrained models of the dominant pri-
mary and nearby lens galaxies, 3- an estimate of the combined
lensing effect of all the mass along the line of sight up to the
redshift of the lensed quasar.

Precise and accurate time-delay measurements are available,
e.g. from the COSMOGRAIL collaboration, using long-term
photometric monitoring of selected lensed quasars (e.g. Courbin
et al. 2018; Bonvin et al. 2018, 2019). The precision and accu-
racy of the COSMOGRAIL technique have been verified via a
blind time-delay challenge (Dobler et al. 2015; Liao et al. 2015;
Bonvin et al. 2016). The time-delays are then turned into cos-
mology with detailed modeling of the potential well of the lens
using the constraining power of deep sharp HST images (e.g.
Suyu et al. 2010, 2014; Wong et al. 2017; Birrer et al. 2019;
Rusu et al. 2019) or Keck AO imaging (e.g. Chen et al. 2019).
The measured stellar kinematics of the lensing galaxy are used to

mitigate the impact of well-known lensing degeneracies on the
cosmological inference (e.g. Treu & Koopmans 2002). Finally,
multi-band wide-field imaging and/or spectroscopy (e.g. Rusu
et al. 2017; Sluse et al. 2019) is used to constrain the combined
lensing effect of the line-of-sight objects and large-scale struc-
tures in a statistical way (Greene et al. 2013; Rusu et al. 2017).
Tihhonova et al. (2018) also showed that these estimates of the
line-of-sight effects are compatible with the ones obtained with
weak gravitational lensing.

Adopting these data and methodology, the H0LiCOW col-
laboration (Suyu et al. 2017) is analyzing a sample of lenses
suitable for high-precision H0 measurements. The latest results
based on 6 systems are summarized by Wong et al. (2019, here-
after H0LiCOW XIII). We stress that the H0LiCOW results are
obtained through blind analyses, in the sense that the mean value
of all the observed cosmological parameters is hidden to the in-
vestigators until the analysis is complete and the papers have
been written1. The goal of this procedure is to avoid conscious
or unconscious experimenter bias. We note that the thus far pub-
lished six measurements are statistically consistent with each
other, in the sense that the scatter between the measurements is
as expected from the estimated uncertainties. This means that if
there are any unknown uncorrelated sources of error, those are
subdominant with respect to the ones currently considered.

1 The first lens system analysed using the then newly developed lens
modeling methods was not blinded (B1608 + 656), but the subsequent
analyses of the other 5 lenses using similar methods were blinded.
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The resulting value of the Hubble constant, H0 = 73.3+1.7
−1.8

km s−1 Mpc−1, in a flat ΛCDM universe, i.e. a 2.4% precision on
H0, is 3σ higher than the early-Universe results (Planck Collab-
oration 2018), adopting the same ΛCDM cosmological model,
and is in very good agreement with other independent local mea-
surements (e.g. Riess et al. 2019). When combined with com-
pletely independent results from other local measurements of
H0, the tension with the early-Universe probes range between
4 and 6σ (Verde et al. 2019), depending on the combination of
probes. Very recently, Pandey et al. (2019) also carried out sta-
tistical tests independent of any underlying cosmology, show-
ing that the distances measured with strong lensing time delays
and with supernovae, i.e. both local but independent measure-
ments, are fully compatible (see also Wojtak & Agnello 2019).
Although they cannot exclude that supernovae and lenses share
exactly the same systematics, these systematic biases would also
have to be preserved across redshift, which seems unlikely.

The blind analysis of a seventh lens system using methods
very similar to those adopted by H0LiCOW has recently been
published by the STRIDES collaboration (Shajib et al. 2019, an
independent analysis adopting a different modeling software is
currently under way), finding 74.2+2.7

−3.0 km s−1 Mpc−1, in agree-
ment with the H0LiCOW result. This most recent system is par-
ticularly interesting since it has two sets of multiple images at
different redshifts, which help break some of the degeneracies,
and results in the most precise individual measurement so far.
In order to make further progress in this important arena, mem-
bers of the COSMOGRAIL, H0LiCOW, SHARP and STRIDES
collaborations interested in time-delay cosmography of lensed
quasars have decided to join forces with other scientists and form
a new "umbrella" collaboration named TDCOSMO (Time-Delay
COSMOgraphy).

The high statistical significance of the tension between early
and late Universe probes has prompted two lines of investiga-
tion. On the one hand, theorists have been trying to find ways to
reconcile the measurements by considering models beyond the
standard ΛCDM one (e.g. Knox & Millea 2019). On the other
hand, observing teams have been focusing on increasing the pre-
cision of each method while carrying out tests of potential sys-
tematic uncertainties to ensure that the tension is real. After all,
"extraordinary claims require extraordinary evidence".

In this work, the first by the TDCOSMO collaboration, we
explore a number of potential systematic uncertainties that may
affect the time-delay cosmography method, after reviewing its
implementation by TDCOSMO in Section 2 and the inference
procedure in Section 3. First, in Section 4 we explore poten-
tial biases introduced by systematic uncertainties in the model-
ing and measurement of the deflector stellar velocity dispersion.
Second, in Section 5, we study uncertainties in the modeling of
the line-of-sight contribution. Third, in Section 6, we address the
long standing issue of the mass-sheet degeneracy and the flexi-
bility of lensing models. It is very well known that assumptions
must be made on the form of the main deflector mass distribu-
tion to break the mass-sheet degeneracy. As many authors have
pointed out (Falco et al. 1985; Schneider & Sluse 2013; Son-
nenfeld 2018; Kochanek 2019), if the models adopted are in-
sufficiently flexible, the resulting uncertainties will be underes-
timated and potentially biased. Section 7 offers a summary and
conclusions.

We address these three sources of potential systematic un-
certainties using a combination of observational tests and sim-
ulations. We stress that a full simulation of the observational
setup and lens modeling procedure is needed if one wants to ob-

tain quantitative estimates of the uncertainties. Previous works
(Schneider & Sluse 2013; Sonnenfeld 2018; Kochanek 2019)
were based on idealized, often spherical, toy models. Those are
useful to gain intuition of the problem, but by their very na-
ture cannot provide quantitative estimates due to the extreme
approximation and the limited information utilized to constrain
them, often just the Einstein Radius and an integrated velocity
dispersion. The only way to obtain a faithful estimate of the
uncertainties is to reproduce the measurement using the same
amount of information (thousands of pixels from imaging, mul-
tiple time-delays, stellar kinematics) and modeling techniques.
The simulated dataset shown in this paper are carried out us-
ing the pipeline developed by Ding et al. (2017a,b) and Ding
et al. (2018), and the fitting procedure mimics as closely as pos-
sible that of the H0LiCOW/SHARP/STRIDES (hereafter TD-
COSMO) collaboration.

2. Background

2.1. Time-delay cosmography and the mass-sheet
degeneracy

Time delays in gravitationally lensed quasars provide a direct
measurement of the so-called “time-delay distance”, which is a
combination of angular diameter distances to the source, Ds, to
the deflector, Dd, from the deflector to the source, Dds, and the
redshift of the deflector zd:

D∆t ≡ (1 + zd)
DdDs

Dds
(1)

(Refsdal 1964; Schneider et al. 1992; Suyu et al. 2010).
This quantity is related to the relative time delay between

two multiple images A and B, ∆tAB, by:

∆tAB =
D∆t

c

[
(θA − β)2

2
−

(θB − β)2

2
− ψ(θA) + ψ(θB)

]
, (2)

where θ is the image position on the plane of the sky, β is the (un-
observable) source position, c is the speed of light and ψ is the
lensing potential which is defined such that the deflection angle
α(θ) is given by α(θ) ≡ ∇ψ(θ). From Equation (2), we see that
D∆t depends on the geometry of the lensed system and on the po-
tential well of the lensing galaxy. The mass profile is expressed
as a dimensionless surface mass density, κ(θ), called the conver-
gence. It is related to how the light beams from the source are
stretched or squeezed, leading to an apparent (de)magnification
and can be expressed as half of the Laplacian of the lensing po-
tential:

κ(θ) =
1
2
∇2ψ(θ). (3)

We can also define the Fermat potential φ (Schneider 1985;
Blandford & Narayan 1986) as

φ(θ) ≡
(θ − β)2

2
− ψ(θ). (4)

Using this definition, Equation (2) reduces to

∆tAB =
D∆t

c
[
φ(θA) − φ(θB)

]
≡

D∆t

c
∆φAB, (5)

where ∆φAB is the difference of Fermat potentials at the positions
of the multiple images. Kochanek (2002) shows that the time-
delay distance, D∆t, depends on the mean surface density 〈κ〉 at

Article number, page 2 of 18



M. Millon et al.: Uncertainties in time-delay cosmography

the Einstein radius θE, specifically over the annulus defined by
image positions.

An inherent limitation of the lensing models to infer D∆t is
the so called Mass-Sheet Transformation (MST, e.g. Falco et al.
1985; Schneider & Sluse 2013), which transforms the projected
mass distribution and the source plane position according to:

κ(θ)→ κλ(θ) = (1 − λ) × κ(θ) + λ,

β→ β′ = λβ,
(6)

where β is the (unknown) source position on the sky prior to
lensing. In other words, one can add a mass sheet to any model
and apply a scaling factor, λ, without changing the lensing ob-
servables except the time delays, i.e. the time-delay distance and
therefore the cosmology.

The time-delay distance given by any model is affected by
MST as follows :

DMST
∆t = Dtrue

∆t × (1 − λ). (7)

In the TDCOSMO analyses, this scaling factor λ is identified
with the external convergence factor κext which accounts for the
contribution of all the mass along the line of sight (LOS). It is
estimated independently from the lens modeling by comparing
the relative number of galaxies weighted by physically relevant
priors such as the distance to the lens, the stellar mass and the
redshift in a large aperture around the strong lens system with
simulated LOS extracted from numerical simulations with simi-
lar statistical properties (Rusu et al. 2017). Alternatively, the ex-
ternal convergence can be estimated from a weak lensing analy-
sis (Tihhonova et al. 2018).

In addition to the MST above due to external mass sheets
(i.e., external mass structures that do not affect the stellar dynam-
ics of the foreground lens galaxy), MST can also manifest itself
approximately as a change in the radial mass profile of the fore-
ground lens galaxy. We describe this as an "internal" mass sheet.
To mitigate the effects of the internal mass sheet, we consider
different families of models and further use kinematic measure-
ments of the foreground lens that provide additional constraints
on the lens mass models. In particular, the goodness of fit to the
kinematic data, especially spatially-resolved lens stellar velocity
dispersion, allows us to distinguish between otherwise degener-
ate lensing mass models (e.g., Yıldırım et al. 2019).

The lens stellar velocity dispersion of the foreground lens
galaxy allow the inference of the angular diameter distance, Dd,
to the lens, in addition to the time-delay distance (Paraficz &
Hjorth 2009; Jee et al. 2015, 2019). The inference of Dd de-
pends on the anisotropy of stellar orbits (Jee et al. 2015) but
this additional distance measurement provides more leverage on
constraining cosmological models (Jee et al. 2016; Shajib et al.
2018).

2.2. Two-distance inference

In the most recent analysis of SDSS J1206 + 4332,
PG 1115 + 080, RX J1131 − 1231, B1608 + 656 and
DES J0408 − 5354 (Birrer et al. 2016, 2019; Chen et al.
2019; Shajib et al. 2019; Wong et al. 2019), the time-delay
distance D∆t and the angular diameter distance to the lens Dd are
jointly inferred. Following the method developed in Birrer et al.
(2016, 2019) and Shajib et al. (2019), the velocity dispersion of
the main deflector σv can be expressed as:

σ2
v = (1 − κext)

Ds

Dds
c2J(ξlens, ξlight, βani), (8)

where ξlens is the set of all parameters contained in the lens mass
model, ξlight is the parameter of the light models and J is a func-
tion that captures all dependencies on the modeling parameters
and the anisotropy profile βani. Using Equation (1), (5) and (7),
we have :

DdDs

Dds
=

c∆tAB

(1 + zd)(1 − κext)∆φAB(ξlens)
. (9)

Combining Equations (8) and (9), we obtain an expression
for the angular diameter distance to the lens which is indepen-
dent of the external convergence:

Dd =
c3 ∆tAB J(ξlens, ξlight, βani)

(1 + zd) σ2
v ∆φAB(ξlens)

. (10)

We immediately see that the angular diameter distance Dd varies
as 1

σ2
v
. The dependence of Dd to a change in the measurement of

σv can therefore be computed analytically :

d Dd

Dd
= −2

dσv

σv
, (11)

whereas D∆t is left unchanged when varying the velocity disper-
sion. The final H0 measurement is obtained by combining these
two distance measurements. As a consequence, the importance
of the velocity dispersion in the final H0 value depends on the
relative precision between the angular diameter distance and the
time-delay distance, and on the mapping between the parame-
ters. The D∆t measurement is typically more constraining of H0
than Dd given the current observational data. Future observations
with spatially resolved kinematics are expected to improve sub-
stantially the Dd constraints (Yıldırım et al. 2019).

Two of the lens systems in the TDCOSMO sample,
HE 0435 − 1223 and WFI 2033 − 4723, have nearby massive
perturbing galaxies at a different redshift from the strong lensing
galaxy, and thus required multi-lens-plane mass modeling. The
single-lens-plane equations (8)-(9) are thus not directly applica-
ble, given the additional angular diameter distances involved in
the multiple lens planes. Nonetheless, the mass model of the lens
galaxy can still be used to predict the velocity dispersion to com-
pare to the measured value, so the kinematic measurement can
be used to further constrain the mass model. It turns out that an
effective time-delay distance could be derived for these two lens
systems, but the inference of Dd accounting for the multi-lens
planes is deferred to future work.

2.3. The current TDCOSMO model families

The collaborations within TDCOSMO currently consider two
classes of models (composite and power-law), to reconstruct the
mass distribution of the main lens, with the exception of the
first system analyzed B1608 + 656 (Koopmans et al. 2003; Suyu
et al. 2010). B1608 + 656 was modelled only using a power-law,
as Suyu et al. (2009) showed that deviations to a smooth poten-
tial using pixellated corrections were negligible. The fact that
the corrections are so small, even though the deflector in this
complex lens is an obvious merger between two galaxies, is a
remarkable indication of the degree of smoothness of the over-
all gravitational potential. This is also supported by the analysis
of extended rings used to detect substructures in lenses through
their impact on the smoothness of Einstein rings. Aside from
specific features arising from well-identified substructures in any
given lens, no statistically significant correction to simple para-
metric lens models is found by Vegetti et al. (2014).
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For the above reasons, the TDCOSMO analyses consider
purely analytical lens models with sufficient degrees of free-
dom to catch a broad range of observables given current imag-
ing capabilities, e.g. with HST or adaptive optics. More specif-
ically, the TDCOSMO analyses considers elliptical power-law
and composite models, with the addition of external shear.

2.3.1. Power-law model

Power-law models have a constant projected mass slope over the
entire profile. The convergence of the power-law elliptical mass
distribution (Barkana 1998) is described by :

κPL(θ1, θ2) =
3 − γ

2

 θE√
qmθ

2
1 + θ2

2/qm


γ−1

, (12)

where γ is the slope of the profile, qm is the axis ratio of the
elliptical profile and θE is the Einstein radius. The coordinate
system is defined such that θ1 and θ2 are along the major and
minor axis respectively. The cored power-law profile is a natu-
ral extension of this model which introduces an additional free
parameter, namely the smoothing scale in the center of the pro-
file. This profile has therefore a shallower slope in the center
to reproduce the core of galaxies. A complete description of
this mass model can be found in Barkana (1998). Although not
used by the TDCOSMO collaboration, except in the analysis of
RX J1131 − 1231 by Suyu et al. (2014) who found negligible
core size, we tested cored power-law profiles on simulated lenses
in Section 6.

2.3.2. Composite model

The second family of mass models used by the TDCOSMO col-
laboration are the so-called composite models, which consist of
baryonic matter and dark matter components. For the dark mat-
ter, a Navarro-Frenk-White (NFW) profile is used. The spherical
NFW density distribution is given by :

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2 , (13)

where rs is the scale radius and ρs is a normalisation factor
(Navarro et al. 1997). For the baryonic component, the TD-
COSMO collaboration adopts the Chameleon profile, which is
the difference between two singular isothermal ellipsoids and
closely mimics a Sérsic profile. A complete description of this
model can be found in Dutton et al. (2011) and Suyu et al.
(2014). This family of mass model allows more flexible mass
distribution than power-law models since the slope of the pro-
jected mass profile is not constant over the whole lens galaxy.

3. Inference procedure and limitations of toy
models

The next step required to derive a H0 measurement from the data
is a statistical inference. The collaborations contributing to TD-
COSMO adopt a Bayesian framework and compute the posterior
probability distribution function of all the cosmological and nui-
sance parameters given the data.

The imaging and spectroscopic data contain huge amounts of
information, well beyond the position of the quasar images. Set-
ting aside the line of sight, which is constrained independently,
the main sources of constraints for the main deflector(s) mass

models are: the pixels of the high resolution images (of order
104); independent time delays (up to three for a quad); stellar
velocity dispersion of the main deflector and nearby perturbers,
if present.

The inference required to extract all the information from
the data is computationally very intensive. Taking into account
the need to explore multiple and flexible models to marginalize
over modeling choices, the TDCOSMO analysis required up to
a million CPU hours per lens.

In the recent past, a number of papers have used simpli-
fied toy models to investigate systematic uncertainties in time-
delay cosmography (Schneider & Sluse 2013; Sonnenfeld 2018;
Kochanek 2019). These models are certainly a useful illustration,
and it is encouraging that they conclude that a precision within
the range 3-10% can be reached with their simplified approach
and limited constraints. However, owing to their limitations, toy
models cannot provide the quantitative answers that are needed
to understand whether there are biases at the 2% level, which is
the current achievement of time-delay cosmography.

Chief among the limitations of previous works is the use of
spherical models. Spherical models are inherently inappropriate
to model quads (e.g. Kochanek 2006), because they cannot even
produce four images and thus are intrinsically less constrained
by the data than observed quads.

The bulk of the lensing information comes from the radial
extent and surface brightness distribution of the lensed images,
which constrains directly the radial dependency of the mass dis-
tribution, the key parameter driving the inference of H0. Toy
models neglect this information (e.g. Kochanek 2019), and are
mostly spherical and constrained solely by the position of the
quasar images spanning just 10% on either side of the Einstein
radius. Furthermore, they are constrained only by the positions
of the multiple images of the quasars and not using the full
information content of the lensed host galaxy, often amount-
ing to thousands of high signal-to-noise ratio pixels. These con-
straints would have no way to detect significant departures from
a power law for example, which could instead be detected in
real-life cases as variations in the distortion of the images span-
ning a much larger significant radial range. Indeed, most of the
HST data used in time-delay cosmography display prominent
Einstein rings, spanning several tenths of arcseconds radially.
In other words, the radial width of the ring is significant com-
pared with the Einstein radius itself, hence constraining the po-
tential well radially. This is clearly illustrated with the case of
RX J1131 − 1231 in e.g. Suyu et al. (2014).

In addition, toy models typically condense the information in
a few parameters and thus cannot realistically explore the degen-
eracies between true model parameters and how uncertainties in
the actual data translate into inference.

Last but not least, toy models have no way of quantifying the
adequacy of a model, as done in real analyses when one can as-
sess the goodness of the models, in absolute and relative terms.
This is to our knowledge the only way to establish whether the
chosen parametrization is an appropriate description of the data.
In fact, time-delay cosmography is done so far by marginalizing
over a broad range of different models to account for uncertain-
ties related to the choice of parametrization. The flexibility of
such models and the power of contrasting their goodness of fit is
illustrated in Section 6.

4. Influence of kinematics data on H0 measurement

One important ingredient to mitigate the impact of the MST is to
use the kinematics of the deflector as an independent mass esti-
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Fig. 1. Sensitivity of the inferred Hubble constant as a function of fractional change/error in the measured lens velocity dispersion, σv (see Eq. 14).
Each color corresponds to one of the seven strong lens systems of the current TDCOSMO sample. The dotted lines display the best a linear fit
to the data. The joint inference performed on the seven lenses is shown in black. The error bars correspond to the 16th and 84th percentile of the
posterior distributions. The two bottom panels show the sensitivity of H0 to a change in the measured lens velocity dispersion for power-law (left)
and composite (right) models independently. The sensitivity of the joint inference, 〈ξ〉 is indicated on each panel.

mator (Treu & Koopmans 2002; Koopmans 2004), since within a
cosmological model Dd and D∆t are related to each other. So far,
the central stellar velocity dispersion integrated within an aper-
ture, σv, has been used even though additional and substantial
gains can be obtained by including spatially resolved informa-
tion that helps break the mass-anisotropy degeneracy (Barnabè
et al. 2011; Czoske et al. 2012; Shajib et al. 2018; Yıldırım et al.
2019).

The inference of the Hubble constant is driven by a com-
bination of observables, including the extended images used in
the lens model, multiple time delays if available, and kinematic
information. Thus, the dependency of H0 on kinematics data de-
fined by

ξ ≡
δH0/H0

δσv/σv
(14)

cannot be estimated with simple dimensional arguments or toy
models, but needs to be computed by repeating the inference
while varying the input kinematics data. The result will depend
on the details of the analysis as well as on the relative quality
and constraining power of the kinematic and non-kinematic data,
and on how the D∆t −Dd plane maps into H0 as a result of the
deflector and source redshifts. Each of these factors varies from
lens to lens as we show below and thus cannot be simply derived
from a toy model and generalized to every lens.

4.1. The TDCOSMO analysis and its sensitivity to the
measured velocity dispersion

Simple models such as the Singular Isothermal Sphere (SIS)
models, can have a very strong dependency on the velocity dis-
persion. This dependency could be of the order of ξ ∼ 1, which
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means that a 1% change in the velocity dispersion σv leads
roughly to a 1% change in H0. The high sensitivity of SIS mass
models to a change in the velocity dispersion arises from the fact
that they have only one free parameter (the normalization).

In this section we show that the TDCOSMO measurements,
which use models more flexible than SIS and constrain them
with a wealth of data, are less sensitive to the kinematics infor-
mation than SIS. In order to quantify how the error on σv propa-
gates into H0, we recomputed the posterior distributions for D∆t
and Dd after changing arbitrarily the median value for our σv
distribution. We perform the test for four values of the shift, i.e.
δσv/σv = ± 5% and δσv/σv = ± 10%, for each individual lens
in the TDCOSMO sample, as well as for the joint H0 inference.
Throughout this section, the H0 inference was performed in flat
ΛCDM cosmology with a uniform prior on Ωm ∈ [0.05, 0.5].

Fig. 1 summarizes the results, where we define H0 and σv
as the inferred H0 value of the system and its measured aperture
velocity dispersion. The models used in Fig. 1 include both com-
posite and power-law mass models2 combined according to the
standard procedure described in previous papers (e.g. Suyu et al.
2014; Chen et al. 2019; Birrer et al. 2019; Rusu et al. 2019). We
first discuss in this section the general trend between σv and H0
for the combination of the two model families. Then, we discuss
the specifics of each model family separately.

The slope ξ quantifies the sensitivity of the inferred H0 value
to a change in velocity dispersion. It is computed by performing
a linear regression to the points (Table 4.1). We observe large
variation of measured slopes from object to object. However, for
the full sample, the joint H0 inference leads to a mean sensitivity
of 〈ξ〉 = 0.07 ± 0.02. In other words, a systematic increase (de-
crease) of 10% on the velocity dispersion increases (decreases)
H0 by approximately 0.7%.

PG 1115 + 080 and DES J0408 − 5354 differ from the other
lenses with a slightly negative slope of ξ=−0.04 ± 0.01 and
ξ=−0.01 ± 0.01 respectively. For the other lenses, increasing the
velocity dispersion leads to a smaller angular diameter distance
Dd and therefore to a higher H0 (Eq. 11). This behaviour could
be explained for DES J0408 − 5354 as this lens is a complex sys-
tem with several sources located at two different redshifts. Thus,
the reduced dependency on velocity dispersion could be due to
the extraordinary azimuthal and radial extent of the lensing in-
formation, and the fact that multiple redshift sources might help
limit the effects of MST. In this regime, the kinematics informa-
tion only brings very limited constraints on the mass model. The
measurement of H0 is therefore almost insensitive to the kine-
matics.

In the case of PG 1115 + 080, the time-delay distance D∆t,
which does not depend on the kinematics data, has a much larger
constraining power on H0 than the angular diameter distance
Dd. As a result, PG 1115 + 080 is also almost insensitive to the
velocity dispersion. We note that SDSS J1206 + 4332 has the
largest sensitivity to a change in σv, with an increase of 10%
in velocity dispersion leading to an increase of H0 by 4.2%. We
interpret this as the effect of D∆t being less well constrained by
the lensing data on their own. The more limited lensing con-
straints with respect to other systems are due to the presence of
several nearby massive perturbers, which introduce significant
uncertainties, and in part to the fact that this is the only doubly

2 The first H0LiCOW lens, namely B1608 + 656, was modeled with
a power-law model and pixellated potential corrections, which were
found to be small. A composite model was not applied, so we use only
the power-law model in our analysis (see Suyu et al. 2010, for details).

imaged quasar in the sample - all the others are quadruply im-
aged.

Last but not least, we note that SDSS J1206 + 4332 and
PG 1115 + 080 have the largest relative uncertainty onσv among
the TDCOSMO sample. Therefore, the zero point on the x-axis
of Fig. 1 for these two objects are the most uncertain.

We repeat the experiment for power-law models and com-
posite model separately to check the sensitivity to kinematics
data of each family of mass models. We exclude B1608 + 656
in the comparison, since it had a pixelated potential correction
performed on the power-law model, but no composite model.
Bottom panels of Fig. 1 show the result of this test.

For the joint 6-lenses inference, we obtain 〈ξcomposite〉 =
0.06 ± 0.02 and 〈ξPL〉 = 0.06 ± 0.01. The value of the joint
inference is similar for both the composite and the power-law
cases but each lens behaves differently. While WFI 2033 − 4723
becomes more sensitive to the kinematics when modelled only
with a composite model, SDSS J1206 + 4332 has its sensitiv-
ity almost halved. We can explain this behaviour as due to the
relative precision of the two families of models, which is dif-
ferent from one lens to the other. The time-delay distance of
SDSS J1206 + 4332 is better constrained by composite models
(D∆t = 5690+449

−356 Mpc at 7.1 % precision) than with power-
law models (D∆t = 5873+659

−659 Mpc at 11.2 % precision). The
relative weight of the D∆t compared to the Dd in the final
value of H0 is therefore more important in the composite model
case. WFI 2033 − 4723 experiences the opposite behaviour; it
has tighter constrains with power-law models (D∆t = 4701+242

−204
Mpc at 4.74 % precision) than with composite models (D∆t =
4909+485

−319 Mpc at 8.2% precision). WFI 2033 − 4723 is therefore
more sensitive to the kinematics in the composite model case.

In summary, there is no evidence that one family of mass
models is significantly more sensitive to the kinematics than the
other. For individual lenses, we observe differences but they can
be explained by the relative precision that each of the models
can achieve on the D∆t measurement with respect to their Dd
measurement, based on the relative weight of the lensing and
kinematic constraints and on the redshift of deflector and source
that determine how the D∆t - Dd constraint maps into H0.

5. Is there any evidence for correlation between H0
and physically independent observables?

The inference of H0 relies on many independent ingredients and
observables, such as the velocity dispersion of the deflector and
the relative density of galaxies in the line of sight up to the back-
ground quasar. Those quantities do not have any physical reason
to be correlated with H0. Thus, any evidence of a correlation
between these observables and the inferred value of H0 across
the TDCOSMO sample, beyond the expected error covariance,
would be an indication of underlying systematic errors.

In this section we carry out a number of empirical tests, cor-
relating H0 with observables and properties of the instrumental
setup, and find no evidence for any statistically significant de-
pendency.

5.1. Dependency on the characteristic scale of the lens
system and spectroscopic aperture.

Fig. 2 shows the inferred Hubble constant for each of the seven
TDCOSMO lenses for several combinations of characteristic
scales of the lens systems and the aperture used for spectroscopic
follow-up. In the left panel, we use the ratio between the Einstein
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H0

[ km s−1 Mpc−1 ]

σv

[ km.s−1]

ξ

(All models)

ξPL

(power-law)

ξcomposite

(composite)
Aperture θeff θE

B1608 + 656 71.0+2.9
−3.3 260 ± 15 0.27 ± 0.01 - - 1′′.00 × 0′′.84 0′′.59 0′′.81

RX J1131 − 1231 78.2+3.4
−3.4 323 ± 20 0.02 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 0′′.81 × 0′′.70 1′′.85 1′′.63

HE 0435 − 1223 71.7+4.8
−4.5 222 ± 15. 0.08 ± 0.01 0.03 ± 0.01 0.13 ± 0.01 0′′.74 × 0′′.54 1′′.33 1′′.22

SDSS J1206 + 4332 68.9+5.4
−5.1 290 ± 30 0.42 ± 0.01 0.51 ± 0.06 0.25 ± 0.01 1′′.90 × 1′′.00 0′′.34 1′′.25

WFI 2033 − 4723 71.6+3.8
−4.9 250 ± 19 0.17 ± 0.02 0.09 ± 0.01 0.35 ± 0.06 1′′.80 × 1′′.80 1′′.41 0′′.94

PG 1115 + 080 81.1+8.0
−7.1 281 ± 25 −0.04 ± 0.01 0.08 ± 0.01 −0.02 ± 0.01 1′′.06 × 1′′.00 0′′.53 1′′.08

DES J0408 − 5354 74.2+2.7
−3.0 227 ± 9 −0.01 ± 0.01 −0.01 ± 0.01 −0.01 ± 0.01 1′′.00 × 1′′.00 1′′.20 1′′.92

All - - 0.07 ± 0.02 0.06 ± 0.01 0.06 ± 0.02 - - -
Table 1. Summary of the H0 values (Col. 2) reported in Wong et al. (2019) and Shajib et al. (2019). Col. 3 gives the aperture velocity dispersion
used for their analysis along with 1σ error bars. Cols. 4-6 give the sensitivity, ξ, of the inferred H0 value to the lens galaxy velocity dispersion.
When the information is available, we make a distinction between composite and power-law model and the combination of these. Cols. 7-9 list the
size of the aperture used for the velocity dispersion measurement, the effective radius θeff of the lens and the Einstein radius of each lens.
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Fig. 2. Effective radius θeff , Einstein radius θE and radius of the spectroscopic aperture θaperture of the TDCOSMO lenses. We show the ratios of these
three quantities and the corresponding H0 value inferred for each system. We do not observe significant correlations between the characteristic
sizes of the lens, the spectroscopic aperture and H0. The horizontal lines indicate the latest H0LiCOW 2019 (dotted orange, Wong et al. 2019) and
Planck (dashed blue, Planck Collaboration 2018) results along with the 1σ uncertainties.

and the effective radii to investigate any departure from the as-
sumed description of the radial mass density profile. The ratio
between the effective radius and the Einstein radius is used as
a diagnostic of the relative spatial distribution of luminous and
total matter. If the TDCOSMO models were insufficiently flexi-
ble, one may expect a trend in this ratio because the sum of the
dark and luminous component would produce different shape of
the total mass profile and a lack of flexibility in the mass model
would not be able to reproduce the correct underlying distribu-
tion. In the middle panel are shown the ratios between Einstein
radius and the spectroscopic aperture, which compare the spa-
tial scales at which the lensing and kinematic information is
obtained. Finally, the right panel of Fig. 2, shows the ratio be-
tween the effective radius and the radius of the spectroscopic
aperture, which is potentially affected by wrong modeling of the
stellar kinematics. One expects trends in all the above quantities
if, e.g. the assumptions about orbital anisotropy were systemati-
cally wrong.

In all three cases, no statistically significant correlation is
found, even though the dynamical range on the x-axis is a factor
of 3–6. While the absence of correlations does not prove that all
systematic errors are below the statistical uncertainties, this is

an important sanity check for our current models and for future
work as the statistical precision improves with growing sample
size.

In addition, observational and modeling effects such as the
choice of stellar template, the choice of anisotropy model, or the
PSF modeling could potentially bias the measured velocity dis-
persion of the main deflector and thus H0. The net effect of all
these possible sources of systematic errors is difficult to quantify
exactly but they typically scale with the effective radius of the
lens θeff or the aperture radius of the spectroscopic observation
θaperture. The absence of any trend in Fig. 2 is reassuring in this
regard. Moreover, as we showed in Section 4, even ∼ 5% system-
atic bias on the measured velocity dispersion, or equivalently on
the modeled quantities due to incorrect anisotropy assumptions,
will only produce an average 0.35% bias on H0. Furthermore, as
shown above, the direction and amplitude of the error would be
different for each lens and therefore this systematic uncertainty
would also show as a source of scatter or trend across the sample,
which are not observed.
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Fig. 3. Hubble constant as a function of the measured velocity disper-
sion of the main lens. The horizontal lines indicate the latest H0LiCOW
2019 (dotted orange, Wong et al. 2019) and Planck (dashed blue,
Planck Collaboration 2018) results along with the 1σ uncertainties.

5.2. Dependency on intrinsic parameters of the deflector
traced by the velocity dispersion

An additional potential concern is whether systematic differ-
ences between our assumptions and the internal structure of
early-type galaxies could give rise to measurable biases. For
example, the so-called "tilt" of the fundamental mass plane is
believed to arise primarily from the increase in dark-to-stellar
matter ratio, a systematic change in stellar initial mass function
with galaxy stellar mass, and possibly a small subdominant con-
tribution from systematic variations in stellar orbits anisotropy
(Auger et al. 2010; Cappellari 2016). The stellar initial mass
function is not a concern in the TDCOSMO analysis, since the
stellar mass to light in the composite models is a free parameter.
However, in principle the other two sources of "tilt" could intro-
duce a potential systematic effect in TDCOSMO analysis, where
each system is analyzed independently and with the same priors,
rather than with priors that depend on the stellar mass.

In Fig. 3 we show the inferred H0 as a function of stellar ve-
locity dispersion, a redshift independent proxy of position along
the fundamental plane. No trend is found, indicating that any
residual velocity dispersion dependent bias is smaller than the
measurement uncertainties, and thus not significant at this stage.
As for the plots shown in the previous (and next) section, this
sanity test should be repeated as the sample size and individual
measurement precision increase.

5.3. Dependency on the external convergence and lens
redshift

In the previous sections, the focus is on how the lens velocity
dispersion influences H0 measurements. But there is also an ex-
ternal contribution of all objects along the line of sight to the
main lensing potential. This external convergence, κext, is esti-
mated in all TDCOSMO systems from galaxy counts, in com-
bination with spectroscopy for obtaining redshifts for galaxies
and quantifying coherent structures (e.g., groups and clusters).
Tihhonova et al. (2018) showed that this measurement is com-
patible with the constraints obtained on κext with weak lensing.
κext is directly related to the time-delay distance D∆t, as shown
in Equation (7). Similarly, the effect of the external convergence
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Fig. 4. Measured Hubble constant, before (upper panel) and after (lower
panel) correction for the mass along the line of sight as a function of the
estimated external convergence. Huncorr

0 and Hcorr
0 are related according

to Equation (15). The dashed black lines show the best linear fit, and
the shaded grey envelopes correspond to the 1σ uncertainties. The dot-
ted blue lines represent the relation expected from the theory between
Huncorr

0 , Hcorr
0 and κext.

on the inferred H0 can be written as :

Huncorr
0 =

Hcorr
0

(1 − κext)
, (15)

where Huncorr
0 (Hcorr

0 ) is the value of H0 before (after) correc-
tion from κext. The effect of this external MST can be mitigated
by directly inferring κext. To test the presence of residual ex-
ternal Mass-Sheet Degeneracy (MSD) not entirely removed by
the measurement of κext, we investigate the presence of corre-
lation between the estimated κext and the inferred H0 value for
the seven lenses of the TDCOSMO sample. The top panel of
Fig. 4 shows the relation between the H0 measurements before
correction for the mass along the line of sight, i.e. Huncorr

0 and
the estimated convergence. A trend is visible between these two
quantities indicating that the measurement is indeed sensitive to
the lens environment. If no correction is applied, the lenses lo-
cated in over-dense regions (positive κext) tend to have a higher
Huncorr

0 than lenses in under-dense regions (negative κext). We fit
a linear model to the un-corrected data, and measure a slope of
auncorr = 90.0± 32.1 km s−1 Mpc−1, well compatible with the ex-
pected slope of auncorr = Hcorr

0 = 73.7 km s−1 Mpc−1.
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Fig. 5. H0 constraints for the TDCOSMO lenses as a function of lens
redshift before (top) and after (bottom) correction for the external con-
vergence. The best linear fits and their 1σ envelopes are shown in
shaded grey. The tentative (1.7σ significance) trend is not introduced
by the LOS contribution as it is still visible before correcting for the
external convergence.

As shown on the bottom panel of Fig. 4, this trend disap-
pears when correcting for the external convergence and there is
no evidence for residual correlation between Hcorr

0 and κext. In
fact, the best-fit slope coefficient in this case is acorr = −6 ±
25 km s−1 Mpc−1, consistent with no correlation. This is an indi-
cation that the external convergence correction makes the trend
disappear, which is what would be expected if our correction
were accurately accounting for κext. The present data set shows
no evidence of residual systematic bias involving the LOS mass
density.

As first mentioned by Wong et al. (2019), the H0LiCOW
collaboration reported the presence of a possible trend between
the lens redshift and the inferred Hcorr

0 value at low statistical
significance level (∼ 1.9σ). When adding DES J0408 − 5354 to
the 6 H0LiCOW lenses, the significance of the trend is slightly
reduced to ∼ 1.7σ. We note that, having tested multiple cor-
relations, it might be expected to find one at marginal signifi-
cance, as a result of the "look elsewhere effect". This trend is still
present before correction for the external convergence as shown
on Fig. 5. The significance level of this correlation before LOS
correction is still on the order of ∼ 2σ. Hence, there is no di-
rect indication that the trend is due to unaccounted systematics
in κext.

6. Impact of the choice of families of mass model

In this section we quantify how much the inference on H0 de-
pends on the choice of the mass density profile adopted for
the lens modeling. We first use the six systems for which both
power-law and composite mass models have been performed and
compare the results. We show that, even though in principle the
two model families have sufficient flexibility to produce a broad
range of profile shapes, in practice when applied to real galaxies,
they do not. As we will see below, this is likely due to the "bulge-
halo" conspiracy (Treu & Koopmans 2004; Dutton & Treu 2014)
that makes the mass density profiles of massive elliptical galax-
ies very similar to a simple power law.

Then, we carry out end-to-end simulations in order to quan-
tify the flexibility of our models and how the data actually allows
us to constrain them. Meeting this goal requires the simulated
properties of lenses to be close enough to those of real galaxies.
About 90% of galaxy-scale lenses are early-type galaxies (Auger
et al. 2009), which satisfy very tight correlations between their
observable properties (Auger et al. 2010). This indicates a high
degree of regularity in the relative distribution of dark and lumi-
nous matter, often referred as the “bulge-halo conspiracy”. This
bulge-halo conspiracy results in the total mass density profile of
lenses being very close to a singular isothermal ellipsoid (e.g.
Koopmans et al. 2006, 2009; van de Ven et al. 2009; Cappel-
lari 2016), even out to large radii (Gavazzi et al. 2007; Lagattuta
et al. 2010).

Importantly, the simulations we use all consider spatially ex-
tended lensing information, spanning a large range in radial ex-
tension. This radial extent must provide sufficient leverage to
inform us about any possible departures from a simple power
law within the actual range of observables. A goodness-of-fit
criterion is then used to verify that the model adopted is in-
deed a good description of the data. Models that are exclusively
based on the positions of two or four multiple quasar images,
rather than the full surface brightness distribution of its spatially-
extended host galaxy, cannot provide an accurate account of the
uncertainties from surface brightness modeling. Therefore, mod-
els based on two or four image positions cannot satisfy the above
goodness-of-fit requirement, even if they include time delays and
stellar-velocity-dispersion measurements.

In the following, we describe our set of simulated lenses in
Section 6.2, present the results in Section 6.3 and discuss our
findings in Section 6.4.

6.1. H0 inference per model family

The TDCOSMO collaboration uses both composite and power-
law models in their analysis, except for B1608 + 656 (see Sec-
tion 2.3). Apart from this exception, the published estimates of
H0 correspond to the marginalisation over the two model fami-
lies as a way to account for modeling uncertainties (Wong et al.
2019; Shajib et al. 2019).

The sample size of real lenses is now sufficiently large to
infer H0 by model family and to test whether this choice makes a
difference at the 2% precision level of the statistical uncertainty.
This is illustrated in Fig. 6, where the priors on the cosmological
parameters are the same as adopted by Wong et al. (2019), i.e
H0 ∈ [0, 150] km s−1 Mpc−1, Ωm ∈ [0.05, 0.5] and Ωm = 1 −ΩΛ.

The H0 values vary with the model family for individual ob-
jects, and this testifies to the flexibility of the families of mod-
els. However, the choice of model family changes the combined
value by much less than the estimated statistical uncertainty.
Quantifying these statements, the combined value from the six
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Fig. 6. Marginalized H0 posteriors for power-law (left panel) and composite models (right panel). The cosmological inferences are for a flat
ΛCDM cosmology with uniform priors. The posterior probability distributions for each individual system are shown with shaded color curves and
the combined constraint from the six systems corresponds to the solid black curve. The legend indicates the median, 16th and 84th percentiles of
the H0 distributions.

lenses is H0 = 74.2+1.6
−1.6 km s−1 Mpc−1 when we use exclusively

power-law models and H0 = 74.0+1.7
−1.8 km s−1 Mpc−1 when we

use only composite model. This corresponds only to a 0.2% dif-
ference. Individual objects can have larger differences between
power-law and composite models than the combined estimate,
but the two posterior probability distributions always remain
compatible. The largest differences are found for PG 1115 + 080
(5%) and SDSS J1206 + 4332 (4%), which still have the two dis-
tributions compatible at the ∼ 0.6σ level.

Last but not least, there is no indication in the current sam-
ple of 6 lenses that one given family of models systematically
gives a lower or higher H0 value. For example, WFI 2033 − 4723
has a higher H0 value when modelled with a power law rather
than a composite, while the opposite behaviour is found for
SDSS J1206 + 4332; and other such examples can be easily
found in Fig. 6.

In conclusion, even though our two families of models are
flexible enough to produce a broad range of H0 values, in prac-
tice they do not. In the following, we investigate with simulated
lens systems the reasons why composite and power-law mod-
els provide comparable estimates of H0 in spite of allowing for
flexibility. We also investigate under which circumstances gravi-
tational lenses can be modelled with both composite and power-
law models and still yield the same H0.

6.2. Simulations

We generate six mock lens systems chosen to illustrate the range
of possible outcomes, labeled by IDs #1 through #6. We describe
the process of the simulations in this section. In addition to the
power-law and composite models typically used by TDCOSMO
we also include cored power laws to explore the effects of adding
extra flexibility to the models.

The simulated HST images are produced using the pipeline
described by Ding et al. (2017a); Ding et al. (2018). The image
frame size is chosen to be 99 × 99 pixels, with a pixel scale of
0′′.08 to mimic the realistic HST WFC3/F160W drizzled resolu-
tion. Mass profile parameters are chosen such that the Einstein
radius is roughly at the scale of 1′′ as typical for galaxy-scale
lenses. The noise in each pixel is composed of the Gaussian
background noise and the Poisson noise. For Gaussian back-

ground noise, we assume an rms of 0.003, which is directly mea-
sured from empty regions in the real data; the Poisson noise is
added, based on a total exposure time of 2400 s. For compu-
tational speed, the PSF is assumed as a Gaussian kernel with
FWHM=0′′.25.

Three mass models, including power-law (ID #1, #2), cored
power-law (ID #3, #4), and composite (ID #5, #6) mass density
profiles, are adopted to generate the six mock systems. All of the
systems are elliptical in projection in order to allow for quad-like
configurations by construction. For each family of mass distribu-
tion, we generate two mock lensed systems, one with the source
lying close to a fold of a caustic ("fold" configuration) and one
with the source lying close to the lens-optical axis ("cross-like"
configuration). We note that the "cross" represents a worst case
scenario because the radial ranges and the differences in the time
delays are limited by symmetry. The simulated lens systems are
shown in Fig. 7.

For the composite model, the total mass consists of a bary-
onic elliptical Hernquist profile (Hernquist 1990), and a dark
matter elliptical NFW profile (see Eq. 13 and Navarro et al.
1997). The baryonic part is linked to the lens surface brightness
through a constant mass-to-light ratio. While we use the same
axis ratios for the baryonic and dark matter components, we al-
low for slight offsets in their position angles; the total projected
mass profile is therefore not elliptical. Note that the system (ID
#6) is chosen to describe a scenario similar to realistic galaxies,
in which luminous and dark matter conspire to produce a total
mass model very close to a power-law profile. This is consis-
tent with the findings of the H0LiCOW, SHARP, and STRIDES
collaborations so far (Suyu et al. 2014; Wong et al. 2017; Birrer
et al. 2019; Chen et al. 2019; Rusu et al. 2019; Shajib et al. 2019).
Other cored power-law and composite systems (ID #3 – #5) are
designed on purpose to depart significantly from a single power
law in order to test the effect on H0 and investigate whether the
information contained in the data can capture this discrepancy.
For all the lenses, the deflector surface brightness is simulated
as an elliptical Hernquist profile. The ellipticity of the simulated
lens galaxy corresponds to an axis ratios of q ∼ 0.9 ± 0.01. We
use an elliptical Sérsic profile (Sérsic 1963) to simulate the ex-
tended part of the source light, which is sufficient for our pur-

Article number, page 10 of 18



M. Millon et al.: Uncertainties in time-delay cosmography

#1

power law

1" #2

power law

1" #3

cored power law

1" #4

cored power law

1" #5

composite

1" #6

composite

1"

Fig. 7. Sample of simulated lenses: three pairs are generated from power-law, cored power-law, and composite lens models. The color scale is
logarithmic and is the same for all images. Identifiers associated to each lens are also indicated. Refer to Section 6.2 for a description of these
simulations. Model #6, although composite, is chosen so that the total mass profile resembles a power law in the region of the Einstein radius.

pose. Lensed quasar images are modeled as point spread func-
tions centered on the images of the host galaxy.

The simulated time delays are calculated within a fiducial flat
ΛCDM cosmology with Ωm = 0.27, and ΩΛ = 0.73, and Hub-
ble constant Hfiducial

0 = 70.7 km s−1 Mpc−1, which was chosen
randomly. For the time-delay uncertainties, we assume an unbi-
ased random error with rms level set as the largest value between
∆t × 1% and 0.25 days. The uncertainties on the time delays are
chosen to be smaller than current uncertainties of real data in
order to focus mainly on the modeling uncertainties.

Since the tests in this section focus on the mass reconstruc-
tion of the main deflector, we do not include in the simulations
the effects of the galaxies along the line of sight, which are
treated separately in real data. Likewise, we simulate and model
the velocity dispersion using spherical Jeans equations follow-
ing Suyu et al. (2010) and Birrer et al. (2019), and assume an
anisotropy radius equal to the lens half-light radius. This is a sim-
plification of the stellar kinematics treatment with respect to the
analysis of real systems where TDCOSMO marginalizes over
the unknown anisotropy. In this exercise where we aim to illus-
trate the constraining power of the images while saving comput-
ing time, we do not use the LOS velocity dispersion as a direct
constraint in the modeling but rather only calculate the modeled
values to make the comparison with measured values. The rele-
vant key properties of the six simulated lenses are summarized
in Table A.1.

6.3. Results

The six mock lenses are modelled using the public strong lens-
ing modeling package LENSTRONOMY 3 (Birrer et al. 2015; Bir-
rer & Amara 2018), which was used for the latest analysis of the
real systems SDSS J1206 + 4332 and DES J0408 − 5354 (Bir-
rer et al. 2019; Shajib et al. 2019). The exact/known input PSF
is used as the effect of PSF imperfections is not investigated in
this work. The light profile of the lens and of the source are mod-
elled as Hernquist and Sérsic profiles respectively. We fit three
types of analytical elliptical mass profiles to the simulated data,
namely a power-law, a cored power-law and a composite pro-
file. Specifically for the composite model, we emphasize that
no strong prior is applied on the scale radius of the dark mat-
ter component. Instead, we use a non-informative uniform prior
rs ∼ U (5′′, 40′′), so that the dark matter component effectively
has two degrees of freedom in the radial direction. The 99 × 99
pixels contained in the images and 3 independent time delays
are used for the fit. We, however, mask a central region corre-
sponding to 3 pixels (i.e. 0′′.24) since we do not want to form
any central image which could lead to extra constraints on the
lens model (see also Tagore et al. 2018; Mukherjee et al. 2018,
3 https://github.com/sibirrer/lenstronomy

2019). The resulting fitted models are used to infer only H0 (Ωm
is kept fixed to 0.27) from the time-delay distance alone. The
lens velocity dispersion is computed only for comparison but is
not included in the H0 inference, to highlight the information
content of the images.

We use the Bayesian Information Criterion (BIC) to evaluate
the quality of the fit. The BIC is defined by

BIC = k × ln(n) − 2 × ln(L̂), (16)

where k is the number of free parameters, L̂ is the maximum
likelihood of the model and n is the number of data points. The
likelihood used for the fit uses only the imaging and time-delay
information so that n corresponds to the number of non-masked
pixels in the image plus the 3 time delays. Our models have 25
free parameters for the power-laws, 26 for the cored power-laws
and 29 for the composite models.

The recovered H0 value, integrated LOS velocity dispersion
within a square aperture of side 1′′ and the BIC values are given
in Table 2. The corresponding image residuals of the lens mod-
eling are shown in Table 3. As expected, we recover the correct
H0 value within the 1-σ errors of the posterior distribution when
fitting the same mass model family as used in the simulation.
This case corresponds to the diagonal of Tables 2 and 3.

Interestingly, the core size of the cored power-law profile is
well constrained by the data. Indeed, when a cored power-law
profile is fitted to data generated with power law with no core,
the core size is well constrained and shrinks to zero. If there is a
core in the simulation (e.g mock lenses #3 and #4), the core-size
is recovered within 2.2% accuracy and within <3.0% precision
with a cored power-law model. This indicates that the lensing
data are sensitive to the presence of a sizeable core in galaxies.
The sensitivity stems from the robust constraint on the mass en-
closed within the Einstein radius that indirectly depends on the
core size.

We deliberately choose not to present the results of the com-
posite models fitted to power-law and cored power-law simula-
tions. This is because, by construction, the lens light profile of
these simulations does not necessarily correspond to their mass
profile. In the power-law and cored power-law profiles, the lens
light profile bears no relation to the mass distribution, and is only
used as a tracer of the stars when computing the stellar velocity
dispersion. As a result, we cannot have a meaningful compari-
son between power-law and composite models if we assume that
the baryonic component of the composite model is traced by the
arbitrary lens light in the power-law model.

The tests performed on composite simulated lenses #5 & #6
show that the ability of a power law or a cored power law to re-
cover the correct H0 depends on the characteristics of the com-
posite lenses. In both cases, the power-law models give much
poorer fits to the data than the true composite models (∆BIC =
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Model: power law Model: cored power law Model: composite

Truth: power law (#1) BIC = 10220 BIC = 10230
- ∆ BIC = 10

(σv = 308 km s−1) H0 = 71.9+2.1
−2.3 km s−1 Mpc−1 H0 = 70.9+2.2

−2.0 km s−1 Mpc−1 -
Tension = 0.5 σ Tension = 0.1 σ

σv = 310.1+1.4
−1.5 km s−1 σv = 304.3+3.9

−3.4 km s−1

Truth: power law (#2) BIC = 9786 BIC = 9797
- ∆ BIC = 11

(σv = 297 km s−1) H0 = 72.6+1.8
−1.7 km s−1 Mpc−1 H0 = 72.2+2.0

−2.0 km s−1 Mpc−1 -
Tension = 1.1 σ Tension = 0.8 σ

σv = 298.1+1.1
−1.0 km s−1 σv = 296.3+1.6

−1.6 km s−1

Truth: cored power law (#3) BIC = 14544 BIC = 9776
∆ BIC = 4768 -

(σv = 245 km s−1) H0 = 76.3+2.1
−2.0 km s−1 Mpc−1 H0 = 72.3+2.1

−2.2 km s−1 Mpc−1 -
Tension = 2.8 σ Tension = 0.7 σ

σv = 248.4+0.6
−0.7 km s−1 σv = 245.3+1.2

−1.2 km s−1

Truth: cored power law (#4) BIC = 18565 BIC = 9768
∆ BIC = 8797 -

(σv = 216 km s−1) H0 = 78.2+1.9
−2.0 km s−1 Mpc−1 H0 = 71.8+1.5

−1.8 km s−1 Mpc−1 -
Tension = 3.9 σ Tension = 0.7 σ

σv = 219.0+0.6
−0.6 km s−1 σv = 216.1+1.0

−1.2 km s−1

Truth: composite (#5) BIC = 10042 BIC = 9703 BIC = 9608
∆ BIC = 434 ∆ BIC = 95 -

(σv = 253 km s−1) H0 = 63.9+1.3
−1.1 km s−1 Mpc−1 H0 = 60.4+1.1

−1.2 km s−1 Mpc−1 H0 = 69.0+2.4
−2.7 km s−1 Mpc−1

Tension = 5.2 σ Tension = 9.1 σ Tension = 0.7 σ
σv = 259.5+0.6

−0.6 km s−1 σv = 243.1+1.1
−0.9 km s−1 σv = 255.7+1.6

−2.0 km s−1

Truth: composite (#6) BIC = 14170 BIC = 10764 BIC = 9715
∆ BIC = 4455 ∆ BIC = 1049 -

(σv = 207 km s−1) H0 = 69.8+1.1
−1.2 km s−1 Mpc−1 H0 = 70.0+1.2

−1.2 km s−1 Mpc−1 H0 = 72.4+1.9
−1.7 km s−1 Mpc−1

Tension = 0.8 σ Tension = 0.6 σ Tension = 1.0 σ
σv = 200.5+0.6

−0.8 km s−1 σv = 200.7+0.9
−0.8 km s−1 σv = 211.7+1.5

−1.2 km s−1

Table 2. BIC value, measured H0, tension relative to the true value of Hfiducial
0 = 70.7 km s−1 Mpc−1 and integrated stellar velocity dispersion. The

three columns of the table correspond to the family of mass model fitted on the six simulated lens systems. The ∆BIC is computed relative to the
best model for each lens.

434 for #5 and ∆BIC = 4455 for #6). Adding one more degree
of freedom by using a cored power law instead of a power law
improves the fit but it is still significantly poorer than the com-
posite models (∆BIC = 95 for #5 and ∆BIC = 1049 for #6 in
the case of a cored power law). We note that the image residuals
in lens #6 are worse than that in lens #5, since #6 is in a fold
configuration with higher lensing magnifications and thus pro-
duces correspondingly higher amounts of image residuals. The
recovered H0 is compatible with the true value for the lens #6,
but in lens #5 it is biased toward lower H0 by 9.4%. In short, the
different behaviour arises because of intrinsic differences in the
composite mass density profile. While mock #5 is chosen to be
different from a power law, mock #6 is chosen to be similar to
a power law. When the truth is a composite similar to a power
law, the inferred H0 is the same. When it is not, the two models
lead to different inferences. As discussed in Section 6.1 the real
universe is similar to #6 and dissimilar to #5.

We discuss this very important point alongside other general
considerations in the following section.

6.4. Discussion

In this section we discuss the results of the simulations with
the goal of providing an intuitive physical understanding of the
quantities that are relevant for time-delay cosmology and how
they are constrained by the data.

As noted by Kochanek (2002), the time delay is mainly de-
termined by the mean convergence 〈κ〉 in an annulus between
the multiple images. Fig. 8 shows the radial convergence pro-
files of the models averaged over the azimuth angle. The shaded
grey contour corresponds to the separation between the multi-
ple images. The quality of the fit in this region determines the
accuracy on H0. The Einstein radius is typically very well con-
strained by any lens model, so the only way to modify the mean
〈κ〉 at the positions of the multiple images is to change the slope
of the convergence profile while keeping constant the integrated
mass within the Einstein radius. This is a well-known problem
in time-delay cosmography called the profile slope degeneracy
(Witt et al. 2000; Wucknitz 2002; Suyu 2012).

As argued by Sonnenfeld (2018), assuming a too rigid
model, i.e a power law, can lead to a bias up to ∼ 10% if the
true underlying profile contains a change of slope within the
Einstein radius. Sonnenfeld (2018) concluded that at least 3 de-
grees of freedom are required in the lens model to recover an
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Fig. 8. Azimuthally averaged radial convergence profiles, for the different lens models applied to fit the sample of 6 mock lenses (Fig. 7). Upper
part of each panel: true profiles are shown in dotted lines; power-law, cored power-law and composite models are shown in blue continuous, green
dashed and red dot-dashed lines, respectively. The spectroscopic (square) aperture used for computing velocity dispersions is indicated as a vertical
dotted line, and the true Einstein radius location is indicated as a vertical dashed line. The gray area encloses lensed quasar image positions. For
each model, the inferred H0 values are indicated (in km s−1 Mpc−1), and must be compared to the input value Hfiducial

0 = 70.7 km s−1 Mpc−1. Lower
part of each panel: relative error computed as (truth − model) / truth. The pixel size in the simulated images is 0′′.08.
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Model: power law Model: cored power law Model: composite

Truth: power law (#1)

1"

χ2 = 1.02

1"

χ2 = 1.02

Truth: power law (#2)

1"

χ2 = 0.98

1"

χ2 = 0.98

Truth: cored power law (#3)

1"

χ2 = 1.46

1"

χ2 = 0.98

Truth: cored power law (#4)

1"

χ2 = 1.86

1"

χ2 = 0.98

Truth: composite (#5)

1"

χ2 = 1.00

1"

χ2 = 0.97

1"

χ2 = 0.96

Truth: composite (#6)

1"

χ2 = 1.36

1"

χ2 = 1.04

1"

χ2 = 0.97

Table 3. Residual maps of the lens modelling, i.e. normalized χ2 per pixel. The maps corresponds to ( fmodel − fdata)/σ, where fdata is the observed
flux, fmodel is the modelled flux and σ is the estimated rms noise level at the pixel position. The color map ranges from -6σ (blue) to +6 σ(red).
The given χ2 value in each panel is the mean χ2 per pixel and does not include the time-delay information.

un-biased result if no kinematics information is used. With the
addition of kinematics, uncertainty can be reduced to 1% (in ac-
curacy) even within the simplified constraints considered in that
study. However, Sonnenfeld (2018) did not make use of extended
source information in his analysis and thus had no way to evalu-
ate whether the assumption resulted in a good fit or not.

We recover the findings of Sonnenfeld (2018) with our simu-
lated lens #5, where the combination of the Hernquist and NFW
profile is designed to produce an inflection point in the radial
profile of the convergence within the Einstein radius. For this
system, the composite and power-law models are discrepant,
thus providing an indication that the power-law model is indeed
too rigid. This rigidity results in a significant difference in good-
ness of fit (∆BIC=434), as well as on the inferred H0.

For the lens system #6, the radial convergence profile does
not have inflection points and therefore it is impossible to change
the slope of the profile while keeping the Einstein radius iden-
tical. In this case, the recovered value of H0 is compatible with
the true value for both the composite and power-law model. The
fact that the two families of models are providing compatible H0
indicates that the convergence profile is well-recovered in the
annulus around the Einstein radius.

The TDCOSMO collaboration has systematically tested both
model families in their analysis after the first and only non-blind
published system B1608 + 656. The tight agreement between the
composite and power-law models in the TDCOSMO analyses
supports the hypothesis that, as a result of the bulge-halo con-
spiracy, the kind of real galaxies that act as strong lenses are
similar to our #6 mock. The mass density profile is well approx-
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imated by a power law. In this case, the stellar component and
the extended NFW halo combine to form a profile very close
to a power law near the quasar images. If this had not been the
case, we have shown in this work that the composite and power
law would not have produced the same mean convergence 〈κ〉 at
the image position, and thus would have yielded very different
H0 values. If TDCOSMO had found this discrepancy, it would
have been accounted for in the error budget of each individual
lens since they marginalize over model families. In contrast, both
classes of models produce fits with comparable goodness-of-fit
and H0 in the real world, resulting in high precision, including
modeling errors in the error budget. Our analysis in Section 6.1
shows that in practice the two models agree even at the current
sample precision of <2.4%.

7. Conclusion

As the statistical precision of time-delay cosmology improves
with the analysis and publication of multiple gravitational lens
systems by the H0LiCOW, SHARP, and STRIDES collabora-
tions, a parallel effort must be undertaken to ensure that sys-
tematic uncertainties remain subdominant. In this first paper of
the TDCOSMO collaboration, i.e. COSMOGRAIL, H0LiCOW,
SHARP, STRIDES members, we investigate and quantify a
number of potential systematic uncertainties that could affect the
analysis. Before we summarize the main results of this work, it
is important to highlight a few general points that are relevant to
the estimation of systematic errors in time-delay cosmography:

1. The TDCOSMO analyses are carried out blindly to cos-
mological parameters, with the exception of the first sys-
tem B1608 + 656 (Suyu et al. 2010) in order to avoid im-
plicit/explicit experimenter bias.

2. The TDCOSMO estimates of H0 are obtained independently
for each lens, and they are found to be statistically consis-
tent with each other (Wong et al. 2019). The statistical con-
sistency demonstrates that uncorrelated systematic errors are
negligible with respect to statistical errors. So any investiga-
tion of systematic errors must focus on correlated errors that
would affect many systems in the same way.

3. Toy models based on simplified assumptions and constraints
cannot offer any quantitative estimates of systematic errors
given the current state-of-the-art data-sets and lens models.
The only way to estimate quantitative errors is to carry out
an analysis that is very similar to the one performed on real
data, using the full extent of the available information, in-
cluding the high-resolution images, multiple time delays (if
available), and stellar kinematics. For example, the depen-
dency on the inferred distances on stellar velocity disper-
sion is non-trivial, it varies from lens to lens, depending
on the precision of the various constraints, the lensing con-
figuration, the source and deflector redshift, and the spec-
troscopic aperture used for the kinematic measurement. On
average over the current TDCOSMO sample, uncertainty
in velocity dispersion δσv/σv translates into approximately
δH0/H0 ∼ 0.07 × δσv/σv.

Keeping these general considerations in mind, the main re-
sults of this work are as follows:

– No evidence is found for any correlation between the mea-
sured value of H0 and observables related to the internal
structure of the lens galaxies (e.g. velocity dispersion, effec-
tive radius), or to the size of the spectroscopic aperture. If

our assumptions about the kinematic field of the lens galax-
ies (e.g. anisotropy) had been significantly wrong, then we
would have expected to detect trends in these parameters,
since our deflectors and spectroscopic observations span a
significant range of configurations. Of course absence of ev-
idence is not evidence of absence and more work remains
to be done in this area, even though the weak dependency
of the inferred H0 on kinematic data implies that systematic
uncertainties in this area will have a subdominant impact on
H0.

– No evidence is found for any correlation between the mea-
sured value of H0 and the external convergence estimated
from galaxy number counts and numerical simulations. In
contrast, if no external convergence is applied, H0 is found
to depend on the overdensity of galaxies in the field, a clearly
unphysical result.

– Tests based on mock lens systems that have simulated data
comparable in quality to real lens systems show that the cur-
rent approach of considering different mass profiles has suf-
ficient flexibility in the mass model to infer a wide range of
H0 values, should the data require it.

– Mock lens galaxies composed of baryons and dark matter
whose total mass distribution is not well approximated by a
power law produce discrepant H0 inferences and significant
differences in image residuals when comparing power-law
and composite mass models. In contrast, mock lens galax-
ies whose baryonic and dark matter components conspire to
form a power law lead to comparable H0 inferences between
power-law and composite mass models.

– The comparison of power-law and composite mass mod-
els allows us to quantify deviations in H0 due to our mass
model assumptions. By using these two families of models
and marginalising over them, the resulting H0 accounts for
modeling uncertainties.

– The similarity of H0 constraints from power-law and com-
posite models of TDCOSMO lenses shows that the total
mass profiles of galaxies are close to power laws due to the
bulge-halo conspiracy. For the six lenses that have been an-
alyzed with both power-law and composite models we find
H0 =74.2+1.6

−1.6 km s−1 Mpc−1 and 74.0+1.7
−1.8 km s−1 Mpc−1 re-

spectively. The difference between the two model families is
much smaller than the inferred statistical errors. The simi-
lar H0 from the different families of models thus made the
current H0 measurement with ∼2% uncertainty from TD-
COSMO achievable.

Based on a number of tests carried out in this paper,
we find no evidence that the error budget reported by the
H0LiCOW/SHARP/STRIDES (TDCOSMO) collaborations is
significantly underestimated. We emphasize that our tests repro-
duce very closely the TDCOSMO inference procedure, in con-
trast to previous work in the literature that does not have the
fidelity to investigate this issue.

While investigating potential sources of systematic uncer-
tainties was an important first step, meeting the goal of 1% pre-
cision and accuracy with time-delay cosmography (e.g. Suyu
2012; Treu & Marshall 2016), requires additional and contin-
ued efforts over the coming years. Aside from expanding sam-
ple sizes and improving statistical precision per system, some
of the clear steps along the way are: i) exploring broader model
families and the impact of departures from elliptical symmetry
and including spatially variable mass-to-light ratio, ii) explore in
more detail the bulge-halo conspiracy based on high resolution
data for local early-type galaxies, iii) explore the effect of allow-
ing for gradients in stellar mass-to-light ratios (e.g. Sonnenfeld
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et al. 2018) in composite models; iv) carrying out a full hierar-
chical analysis of existing samples of lenses, v) accounting for
measurement and modeling covariance, and vi) performing re-
alistic data challenges such as the one proposed by Ding et al.
(2018), with increasing level of realism and complexity as data
also improve. These steps are non-trivial from a modeling point
of view, considering that the analysis of any single system cur-
rently requires a year of expert investigator time and of the order
of a million CPU hours (e.g. Shajib et al. 2019). Substantial ad-
vances in automation and speed will be required in order to carry
out those next steps, but given their importance for the determi-
nation of H0, they are worth undertaking.
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Appendix A: Properties of simulated lenses

As a complement to Section 6, we show in Table A.1 a subset of important properties of the simulated lenses. Characteristic radii
are indicated: half-light radius, effective Einstein radius, core radius in the case of cored power-law profiles, and scale radius of the
dark matter profile for composite models. The ratio of the lens half-light radius and Einstein radius is also computed. Additionally,
the input logarithmic slope of the convergence profile for power-law lenses, the lens mass ellipticity, and true time delays and LOS
velocity dispersion are indicated. As noted previously, the spectroscopic aperture used for simulating and modelling kinematics is a
square with side 1′′.

θeff [”] θE [”] θE/θeff θc [”] rs [”] γPL q ∆t [days] σv [km s−1]

power law #1 3.620 1.237 0.342 - - 2 0.899 [0.277, 3.701, 8.999] 308

power law #2 3.789 1.143 0.302 - - 2 0.889 [3.919, 4.48, 10.773] 297

cored power law #3 3.988 1.153 0.289 0.313 - 2 0.890 [1.331, 5.687, 7.112] 245

cored power law #4 2.643 1.028 0.389 0.314 - 2 0.895 [3.135, 3.525, 9.012] 216

composite #5 2.689 1.028 0.382 - 31.185 - 0.900 [3.55, 9.175, 13.567] 253

composite #6 3.573 1.165 0.326 - 34.497 - 0.902 [4.878, 5.055, 12.166] 207
Table A.1. Key properties of the simulated lenses described in Section 6. For each lens, from left to right: lens half-light radius, effective Einstein
radius (enclosing a mean convergence equal to unity), ratio of these radii, core radius, dark matter scale radius, power-law slope, lens mass
ellipticity, true time delays and LOS velocity dispersion of the lens galaxy.
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