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Assessing the replicability of statistical findings is an 
important concern in the psychological sciences (Freese 
& Peterson, 2017; Open Science Collaboration, 2015). 
One reason for replication failures is that original results 
may depend on the presence of “lucky” observations; 
that is, the findings may rest on a small number of 
unique data points (Osborne & Overbay, 2004). Yet 
individual data points are rarely analyzed, possibly 
because of the large number of alternative (and perhaps 
arbitrary) methods, metrics, and rules of thumb for case 
exclusions (Chawla & Gionis, 2013; Cousineau & Chartier, 
2010; Langford & Lewis, 1998; Leys, Klein, Dominicy, 
& Ley, 2018; Leys, Ley, Klein, Bernard, & Licata, 2013; 
Sawant, Billor, & Shin, 2012). Additionally, recent 
debates about questionable research practices may lead 
researchers to be reticent about case analyses and 
exclusions (Bakker & Wicherts, 2014a; Wicherts et al., 
2016). As a result, researchers frequently avoid such 
diagnostic analyses, thereby potentially endangering 
the reliability and validity of their conclusions (cf. Leys 
et al., 2018; Osborne, Christiansen, & Gunter, 2001).

In this article, we introduce the StatBreak algorithm 
(implemented as an R function; https://osf.io/fmnxp/), 
which highlights the observations most strongly con-
tributing to an interesting finding. More precisely, 
StatBreak answers the following question: Which (and 
how few) cases would need to be excluded from a 
given sample to yield a different statistical conclusion? 
The algorithm searches for data points that most strongly 
influence a conclusion-relevant statistic (e.g., p value, 
Bayesian posterior, or number of components in a prin-
cipal components analysis) in the hypothesized direc-
tion. Investigating which data points contributed most 
strongly to an interesting finding implies a conservative 
stance by the researcher. However, StatBreak does not 
answer the question of whether the luckiest data points 
should be excluded, and it is therefore complementary 
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to the methods of outlier exclusion that are based on 
preregistered metrics and cutoffs (Leys et al., 2018).

Facilitating Conservative Outlier Analyses

Individual case analyses are burdensome and increase 
researcher degrees of freedom, as there are many 
potential reasons to include or exclude observations 
from the focal analyses. In regression models, for 
instance, individual outliers can be identified on the 
basis of model residuals, extreme predictor values (i.e., 
leverage points), or the extent to which data points shift 
predictions or model coefficients (e.g., difference in 
fits, or DFFITS: Welsch & Kuh, 1977; Cook’s distance: 
Cook, 1977). Each of these criteria can be assessed with 
multiple metrics, and for each metric there are multiple 
cutoffs for case exclusions. Additionally, there are mul-
tiple approaches to implementing individual proce-
dures; for instance, procedures may be executed once 
or stepwise by reestimating model residuals after each 
case exclusion. Thus, although case analyses can facili-
tate a better understanding of the data, they are difficult 
to navigate and can be exploited toward preferred find-
ings by choosing the metrics and cutoffs that give the 
desired results. It quickly becomes apparent why outlier 
exclusions are often judged as suspicious by readers, 
or not considered by researchers (Bakker & Wicherts, 
2014a; Wicherts et al., 2016).

StatBreak is aimed at responding to these concerns 
by facilitating conservative and simple case analyses, 
and it can produce interpretable results for any form 
of statistical analysis. Essentially, it does so by identify-
ing the smallest sample subset that needs to be excluded 
for a conclusion-relevant pattern (e.g., large effect or 
small p value) to disappear. The nature and size of this 
subset informs users of the robustness of the original 
conclusion. StatBreak delivers readable outputs across 
different types of analyses (indicating that the initial 
statistical conclusion changes when certain observa-
tions are excluded) and can thereby serve as a conser-
vative reference point for cutoff-based outlier detection 
(observations flagged for exclusion are suspicious).

Disclosures

All data and materials for this article, including the 
StatBreak R package, can be obtained on the Open 
Science Framework (OSF), at https://osf.io/fmnxp/.

Identifying Influential Subsamples

Finding a data subset with a desired set of characteris-
tics presents a computational challenge, as there are 
many possible subsets that could be investigated. For 

instance, if a researcher’s original sample consists of 
200 observations, then there are 2200 – 1 possible sub-
sets of the sample that would need to be examined. 
Genetic algorithms solve this problem by quickly 
approximating an optimal solution for such expensive 
computational tasks (see the materials on OSF for a 
comparison of the convergence reliability and efficiency 
of genetic algorithms and other search algorithms, such 
as the Artificial Bee Colony algorithm). Here, we describe 
how genetic algorithms can be applied to examine the 
robustness of conclusions drawn from an observed 
statistic.

In StatBreak, a genetic algorithm (for an introduc-
tion, see Chatterjee, Laudato, & Lynch, 1996) is used to 
find the largest subset of observations in which a sta-
tistical result is not observed, or is altered beyond a 
conclusion-relevant threshold. This genetic algorithm 
is specified as follows: First, randomly sized subsamples 
of the original data set are drawn. These subsamples 
differ in which observations are included and excluded 
(e.g., Subsample A includes Observations 1, 2, and 5, 
whereas Subsample B includes Observations 2 and 4). 
Each subsample is assigned a fitness score, defined as 
a function of the generated sample statistic and the size 
of the subsample: the less interesting the sample sta-
tistic and the fewer cases excluded from the original 
sample, the higher the fitness of the subsample. For 
example, a subsample that excludes many observations 
and has a purportedly interesting target statistic (e.g., 
a high correlation) would receive a low fitness score. 
On the other hand, a subsample that excludes a small 
number of observations and has a relatively uninterest-
ing target statistic (e.g., a correlation of zero) would 
receive a high fitness score.

This definition of fitness is somewhat counterintui-
tive, as researchers would usually characterize nonin-
teresting findings as low in fitness. However, StatBreak 
does not try to find interesting patterns; rather, it inves-
tigates whether the sample would have produced a 
different conclusion had it not been for a few data 
points. The fittest subsamples (having the largest num-
bers of observations and the least interesting findings) 
are retained and form part of a next generation of sub-
samples (i.e., they survive). The next generation of sub-
samples is created by merging characteristics of two 
parent subsamples (e.g., exclude Observation 1 as Parent 
A did, include Observation 2 as Parent B did, etc.). The 
higher the fitness of a current subsample, the more likely 
it is to be selected as a parent for the next generation.

Additionally, some random mutations are introduced 
into the process; that is, in some subsamples of the next 
generation, the inclusion or exclusion of some cases is 
randomly flipped. After a number of generations, the 
algorithm converges to find the fittest generation 

https://osf.io/fmnxp/
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members, which are the subsamples with the largest 
amount of observations that generate effects smaller 
than the minimum effect of interest (e.g., rs < .3, Bayes 
factors < 3, p values higher than the α level) or other 
findings resulting in conclusions different from the ini-
tial one. In short, StatBreak optimizes a statistic by 
creating different subsamples of data, quantifying how 
well each subsample works (fitness), and then explor-
ing in the direction that gives the best (fittest) results. 
An illustration of this process is presented in Figure 1.

By examining which (and how few) cases were 
dropped from the original sample to arrive at the fittest 
generation member, users can assess the robustness of 
the original conclusion. For example, this process might 
reveal that a significant test statistic can be attenuated 
to nonsignificance by excluding only one specific case. 
In this article, we explain how to set up the StatBreak 
algorithm (e.g., how to determine the population size) 
and subsequently demonstrate how to apply it with 
simulated and real data. We also provide some guid-
ance on how to interpret and report results delivered 
by the algorithm, which can be accessed through an 
R package.

StatBreak’s Parameters

When running a genetic algorithm to assess the robust-
ness of an initial conclusion, one needs to provide the 
algorithm with the original sample of observations as 
well as the statistic of interest (e.g., Cohen’s d, Bayes 
factor, or local coefficient in a structural equation 
model). Additionally, the following four parameters 

form part of the StatBreak algorithm: (a) the number 
of subsamples to generate in each generation, (b) the 
function that will be used to compute the fitness of 
each subsample, (c) how a new generation of sub-
samples will be formed, and (d) the probability of ran-
dom mutations.

We chose conservative defaults for these parameters 
in the R package, though these defaults can be tuned 
if convergence fails, which should not be the case for 
most analyses in psychological science. Even for a very 
challenging search situation (finding 5 outliers in 10,000 
observations), StatBreak found the exact subset in 100 
out of 100 trials using our default parameters (see the 
materials on OSF).

Generation size

Having more generation members (i.e., subsamples) 
per generation ensures a more comprehensive search 
for an optimal solution, but also requires more com-
putational resources. We advise researchers to use 
StatBreak’s default of 1,000 generation members and 
increase this number if no convergence is achieved.

The fitness function

This function quantifies the fitness of individual genera-
tion members (i.e., subsamples). There are two objec-
tives that need to be integrated into the function. The 
first is to retain as many observations as possible (i.e., 
to discard as few as possible). The second is for the 
target statistic to lie below or above an (explicitly 

Subsample A Subsample B Subsample C

Observation 1 Excluded Included Included

Observation 2 Excluded Included Excluded

Observation 3 Excluded Excluded Included

Observation 4 Included Included Excluded

Subsample A Subsample B Subsample C

Sample Size 1 3 2

Test Statistic 
   Reduction 2 1 0

Fitness 3 4 2

Subsample A Subsample B Subsample C

Fitness 3 4 2

Probability of
   Reproduction

.3 .4 .2

Generation 1 Generation 2 Generation 3

Maximum
   Fitness

4.0 4.5 5.0

a b

c d

Fig. 1.  Four-step visualization of the genetic algorithm underlying StatBreak. First (a), an initial population of subsamples is randomly 
generated. Each subsample includes a random set of observations from the sample. Second (b), the fitness of each subsample is assessed. 
Subsamples that exclude fewer observations and have less interesting target statistics (e.g., lower r, higher p) receive higher fitness scores. 
Third (c), subsamples with higher fitness levels are more likely to be included and create similar offspring in the next generation, which 
increases the overall fitness of future generations. Finally (d), the process is iterated until an optimal subsample is found. This is the largest 
subsample with the least interesting result (i.e., it excludes the luckiest cases).
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justified) conclusion-relevant cutoff (e.g., p > α or effect 
size < the smallest effect size of interest). An example 
for such a fitness function is this:1

fitness
proportion excluded * exclusion cost

min statistic st

=

+

1

( , aatistic cutoff )

From the formula, it follows that fitness increases 
with a lower proportion of exclusions and a higher 
statistic (e.g., a higher p value), but only if the prespeci-
fied cutoff (e.g., α) is not yet achieved. Notice that some 
statistics (e.g., effect sizes) need to be decreased 
through the algorithm. In these cases, the fitness func-
tion is automatically changed to

fitness
proportion excluded * exclusion cost

max statistic st

=

+

1

( , aatistic cutoff )

It might seem desirable for the fitness function to be 
hierarchical, that is, to first prioritize reaching the goal 
statistic (e.g., p > α) and to treat optimizing the number 
of exclusions as a secondary consideration. In other 
words, the algorithm might consider exclusions only 
after the goal statistic is reached, so as to allow for 
conclusions such as “For the effect to ‘disappear,’ these 
two observations need to be excluded.” This would 
require the first term in the function (1/(proportion 
excluded * exclusion cost)) to be dominated by the 

second term (max(statistic, statistic cutoff ) or 
min(statistic, statistic cutoff)); that is, changes to the 
second term should have larger effects on the overall 
fitness score. Unfortunately, this dominance is not guar-
anteed, as different statistics have very different scales. 
However, we conducted experiments (which we report 
later) and found that setting the exclusion cost to 0.01 
serves to generate optimal solutions for a wide range 
of sample sizes and various statistics commonly used 
in psychological research.

Keeping track of the current fittest member across 
generations shows whether the default fitness function 
is working. More precisely, the continuous output of 
the algorithm, which includes the current leader’s sub-
set size and sample statistic, should show incremental 
growth of the leader’s subset size conditional on a goal 
statistic being reached. If this growth is not observed, 
the fitness function can be tuned by adjusting the exclu-
sion cost. However, in our experiments that was never 
necessary. Figure 2 illustrates a fitness mapping across 
values of a sample statistic and the percentage of 
deleted cases.

Reproduction procedure (fixed; not 
part of the adjustable arguments in 
StatBreak’s R function)

In our implementations of the algorithm, the generation 
members with the top 10% of fitness scores are directly 

Sample Statistic (p Value)
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Fig. 2.  An example distribution of fitness scores generated by StatBreak. The chosen goal cutoff lies at 
p = .05 (higher values are less interesting), and the purpose of the algorithm is to reach this goal while 
excluding as few cases as possible from the original sample. The five red triangles show how the fittest 
subset might improve over the first five generations. Notice that the algorithm first improves fitness by 
focusing on optimizing the sample statistic (p value; x-axis); then, once the minimum desired p value 
is reached, the algorithm also begins to improve fitness by reducing the percentage of excluded cases 
(y-axis).
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copied into the next generation without changes. This 
ensures that good solutions are not forgotten. The other 
90% of the new generation is generated by repeatedly 
picking two parent subsets from the prior generation, 
mixing their genetic information, and introducing some 
random mutations (see Fig. 3). The probability of being 
picked as a parent subset is proportional to a subset’s 
relative fitness.

Random mutations

A higher chance for random mutations leads to a more 
comprehensive but slower search for an optimal solu-
tion. We obtained good results with mutation probabili-
ties between .02 and .05. As did generation size, this 
parameter affected how quickly the optimal solution 
was found (usually in less than a minute for most data-
set sizes and statistics in psychological research), but 
never whether the solution was found at all.

Default settings

For all application of StatBreak reported in this article, we 
used the default settings. Thus, our results highlight that 
there is rarely a reason to deviate from the default param-
eters. All the computations were performed on a laptop 
with 8 GB of RAM and an Intel core i5 processor.

Simulations

The StatBreak algorithm allows researchers and review-
ers to investigate the robustness of conclusions, by 
indicating which (and how few) cases would need to 
be excluded to yield a different statistical conclusion 
in reference to a justified threshold. To test whether 
analyses conducted with StatBreak ascribe greater 
robustness to studies with larger sample sizes and 
effects, we conducted a comprehensive simulation 

study. We simulated data sets with two variables (M = 
0, SD = 1); sample sizes ranged from 100 to 1,000 
observations, and population correlations ranged from 
.2 to .8. We then ran StatBreak on the sample correla-
tions, indicating that we wanted to know which and 
how many observations would need to be deleted to 
obtain a nonsignificant finding (p > .05). In other words, 
we used the p value as StatBreak’s target statistic and 
.05 as the conclusion-relevant cutoff. We repeated these 
simulations for population-level correlations of 0 under 
random inclusion of outliers (i.e., outliers took on ran-
dom values until they shifted the p value to under .05). 
The results of this simulation study are depicted in 
Figure 4.

The results of our first simulations demonstrate that 
the proportion of required case deletions is positively 
related to the original sample size and the size of the 
effect in the population (Figs. 4a and 4b). For example, 
the effect in a study with 100 observations and a 
population-level correlation of .20 can be attenuated 
to nonsignificance (p > .05) by removing an average of 
1.12% of the sample (i.e., a single observation). This is 
not surprising, given that the statistical power to obtain 
a significant result in this scenario (1 – β) is only .65 
in the first place. That is to say, StatBreak’s indication 
that a finding is not robust might sometimes be due to 
a lack of power rather than a single influential data 
point. A closer inspection of the data point in question 
can clarify why the conclusion threshold was crossed, 
and if the data point is not suspicious, removing it 
would bias the alpha level downward. On the other 
hand, the effect in a study with 250 observations and 
a population correlation of .35 can be attenuated to 
nonsignificance only by removing on average 8.2% of 
the sample (or a total of 21 observations). This increase 
in the stability of results with growing sample size has 
been described comprehensively in simulation studies 
by Schönbrodt and Perugini (2013). The fact that 

Parent Subsets

Observation 1 Excluded Included

Observation 2 Excluded Included

Observation 3 Excluded Excluded

Observation 4 Included Included

Child Subset

Excluded

Included

Excluded

Included

Child Subset

Excluded

Included

Included

Included

Mixing Mutation

Fig. 3.  StatBreak’s process of generating a new subset from two subsets of the previous generation. Each parent subset has a set of 
binary characteristics (i.e., whether each observation is excluded or included). For each characteristic, the parent whose value will 
be passed on to the new subset is randomly chosen (circled). Subsequently, values of some of the descendants’ characteristics are 
flipped during mutation (circled).
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Fig. 4.  Results from applying StatBreak to the simulated data. The graphs in (a) and (b) show results 
for data sets with a nonzero population-level correlation. These graphs show the number of observations 
that would need to be excluded to change a statistically significant (p < .05) finding into a nonsignificant 
one (p > .05) as a function of (a) sample size and (b) effect size. The graphs in (c) and (d) show results 
for data sets with a zero population-level correlation. As does the graph in (a), the graph in (c) shows the 
number of observations that would need to be excluded to change a statistically significant finding into 
a nonsignificant one, but in this case the numbers are much smaller and do not covary with sample size, 
because a small set of outliers caused the significant finding and removing them is sufficient to change 
the result. The graph in (d) shows how the initial, contaminated p values change if the flagged cases 
(in this case, these are outliers) are excluded. In (a), (b), and (c), each box indicates the middle 50% of 
values, the horizontal line inside the box indicates the median, and the vertical lines represent the range 
from lowest to highest number of excluded cases.
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StatBreak flags these observations does not mean that 
they should be removed. StatBreak merely highlights 
them as the strongest contributors to the significant 
finding. When the number of flagged cases is low (e.g., 
Fig. 4c) and removing them leads to a large change in 
the statistic of interest (see Fig. 4d), then it is likely that 
the flagged cases are outliers. However, a qualitative 
review of the observations in question is still required.

In actual analyses, outliers affecting the p value of a 
bivariate correlation are relatively likely to be noticed 
because they are visibly removed from the point cloud 
in a scatterplot. However, outliers are less likely to be 
noticed (and discussed) when more than two variables 
are in the model. We present an example of such a 
model in the next section.

Using StatBreak for High-Dimensional 
Models

For fitting complex models, outlier metrics might not be 
applicable, or their meaning might be different from 
their meaning in simple regression (Yuan & Zhang, 
2012). In addition, plots might not have enough dimen-
sions to reveal suspicious observations (but see Achtert 
et  al., 2010, for advanced visualization techniques). 
Given that StatBreak is based on a fairly general strategy 
(iteratively searching and optimizing subsets), it remains 
applicable in such situations. In this section, we provide 
an example of its use in a scenario involving a hypo-
thetical set of researchers who predict a specific effect 
of one latent variable on another latent variable in a 
structural equation model (see Fig. 5). Moreover, this 
example demonstrates that StatBreak was not specifically 

designed to target p values and that it can be applied, 
for example, to a local beta coefficient.

Assume that a research team’s theoretical model 
looks as depicted in Figure 5 and the focal hypothesis 
is that in the incoming sample of 402 participants, there 
will be a positive small-to-medium effect of L1 on L3 
(say, β between 0.15 and 0.35; we ignore p values in 
this example). However, the true (population-level) 
data-generating process has a negative beta coefficient 
(β = −0.1). In the full data set of 402 participants (see 
the materials on OSF for data and scripts), the research-
ers indeed find a beta value of 0.178. They conclude 
that their initial prediction was correct, but wonder 
whether their conclusion might have been distorted by 
a small group of observations in their sample given that 
a different research group had suggested previously 
that the relationship could be negative (β between 
−0.15 and −0.35). Thus, the current group uses StatBreak 
to investigate whether a coefficient of −0.15 or lower 
would have actually been in line with their data had it 
not been for some special data points.

When feeding their own data and model into StatBreak, 
they find that deleting the last two observations indeed 
leads to a negative beta coefficient (β = −0.170). Thus, 
they can conclude that the last two collected observations 
fully flip the effect that would have been observed for 
the first 400 participants, and that they should certainly 
examine the nature of these two observations.

Criteria for Evaluating Robustness

The StatBreak algorithm provides output indicating that 
deleting certain cases (e.g., Observations 15, 19, 209, 

L1

L2

L3

O1 O2 O3

O4 O5 O6

O7

O8

O9

β1

β2

β3

Fig. 5.  High-dimensional theoretical model for the example study discussed in the text. 
Rectangles indicate observed variables, which are denoted as “O#,” and ovals indicate latent 
variables, which are denoted as “L#.” The focal coefficient is β2. We omitted visualizations 
of error terms for simplicity.
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664, and 954) entails a certain value for the target sta-
tistic (e.g., r < .1). However, this output needs to be 
evaluated regarding its implications for the robustness 
of the initial conclusion. Two main criteria have to be 
considered to ascribe a label such as “high robustness” 
or “limited robustness” to a data-based conclusion: first, 
the nature of the observations that would need to be 
excluded to lead to a different conclusion and, second, 
the number of such observations. When it comes to 
interpreting numerical tests (in this case, robustness 
tests), it is tempting to generate a set of strict conven-
tions to simplify the process (e.g., p < .05 → “signifi-
cant”; r > .70 → “reliable”; for criticism, see, e.g., Lakens 
et al., 2018). Similarly, it is tempting to generate rules 
of thumb for how few excluded cases are too few for 
an initial conclusion to be called robust. However, we 
are reluctant to recommend a one-size-fits-all approach, 
given the numerous factors that influence the propor-
tion of exclusions needed to generate reliable cutoff 
values. These factors include sample size, effect size, 
variable distributions, model complexity, test statistic, 
and the statistic’s goal value. Further, as noted earlier, 
the arbitrary nature of alternative rules of thumb 
appears to be partly responsible for the neglect of case 
analyses in applied research.

We assume that the nature of potentially excluded 
cases is more informative than the sheer number of 
such cases, unless the absolute number of exclusions 
required for a qualitatively different finding is very 
small (e.g., an effect crosses a justified threshold after 
only one or two observations are excluded). In such a 
case, the initial conclusion is certainly not robust. 
Notice that despite such low robustness of a conclusion, 
the result might still be numerically robust (e.g., with 
the exclusions, the p value might change from .049 to 
.051) or not robust (e.g., a change from .005 to .3). 
StatBreak focuses on the robustness of conclusions and 
not on numerical robustness, which is apparent in that 
users have to indicate the goal value for their target 
statistic (i.e., the value that would cause their initial 
conclusion to change). Low robustness of an initial con-
clusion is often easy to anticipate when initial results 
already lie close to justified cutoffs, which is common 
in the case of binary or categorical conclusions (cf. the 
predictive power of p values for replication success: 
Altmejd et al., 2019).

When one is inspecting the nature of potentially 
excluded cases, the critical question is whether there 
is reason to believe that these observations are particu-
larly unusual ( Judd, McClelland, & Culhane, 1995), 
belong to a different population than the rest of the 
sample does (Aguinis, Gottfredson, & Joo, 2013), or 
somehow contaminate the sample statistics (Bakker & 
Wicherts, 2014b). For example, such observations may 
involve measurement errors, nonattentive participants, 

data collected by a different person, data collected in 
a different setting, or any other factor that makes them 
noteworthy. Nonrobust findings may also arise through 
questionable research practices, such as optional stop-
ping, optional covariates, or motivated outlier exclu-
sions, which allow researchers to tune their studies’ 
outcome statistics. Accordingly, StatBreak is likely to 
flag nonrobustness in such cases (for simulations, see 
the materials on OSF). In the next section, we give a 
detailed example of applying StatBreak to real data 
from psychological research and investigating the 
nature of observations flagged for exclusion.

Applying StatBreak to Real Data

Given that the StatBreak algorithm worked as intended 
with simulated data, we went on to test its usefulness 
on real data from an unpublished study in which we 
investigated the relationship between online language 
and dispositional trust. We recruited a sample of 398 
Twitter users who provided their most recent 200 tweets 
and filled out a questionnaire measure of dispositional 
trust (Yamagishi & Yamagishi, 1994). In these data, we 
found a significant negative correlation between dispo-
sitional trust and the frequency with which participants 
talked about themselves in their tweets (measured by their 
use of personal pronouns, such as I or me), r(396) = −.12, 
p = .018. This finding is consistent with a theory that 
ascribes more social intelligence to people with high 
dispositional trust, and describes people with low dis-
positional trust as relatively self-focused and nonem-
pathic (Raskin & Shaw, 1988; Yamagishi, Kikuchi, & 
Kosugi, 1999).

After initially concluding that we had found a sig-
nificant negative correlation, we used StatBreak to 
examine which (and how many) observations would 
need to be deleted to conclude that the effect was not 
significant. In the applications of StatBreak presented 
thus far, we always chose p > .05 as the cutoff for a 
positive conclusion, as it is the most common alpha 
level used in psychological research. However, as is true 
for alpha levels, numeric goal values for StatBreak are 
not set in stone; rather, they should be justified by the 
researcher (Lakens et al., 2018). More precisely, when 
assessing the robustness of one’s conclusion using 
StatBreak, one needs to be aware of how one’s conclu-
sion maps onto the observed statistic. For instance, we 
could interpret the observed p value of .018 in our 
study similarly to the way in which we would interpret 
a p value of .03 (or maybe even .051) and conclude 
that there is a small, but certainly not tiny, chance that 
such data, or more extreme data, would occur if there 
is no real correlation. Conversely, if we had observed 
a p value of .1, our initial conclusion certainly would 
have been qualitatively different (i.e., that there is a 
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pretty good chance that such data would occur if there 
is no real correlation). For this example, we chose p > 
.10 as StatBreak’s conservative goal value in order to 
emphasize that researchers should justify how their 
conclusions map across target statistics (instead of fol-
lowing numerical conventions). Notice that such con-
clusion cutoffs (in this case, the alpha level) are much 
more convincing if their justification is preregistered, 
as this limits their exploitation for questionable research 
practices (albeit not the often-unsatisfactory practice of 
dichotomizing or categorizing conclusions). For the 
relationship between dispositional trust and self-
referencing, StatBreak found a solution with three case 
exclusions that satisfied the criterion of p > .10. As the 
analysis involved only two variables in this case, the 
results can be depicted in a scatterplot (see Fig. 6).

Although the relatively small number of case exclu-
sions could be interpreted as indicating that our initial 
conclusion is not robust, it is not sufficient to simply 
note the number. Most small effects found in nonlarge 
samples disappear when a few selected cases are 
excluded (see Fig. 4), and when we simulated a case 
with a population-level correlation of .12 and a total 
sample of 398, StatBreak indicated that we would need 
to delete a median of 4 observations to change our con-
clusion, so it is not necessarily noteworthy that StatBreak 
flagged 3 observations in the real data. More important 
is an assessment of the nature of the flagged cases, as 
prescribed by virtually all techniques for analyzing influ-
ential cases (Barnett, 1978; Osborne & Overbay, 2004).

In Figure 6, the three potentially excluded data points 
are somewhat outlying, but not sufficiently so to look 
suspicious per se. However, one of the three flagged 
Twitter accounts had a high rate of self-referencing 

because it constantly posted the same, apparently non-
self-authored, advertisement texts including the words 
I and me (a paraphrased example: “I am winning cash! 
Come join me under this URL!”). We reasoned that such 
tweets result from a special data-generating process, 
which warrants an exclusion. The tweets of both other 
flagged accounts did not look suspicious, and because 
we could not see any quantitative or qualitative reason 
to exclude them (both accounts posted tweets with var-
ied wording and noncommercial content), we left them 
in the sample. When the one suspicious case was 
excluded, the new result, r = −.11, p = .029, was quite 
close to the original result.

Additionally, we next made use of our new knowl-
edge and searched across the whole range of trust 
scores for other spam accounts with similarly high fre-
quencies of self-referencing (i.e., the search was not 
biased toward the null hypothesis and against interest-
ing findings). When we excluded 4 similar spam 
accounts (which also constantly reposted advertisement 
texts), the correlation remained negative, r = −.093,  
p = .066. Notice that StatBreak did not highlight these 
additional cases because it merely indicates the luckiest 
observations, not the observations that are qualitatively 
suspicious given certain rules (in this case, posting of 
repetitive, commercial content). StatBreak itself does 
not provide a qualitative review of each data point, and 
it also will not highlight nonoutlying data points. In this 
case, it merely alerted us to the luckiest data points 
(repetitive wording led to their extreme scores), and 
our manual inspection led to the insight that repetitive 
accounts are sometimes spam accounts. A future study 
could preregister an exclusion rule to discard data from 
such accounts. Given that we judged the sample with-
out the spam cases to be more informative, we might 
adjust our estimated probability of the data (or more 
extreme data) under the null hypothesis, characterizing 
it as somewhat small (p = .066), rather than small (p = 
.018). Thus, we would argue that the original result 
appears to have been slightly distorted by a small num-
ber of suspicious data points, only one of which was 
highlighted by StatBreak because of its strong contribu-
tion to the initial results. This approach to finding sus-
picious influential cases involves a combination of 
automatic computation (in this case, computation by a 
genetic algorithm; in other cases, computation of outlier 
metrics) and researchers’ judgment regarding the 
flagged cases, both of which are required for virtually 
any method of analyzing influential cases.

Advantages of StatBreak

In this section, we highlight advantages of StatBreak 
over popular existing methods.
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Fig. 6.  Results for the application of StatBreak to real data. The 
scatterplot (with best-fitting full-sample regression line) shows the 
negative relationship between the usage of self-references in tweets 
and dispositional trust in the full data set. However, StatBreak flagged 
three data points (black triangles) whose exclusion from the sample 
would render the effect nonsignificant, p > .10. The gray band shows 
the 95% confidence interval.



Identifying “Lucky” Data Points	 225

Breadth of applicability

Methods of dealing with outliers and influential data 
points are often bound to certain types of statistical 
models. For instance, Cook’s (1977) D is designed for 
regression models, and rules such as “exclude every-
thing more than 3 SD from the mean” have to be applied 
to univariate continuous data. Similarly, robust-modeling 
alternatives are tailored to specific statistical analyses 
(Field & Wilcox, 2017). Having to tailor one’s strategy 
for examining outliers to the specifics of each analysis 
is burdensome, and a universally applicable tool like 
StatBreak can therefore be useful.

Popular outlier metrics can alert researchers that spe-
cific statistics of interest might be distorted. For instance, 
DFBETAS and DFFITS target, respectively, how much 
individual observations influence beta coefficients and 
predicted values (Cousineau & Chartier, 2010), whereas 
standardized residuals target prediction errors. How-
ever, such metrics might focus on statistics that are not 
the crucial, conclusion-relevant statistic that needs to 
be examined for distortion by lucky observations. An 
observation might, for instance, distort the beta coef-
ficient of a linear regression model, while having little 
effect on the explained variance or the intercept. In 
StatBreak, researchers have to explicitly specify which 
statistic is crucial for their conclusions, and StatBreak 
will search data points relevant for this statistic.

Further, when using popular outlier metrics, research-
ers frequently have to make decisions based on cutoff 
scores. However, many find it difficult to justify a cutoff 
score given their lack of experience with, for example, 
Cook’s D, Studentized residuals, or Mahalanobis dis-
tance and thus blindly rely on conventional rules of 
thumb. StatBreak does not eliminate this issue, but it 
allows researchers to base conclusions on metrics that 
they are more familiar with, helping them to make 
better-informed decisions. For instance, we assume that 
it is more difficult for researchers to decide whether a 
Cook’s D of 3 is problematic than to decide whether it 
is problematic that excluding Observations 7 and 24 
reduces an effect size by 75%. Although StatBreak 
clearly does not solve the issue of subjectivity in cutoffs, 
it allows researchers to calibrate their confidence in a 
way they can justify themselves. Further, StatBreak 
guides researchers toward qualitative instead of purely 
quantitative case analyses, as we discuss later.

Thorough search

To effectively test for multiple influential observations, 
researchers must test for outliers in a stepwise proce-
dure (as single-step procedures cannot detect outliers 
masked by other outliers; Bendre & Kale, 1985). 

However, manually excluding the most outlying case 
and recomputing the outlier analysis in the new sub-
sample, in an iterative process, is burdensome, leading 
researchers to compute outlyingness scores once 
(greedy search) and exclude cases based on these 
scores. StatBreak automates the stepwise approach, 
which helps researchers find masked outliers that 
would have been overlooked in nonstepwise 
analyses.

Further, high-dimensional data might not allow the 
application of some metrics and plots that can be used 
to find outliers. Although there are special methods for 
such data (Caussinus, Fekri, Hakam, & Ruiz-Gazen, 
2003), applied researchers might be even more reluc-
tant to conduct such analyses given the increased effort 
required to learn and apply these methods. Conversely, 
the application of StatBreak does not differ between 
high- and low-dimensional problems, and StatBreak is 
therefore a simple tool for dealing with complex mod-
els (see the section titled Using StatBreak for High-
Dimensional Models).

Qualitative analyses and explicit links 
between statistics and conclusions

Simple methods, such as excluding the top and bottom 
2% of cases or excluding everything with a Cook’s D 
higher than x, can be carried out as automatic decision 
rules, which do not require reflection on the nature of 
the excluded cases (e.g., “why were they so extreme?”). 
StatBreak’s output (indicating, e.g., that deleting Obser-
vations 3 and 5 from the data leads to a different con-
clusion, given the specified criterion) does not state 
that the flagged cases should be deleted. Given that 
they appear to be crucial, and that their level of suspi-
ciousness is to be determined, we believe that users 
are effectively nudged toward finding out what is spe-
cial about these observations. However, it is also note-
worthy that this traditionally encouraged qualitative 
outlier review can entail ad hoc storytelling, which can 
be misused as a questionable research practice. In the 
case of StatBreak, for example, a user might say, 
“StatBreak suggests that deleting Observation 42 results 
in a much smaller effect size, but we decided to leave 
this data point in because we do not think it is suspi-
cious.” When faced with incomplete and nonconvincing 
applications of StatBreak, reviewers should run the 
algorithm themselves to assess whether StatBreak’s out-
put was indeed not worrisome.

StatBreak not only nudges users toward in-depth 
review of individual cases, but also facilitates explicit links 
between primary analyses and conclusions. Many publica-
tions present conclusions based on numerical results. A 
conclusion is often based on a single number: for 
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example, “we believe that there is a treatment effect 
because the statistical test yielded a p value of .001,” or 
“we believe that the model makes good predictions 
because the model’s R2 is .65.” Often, the worry regarding 
outliers is that the conclusion would have changed had 
these special data points been considered. To consider 
alternative conclusions, researchers need to be aware how 
their conclusions map out across alternative values of the 
target statistic (e.g., Funder & Ozer, 2019). StatBreak 
requires users to make this mapping explicit by indicating 
a value under which their conclusion would have 
differed.

Summary

In summary, StatBreak is a tool that offers advantages 
in applicability, thoroughness, and facilitation of reflec-
tion on outliers. However, we emphasize again that this 
R-based tool is not supposed to replace well-established 
methods. Popular metrics are informative about the 
precise outlyingness of data points (StatBreak is not), 
and robust estimation methods guard against assump-
tion violations beyond the presence of outliers.

Example Usage of the StatBreak  
R Package

In R, the StatBreak package can be downloaded though 
the command devtools::install_github 
('hannesrosenbusch/statbreak'). Its main 
function, stat_break, implements the genetic algo-
rithm as described in the preceding examples in a way 
that is applicable for any model or sample statistic. The 
following code demonstrates how to apply the function 
to Simmons, Nelson, and Simonsohn’s (2011) impossible 
“finding” that listening to the song “When I’m Sixty-
Four” by The Beatles makes people younger, p = .040:

#read in the authors' data obtained 
#from: https://osf.io/v6xzw
df = read.delim('fp psychology Study 2.txt')

#apply the same row selection that the 
#authors described
filtered_data = df[df$cond != 'potato',]

#verify that we obtain the same results 
#that are reported in the paper
m = lm(aged ~ cond+dad, data = filtered_data)
summary(m)

#define a function that outputs the 
#statistic of interest (here: the p-value)

#you can always leave the first following 
#line as "my_value = function(data){"
#between the curly brackets, paste in 
#your original analyses, end with the 
#number of interest
my_value = function(data){

m = lm(aged ~ cond+dad, data = data)
summary(m)$coefficients['condcontrol',
"Pr(>|t|)"]}

�#this last line gives the focal p-value

#run the StatBreak algorithm with 
#default arguments
#we set the cutoff for a qualitatively 
#different p-value to .1
solution = StatBreak::stat_break(data= 
filtered_data, statistic_computation = 
my_value, goal_value = 0.1)

Running this code yields the following output 
(trimmed):

Dropped rows: 1, Target statistic: 
0.342413, Convergence (Generations 
w.o. change): 1/200

Dropped rows: 1, Target statistic: 
0.342413, Convergence (Generations 
w.o. change): 2/200

Dropped rows: 1, Target statistic: 
0.342413, Convergence (Generations 
w.o. change): 3/200

Dropped rows: 1, Target statistic: 
0.342413, Convergence (Generations 
w.o. change): 4/200

. . .
“Exclude the following observations 
(rows) for a less interesting finding:”

2

As is evident in the output, StatBreak finds the opti-
mal solution within the first generation of subsamples. 
StatBreak indicates that discarding a single observation 
lets the focal p value jump from .040 to .342. The gen-
erated solution variable is a list of four elements: 
number_exclusions (how many observations were 
excluded), excluded_rows (indices of excluded 
rows), original_value (full sample statistic; in this 
example, .040), and new_value (new sample statistic; 
in this case, .342).

In addition to the functionality we have already 
described, the package includes a function for exclud-
ing lucky groups of observations (i.e., higher-level clus-
ters, such as schools or experimental conditions).

https://osf.io/v6xzw
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Regardless of whether the statistic of interest result 
from a linear regression, a multilevel model, a meta-
analysis, or any other procedure, StatBreak requires 
only one or two lines of code more than the original 
analysis. Adding the StatBreak command will ensure 
that the researcher (or reviewer) notices lucky data 
points, which might distort the statistic of interest. Addi-
tional parameters of the function, described in the sec-
tion titled StatBreak’s Parameters, can be tuned if there 
is no convergence, but the default options always 
worked well in our experiments unless the original 
sample was very large (multiple thousands); in such 
cases, we suggest setting the additional large_sam-
ple_drops argument to TRUE. (For more information, 
R code, and example applications of StatBreak, see the 
materials on OSF.)

Discussion

Whether an interesting sample statistic is caused by 
individual observations is a long-standing concern in 
psychological research. We have introduced a new 
method to find and count cases that strongly contribute 
to a finding. This search is based on a genetic algo-
rithm. In contrast to related strategies, such as robust 
modeling, outlier metrics, and visual inspection, the 
new method is applicable to any analysis. Further, it is 
straightforward to apply, encourages qualitative data 
review, requires explicit links between statistics and 
conclusions, and provides very readable outputs (iden-
tifying observations that would need to be deleted to 
obtain a noninteresting finding). Thus, in contrast to 
other techniques for analyzing influential cases, the 
current method is designed specifically for inquiring 
whether individual observations caused an interesting 
finding.

We encourage researchers and reviewers to engage 
in study-specific discussion of the number and nature 
of excluded cases when they interpret the robustness 
of findings. We believe that such deliberations are very 
beneficial, as they nudge researchers and reviewers to 
engage with the data on a deeper level and calibrate 
their confidence in the obtained findings. We again 
want to mention that StatBreak is biased against find-
ings that support researchers’ hypotheses and therefore 
does not remove bias from data. Other methods—most 
prominently, preregistered criteria for excluding outliers—
are better suited to achieve this goal. Further, StatBreak 
is not intended to heighten the bar for empirical findings 
by imposing a new robustness criterion. Rather, StatBreak 
serves as a simple tool for researchers and reviewers who 
want to ascertain whether spectacular findings were due 
to a small number of outliers in the data.
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Note

1. Note that this is only one of many suitable fitness functions. 
In our simulations, we used a slightly extended version of  

this function: fitness
proportion excluded * exclusion cost

=
1

 +  

max(statistic, exclusion cost4 * statistic + statistic cutoff). This 
extended function ensures that of two solutions that exclude 
the same number of observations to reach the goal statistic, the 
one that goes further beyond the cutoff receives a marginally 
higher fitness score.
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