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Chapter 1

General introduction

Glomerulosclerosis results from an excess accumulation of extracellular matrix (ECM)
molecules leading to glomerular scarring. Accumulation of ECM leads to progression of renal
disease, a process called fibrogenesis. This progression is characterized clinically by loss of
renal function. Glomerulosclerosis can be caused by several factors, which have been
summarized in Table 1.

The aim of the work described in this thesis was to investigate the underlying molecular
mechanisms of the development of glomerulosclerosis. Quantification of gene expression
provides insight into the molecules and mechanisms involved in fibrogenesis. Animals
developing glomerulosclerosis are being investigated as models for glomerulosclerosis in
patients.

The introductory section for this thesis is structured as follows. After discussing the
anatomy and function of the normal kidney, the role of the ECM in normal kidneys and during
progression to glomerulosclerosis will be elaborated on. The increase of ECM observed in
progression to glomerulosclerosis results from an altered balance between ECM production
and degradation. In addition to quantitative changes, qualitative changes in the ECM production
may also play a role in its accumulation. These processes are regulated by growth factors and
cytokines. After giving an overview of animal models for glomerulonephritis, an introduction
on diabetic nephropathy (DN) is provided. DN is a major complication of both type 1 and type
2diabetes and is the most common cause of end-stagalimade (ESRD) (1); thus, this
introduction includes several factors involved in the progression of DN and a review of the
most commonly used animal models for DN. To bring the molecular interactions into focus, an
overview of the current knowledge of the role that growth factors, such as transforming growth
factor-beta (TGH3), connective tissue growth factor (CTGF), and vascular endothelial growth

Table 1. Causes of glomerulosclerosis

e Immune-mediated glomerulonephritis
» Metabolic disease

» Infection

» Drug induced nephrotoxicity

e Hemodynamic abnormalities

» Genetic

e Aging

» Idiopathic




General Introduction

factor (VEGF), play in the progression of DN is given. This overview is followed by a summary
of mRNA detection methods and discussion of their effectiveness. The introductory section
concludes with a description of the goals of the studies described in this thesis.

Anatomy and function of the kidney

The kidneys are organs that are specialized in maintenance of water and electrolyte balance.
The human kidneys are located in the retroperitoneum and weigh 130-150 g each. The organs
are encased in a capsule, which is surrounded by retroperitoneal fat. The hilum of the kidney
opens onto the renal vessels, lymphatics, and ureter. The anatomic unit of the kidney is the
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Figure 1. Schematic drawing of the nephron. Glomerulus (1). Proximal tubule (2-3). Descending thin limb

(4). Ascending thin limb (5). Distal tubule (6). Macula densa (7). Distal tubule (8). Collecting duct (9-12).
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nephron, which is composed of the glomerulus, proximal tubule, loop of Henle, distal tubule,
and collecting duct (Fig. 1). Each kidney contains approximately 1.8 million nephrons (2).

Filtration of the blood plasma takes place in the glomerulus of the kidney. The glomerulus
is composed of an afferent and efferent arteriole, the mesangium consisting of mesangial cells
and ECM, and intervening capillaries lined by endothelial cells that cover the glomerular
basement membrane (GBM). The outer surface of the capillaries, which is covered by glomerular
epithelial cells (podocytes) (Fig. 2), is continuous with the epithelium of Bowman'’s space and
the proximal tubule. Filtration of blood plasma takes place in the glomerular capillaries and is
driven by the hydrostatic pressure of the blood flow. Filtration takes place at three different
levels. First, it occurs at the level of the fenestrated endothelial cells, which are permeable to
water and small solutes. The fenestita@mselves are too large to effectively filter
macromolecules, but the endothelial cells are covered by a layer of negatively charged
glycosylated macromolecules known as the glycocéyxHaraldsson et al. (4) fourndat
this negatively charged glycocalyx may play a iolglomerular size and charge selectivity.

The second layer is the GBM, which is a gel-like material consisting of 90% water (5). The
structural integrity of the GBM is derived from a network of different ECM molecules, including

Bowman’s space

Podocytes

Slit diaphragm

Endothelium
Capillary lumen
Figure 2. Schematic drawing of the filtration barrier.
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type IV collagen, laminin, fibronectin, entactin, dreparan sulphate proteoglycans (6). The
composition of the GBM and its molecular size and charge play an important role in permeability.
The third barrier is the slit pore, located between the foot processes of the podocytes. The foot
process is a contractile structure compagedany different molecules, including nephrin,
CD2-associategrotein, podocin, P-cadherin, densin, filtrin, actin, myosin, a-actinin, vinculin,
and talin. These molecules are connetdezhch other or to the GBM at focal contacts such as
the a3B,-integrincomplex (7). Podocytes also contribute to the specific size and charge
characteristics of the glomerular filtration barrier, and damage to these cells le@dsatiian

of their foot processes and proteinuria (8,9).

Extracellular matrix

In addition to their presence in the GBM, ECM molecules can be found in the mesangial area.
Apart from its direct function in filtration, the GBM and the mesangial matrix serve as an
anchoring place for glomerular cells through cell/matrix interacting sites such as integrins.
The major components of the ECM in the glomerulus are collagens and laminins. Of all
collagens, type IV is the primary one found here. It is encoded by six genetically distinct
alpha-chains (alpha 1 through alpha 6) (10). Altered expression of collagen type IV alpha
chains and laminin chains has been described in animal models for membranous nephropathy
and lupus nephritis (11,12).

Progression of renal diseases as a result of disturbed ECM homeostasis

Most glomerulopathies are characterized by a decreased glomerular filtration rate (GFR) and
proteinuria. Progression of renal diseases is morphologically characterized by the accumulation
of ECM molecules in the glomerulus, the tubulointerstitial area, or both. Excessive accumulation

of basement membrane, mesangial matrix, and interstitial matrix molecules are hallmarks of
progression to glomerulosclerosis and interstitial fibrosis. A normal homeostasis of the ECM

Table 2. Causes of ECM accumulation

* Increased translation of ECM protein

« Increased transcription of ECM protein

« Reduced degradation of ECM protein

» Establishment of ECM binding sites on cells

« Establishment of novel binding (cellular/matrix) sites
in ECM molecules via alternative splicing
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is maintained by a continuous balance between the production and degradation of matrix
molecules. Accumulation of ECM molecules in glomerulosclerotic and interstitial fibrotic
lesions can be the result of increased local transcription or translation of ECM-encoding genes
or RNA, trapping of ECM molecules from the circulation, or a diminished degradation of
ECM proteins by matrix metalloproteases (MMPs) (Table 2). The MMPs belong to a large
family of ECM-degrading enzymes, which include the interstitial collagenases (MMP-1, MMP-

2, MMP-8, and MMP-13), stromelysins, gelatinases (MMP-2 and MMP-9), and elastases
(13). Changes in MMP expression or activity may result into altered ECM turnover, which may
lead to glomerulosclerosis. Cytokines such as P&E4) and platelet-derived growth factor
(PDGF) (15) can influence expression of ECM molecules and MMPs, thereby disturbing the
balance between ECM synthesis and degradation. These cytokines can also lead to an altered
composition of ECM molecules

Alternative splicing of ECM molecules in renal disease

Alternative splicing of ECM molecules can account for an alteration of the ECM composition
by influencing the degradability of the matrix or by introducing matrix—matrix and matrix—cell
interactions (Table 2). Splicing of MRNA takes place after DNA transcription. The encoding
regions of most genes are split into segments (exons) separated by noncoding intervening
sequences (introns). After transcription of DNA, the pre-mRNA molecules of most genes
undergo further processing. This processing involves removal of the intron segments and
rejoining of the remaining exon segments. The splicing of mMRNA is mediated through a complex
called the spliceosome, which consists of five types of small nuclear RNAs (shnRNAs) and
many other proteins (16) that assemble at splice sites. Each of the snRNA molecules is attached
to specific proteins to form the spliceosome. The specificity of the splicing reaction is established
by RNA-RNA base-pairing between the RNA transcript and snRNA molecules. In addition to
physiologic RNA splicing, alternative splicing of RNA can occur. This process introduces
splicing out or retention of exon sequences in addition to the intron sequences. With this
mechanism, different cell types or environmental conditions can induce several types of mRNA
molecules from a single gene.

Alternative splicing can be detected with reverse transcriptase polymerase chain reaction
(RT-PCR) in combination with specific primers flanking the site where the splicing takes place.
Separation on an agarose gel can discriminate between normally and alternatively spliced
MRNA. Fibronectin is an example of alternative splicing of an ECM molecule. This glycoprotein
plays a role in cell-matrix and matrix—matrix interactions and is found in the normal kidney.
Its expression increases during glomerulosclerosis and interstitial fibrosis (17). Fibronectin is
composed of a number of repeats of three different types and has several binding domains,

12
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Figure 3. General structure of the fibronectin polypeptide. The fibronectin molecule consists of different
repeats (types I, I, and Ill), several binding sites (fibrin, heparin, DNA, and cell), and three different sites that
can be alternatively spliced (EDA, EDB, and V).

including collagen-, heparin-, and integrin-binding sites. Alternative splicing of certain domains
within the fibronectin molecule can take place at three different regions, the EDA, EDB, or V
regions. This alternative splicing can result in the retention of additional binding domains
(Fig. 3) that play a role in biological processes, including maintenance of normal cell
morphology, cell migration, cell differentiation, and cell remodeling (18). It has been shown
that fibronectin proteins, including the EDA and V regions, are increased in the mesangium of
nephritic rats. Coinciding with the up-regulation of the EDA and V120 isoforms, there was an
increase in mesangial cell proliferation and in the number of infiltrating cells positive for
a431-integrin (a ligand for fibronectin) (19). Upon ischemic injury in rat kidneys, the expression
of EDA-positive fibronectin increases dramatically in the renal interstitium and continues to be
produced at high levels 6 weeks later. The V-region-containing fibronectin also increases in the
interstitial space (20).

Animal models for glomerulosclerosis

Animal models of renal disease can be used as a tool to investigate the development and
progression of human renal diseases. In this section, the animal models employed in the studies
presented in this thesis will be discussed. First of all, anti-Thy-1 nephritis in rats, which is
induced by a single injection of antibodies directed against the Thy-1 epitope on the glomerular
mesangial cells, results in complement-dependent mesangial cell lysis, apoptosis, mesangial
proliferation, and ECM deposition (21). Depending on the rat strain used, anti-Thy-1
glomerulonephritis either spontaneously resolves within several weeks or progresses to

13
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glomerulosclerosis (22). Chronic serum sickness is a model for human membranous
glomerulonephritis and can be induced by injection of human IgG in rats pre-immunized with
human IgG (23). Immune complex glomerulonephritis is observed within a few weeks,
accompanied by proliferation of mesangial cells and influx of macrophages. At the electron
microscopic level, subepithelial and mesangial electron-dense deposits can be observed within
the glomerulus (24). After 10 to 20 weeks, the rats develop mesangial matrix expansion followed
by glomerulosclerosis and interstitial fibrosis.

In the mouse, chronic graft-versus-host (GVH) disease is used as a model for human
membranous glomerulonephritis. Injection of parental-derived donor lymphocytes into F1-
hybrids results in polyclonal B-cell activation (25). An array of autoantibodies is produced
that can bind directly to the glomerular capillary wall. Immunofluorescence microscopy shows
granular localization of immunoglobulins along the GBM in the mesangial area. The mice
show global glomerulosclerosis 10 to 12 weeks after the induction of the disease (26).

Anti-glomerular basement membrane nephritis (anti-GBM) can be induced in mice through
injection of rabbit anti-GBM antibodies. The antibody can be prepared by immunization of
rabbits with mouse GBM (27). Animals develop glomerulonephritis and glomerulosclerosis
within 14 days after injection.

Diabetic nephropathy

In several studies described in this thesis, we have focused our research on the development of
glomerulosclerosis in patients with DN. DN is the most common cause of ESRD (1). After
retinopathy, it is the most prevalent complication in patients with type 2 diabetes (28). Type 2
diabetes accounts for approximately 90% of all cases of diabetes. It is caused by a decreased
response of liver and muscles to insulin or a disorganized insulin secrefecelly in the
pancreas. As a result of these changes, patients experience high blood glucose levels. Diabetes
mellitus can also lead to chronic vascular complications, which are the most important causes
of morbidity and mortality. These consist of microvascular complications (microangiopathy)
leading to retinopathy, neuropathy, and nephropathy, or macrovascular complications
(macroangiopathy) leading to cardiovascular diseases. These vasculopathies are likely to result
from endothelial cell dysfunction and damage caused by metabolic and hemodynamic factors
(29).

DN is morphologically characterized by expansion of the mesangial matrix, thickening of
the glomerular and tubular basement membranes, and glomerular hypertrophy (30). These
features precede the development of glomerulosclerosis and interstitial fibrosis and the onset
of the progression to ESRD. Nodular glomerulosclerosis, a characteristic pathological feature
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first described by Kimmelstiel and Wilson (Kimmelstiel-Wilson lesion) (31), refers to the
appearance of eosinophilic nodules at the periphery of the glomerulus. The nodules are the
result of an expansion of the mesangium in combination with progressive occlusion of the
glomerular capillaries (32). Red blood cell fragments in such lesions in combination with the
presence of activated plasminogen activator inhibitor 1 indicate microvascular injury and
mesangiolysis in DN (33).

Although many factors whose expression is associated with the progression of DN have
been identified, the precise pathogenesis of this disease is still unknown. Several mechanisms
by which diabetes can cause ESRD have been proposed (34-36). The most important postulated
risk factors for DN are systemic hypertension, hyperglycemia, cigarette smoking,
hyperlipidemia, duration of diabetes mellitus, dietary protein intake, and genetic predisposition
(37,38). The following paragraphs provide an overview of several factors involved in the
progression of DN.

Metabolic factors in the progression of DN

An increased blood glucose level is a major risk factor for the onset and progression of DN.
Hyperglycemia mediates its effect in several ways. First of all, activation of the protein kinase
C (PKC)-MAP kinase pathway plays a prime role in the development and progression of early
tissue damage in DN (39,40). PKC has been implicated as a cause of altered renal blood flow
(41) and of induction of several growth factors and ECM production in the diabetic kidney (42-
47).

Progression of DN may be accelerated by the formation of metabolic derivatives such as
oxidants and glycation products. Formation of reactive oxygen species due to metabolic changes
in diabetes can contribute to the development of DN via oxidative stress and increased oxygen
consumption (48).

Accelerated non-enzymatic glycation in diabetes, resulting from high glucose levels, is
also linked to the pathogenesis of DN (49-52). This glycation, called the Amadori reaction, is
a reaction between sugar molecules and polypeptides that irreversibly generates advanced
glycation end products (AGESs) (53). AGEs can stimulate ECM production through activation
of growth factors (54-58). There is also evidence that AGEs induce transition of tubular epithelial
cells tamyofibroblasts, which are major producers of ECM (59). Because of the slow turnover
of ECM molecules, these proteins are highly susceptible to modification by AGEs, which
possibly leads to decreased susceptibility of ECM proteins to degradation by MMPs (60).
AGEs exert their effects on cells by interacting with specéilcilar receptors, e.g., the receptor
for advanced glycation endproducts (RAGE). This AGE-RAGE interaction can lead to cellular
oxidative stress, resulting in several cellular responses, including activation of transcription

factors.
15
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Hemodynamic factors in the progression of diabetic nephropathy

Activation of the renin-angiotensin system (RAS) is one of the major mechanisms for changes
in renal hemodynamics contributing to the progression of DN. Apart from the circulating RAS
that regulates blood pressuteid-, and electrolyte balance, tkieney has an independently
regulated local RAS (61). In the tubular cells and glomeruli, renin and angiotensinogen are
expressed (62,63). High glucose activates the intrarenal RAS in cultured mesaligial
resulting in decreased matrix degradation and incremaattk accumulation via induction of
TGF-R1secretion (64)Streptozotocin (STZ)-induced diabetes in rats is accompanied by an
increase of renimRNA in the proximal tubules and by downregulation of cortical angiotensin
receptors in the renal cortex (65).

The endothelin system is another mechanism in the kidney that regulates renal hemodynamics
(66). Endothelin-1 (ET-1) is one of the most potent vasoconstrictors and acts as a paracrine
and autocrine factor (67). ET-1 is present in the kidney, where it is secreted by mesangial (68),
endothelial (69), and tubular epithelial cells (70). ET-1 production increases under high glucose
conditions via TGF-R stimulation (33,71,72) and by shear-stress as a result of glomerular
hyperfiltration (73). ET-1 can stimulate cell proliferation and increase the expression of PDGF
(74). Studies on the expression of ET-1 in diabetic animal models show conflicting results.
Some studies show increased urine ET-1 levels in diabetic animals (75), while others found
that renal ET-1 mRNA expression and protein were significantly reduced in diabetic kidneys
(76). In hypertensive patients with type 2 diabetes, plasma ET-1 concentrations were increased
compared to control subjects. This increase could be reduced by eralaypchrdipine
treatment (77).

Genetic predisposition to DN

Although blood glucose levels are often poorly controlled in diabetes mellitus, 60-70% of
patients with type 2 diabetes mellitus never develop DN. Several studies show a higher incidence
of DN in some families or ethnic populations (78-80). The prevalence of DN in diabetic patients
with siblings with DN is about 50% higher than that in diabetic patients whose have siblings
do not have DN (81). This observation suggests that a genetic predisposition underlies the
progression of DN. Indeed, several single nucleotide polymorphisms (SNPs) associated with
DN have been described. Two DN-related polymorphisms in the endothelial nitric oxide synthase
gene have been identified (82). Others have found DN-related SNPs in tH&ElRje8e (83), in

the solute carrier family 12 member 3 gene (84), and in glutamine/fructose-6-phosphate
amidotransferase-2 (85). Vardarli et al. found a strong linkage of chromosome 18q (LOD score
of 6.1) with the occurrence of DN in Turkish families with type 2 diabetes mellitus (86). This
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locus was confirmed by a genome-wide, gene-based SNP search for DN-related susceptibility
genes in African-Americans (87).

Animal models for diabetic nephropathy

Several animal models for DN have been described in the literature. Mice and rats can be
made diabetic by a single injection of STZ, providing a model for human insulin-dependent
diabetes mellitus. There are several genetic knockout and transgenic mouse models for diabetes.
These include the hypoinsulinemic non-obese diabetic (NOD) mouse, the Kkay mouse, the
New Zealand obese mouse, the hyperinsulinemic ob/ob mouse, and the different strains of
obese hyperinsulinemic db/db mice [summarized by Allen et al. (88)]. Each of model displays
some morphological changes in the kidney that resemble those seen in diabetic patients. The
db/db mouse model has been the most extensively investigated model for human DN. Db/db
mice display substantial glomerular pathology, including mesangial matrix expansion and modest
albuminuria. Diabetes can also be induced in PVG.RT1 rats. These relatively T-cell deficient rats
develop diabetes after adult thymectomy and sublethal irradiation (89). More recently, OVE26
mice have been described as a transgenic model of severe, early-onsetigiyetes (90).

These mice develop diabetes within the first waedlge and survive well over one year
without insulin treatment. The OVE26 misleow most of the characteristics of human DN,
including glomerular hypertrophy and mesangial matrix expansion, followed by diffuse and
nodular sclerosis, and tubulointerstitial fibrosis. The GFR of these mice increases significantly
between 2 and 3 months of age and then decreases bbtaw@® months.

Growth factors in renal diseases

TGFB

Growth factors play a role in the progression of renal diseases. They mediate ECM homeostasis
by increasing ECM production and diminishing degradation of ECM proteins. Growth factors
can indirectly influence progression of renal disease via their proliferative and chemoattractive
effects on cells that are involved in ECM homeostasis. BG&-eone of the first and most
extensively investigated growth factors in the progression of renal diseases. It is a 25-kD
protein that is secreted in a latent form and requires cleaving before it can become active. The
release of the latency-associated protein from the maturefflidétein by enzymes such as
trombospondin and plasmin (91,92) is necessary for activation (93)B @R directly induce

ECM production in mesangial cells (94-97). T@Ean also promote matrix accumulation via
downregulation of MMPs or upregulation of tissue inhibitors of metalloproteinases (TIMPs)
(98-100). TGRB can also contribute to matrix expansion via induction of expression of receptors
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for (circulating) matrix molecules. Kagami et al. have shown that TGF-R can induce mRNA
expression afi 131 integrin in mesangial cells, resulting in a significant increase in adhesion of
fibronectin, collagen I, and laminin to these cells (101).

In experimental animal models, Border et al. identified an important role fo3liG&nti-

Thy-1 nepbhritis (102). Administration of the natural TGHhibitor decorin or antibodies
against TGH3 to glomerulonephritic rats suppressed glomerular matrix production and
prevented matrix accumulation (103,104). These findings have stimulated investigation of TGF-
Bin experimental renal diseases and human renal diseases. For examfidaidieen widely
investigated in animal models for DN (58,105) and in anti-GBM nephritis (106,107). On the other
hand, in mice suffering from chronic GVH disease, there was no evidence for a role piTGF-
the development of glomerulosclerosis (108), indicating that f3Fot always necessary for

the development of glomerulosclerosis.

Although there is considerable evidence for the role of PGk-the development of
glomerulosclerosis in animal models, the evidence for its role in the development of
glomerulosclerosis in patients is less convincing. lwano et al., using quantitative RT-PCR,
found higher expression of TGF mRNA in glomeruli of patients with DN (109). An increase
of TGF{3 expression has also been described in other renal diseases (110,111), including IgA
nephropathy (112,113) and membranous nephropathy (114). On the other hand, in a study of
patients with lupus nephritis and glomerulosclerosis, there was no increase BHiR&IFA in
glomeruli (108). In biopsies from transplanted kidneys with acute rejection, higher levels of
TGF{ were found compared to control tissue (115-118). Eikmans et al. showed that relatively
high levels of TGH3 during acute rejection are associated with good prognosis (119). They
hypothesized that TGB-has beneficial effects during acute rejection through its anti-
inflammatory actions or as an inducer of tissue repair. Until now, the precise role f@ mGF-
progression of human renal disease has not yet been entirely clarified.

VEGF

VEGF, a highly conserved homodimeric glycoprotein with a relative molecular mass of 45
kD, is the only mitogen that specifically acts on endothelial cells. In addition to its potent
mitogenic actions, VEGF also plays a prominent role in developnagrgiigenesis (120). It

can bind to Flk1, the major cell surface receptor for VEGF, which is exclusively expressed in
endothelial cells (121). Hypoxia and hypoglycemia are major stimulators of VEGF expression
(122). Hypoxia-inducettanscription of VEGF mRNA is mediated, at leaspart, by the
binding of hypoxia-inducible factor 1 alpha (HIBjto the VEGF promoter (123). More recently,
hypoxia-induced c-Src thyrosine kinase activation was found to be another mechanism involved
in VEGF induction (124). Other factors, including AGEs, PDGF, angiotensin Il, nitric oxide,
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prostaglandins, estrogen, and thyroid-stimulating hormone can also up regulate VEGF
expressiofin vitro (125-130).

In the normal kidney, VEGF is present in podocytes and tubular epithelial cells, while it is
absent in glomerular endothelial and mesangial cells (131). The specific mechanism by which
VEGF may influence glomerular filtration is unknown. It has been suggested that VEGF is
important for the maintenance of glomerular endothelial cells and that lowering local or circulating
VEGF levels results in abnormal remodeling of the glomerular capillaries (132,133). Treatment of
STZ-inducedliabetic rats with monoclonal anti-VEGF antibodies decreases hyperfiltration,
albuminuriaand glomerular hypertrophy (134). In the same model, VEGF was reduced in the
glomeruli one week after induction (135). This reduction can be restored by treatment of the
rats with insulin. Decreased VEGF expression was recently documented in the remnant kidney
model, and treatment of these animals with VEGF reduces renal fibrosis (136). Administration of
VEGF to rats after induction of anti-Thy-1 nephritis leads to enhanced endattibtisdliferation
and glomerular capillary repair (13Broliferating endothelial cells were foumdthe
mesangiolytic lesions and aneurysms. Thereafter, a new glomerular capiifeoyk developed.

In rats with anti-Thy-1 nephritis, a positive association was seen between impairment of vascular
regeneration and the development of glomerulosclerosis (137-139). Studies in mice showed
that both glomerular-selective depletion or overexpression of VEGF-A leads to glomerular
abnormalities (140).

In glomeruli of patients suffering from DN, a decrease of VEGF mRNA has been described
(132,133,141). At the same time, no correlation was found between renal function and circulating
VEGF levels (142), indicating that local VEGF production seems to be more important for
endothelial cell maintenance than circulating VEGF. In idiopathic membranous glomerulo-
nephritis and in minimal change disease, expression of VEGF mRNA was considerably reduced
compared to controls (143,144). In cell culture experiments on VEGF, opposing results have
been obtained. Deposition of glycosylated IgA proteins result in reduced VEGF synthesis by
mesangial cells (145), while high glucose can directly increase VEGF expression in mesangial
cells via the PKC pathway (45,146). In the retinal pigment epithelial cell line, it has been shown
that glycosylated albumin stimulates VEGF expressiosugh an ERK-dependent pathway
(147). In podocytes, high glucose induces activator protein-1-dependent transcriptional activity
and expression of VEGF. AGE-induced activation of monocytes/macrophages resulted in
augmented induction of VEGF and other angiogenic and inflammatory factors in these cells
(148).

CTGF
CTGF is encoded by a 2.4-kb mRNA molecule. Northern blot analysis has shown that CTGF is
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expressed in a wide variety of human tissues (149). It is a major chemotactic and mitogenic
factor for connective tissue cells (150) améssociated with both systemic and localized
fibroticdiseases and ECM synthesis (151-154). CTGF gene expression is increased in human
fibroblasts upon stimulation with TGEbut not with PDGF, epidermal growftictor, or basic
fibroblast growth factor (bFGF) (155). Induction of CTGF expression in epithelial cells can
occur directly via HIF-&, independently of TGIB-(156). In addition to the fibrotic properties

of CTGF, it is a potent angiogenic factor (157,158). It can regulate progression in invasive tumor
angiogenesis by inducing expression of MMPs and by decreasing expression of TIMPs by
vascular endothelial cells (159). The precise molecular mechanisms of CTGF's action as a
growth factor are not completely known. Although much research has focused on unraveling
its signaling pathway, a specific receptor has not yet been found.

In normal kidneys, CTGF mRNA is expressed mainly by visceral epithelial cells and to a
lesser extent in parietal epithelial cells and interstitial fibroblasts (160). The role of CTGF in
the normal kidney is still unclear, but we hypothesize that glomerular CTGF, in combination
with other angiogenic factors such as VEGF, contributes to the normal maintenance of glomerular
endothelial cells.

CTGF expression is increased in glomeruli and tubulointerstitial lesions from patients with
glomerulonephritis, including IgA nephropathy, crescentic glomerulonephritis, lupus nephritis,
and membranoproliferative glomerulonephritis. CTGF is involved in cellular proliferation and
matrix accumulation (160-162).

Suppression subtractive hybridization techniques showed that CTGF is highly expressed
in mesangial cells under high glucose conditions (163,164). This finding in mesangial cells
was confirmed by others (165,166). Angiotensin |l can induce CTGF in proximal tubular cells
in vitro (71).

An increase in CTGF mRNA has been found in glomeruli of microalbuminuric and overt
albuminuric patients compared to healthy and normo-albuminuric patients (167). In this study,
it was proposed that CTGF mRNA, in combination with other glomerular mMRNA markers
chosen because of their pathogenetic relevance, may complement albuminuria and histology
in predicting progression of DN. In diabetic NOD mice, a correlation was found between
CTGF mRNA levels and the duration of diabetes. The most prominent mesangial CTGF
immunostaining was seen in older animals (164). Other animal models for DN also showed an
increase in CTGF mRNA and protein expression (165,168). Treatment of these animals with
aminoguanidine or aspirin attenuated mesangial expansion suppressed CTGF induction and
inhibited upregulation of TGB1 and fibronectin expression (169,170).
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MRNA detection methods

To study the development of glomerulosclerosis, measurements of mMRNA levels can be used
as tools to investigate the molecular mechanisms behind this process. The genomic DNA itself
does not direct protein synthesis, but uses mRNA as an intermediary molecule. The nucleotide
sequence of the appropriate portion of the DNA molecule in a chromosome is first transcribed
into MRNA. These mRNA molecules are used as templates for protein synthesis, a process
called translation (Fig. 4). Proteins can be further modified posttranslationally. Quantification

of gene expression levels in cells is important for investigating the gene patterns responsible
for cell behavior during disease progression and response or resistance to treatment. Gene
expression levels can also be used as a diagnostic tool (171) or as a predictor for disease
outcome (119). Different techniques are available to measure gene expression levels.

Northern blot

One of the most conventional techniques for assessment of MRNA expression is Northern blot
analysis. Negatively charged RNA is loaded into an agarose gel, and a negative current is
applied to repel to molecules toward the positively charged electrical current at the opposite

end of the gel. Because smaller RNA molecules move faster through the gel, RNA molecules are
separated by size. The separated RNA molecules are transferred to a nylon filter, which is then

DNAOODOOODOO Genomics
Sequencing and
! organization of genome
RNAOOOOOOO Functional Genomics
Measurements of
l mRNA expression
Protein O OO OO0 Proteomics
Measurement of
! protein expression
Functional protein O Modified proteomics

Measurements of post-
translational modification
of proteins
Figure 4. Transcription and translation: Genetic information is transcribed from DNA into mRNA and

then translated from mRNA to protein. Proteins can be further modified posttranslationally to alter their
function.
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hybridized with a labeled, single-stranded DNA fragment encoding the gene of interest. The

visualized DNA probe on the membrane is a measure for the expression level of the gene. With
this labor-intensive technique, one can only quantify one gene at a time (Fig. 5). The sensitivity
of Northern blotting is relatively low.

RNase protection assay

Another technique to quantify mMRNA levels is the ribonuclease (RNase) protection assay (RPA).
The principle of this method is based on protection against nucleases though specific binding
of labeled antisense RNA probes. Subsequent treatment with RNase results in progressive
cleavage of the overhanging mRNA sequence until the antisense RNA is hybridized only with
the mMRNA sequence of interest. Size-fractionation by denaturing gel electrophoresis can identify
the sizes of different RNA probes. The amount of protected, labeled antisense probe corresponds
with the relative gene transcription level of the mRNA sample. With this method, 5 to 20 genes
can be quantified in one run.

RNAIn situ hybridization

Hybridization of a gene-specific probe to tissue on the slide in combination with
immunohistochemistry with cell-specific markers can give a detailed expression pattern showing
which cells are expressing the particular mRNA transcript in the tissue. With thénRINA
hybridization procedure, a labeled probe is hybridized to mRNA molecules present in frozen
or paraffin sections. Optimal results are obtained with the use of an antisense riboprobe, which
is generated by vitro transcription of a cDNA cloned in a suitable vector. The labeled probe
binds only to places in the tissue where the complementary mRNA is present.

Real-time PCR

PCR is based on the logarithmic amplification of specific DNA sequences. The first step in the
analysis of mMRNA is generation of cDNA copies from the mRNA molecules using reverse
transcriptase in combination with Oligo-dT or random hexamer primers (172). The cDNA
molecules can be used as templates for further amplification. One of the major problems with
conventional PCR technique is the lack of correlation between the amount of cDNA input and
the eventual amount of PCR product. This problem can be overcome by the use of quantitative
real-time PCR (173). The principle of this method is continuous monitoring of the amplification
with the use of a fluorescent probe that gives a signal when it binds to generated DNA. The
real-time PCR machine can detect the fluorescent dye. This method makes quantitative
comparisons of amplifications during the linear range possible. This method shows a high
correlation with generated fluorescence and the amount of input cDNA and makes it possible
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to quantify mRNA levels in samples containing 1 to 10 pg RNA.

Microarray analysis

Traditional efforts to understand disease pathogenesis have relied on a gene-by-gene analysis
strategy, thereby limiting our abilities to devise novel therapeutic approaches. With the use of
DNA microarray techniques (also known as DNA-chip technology), it is possible to generate
MRNA expression profiles of thousands of genes within one sample. Two basic types of DNA
microarrays are currently available: oligonucleotide arrays (174) and cDNA arrays (175). In
the case of oligonucleotide arrays, 25-nucleotide—long fragments of known DNA sequences
are synthesizeih situ on the surface of the chip by using a series of light-directed coupling
reactions similar to photolithography. By using this method, as many as 400,000 distinct
sequences representing over 18,000 genes can be synthesized on a single 1.3-x-1.3-cm
microarray chip. In the case of cDNA microarrays, cDNA fragments are placed onto the surface
of a glass slide using a robotic spotting device. Both approaches involve hybridization of
fluorescent labeled cRNA or cDNA material isolated from the tissue of interest (e.g., from
renal biopsies or isolated glomeruli) to the microarray. The surface of the microarray slides is
then scanned with a laser scanning device, which measures the fluorescence intensity at each
position on the microarray. The fluorescence intensity of each spot on the array is proportional
to the level of expression of the gene represented by that spot. This analysis results in an
enormous amount of information, which needs careful indexing, storage, and organization.
Computers are required for storage, distribution, and analysis of the data. The principal data
banks holding such gene expression profiles are GenBank at the U.S. National Institutes of
Health in Bethesda, Maryland, and the EMBL Sequence Data Base at the European Molecular
Biology Laboratory in Heidelberg. These databases continuously exchange newly reported
data and make them available via the Internet to biologists throughout the world. Computer
programs are available to cluster genes in relation to each other or in relation to the disease.
These techniques can be used to unravel the complexities of kidney diseases.

Sensitivity  Input No ofgenes Quantitative  Tissue localization

Northern blot + 10 ug 1 ++ -
RPA ++ 1-5pug 5-20 ++ -
Real time PCR +++ 1-10 pg 1 ++ -
Microarray + 1-20pg  1-2*10¢¢ + -
RISH + 1 slide 1 + +++
Figure 5. Characteristics of different mRNA detection methods
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Aims of this thesis

The central aim of the studies described in this thesis was to investigate the molecular
mechanisms underlying the development of glomerulosclerosis in human renal diseases. To
achieve this, measurements of mMRNA steady-state levels can be used to obtain insights into the
molecular processes occurring in the kidney. To study mRNA expression in the development
of sclerosis in the glomerulus, it is important to isolate high-quality RNA from purified glomeruli.
The aim of the first study was to assess the feasibility of isolating glomeruli from mouse
kidneys and extracting their RNAhapter 2). Previous studies have shown that the ECM
molecule fibronectin is abundantly present in glomerulosclerotic lesions. Fibronectin can be
alternatively spliced at the EDA, EDB, and V regions, thereby generating different fibronectin
isoforms. The aim of our second study was to investigate which fibronectin isoforms are present
in biopsies from patients with kidney diseases leading to glomerulosclezasistér 3). To

study the regulation of alternative splicing of fibronectin, we also investigated splicing at the
MRNA level. For this, we used different animal models to test the presence of alternatively
spliced EDA and EDB regions and correlated this with the presence offTEEH culture
experiments with rat mesangial cells were performed to study the effect of the cytokines TGF-
B and IL-4 on the splicing of fibronectin mRN®\vitro. Finally, we measured mRNA levels of
TGF-R and fibronectin and the splicing pattern for fibronectin mMRNA in human renal biopsies
from patients developing glomerulosclerosis. These data were compared with data obtained
from the animal models and cell culture experime@tsapter 4).

In addition to assessing local fibronectin production, we also investigated trapping of plasma
fibronectin from the circulation during the development of glomerulosclerosis. Earlier studies
have shown that plasma fibronectin from the circulation can accumulate in glomerulosclerotic
lesions. The aim of this study was to obtain more insight into the binding sites that play a role
in the accumulation of fibronectin in pre-sclerotic glome@hgpter 5). We also investigated
the role of the heparin-binding domain on the binding of fibronectin in glomerulosclerotic
lesions.

In Chapter 6, our goal was to identify genes and molecular pathways that are involved in
the progression of DN. With the evolution of microarray techniques, it is possible to measure
thousands of genes within one sample. We have used this powerful technique to measure gene
expression levels in glomeruli from patients suffering from DN.

From the microarray studies, we found that several genes involved in angiogenesis were
differentially expressed in patients with DN. We confirmed these data in biopsies from a larger
patient group suffering from DN. The data were correlated with clinical and histological data
of the patients to examine the role of angiogenic factors in different stages of the disease
(Chapter 7).
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Chapter 2

Abstract

Extraction of RNA has been described for rat and rabbit glomeruli but not for mouse glomeruli.
Due to their small size, mouse glomeruli cannot be isolated by relatively simple sieving techniques.
Based on recently reported methods for the isolation of mouse glomeruli, we developed an RNA
isolation technique by performing comparative methodological studies. Two standard RNA
extraction methods were compared. In addition in separate experiments the influence was studied
of protease inhibitors and freezing and thawing of whole kidney prior to glomerular isolation, on
the yield and degradation of RNA.

Therefore, kidneys were perfused with 10 ml 0.01 M PBS containing 1.2%dlifeugh
the aorta. Kidneys were decapsulated and passed through a 75 pm metal screen. After pelletting
and washing, tubes were placed against a magnet and pelleted glomeruli were washed three
times. In a second experiment, protease inhibitors were added to the PBS. As a third method,
kidneys were frozen before the isolation of glomeruli. From isolated glomeruli, RNA was extracted
using either cesium chloride or lithium chloride method.

The yields of RNA (OD 260) were highest using the lithium chloride method. Hybridization
of Northern blots of extracted RNA with cDNA probes showed the best results when RNA was
extracted using the lithium chloride method, while the cesium chloride method led to considerable
degradation of RNA. Freezing of kidney tissue prior to RNA extraction led to the virtual absence
of any signal. We then applied this method successfullyiméawomodel of experimental lupus
nephritis.

This is the first description of an optimal protocol for the extraction of RNA from mouse
glomeruli. From our studies we conclude that the lithium chloride method is superior for the
extraction of RNA from mouse glomeruli. Adding of protease inhibitors during glomerular
isolation is superfluous and freezing of kidney tissue prior to the isolation of glomeruli leads to
total degradation of RNA.
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Introduction

In the majority of kidney diseases, the production of a number of proteins is severely altered in
renal tissue. Measurement of MRNA steady-state levels has become widely accepted as a method
to obtain information about the biosynthesis of proteins in cell cultures and tissues, in addition to
RNA translation rates and post-translational protein maturation. Northern blot or slot/dot blot
techniques can be used to determine mMRNA steady-state levels for individual molecules in RNA
extracted from whole-kidney tissue or isolated glomeruli. Extraction of RNA has been described
for rat and rabbit glomeruli, but not for mouse glomeruli (1,2). Since the size of mouse glomeruli
is similar to that of mouse tubules, mouse glomeruli cannot be isolated by relatively simple
sieving techniques, which implicated that, so far, only total mouse kidney tissues have been used
for the extraction of RNA (3-5), which not gave information about mRNA levels in the glomeruli
apart, or microdissection techniques were used to isolate very small amounts of glomeruli which
give RNA just sufficient for a single competitive polymerase chain reaction experiment (PCR)(6).

However, the need for an effective method for the purification of RNA from mouse glomeruli
exists, since mice are widely used for a number of experimental models for renal disease. The
recent development of a rapid purification method for mouse glomeruli (7-9) has opened the
way to mouse glomerular RNA extraction rendering amounts of RNA sufficient to perform a
number of tests, including northern blots, spot/dot blots, PCR or competitive PCR experiments.

In this study we compared three modified methods for the isolation of glomeruli, to determine
the optimal conditions for obtaining intact RNA. First, we applied a procedure for the isolation
of glomeruli from fresh mouse kidney tissue described earlier (9). Second, protease inhibitors
were used to find out whether it is necessary to use these very toxic chemicals to prevent
degradation of the glomerular cells by autolytic enzymes during the procedure. Glomerular cells
must survive the procedure, since in intact cells RNA is protected from RNase which degrades
RNA. Itis impossible to use specific RNase inhibitors such as sodium dodecyl sulfate (SDS) or
diethyl pyrocarbonate (DEPC) because they lyse the cells, which would make it impossible to
isolate the glomeruli. The third method called for the freezing of kidney tissue prior to the
isolation of glomeruli. In addition, two RNA isolation methods were compared, i.e., cesium
chloride (CsCl) extraction, and lithium chloride (LiCl) extraction. Lastly, we used kidneys from
mice suffering from chronic graft-versus-host disease, an experimental model for lupus nephritis
(10-12), to assess the influence of glomerular destruction and progressive glomerulosclerosis on
the efficiency of isolation of glomeruli, and the extraction of RNA from those glomeruli, to
determine the applicability of our method to experimental models of renal disease.
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Subjects and methods

Animals

DBA/2 and C57BL10 mice were originally obtained from Olac Ltd. (Bicester, Oxfordshire,
UK). (C57BL10xDBA/2)F1 hybrids were bred and kept in our own facilities. For these
experiments, use was made of 60 male (C57BL10xDBA/2)F1 hybrid mice.

Experimental design

Glomeruli were isolated in three different ways. First, the kidneys of ten mice were perfused
with phosphate-buffered saline (PBS) followed by perfusion with 10 ml PBS containing 1.25%
Fe,O, (Aldrich Chemie N.V./S.A., Brussels, Belgium)(9). Kidneys were decapsulated and stored

in cold PBS. When all mice had been perfused, the kidneys were pressed through a 75 um mesh
metal screen (Twente Metaalgaas B.V., Hengelo, The Netherlands) with a flatted glass pestle,
washed with a jet of PBS and collected in a siliconized metal dish. The suspension was allowed
to settle for 20 min at 4°C in siliconized conical 50-ml centrifuge tubes. The supernatant was
then removed and the pellet (5 ml) was resuspended in PBS. After the third run the tube was
placed against a magnet (Dynal MIP&, Dynal AS, Oslo, Norway) for 20 s before the
supernatant was removed. Next, the tube was removed from the magnetic field, the inner wall
was washed with PBS, and the resuspended glomeruli were washed by repeating this procedure
three times, each with a 20-seconds magnetic collection phase. After the last wash the
resuspended glomeruli were pelleted by centrifugation (30 s, 1200 g), and the pellet was snap-
frozen in CQice, before being stored at -70°C until use. The total procedure for ten mice was
performed within 1.5 hours.

In a second experiment, the same procedure was used, but all PBS contained a cocktail of
protease inhibitors: 0.1% NakMerck, Darmstadt, Germay), 0.5 mM phenylmethylsulfonyl
fluoride (Sigma Chemical Company, St. Louis, MO, USA), 2 mM benzamidine-HClI, (Sigma) and
50 mMe-amino caproic acid (Sigma).

For the third procedure, we used the same method just described except that the kidneys
were snap-frozen in CQce-cooled isopentane prior to isolation of glomeruli. Kidneys were
thawed in PBS without protease inhibitors.

Extraction of RNA

RNA was extracted in two ways after each of these 3 procedures for the isolation of glomeruli. In
the first extraction procedure, the frozen pellet of glomeruli was resuspended in 3 ml guanidine
isothiocyanate solution and mixed quickly (Ultra-Thorrax T25, Janke & Kunkel, IKAr-
Labortechnick, Tamson, Zoetermeer, The Netherlands) for 1 min. Iron oxide and debris were
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removed by centrifugation for 5 min at 1500 g. The supernatant was loaded onto 1.3 mlofa 5.7 M
CsCl solution in an ultracentrifuge tube and centrifuged at 90,000 g for 16 hours in a Beckmann
Swh50Ti rotor (13). After centrifugation, the supernatant was removed and the pellet resuspended
in 1 ml RNase free TES (10 mM Tris, 5mM EDTA, 1 % SDS) and precipitated o/n with 1/10
volume 3 M Na-acetate and 2.5 volume ethanol &G20he amount of RNA was determined

by measuring of the optical density at 260 nm.

With the second method, RNA was extracted according to a lithium chloride procedure (14).
Glomeruli were resuspended in a mixture containing 3 M LiCl and 6 M urea, and mixed quickly.
After overnight incubation at’€, the solution was centrifuged for 1 hour at 12,000 g. The pellet
was resuspended in TES, followed by two phenol/chloroform extractions and an ethanol
precipitation.

Northern blot analysis of RNA
The isolated RNA (20 pg/lane) was electrophoresed
for 15 hours at 25V on a 1% agarose-formalin gel,
stained with ethidium bromide to assess the quality
of the RNA and blotted overnight to a Hyb&¥C
-285  extra (Amersham, Little Chalfont, UK) membrane.
After blotting, the membranes were rinsed with 3x
SSC, air dried, and the RNA was baked on the
membrane at 8C for 4 hours.
-18S8
cDNA probes and hybridization conditions
cDNA probes encoding for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) or for collagen
al1(IV) were labeled witP?P with the use of arandom
primed labeling kit (Boerhinger Mannheim,
Mannheim, Germany). The filters were pre-
_ o _ o hybridized for 3 hours and hybridized o/n with the
Figure 1. Ethidium bromide staining of . .
the gel after electrophoresis. Lane 1 showkadio-(15)labeled probes at®5in 0.5 M NaPQ
RNA extracted according to the CsCl methoq)uf.fer (pH=7.0) containing 1 mM EDTA, 7% SDS
in combination with PBS. Lane 2 concerns i ) ’ ’
RNA extracted according to the CsCl methodl% bovine serum albumin and 50 pg/ml denatured
in combination with protease inhibitors. Lane, almon sperm DNA. The filters were washed twice

3 refers to RNA extracted by the CsCl methog

after freezing of the kidneys. Lanes 4-6with 2 x SSC and 0.1% SDS and twice with 0.2 x
represent the same glomeruli isolation .
methods as lanes 1-3 but in combination witoSC and 1% SDS at 85. After being washed the

LiCl RNA isolation method. filters were exposed to a Kodak XAR film (Eastman

1 2 3 4 5 6
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Kodak, Rochester, New York, USA) at °@for  Isolation method OR60/280 Yeld (ug)

40 hours (GAPDH) or 10 days (Collagel(IV)).  =sCI- Method 1 17 246
CsCl - Method 2 >1.7 266
Light microscopy. CsCl - Method 3 >1.7 126
For comparison of the percentages of sclerotitiC| - Method 1 1.73 810
glomeruli in whole kidneys and in our LiCl- Method 2 159 775
preparation of glomeruli, the kidneys of aLiCl-Method 3 1.36 771

(C57BL10XDBA/2)F1 hyb”d) MOouse WEere rypie 1. Yields of RNA from mouse glomeruli
perfused with iron oxide 12 weeks after theusing different methods. Method 1 is for RNA
inducti f chroni ft h di isolation from glomeruli isolated from fresh kidneys
Induction of chronic grait-versus-host disease &Fith the use of PBS. Method 2 is for RNA isolation
described in detail elsewhere(10). A sample ofom glomeruli isolated from fresh kidneys with
kid . f hi imal fixed i 40/the use of PBS containing protease inhibitors.

idney tissue from this animal was fixed in OMethod 3 is used for RNA isolation from glomeruli
buffered formalin, embedded in paraffin,isolated from frozen kidneys using PBS. (CsCl =

. d d ined with the Periodi . cesium chloride RNA extraction, LiCl = lithium

sectioned and stained with the Periodic acid,orige RNA extraction).
Schiff reaction for light-microscopical evaluation.
Of the remaining renal tissue, the glomeruli were isolated, pelleted, and fixed in 1% glutaraldehyde
and 4% formalin. The pellet was then embedded in Epon, sectioned, and stained with methylene
blue for determination of the percentage of sclerotic glomeruli. For each of three tissue specimens
at least 25 glomeruli were counted. Statistical analysis was performed with the unpaired Student’s

T-test.
Results

The glomerular magnetic suspensions contained no free fragments of tubuli, as was confirmed
by light microscopy. Less then 10% of the glomeruli showed part of Bowman's capsule with a
fragment of the proximal tubules attached. Yields of RNA are shown in Table I. RNA extraction
according to the CsCl method rendered 200-300 pg RNA per twenty mouse kidneys either with
or without protease inhibitors. The amounts of RNA isolated by the LiCl method were two to
three times higher.

The quality of the RNA thus obtained was assessed by gel electrophoresis, as shown in
Figure 1. RNA isolated according to the CsCl method showed two indistinct ribosomal bands
(28S and 18S), and a smear in the top of the gel. LiCl isolation of RNA vyielded two strong
ribosomal bands. The 28S band was about twice as intense as the 18S ribosomal RNA band.

Hybridization of the membrane with a collagel(IVV) cDNA probe gave a 6.8 kB band with
the RNA isolated by the LiCl method from glomeruli isolated from fresh kidneys in PBS or in
PBS containing the proteinase inhibitors (Figure 2, lanes 4 and 5). The other RNA preparations
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4_
-28S -28S
L 185 -18S
A s % '
‘lo" ¥
A 1
g . .
Pale S oy 1
1 2 3 4 5 6 1 2 3 4 5 6
Figure 2. Hybridization of the filter with the Figure 3. Hybridization of the filter with the

collagen al(lV) cDNA probe. Lane 1 represents GAPDH cDNA probe. Lane 1 represents RNA

RNA extracted by the use of the CsCl method inextracted by the CsCl method in combination with

combination with PBS. Lane 2 refers to RNA PBS, lane 2 RNA extracted by the CsCl method in
extracted by the CsCl method in combination withcombination with protease inhibitors, and lane 3 is
protease inhibitors, lane 3 RNA extracted by theRNA extracted by the CsCl method after freezing of

CsCl method after freezing of the kidneys. Lanes 4the kidneys. Lanes 4-6 represent the same glomeruli
6 represent the same glomeruli isolation methods asolation methods as lanes 1-3 but in combination
lanes 1-3 but in combination with the LiCl RNA with LiCl RNA isolation method.

isolation method.

failed to give a signal upon hybridization. Hybridization with a GAPDH cDNA probe resulted in
an intense 1.3 kB band when the RNA was used that had been extracted according to the LiCl
method in combination with the isolation of glomeruli from fresh kidneys with or without the use
of proteinase inhibitors (Figure 3, lanes 4 and 5). The RNA extracted according to the CsCl
method in combination with the isolation of glomeruli from fresh kidneys with or without
proteinase inhibitors gave a weak 1.3 kB band and also a smear in the top of the membrane (Fig.
3, lanes 1 and 2). RNA extracted from glomeruli isolated from frozen kidneys did not give a
visible signal.

Light-microscopical evaluation of the kidneys of animals with chronic graft-versus-host
disease-related lupus nephritis showed focal and segmental glomerulosclerosis in 71.8% + 4.1%
(mean + standard deviation of three counts, i.e., 25 glomeruli for each specimen) of the glomeruli.
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In the isolated glomeruli preparation, 78.9% * 7.6% of the glomeruli showed focal or segmental
sclerosis. The difference between these two groups is not significant (p=0.225). Isolation of
glomeruli from mice suffering from glomerulosclerosis gave the same or higher yields of glomeruli
compared to isolation of glomeruli from normal mice. Moreover, the amounts of extracted total
RNA for both groups were the same. Northern blots of RNA from these diseased mice showed
intact RNA (16).

Discussion

In the present study we compared different methods for the isolation of glomeruli from mouse
kidneys and different RNA isolation techniques to establish an optimal protocol for the extraction
of RNA from mouse glomeruli. The time taken to isolate glomeruli was minimized which is
crucial since ribonucleases may be released during the isolation procedure. Isolation of RNA
from glomeruli according to the LiCl method yielded large amounts of RNA. Criteria for the
intactness of this RNA were fulfilled: i.e., the ethidium bromide-stained gel showed no degradation
products under the 18S ribosomal band, and the 28S band was about twice as intense as the 18S
rRNA band. To evaluate the quality of the extracted RNA further, we performed hybridization
with a cDNA probe coding for collagen a1(lV) mRNA. This probe is known to hybridize with a
large mRNA transcript (6.8 kB) (17), that is relatively susceptible for degradation. Hybridization
with this collagen al1(1V) cDNA probe yielded one distinct 6.8 kB band at the top of the blot just
above the 28S ribosomal band, consistent with the localization of intact calla@éhmRNA
(17). This indicates that no degradation of RNA had occurred during our extraction procedure,
because degradation would have led to the presence of a smear under the 6.8 kB band of intact
RNA. This also indicates, that during the approximate 1.5 h needed for glomeruli isolation the
RNA is not degraded. This is probably due to the fact that the individual cells in the glomeruli
stay intact, and that the use of protease inhibitors is hot necessary for the isolation of intact RNA.
Extraction performed with the use of CsCl yielded smaller amounts of RNA. On a gel, the
28S and 18S ribosomal bands were not as prominent (Fig. 1, lanes 1 and 2), suggesting that part
of the RNA had been degraded. This might explain why hybridization with the calla¢&f
probe did not give a signal and that with GAPDH only a weak signal (Fig. 3 lanes 1 and 2). The
presence of a smear in the top of the gel and in the top of the blot after hybridization with the
GAPDH cDNA probe might be due to contamination with DNA. With this CsCl extraction
method too, no difference was found between glomeruli isolated with or without protease
inhibitors.
Extraction of intact RNA from glomeruli isolated from frozen kidneys proved impossible.
No signal was observed upon gel electrophoresis or after cODNA hybridization. Presumably, this
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procedure leads to autolysis of glomerular cells and the release of RNase, which degraded the
RNA during the glomeruliisolation. Therefore, the use of fresh kidney tissue is strongly advocated
for the isolation of glomeruli and the subsequent extraction of glomerular RNA.

Extraction of poly AmRNA, from isolated glomeruli, with the use of a commercially available
kit (Fast track™® mRNA isolation kit, Version 2.1, Invitrogen corporation, San Diego, CA, USA)
with oligo(dT) cellulose showed no signal after hybridization (data not shown) with the different
probes. It might be expected that the iron particles used during the isolation of glomeruli might
disturb mRNA isolation with this method because the iron particles were present throughout the
isolation procedure. This in contrast with the other isolation methods in which they can be removed
after centrifugation.

Finally, since the yield of RNA extraction may differ between normal and diseased kidneys,
the influence of glomerular destruction on the efficiency of isolation of glomeruli was assessed
to determine the applicability of our RNA extraction method to experimental models of renal
disease. Interference with glomerular isolation due to the presence of glomerular sclerosis and
capsule adhesion may lead to the extraction of a non-representative population of glomeruli and
false MRNA steady-state levels, and should be excluded. To this end, we used end-stage kidneys
from mice suffering from chronic graft-versus-host disease, an experimental model for lupus
nephritis (10-12). Percentages of sclerosed glomeruli were similar in whole-kidneys and
glomerular isolates, indicating that glomerular destruction does not affect our procedure for the
determination of glomerular mRNA steady-state levels.

In sum, we have described here for the first time the optimal extraction procedure of RNA
from glomeruli isolated from mouse kidneys. Based on our results, we advocate the use of fresh
kidneys in combination with the LiCl RNA isolation method, which gave the highest yields and
the best quality of RNA. We recently applied this method successfully in molecular biological
studies on the development of glomerulosclerosis in experimental lupus nephritis in mice.
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Abstract

Fibronectin (FN) is an extracellular matrix component which appears in different isoforms, due
to alternative mRNA splicing of the ED-A, ED-B, and IlICS regions, and subsequent
posttranslational modifications. The FN isoforms, some of which occur specifically during
foetal development and in fibrogenic diseases, have been reported to play a role in various
biological functions, such as regulation of matrix assembly, adhesion, and proliferation. The
contribution of these FN isoforms to the pathogenesis of chronic renal diseases, which are
also fibrogenic disorders, is not well known. This study therefore examined the distribution of
FN isoforms in renal diseases by immunohistochemistry, with a panel of isoform-specific
monoclonal antibodies (mAbs), applied to 63 renal biopsies and 10 normal controls.

Normal kidneys contained total FN (mAb IST4) both in the mesangial and in the interstitial
extracellular matrix (ECM), but only traces of ED-A-positive FN (mAb IST9), and no ED-B-
positive FN (mAb BC1) or oncofoetal FN (mAb FDC6) were found in normal renal tissue. All
patients with renal disease demonstrated an increased total FN staining of the interstitium and
the mesangium. Periglomerular fibrotic lesions and fibrous crescents showed massive
accumulation of total FN, whereas the amount of total FN in the ECM of obsolescent glomeruli
was decreased, compared with that in normal mesangial ECM. Oncofoetal (FDC6), EDB-negative
(mAb IST6), ED-A-positive, and ED-B-positive FN isoforms were found in glomerular ECM
accumulations and in fibrous crescents. Tubulointerstitial fibrotic lesions predominantly
contained the ED-A-positive FN isoform, whereas in globally sclerotic glomeruli, predominantly
ED-B-positive FN was observed. The expression of FN isoforms was similar in all renal diseases
studied.

These results show that in various renal diseases, oncofoetal (FDC6) FN and ED-A- and
ED-B-positive isoforms of FN accumulate at locations of chronic lesions, independent of the
etiology of the disease. The deposition of these isoforms in human renal tissue may play a role
in the modulation of the immune response by attracting monocytes and lymphocytes to the
injured kidney. Furthermore, because the ED-B-positive FN isoform is highly susceptible to
proteolytic degradation, its accumulation may play a role in scar formation and tissue repair.
ED-B-positive FN forms a temporary scaffold supporting the cells, which can easily be cleared
by proteolytic degradation once new tissue has been produced at the site of injury.
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Introduction

Glomerulosclerosis and interstitial fibrosis are severe complications of most glomerular and
interstitial renal diseases, in which the accumulation of extracellular matrix (ECM) leads to
impairment of the filtration function. In an experimental model for lupus nephritis in mice, we
previously demonstrated that glomerulosclerotic lesions contain large amounts of the ECM
component fibronectin (FN)(1). In addition, we found that the extent of glomerular FN deposition
correlated with the severity of the glomerular structural abnormalities in several human renal
diseases (2).

FN is a large adhesive glycoprotein which is involved in the regulation of adhesion,
differentiation, migration, and cell proliferation, and it plays a role in blood coagulation, tissue
repair, tumourigenicity, and opsonisation (3). FN is encoded by a single gene on chromosome
2, but post-transcriptional alternative splicing of the FN mRNA and post-translational
modifications of the protein lead to the occurrence of multiple FN protein isoforms (3). Thus far,
three regions of FN have been identified in which alternative splicing occurs: ED-A, ED-B, and
IIICS. Both the ED-A and the ED-B regions code for a type Ill segment, which is either completely
included or completely excluded at the protein level through alternative splicing of the FN
MRNA. Alternative splicing of the IlICS region of FN mRNA is more complex, and results in five
potential FN protein variants in humans. This has functional consequences with respect, for
example, to migration and proliferation, because the IICS domain bears recognition sites for
integrins (4,5). In addition, inclusion of the ED-A and ED-B domains generates conformational
changes in the structure of the protein, further influencing the affinity of FN for integrins and
cells(6,7). Inclusion or exclusion of these various sites could therefore alter processes that
depend on cell adhesion, cell proliferation, and matrix assembly. Likewise, changes in FN
isoform expression in the glomerulus and the tubulointerstitium may modulate disease
progression and outcome in patients suffering from renal disorders. We therefore investigated
the distribution of the various FN isoforms in glomerulosclerotic lesions and in regions of
tubulointerstitial fibrosis in several human renal diseases by immunohistochemical analysis.
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Materials and methods

Patient selection

Kidney biopsies reported with any form of glomerulosclerosis in the period between January
1984 and December 1997 were selected from the archives of the Pathology Department at our
centre. Only biopsies from which frozen material was available were included in the present
study (n=63). All biopsies had been evaluated originally by routine light microscopic histological
evaluation, in combination with the results of immunofluorescence and electron microscopy.
The majority of the biopsies contained more than five glomeruli and corresponding interstitial
regions for analysis. The patients’ diagnoses and clinical characteristics are presented in
Table 1. The biopsy from the 70-year-old male with minimal change disease contained one
globally sclerosed glomerulus and was therefore included in the series. Control biopsies came
from several sources and incorporated three pretransplantation biopsies from donated kidneys,
two tumour nephrectomies, two post-mortem kidney biopsies from patients without renal
dysfunction or histological abnormalities, and three kidney biopsies which had been taken on
clinical indications but turned out to be normal.

Staining technique
The various FN isoforms were visualised with an indirect immunoperoxidase technique. We
used the following primary monoclonal antibodies: IST-4 (8), specific for all FN isomers (total
FN); IST-6 (8), which detects a FN isoform not containing ED-B; IST-9 (9), specific for ED-A-
positive FN isoforms; BC-1 (10), specific for ED-B-positive FN; and FDC-6 (11), which reacts
with an oncofoetal epitope on the IIICS region of FN (ATCC, HB-9018) (Figure 1). Specificities
of these antibodies were determined earlier and described in detail elsewhere (8-11). In addition,
a polyclonal goat anti-human FN (Sigma Immunochemicals, St Louis, MN, USA) was also used
to detect total FN. The secondary antibodies were peroxidase-coupled rabbit anti-mouse 1gG,
and rabbit anti-goat IgG (Dako, Glostrup, Denmark).

Immunoperoxidase staining was performed on sequential frozen sections (hich
were mounted on glass slides. Tissue sections were defrosted and washed in phosphate
buffered saline, then fixed in alcohol/acetone (50/50 vol/vol) for 5 minutes, followed by alcohol
100% for 10 minutes. After blocking of endogenous peroxidase in 0,8%rHnethanol for 10
minutes, the sections were incubated with the primary antibodies for 1 hour. Subsequently,
they were incubated with the appropriate secondary antibody for 30 minutes in the presence of
0.5% human IgG to prevent cross reactivity of the second antibody. Immunoreactivity was
visualised by incubating with diaminobenzidine (DAB) and copper sulphate (FuSO
Counterstaining with hematoxylin was performed according to a standardized protocol. Pertinent
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control stainings were performed.

Scoring technique

The sections of 63 patient biopsies and 10 control biopsies were evaluated by two experienced
observers in a blinded fashion. Minor scoring differences were resolved by conference. The
expression of the various FN isoforms was scored in normal mesangial matrix, glomerulosclerosis,
obsolescent glomeruli, periglomerular regions, fibrous crescents, normal tubulointerstitial matrix,
and tubulointerstitial matrix with interstitial fibrosis. Glomerulosclerosis was defined as matrix
expansion and collapse of the glomerular capillary tuft. The average staining per biopsy was
graded semi-quantitatively on a 4-point scale: 0 (absent), 1 (mild), 2 (moderate), and 3 (abundant).
These scoring values mainly represent the size of the areas positive for the various isoforms,
because the staining intensity did not vary significantly.

Statistical analysis

Scores are presented as means + standard deviations (SD). The significance of differences in
the various comparisons was determined by non-parametric analysis (Wilcoxon signed-rank
test) with an appropriate post-hoc procedure. A p-val@e05 was considered statistically
significant.

Table 1. Clinical characteristics of all patierits

No. of patients Age (yearsBex (ffm)  Serum creatinine

(umol/l)
Minimal change disease 1 70 1/0
Membranous nepropathy 3 62.3£13.3 3/0 228.31215
IgA nephropathy 13 50.1+18.3 9/4 192.598.6
Proliferative glomerulonephritis 6 63.6+18.9 3/3 413.8380.5
Pauciimmune glomerulonephritis 1 55 0/1 388
Lupus nephritis 6 41.8+15.2 1/5 141.885.5
Diabetic nephropathy 8 61.8+8.2 6/2 331.2280.1
Transplant glomerulosclerosis 9 45.6+10.6 8/1 290.6215.2
Amyloidosis 1 40 1/0 371
Light chain deposit disease 1 42 1/0 498
Focal segmental glomerulosclerosis 14 48.1+15.6 1 419.%289.5
Total 63 47.4+21.2 40/23 281.7+261.8

a Data are presented as mehrSD.
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Results

Distribution of FN isoforms

The distribution of FN isoforms in renal diseases was studied by immunohistochemistry, using
a panel of isoform-specific monoclonal antibodies (mAbs) that were applied to 63 renal biopsies
with a variety of diseases, with 10 normal controls. The results are shown in Figure 2 and
Table 2.

In normal kidneys, total FN (i.e. the polyclonal Ab against FN and the mAb IST4) was found
in the mesangial and the interstitial ECM, the periglomerular regions, intermediate sized blood
vessels, and peritubular capillaries (Figure 2A). The staining patterns of both antibodies did
not differ significantly, so the combined results of mAb IST4 and the polyclonal Ab against FN
are presented in Table 2 (column ‘total FN’). Only traces of ED-A-positive FN (mAb IST9,
Figure 2B) were visible in the normal mesangium, the interstitial matrix, and in interstitial blood
vessels; the periglomerular region stained positive for this isoform in only a few cases. Normal
controls expressed neither ED-B-positive FN (mAb BC1), nor oncofoetal FN (mAb FDC6). The
marker IST6, detecting a FN isoform lacking the ED-B domain, showed abundant staining of
the normal mesangial and interstitial matrix. Periglomerular areas and blood vessels also showed
a strong expression of this FN isoform.

In all patient groups (Figures 2C-H, Table 2), areas of glomerulosclerosis and those with
interstitial fibrosis showed a significant increase in total FN staining in comparison with those
in normal controls (Figure 2C). Because no statistically significant differences in the expression
of the various FN isoforms were found between any of the patient groups (Table 1), the results

ED-B ED-A IHNcs
BC1 — ISmatilil .
ISiT6{ Al FDC6 —0 a
IST4
Figure 1. Epitope mapping of the employed panel of FN isoform-specific m@&d¢isematic representation

of one FN protein subunit. Indicated are the ED-A, ED-B, and IIICS regions, which can be included in or
excluded from the protein by alternative splicing of the FN pre-mRNA. The sites of specificity of the mAbs
used are depicted. Rectangles represent homologous type | repeats, circles represent homologous type Il
repeats and squares represent homologous type Il repeats. 1ST4, mAb detecting all FN isoforms; IST6, mAb
detecting a FN isoform which does not include ED-B; IST9, mAb specific for ED-A-positive FN isoforms;
BC1, mAb specific for ED-B-positive FN isoforms (Note that mAb BC1 is specific for ED-B-containing FN
even though the epitope recognised is localised on repeat 111-7); FDC6, mAb which detects an oncofoetal
epitope on the IlICS region of FN.
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g RN - 1

Figure 2. Representative micrographs illustrating the localisation of FN isoforms in normal and diseased
renal tissues at specific lesions as determined by immunohistochemistry. Figures A and B show renal tissue of
a normal control biopsy, stained with antibodies detecting total FN (A, 1ST4) and ED-A-positive FN (B,
IST9). Figures C (total FN; IST4) and D (ED-A-positive FN; IST9) show renal tissue from a patient with focal
and segmental glomerulosclerosis and periglomerular fibrosis. Increased staining for total FN (C) and ED-A-
positive FN (D) is observed in the segmental sclerotic lesions, periglomerularly, and to some extent in the
tubulointerstitium. Figures E and F show the distribution of ED-B-negative FN (E, IST6) and ED-B-positive
FN (F, BC1) in glomeruli of a patient with diabetic nephropathy. The periglomerular region, but not the
glomerular tuft, contains ED-B-negative FN)(EDe novoexpression of ED-B-positive FN is seen in the
mesangial area (F). Figures G and H show obsolescent glomeruli with variable staining for total FN (G, 1ST4)
and ED-B-negative FN (H, IST6) in a patient with focal and global sclerosis. Both markers show staining in
remnant of capillary tuft (glomerulus in right-hand side in G and H), and practically no staining in globally
sclerotic glomerulus (left-hand side in G and H).
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Table 2. Fibronectin isoforms in renal biopsies
Total FN ED-BFN ED-A*FN ED-B'FN Oncofetal FN
(IST6) (IST9) (BCL) (FDCe6)

1. Normal mesangial matrix 241 2.39 0.35 0.001 0.01
2. Glomerulosclerosis 2.88 2.86 2.1 0.4% 0.42
3. Fibrous crescents 265 3.00 314 1.79 175
4. Obsolescent glomeruli 1.9r 1.9C 1.04 0.14 0.16
5. Normal periglomerular region 2.00 2.00 0.20 0.001 0.001
6. Periglomerular fibrosis 220 2.2F 1.17 0.13 0.22
7. Normal tubulointerstitial matrix2.12 218 0.90 0.001 0.001
8. Interstitial fibrosis 2.43 2.5% 1.38 0.01 0.01

2 P-values < 0.05 were considered significant.

b Significant increase in the amount of staining compared to normal mesangial matrix (area 1).

¢ Significant decrease in the amount of staining compared to normal mesangial matrix (area 1).

4 Significant increase in the amount of staining compared to normal periglomerular regions (area 5).
e Significant increase in the amount of staining compared to normal tubulointerstitial matrix (area 7)

are presented for the entire group as a whole (Table 2). Periglomerular (fibrotic) regions and
fibrous crescents also showed an abundant expression of total FN. In contrast, the amount of
total FN in the ECM of obsolescent glomeruli was significantly decreased as compared to that
in normal mesangial ECM (Figure 2G). ED-A- and ED-B-positive FN isoforms (mAbs IST9 and
BC1, respectively) were found in significantly increased amounts in glomerulosclerotic lesions
(Figures 2D and F). Fibrous crescents contained rather high amounts of the ED-A- and ED-B-
positive FN isoforms. Obsolescent glomeruli still contained increased amounts of ED-B-positive
FN as compared to normal mesangial ECM, but not of ED-A-positive FN isoforms. The fibrotic
periglomerular regions in patient biopsies showed a marginal increase in staining for the ED-A-
positive FN isoform compared with the periglomerular regions of normal controls. ED-B-positive
FN was practically absent in this locatitmareas with interstitial fibrosis, ED-A-positive FN

was present in significantly increased amounts, whereas there was no ED-B-positive FN
deposited in the fibrotic interstitiurihe isoform of FN lacking the ED-B domain (mAb IST6)

was abundantly expressed in glomerulosclerotic lesions, in fibrous crescents, and in regions of
periglomerular and interstitial fibrosis (Figure 2E). In obsolescent glomeruli with end-stage
sclerotic lesions this was the major FN isoform expressed (Figure 2H). The oncofoetal isoform
of FN that is recognized by the mAb FDC6 showed a significantly increased expression in
fibrous crescents and glomerulosclerotic lesions as compared to normal controls.
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Discussion

Most chronic human kidney diseases are characterised by an accumulation of ECM resulting
in glomerulosclerosis and tubulointerstitial fibrosis, both of which compromise renal function.
In addition to a disturbed balance between ECM synthesis and degradation, intramolecular
alterations of ECM molecules may also play a role in fibrogenesis. Increased deposition of the
ECM component FN in the glomerulus has been shown to play a role in the development of
end-stage renal failure. FN is encoded by a single gene, but post-transcriptional alternative
splicing and post-translational modifications give rise to the occurrence of multiple FN protein
isoforms (3), whose production is regulated in a cell- and tissue-specific manner. It is known
that the various isoforms of FN have different biological functions, and that it is not only a
change in the amount of FN deposited at a specific location that may play a role in disease
progression (12); a change in the ratio between the various isoforms may also contribute to the
development of fibrotic disease. We investigated the distribution of the various FN isoforms in
several human renal diseases by immunohistochemical analysis.

In normal glomeruli, total FN and all FN-isoforms investigated, except for ED-B-positive
and oncofoetal FDC6-positive FN, were present in the mesangium. In cases of glomerular
matrix expansion in glomerulosclerosis, a significant increase was found in all FN isoforms
investigated. In contrast, in obsolescent glomeruli the amounts of all isoforms investigated
had decreased, especially in globally sclerotic lesions, although marginal staining was sometimes
seen in remnants of the capillary tuft. This may possibly result from a replacement of FN by
other ECM components in late stages of glomerular disease. Indeed, it is known from other
studies that FN provides a provisional ECM during injury and forms a foundation for the
deposition of additional ECM proteins such as collagen and laminin (13-16).

In areas of glomerulosclerosis, obsolescent glomeruli, and interstitial fibrosis, an absolute
increase of both ED-A- and ED-B-positive FN isoforms was seen. Inclusion of the ED-A
sequence in the FN molecule has been extensively studiednhdiito andin vivo(17-21).
Deposition of an ED-A-positive FN isoform, as we see in abnormal tubulointerstitium and
regions of glomerular matrix expansion, may have functional consequences. Inclusion of the
ED-A region in the protein leads to conformational changes that alter the affinity of the central
cell-binding domain (7). Deposition of this FN isoform can thus lead to a more efficient attraction
of cells to the ECM in the kidney and may well be part of a tissue repair process.

Whereas most authors report on the expression of the ED-A-positive FN isoform, we
observed a decrease in the ratio of the ED-A- over the ED-B-positive FN isoforms, in the
comparison of obsolescent glomeruli to normal controls. The observation that the amount of
ED-B-positive FN isoforms is relatively and absolutely increased, may have important biological
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consequencesn vitro studies have shown that inclusion of the ED-B region in FN changes
the activational status of cells by enhancing adhesion and spreadingn(2@jo studies

have also shown that FN isoforms containing the ED-B region are more sensitive to proteolytic
attack by cathepsin D (23). Our results show that deposition of this FN isoform is independent
of the type of renal disease, and we speculate that it plays a role in tissue repair mechanisms
and scar formation similar to what has been described for wound healing (24). The ED-B-
positive FN molecules form a temporary scaffold supporting the surrounding cells and attract
other (inflammatory) cells. However, since the ED-B-positive FN molecules are highly susceptible
to proteolytic attack, the newly formed scaffold can be easily cleared once new tissue has been
produced, as mentioned above.

In all cases, there was a large amount of ED-A- and ED-B-positive FN isoforms deposited
in fibrous crescents, indicating the presence of significant amounts of these otherwise scarcely
present FN isoforms. These findings are in line with earlier results from Assad et al., who
described the presence of ED-A- and ED-B-positive FN isoforms in crescents of a small group
of patients with segmental glomerulonephritis (25). Likewise, in the animal model of anti-GBM
nephritis in rats, embryonic FN isoforms containing the ElllI-A and EIllI-B regions (rodent
homologues for the ED-A and ED-B regions) were shown to be the main FN isoforms synthesized
at the site of fibrous crescent formation (17). Interestingly, these locally produced EllI-A- and
Elll-B-positive rat FN isoforms have been suggested to play a role in scarring in the anti-GBM
model by providing a transitional matrix that is involved in mesangial cell migration, proliferation,
and the formation of a stable ECM (17), comparable to the mechanism described above for the
glomerular lesions.

In our present study, regions of interstitial fibrosis showed an accumulation of total FN, FN
lacking the ED-B region, and of the FN isoform containing the ED-A region. With very few
exceptions, the tubulointerstitium was always negative for the ED-B-positive FN isoform.
Similarly, FN lacking the ED-B region and ED-A-positive FN were increased in areas of
periglomerular fibrosis. Thus, during the development of immunologically mediated renal
diseases the tubulointerstitial tissue expresses high levels of the ED-A- positive and ED-B-
negative (IST6) FN isoforms, as was reported earlier in wound healing and during embryo-
genesis (26).

Taken together, our results show an increase in the total amount of FN deposited in the
glomerulus and the tubulointerstitial compartment of patients, compared with normal control
biopsies. In addition, we found that the relative amounts of oncofoetal (FDC6), ED-A-, and ED-
B-positive FN isoforms increased to different extent, as a result of which the ratios changed
between the various FN isoforms deposited in the ECM. In particular, the increase of the ED-B-
positive variant was considerably stronger than that of ED-A-positive FN in both glomerulo-
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sclerosis and interstitial fibrosis (Table 2). This is in concert with results from éaniio

studies, which showed that the ED-A and ED-B regions are under separate regulatory control
with respect to splicing of their mRNASs (27). These changes in FN isoform deposition may
influence the biological properties of the glomerular and tubulointerstitial matrix. Our results
show that in renal diseases the oncofoetal (FDC6), ED-A-, and ED-B-positive FN isoforms are
upregulated at specific locations within the renal tissue, suggesting a specific pathogenic role
for these FN isoforms during disease development. The expression of the FN isoforms at
distinct locations within the glomerulus and tubulointerstitium was similar in all renal diseases
studied. Further studies are currently directed at the identification of the cellular source of the
fibronectin isoforms. Our results support the concept that the development of glomerulosclerosis
and interstitial fibrosis, leading to progressive loss of kidney function, results from a final
common pathway independent of the original etiology.
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Abstract

Fibronectin (FN) is the main extracellular matrix component in glomerulosclerotic lesions.
Different FN isoforms exists, which result from alternative splicing at the EDA and EDB regions
of FN mRNA. Increased inclusion of EDA and EDB, which can be elicited by 3,Gfay be
conducive to the development of glomerulosclerosis (GS). B @rd IL-4 have previously
been shown to play a role in the development of GS.

We investigated the mRNA splicing patterns for EDA+ and EDB+ fibronéttitivo in
various experimental sclerotic glomerulopathiessitro in rat mesangial cells (MC) that were
stimulated by TGR or transfected with IL-4, and in human kidney biopsies with GS from
patients with various kidney diseases.

Glomerular FN mRNA demonstrated inclusion of both ED regions in rats with anti-Thy1
nephritis or chronic serum sickness and in mice with anti-GBM glomerulonephritis. Inclusion
of both the EDA and EDB regions was associated with glomerulaffl&pression. In contrast,
in mice with Th2-mediated graft-versus-host disease, a model for lupus nephritis, the FN
transcripts included neither the EDA, nor the EDB region, and renalffT&pression was
absent. Compared to normal MC in culture, MC transfected with IL-4 produced lower amounts
of FN and demonstrated less EDA inclusion, while MC that had been treated witB TGF-
showed increased production of FN and more EDA inclusion. Renal biopsies from patients
with renal diseases, except those taken from patients with lupus nephritis, showed higher TGF-
B levels, higher FN levels, and more EDA inclusion than controls.

TGF{ might be a key player in the development of GS by inducing local FN production and
alternative splicing of FN mRNA. In lupus glomerulonephritis, in which the involvement of
TGF{ in GS is less prominent, Th2 cytokines such as IL-4 probably account for increased
intrarenal collagen synthesis and subsequent FN accumulation from the circulation. We
conclude that in lupus nephritis neither alternative FN splicing, nor a high transcription level of
TGF{ appears to be a general prerequisite for the development of GS.
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Introduction

Injury to the kidney can result in chronic progressive renal failure with glomerulosclerosis,
accompanied by excessive accumulation of extracellular matrix (ECM) components. Several
studies in humans and animal models have shown increased deposition of fibronectin (FN) in
glomerulosclerotic lesions (1-5). Accumulation of FN in the glomeruli may be caused by both
increased local gene transcription and specific accumulation from the circulation (6).

The glycoprotein FN plays an important role in several biological processes including:
maintenance of normal cell morphology, cell migration, cell differentiation, cell remodeling
during embryogenesis, and wound healing (7-9). Three distinct splicing sites have been identified
in the mRNA of the fibronectin molecule (10,11), which may be spliced-in or spliced-out in a
tissue-specific and developmental stage-specific manner (12,13): the extra domain A (EDA), the
extra domain B (EDB), and the type Ill connecting segment (llICS or V) region. Increased
inclusion of EDA-encoding fragments in fibronectin mRNA is observed in tissue during
embryonic development (14) and at the margins of healing wounds (9,15), suggesting that the
appearance of EDA+ and EDB+ fibronectin mRNA in the tissue is associated with a high rate
of remodeling.

In the normal kidney, in both humans and rodents, the FN that contains the EDA domain is
present in only small amounts in the mesangium, while the EDB containing FN is not detectable
at the protein level. Alterations in the amount and localization of FN protein isoforms which
contain the EDA and EDB domains have been found in both human diseases and experimental
models (1,2,16-18).

A number of cytokines have been found to mediate the pathological process that leads to
glomerulosclerosis. The cytokine TGFplays a causal role in the pathogenesis of
glomerulosclerosis in the anti-Thyl model by increasing the production of matrix molecules
(19). TGFB also affects splicing of FN (20,21). IL-4 may also play a role in the induction of
gquantitative and qualitative alterations in matrix composition, which occurs during the
development of glomerulosclerosis. IL-4 expression is increased in various types of
glomerulonephritis (22)n vivo studies showed that IL-4 plays a role in the development of
glomerulosclerosis in GVHD mice (23).

In the current study, the splicing pattern of the FN EDA and EDB regions at the mRNA level
was examineth vivoin several experimental models of immune complex glomerulonephritis,
and it was examindd vitro in rat mesangial cells that had either been stimulated by &GF-
transfected with IL-4. These data were also compared with the mRNA levels for fibronectin,
EDA+ and EDB+ fibronectin, and TGB-in human kidney biopsies from patients with
glomerulosclerosis.
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Materials and methods

In vivo animal studies

Animal models of nephritis-induced glomerulosclerosis.

Anti-Thy-1 nephritis ¢Thy1) was induced in female Lewis rats as described elsewhere (24).
Animals were sacrificed at day 2, 6, and 14. Chronic serum sickness (CSS) was induced in
Wistar rats as has been described elsewhere (25). These rats developed a membranous
glomerulopathy with focal and segmental glomerulosclerosis (26). The time points at which the
proteinuria reached a level of 800 mg/24 hr was considered week 0 of the experiment for each
rat. Animals were sacrificed at week —3, 0, 5, and 20. Anti-glomerular basement membrane
nephritis (GBM) was induced in 12-weeks-old female C57BL/10 mice through injection of
rabbit anti-GBM antibodies (a generous gift of Dr. K.J.M. Assmann, Dept. of Pathology,
University Hospital Nijmegen, The Netherlands). The antibody was prepared as described
before (27). Animals were sacrificed at day O (1hr after injection), 5, and 14. Animals developed
glomerulonephritis and glomerulosclerosis within 14 days. Lupus nephritis was induced with
the chronic Graft-versus-Host disease (GVHD) model by injecting 8-week-old female (C57BL/
10 x DBA/2) F1 hybrids with a single-cell suspension of DBA/2 donor cells, as described
before (28). These mice developed immune-complex glomerulonephritis, which was followed
by glomerulosclerosis 8 to 10 weeks after induction of the disease. Animal care and
experimentation were in accordamdgth legislation on animal experiments as determined by
theDutch Veterinary Inspection.

Glomerular RNA isolation

Rat glomeruli were isolated with the differential sieving technique (29). Mouse glomeruli were
isolated with iron-oxide perfusion followed by magnetic extraction (30). RNA was isolated with
TRIzol® reagent (Invitrogen, Paisley, Scotland, UK) according to the instructions of the
manufacturer.

Reverse transcriptase-polymerase chain reaction (RT-PCR) for EDA and EDB fibronectin
cDNAwas prepared using AMV reverse transcriptase RT (Roche, Germany), according to the
prescription of the manufacturer, and the PCR was performed as described (31). DNA fragments
were analyzed by electrophoresis and the radioactivity of each PCR product was visualized
with a Phosphor Imager 445 Sl (Molecular Dynamics, Sunnyvale, CA).
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Immunohistochemistry

Immunofluorescence studies were performed on frozen kidney tissue from rats with CSS and
from mice with GVHD to detect the presence of TEE-Cryostat sections were incubated for

30 minutes at room temperature with a polyclonal rabbit antibody against hum#BilTGH:-

In vitro studies

Culture and transfection of rat MC

Glomeruli were isolated from 10-weeks old Lewis/MAA rats by the differential sieving method
(29) and MC were cultured in RPMI 1640 medium supplemented with 20% heat inactivated FCS.
The full-length rat IL-4 cDNA sequence from the plasmid pBABE-IL4, a generous gift of Dr.
Wesseling from the University of Rotterdam, was subcloned into the expression vftapropH

1, which contains $-actin promoter and a neomycin-resistance gene. This construct was
introducedn vitro into rat MC with Fugene (Roche, Germany). Transfectants were tested for
IL-4 production with ELISA according to the instructions of the manufacturer (Pharmingen,
CA). Mesangial cells that had been transfected with the empty vedddol were used as

a control.

Experimental design of in vitro studies with MC

IL-4 and mock-transfected MC were grown to near confluence. After growth-arrest for 18 hours
in RPMI medium without serum, the cells were kept in growth-arrest state for another for 24 or
48 hours and the supernatants were collected for analysis. Total RNA was extracted. Cell
lysates were harvested from cells that had been incubated for 48 hours by adding 5 ml lysisbuffer
(1% triton X-100, 62.5 mM EDTA and 50 mM Tris/PBS). As a positive control for the alternative
splicing of FN mRNA, untransfected cells were also cultured with 100 pM TGF-3 (Sigma, St.
Louis, MO).

Soluble fibronectin (s-FN) and cell-associated fibronectin (c-FN) was measured with an
ELISA. In brief, microtiter plates were coated with goat-anti-human FN (Sigma, St. Louis, MO).
Rabbit-anti-mouse FN (1:2500) was applied to detect the bound FN, and anti-rabbit-HRP (DAKO,
Demark) was used as a second step. A serial dilution of mouse FN (Gibco BRL, MD) was used
as a standard.

Dot blot analysis, as previously described (33), was performed to measure the amount of
FN mRNA. The hybridized filters were analyzed with a Phosphor Imager 445 S| (Molecular
Dynamics, Sunnyvale, CA).

TGF{3 mRNA levels were measured with real-time PCR using an Abi PrisniJ7(Fo&rkin
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and Elmer). GAPDH was used as a housekeeping gene.
Primer and TagManProbe sequences are summarized
in Table 1. Details concerning the real-time PCR
protocol have been described elsewhere (34).

Studies on human biopsies

Biopsy material

The alternative splicing pattern of EDA and EDB FN
was measured in human biopsies to compare the
results obtained from the animal models and cultured
mesangial cells. Twenty-four renal biopsies with
glomerulosclerosis in at least 10% of the glomeruli
were selected from the archives of the Pathology
department at our hospital center. These biopsy
specimens had been obtained from 24 patients (Table
2). As controls, renal tissue from five kidneys that
had been obtained at autopsy, two biopsies from
transplanted kidneys without histological
abnormalities, and five cadaveric donor kidneys, not
used for transplantation, were analyzed. These
kidneys demonstrated normal function and histology.
As a disease control, three transplanted kidneys with
acute rejection were used as an additional group. .
Patient studies were approved by the LUMC ethical
committee.

RT-PCR for TGH3, total fibronectin, EDA, and EDB
RNA was extracted from the cortical tissue of frozen
biopsy tissue from each patient with the aid of the
Trizol” (Gibco BRL) method (35). Real-time PCR was
used to quantify the mRNA levels of TQ¥k-
fibronectin, and the housekeeping molecule GAPDH.
Primer and probe sequences can be found in Table 1.

Primer and Tagmahprobe sequences

Table 1
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Label

Reverse primer Tagman® probe

Species Forward primer

Gene

AAACAGAAATGACCATTGAAGGTTTG

Rat/mouse TTGATTTCTTTCATTGGTCCTGTCTT

Rat/mouse
Rat
Rat

Fibronectin Human

EDA
EDB
TGF-B

TGACATCAGAAGAATCAAAACCAGTT TTACACTGTCAAAGATGACAAGGAAA

CACCGGAGAGCCCTGGATA
ACCACCAACTGCTTAGCCCC

ACARCTGCTTCAGCTCCACAGAGAAGAACTGC TET

TTCCAACCCAGGTCCTTCCT

TGF-R

ET

T

TGGAAGGGCTCATGACCACAGTCCA

CACAGCCTTGGCAGCACC
AGGCAACGTGTTACGATGATGGGAAGACAT TGCCACTGTTCTCCTACGTGG

GAPDH

TET

GGAGAATTCAAGTGTGACCCTCA

CCCAGCATCTGCAAAGCTC
TTCCAGGAGCGAGATCCCT

TET
FAM

ACACCAACTATTGCTTCAGCTCCACGGA

CCCAGCCTTCTCCATGGTGGTGAA

GTCAATGTACAGCTGCCGCA
CACCCATGACGAACATGGG

Human
Human
Human
Human

GAPDH
EDA
EDB

AAACAGAAATGACTATTGAAGGCTTG AAACAGAAATGACTATTGAAGGCTTG

ATTACTGGTTATAGAATTACCACAACC

TAATATCAGAAAAGTCAATGCCAGTTG
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Statistics
Statistical analysis for comparison between groups was performed with unpaired Student’s T-
tests.

Results

In vivo animal studies

Development of renal disease

After induction ofaThyl nephritis, proteinuria started to develop at day 3. Mesangial cell
proliferation and mesangial matrix expansion were visible after 6 days, and mesangial sclerosis
was observed at day 14 (36). Induction of CSS has been shown to result in the development of
membranous nephropathy (26). At the most severe stage of CSS (week 0) protein excretion of
the rats reached a level of 800 mg/24 hours. In the following weeks, the protein levels gradually
decreased to 400 mg/ 24 hours. In week 15 mesangial matrix expansion and thickening of the
GBM were observed. At a later stage (from week 20) the development of focal and segmental
glomerulosclerosis was observed. Induction@BM nephritis in mice leads to the development

of proteinuria, mesangial cell proliferation, and finally glomerulosclerosis on day 14. GvHD, a
model for human lupus nephritis, was induced in F1 hybrid mice, leading to the development of
class V lupus nephritis. Albuminuria started to develop in week 4. From week 6 onwards, mice
showed glomerular hypercellularity and membranous nephritis, leading to the development of

Table 2 Characteristics of controls and patient groups

Diagnosis No. Age (yearsh Sex (ffm)  Serum creatyM) °
Normal controls 12 50.6 22.8 75 8% 20
Acute transplant rejection 3 49+77.8 1/2 377 340
Lupus nephritis 3 36.29.1 3/0 90+ 37
Other chronic diseases

IgA nephropathy 7 49.6 11.4 1/6 20C: 110
FSGS 5 45.8+ 9.9 2/3 48% 412
Diabetic nephropathy 5 6325.1 1/4 378+ 338
Proliferative GN 4 61.518.9 22 266+ 100
Total 21 54.19+ 13.2 6/15 31& 262

2 FSGS: Focal and segmental glomerulosclerosis, GN: Glomerulonephritis
® Data are presented as meanSD
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Figure 1. Inclusion and exclusion patterns of the EDA and EDB domains in FN mRNA. Upper panel of

the figure shows RT-PCR results for in- or exclusion of the EDA domain in FN mRNA, while the lower panel
shows the results for the EDB region. A control sample of mouse mesangial cells cultured in the presence of
TGF-B showed inclusion of both the EDA and the EDB domains in the FN mRNA, while normal mice did not
express the oncofetal domains EDA and EDB. Inductioo@BM gave rise to an inclusion of the EDB
domain in the FN mRNA at day 14, and an inclusion of EDA at days 0, 5, and 14. Induction of GVHD in mice
did not lead to an inclusion of EDA or EDB region. Rats wiffhyl or CSS expressed both the oncofetal FN
domains EDA and EDB.

focal and segmental glomerulosclerosis from week 8 onwards.

Splicing patterns of FN mRNA in experimental models of glomerulonephritis

We performed an RT-PCR, with primers flanking the EDA or EDB region, on glomerular mMRNA
isolated from mice and rats at several time points after induction of the disease. The 526 bp
amplification product corresponded to FN mRNA, which included the EDA region, while the
256 bp product corresponded to EDA-negative FN mRNA. Inclusion of the EDB region in the
FN mRNA corresponded to the 640 bp product, and the 367 bp amplification product represented
EDB-negative FN mRNA. Figure 1 shows the results of the RT-PCR experiments. A control
sample of mouse mesangial cells that had been cultured in the presence of 100 gM TGF-
showed inclusion of the EDA and the EDB domains in the FN mRNA. Normal mice did not
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express the oncofetal domains EDA and EDB. Inductioe®M nephritis resulted in inclusion

of the EDA domain in the FN mRNA on days 0, 5, and 14 and in inclusion of EDB on day 14.
However, induction of GvHD in mice had no effect on the splicing pattern of FN mRNA (no
inclusion of EDA and EDB). Induction of CSSarhyl in rats also resulted in oncofetal EDA
and EDB-positive FN mRNA in glomeruli. These results are summarized in Table 2.

Immunohistochemistry for TGF-3

In the rat model of CSS, TGFpositive cells were observed in the glomerulus for 2 to 3 weeks
prior to the most severe stage of the disease (Figure 2A). Thesp p&itive cells were not

ED1 positive. The role of TGB4n aThy1l disease am@iGBM nephritis has been extensively
described in the literature. Border et al. (19) have shown thatfr@Bys a role in the
development ofiThyl disease. An important role for TGF-[3 has also been described in anti-
GBM nephritis (37,38). In the GVH model in the mice, no positive cells for BGéuld be
detected at any stage of the disease. Fig. 2B shows the results for week 6.

Table 3. Overview of the involvement of TGF-8 and the FN EDA/B splicing pattern in the
different animal models, cultured mesangial cells, and human biopsies.

TGF-i EDA + EDB +
Animal model:
GVHD = = =
o-GBM 1 1 =/
a-Thy-1 M ) T
CSS 1 1 T
Mesangial cells:
IL-4 overexpr.' 2 \2 =
Exogenous TGF-B (100 pM)* = 1 )
Human biopsies:
Acute rejection 1 7 =
Lupus nephritis = = =
Other chronic diseases 1 1 =

'IL-4 transfected rat mesangial cells. “TGF-B means rat mesangial cells stimulated with TGF-8. 1 indicates
increased expression compared to controls, ¥ indicates decreased expression compared to controls, = indicates
no differences compared to controls.
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Figure 2. Expression of TGH1 positive cells in rats with CSS. Immunohistochemical staining of kidney
sections for TGH1 showed expression of positive cells 2 and 3 weeks prior to the most severe stage of the
disease (week 0)of CSS (Fig. A). Figure B shows a kidney section stained for TGF-R six weeks after induction
of GVHD.
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Figure 3. Measurements on cultured mesangial cells. Normal mesangial cells (nMC) cultured for 24 hours
showed no production of IL-4 as measured by ELISA. IL-4 transfected mesangial cells (IL4tr MC) showed an
increased production of the cytokine as compared to normal mesangial cells (A) (P<0.01). Mesangial cells
were cultured for 24 hours and T@&E-mRNA levels were measured by RT- PCR. IL-4 transfected mesangial
cells (IL4tr MC) showed a significant decrease in TRIFMRNA production as compared to normal mesangial
cells (nMC) in culture (B) (P<0.01). The production of secreted-FN (C) and cell-associated FN (D) of
mesangial cells in culture was measured by ELISA. IL-4 transfected cells showed a significant decreased
production of both secreted and cell-associated FN, as compared to normal mesangial cells (P<0.01).
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In vitro studies *8 = A

IL-4 overexpression in mesangial cells
Rat mesangial cells were transfected wi
IL-4 to investigate the role of IL-4 in the
alternative splicing of FN. Normal £ os -
mesangial cells in culture do not produc ’_I_|
detectable amounts of IL-4 measured t nMC TGF-8 IL4tr MC
ELISA, whereas mesangial cells
transfected with the full-length rat IL-4
gene show an increased production of Il
4 (Fig 3A). Incubation of normal rat B cells
with culture supernatant from IL-4
transfected cells resulted in an increas:
expression of MHC class Il antigens (dai Y ., | i
not shown), indicating that the produce *= | I_T_‘
IL-4 is biologically active. nMC TGF-R IL4tr MC
In IL-4 overexpressing mesangial cells
TGF{31 mRNA levels were 5 times lower
(P<0.01) than those in normal mesangi
cells (Fig. 3B) The production of soluble
fibronectin (s-FN) and cell-associate:
fibronectin (c-FN) was significantly
reduced in IL-4 transfected mesangial cel & |
(Fig. 3 C and D). The amount of total FM £ .
mMRNA that was measured with dot blo nMC TGE-R IL4tr MC

analysis showed a significant decrease i |n
gure 4. FN mRNA measurement on cultured

cultured cells that had been tra-nSfQCtG('Flf1esanglal cells. The amount of FN mRNA produced during
with IL-4 in comparison to mock- 24 hours culture of mesangial cells was measured by dot
blot analysis. IL-4 transfected cells produced significant
transfected mesangial cells (Fig.4A). II"4Iower levels of FN mRNA(A) while TGP stimulated

overexpression also influenced theMC showed an increase. Relative levels of FN mRNA
contammg the EDA and EDB domains were determined

splicing pattern of FN mRNA. After 24 y rt-PCR. There was a significant decrease in the

hours of culture a significant decrease Wa$r0duction of EDA+ FN mRNA in IL-4 transfected

; ial cells compared to normal mesangial cells in
nin EDA+ FN mRNA levels. There was™©52"9'4 . iesangial
see Eevels ere asculture. TGF-R stimulated MC showed a significant increase

no significant effect of IL-4 over- in EDA inclusion. The relative amounts of EDB positive
expression on EDB+ FN mRNA levels FN mRNA remained unchanged both in IL-4 transfected

and in TGFB stimulated MCs (*P<0.05 compared to
(Figs. 4B and C). normal MCs).

Relative FN/GAPDH level
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Studies on human biopsies A
MRNA levels in normal and diseased tissue I T

To validate the results obtained from the animi T
models, TGH3 mRNA levels, fibronectin mMRNA
levels, and the EDA+/EDA- mRNA ratio were L T
measured in renal cortical tissue. Based on t g ' L
findings of the animal studies, where the GVl

model was the only model showing no increase Conwols AR Lupus _ Other chroric

TGF{3 and no inclusion of EDA at any time point
of the disease, the patients with lupus nephrit
I T n

Relative TGF-R mRNA level

were considered a separate group for the analy:
The other chronic renal disease entities we
treated as one group. The relative TBERRNA
levels were 1.& 0.4 for the controls, 2.2 1.0
(P<0.05) for the patients with acute rejection1.1
0.7 (P = NS) for the patients with lupus nephritis

Relative fibronectin mRNA level

and 1.7+ 0.7 (P<0.05) for the patients with othe! —T= L

chronic renal diseases (Figure 5A). The relativ B T T
fibronectin mMRNA levels were 1980.5, 2.5+ 1.4 o

(P<0.01),2.%2.1 (P=NS), and 312.3 (P <0.05), c

mMRNA in these groups were 22.83.3,41.3 6.5
(P<0.05),19.413.3(P=NS),and 34111.8 (P <

N
S

< so N
respectively (Figure 5B). The percentage of EDA 2 T @ T

centage EDA + m

0.05), respectively (Figure 5C). The percentage T

EDB+ mRNA was less than 5 % in all groups (dat § *

not shown). <, L

A correlation between the fibronectin mRNA leve

and the EDA+/EDA- mRNA ratio (r = 0.48, P < Contrdls AR Lupus - Other chronic

0.005) was observed. The TGFIRNA level did Figure 5. Relative mRNA levels in patients.
. . . . (A) TGF-B mRNA levels, (B) fibronectin mRNA
not correlate with either the fibronectin MRNA jevels, and (C) the percentage EDA+ FN mRNA

level or the EDA+/EDA- mRNA ratio. in renal cortical tissue from normal controls (n
= 12), from patients with acute transplant

rejection (n = 3), from patients with lupus
nephritis (n = 3), and from patients with chronic
renal disease (n = 21). Data are represented as
meanst standard error of the mean. (*P<0.05
compared to controls)
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Discussion

Most chronic human kidney diseases are characterized by an accumulation of ECM resulting
in glomerulosclerosis and tubulo-interstitial fibrosis. The concept has been proposed that the
development of these lesions, which is accompanied by progressive loss of kidney function,
results from a final common pathway in a manner that is independent of the original etiology
(1). However, the initiating mechanisms which precede to this final common pathway may vary.
In patients with glomerulosclerosis the presence of EDA positive FN in the glomerulus has
been demonstrated (1). It remains to be established whether all glomerulosclerotic lesions
require the involvement of the same inducing and mediating factors. Since matrix proteins can
modify the behavior of mesangial cells (39), the presence of particular FN isoforms in the
mesangial matrix, as well as their amount and persistence during glomerular injury, may determine
the evolution of either healing or scarring processes.

The aim of the present study was to investigate the splicing patterns of the EDA and EDB
regions of FN in various glomerulopathies, and to elucidate the role ofSI@Rd IL-4 in this
process. Thé vivo studies showed that splicing of FN mRNA is differentially regulated in
aThyl, CSSpGBM, and GVHD. Both acute and chronic disease in rats showed inclusion of
the EDA and EDB regions. An increase in EDA and EDB containing FN isoforms was only
observed in the acute modela®&BM disease in mice. TGB-might be responsible for the
presence of FN isoforms that contain EDA. Previous studies have described th@ti§ GF-
capable of inducing EDA+ fibronectin synthesis (13,16,20,40,41). We presented data showing
the presence of TGBearly in the development of CSS. Border et al. (19) have shown that TGF-

B plays arole in the development of glomerulosclerogid iyl nephritis. The same is true for
theaGBM model, in which TGR is involved in the development of the disease (42). Inclusion

of EDA or EDB within the FN molecule was not detected in GVHD mice, a model in which TFG-

[ positive cells in the glomeruli or an increased glomerular mRNA level of @ Gitdd not be

found at any stage of the disease. In summary, results from various experimental models show
that levels of TGH3 are associated with the extent of EDA and EDB inclusion.

The effect of IL-4 and TGIB-was investigateih vitro to achieve a better understanding of
the effects of cytokines on FN transcription and splicing at the EDA region. Evidence for the
involvement of IL-4 in the pathogenesis of glomerulonephritis has been provided by several
investigators who have shown that intrinsic human glomerular cells express mRNA for both IL-
4 and IL-4 receptor (22), and that IL-4 expression is upregulated in various types of GN. In
crescentic GN, early IL-4 treatment was shown to reduce proteinuria and inflammation (43). Our
results demonstrated that overexpression of IL-4 in cultured mesangial cells led to a reduction
of the amount of EDA+ FN mRNA. Also, a reduced overall production of FN by decreased FN
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transcription was observed in IL-4 transfected MC. The decreased EDA inclusion might be
explained by the significant decrease in TRRNA production found in IL-4 overexpressing
cells. Decreased TGEt serum levels (44) were observed in mice with constitutive transgenic
expression of IL-4. These results suggest that IL-4 may play a role in the induction of quantitative
and qualitative alterations in matrix composition, during the development of glomerulosclerosis.
Chronic GHVD was the only model tested in which we could not find an indication for a role
for TGF3 and EDA inclusion. We wanted to investigate whether these findings could be
confirmed in human glomerulosclerosis. Therefore, we measured the mRNA levels of fibronectin
and the ratio between EDA+ and EDA- mRNA in controls and diseased renal tissue. We also
analyzed TGH mRNA levels in these tissues. The renal biopsies with glomerulosclerosis were
divided into two subgroups. One group consisted of patients suffering from lupus nephritis,
which corresponded to the GHVD model in the mice, while the other group consisted of
various other chronic kidney diseases. TG Rbronectin mRNA, and the EDA+/EDA- mRNA
ratio were significantly increased in patients with renal disease in comparison to the controls.
In contrast, patients with lupus nephritis did not show a significant increase i, TRB;-and
EDA+/EDA- in comparison to controls, which corroborates the experimental models. The
steady-state level of fibronectin mMRNA correlates with the EDA+/EDA- mRNA ratio, indicating
that the increased fibronectin mRNA observed in chronic disease is mainly EDA positive.
The question remains what triggers the development of GS in mice with GVHD-induced
lupus nephritis and in patients with lupus nephritis. In an earlier study we have shown that in
these mice the accumulation of FN protein during the sclerotic phase of the disease is not a
result of an increased FN production but a result of specific trapping of plasma fibronectin from
the circulation (45). Circulating FN was shown to bind through its heparin binding site to
integrina5p1, which was upregulated in glomeruli in the later stage of the disease (6). IL-4 has
been found to induce upregulation of R1-integrins in lung fibroblasts (46). Therefore, EDA
negative FN from the circulation might be trapped in the kidney through binding to integrins,
of which the expression is induced by IL-4. In addition, mice with constitutive transgenic
expression of IL-4 show progressive glomerulosclerosis with mesangial accumulation of
collagens type I, IV, and V. Seven-day-old IL-4-transgenic animals showed early renal fibrotic
changes in the absence of immune deposits or FGEpregulation (44). Treatment of these
mice with IL-4 neutralizing antibody prevented renal disease (47). It has also been found that
IL-4 is capable of activating the human type | collagen promoter in lung fibroblasts and may
thus contribute to lung fibrosis (48). In addition, NZM.2410 mice rendered deficient in STATS,
a transcription factor involved in the production and function of type 2 cytokines, are completely
protected from the development of glomerulosclerosis(49). The renoprotective effects of ACE
inhibitors in lupus nephritis may be explained in part by their negative action on IL-4 and IL-10
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production (50). From our study we conclude that alternative splicing of the EDA domain of FN
mMRNA is correlated with the presence of TGFrhe results suggest that T@Hs a key player

in the development of GS by inducing FN production and alternative FN mRNA splicing. On
the other hand, we showed tivavitro TGF{3 and IL-4 have opposing effects with respect to
spicing at the EDA region of FN. In lupus glomerulonepbhritis, in which the role of fiBGS

is less prominent, type 2 cytokines such as IL-4 probably predominate in the induction of
collagen synthesis and FN accumulation from the circulation, which leads to increased matrix
accumulation and glomerulosclerosis. Therefore, neither alternative FN splicing, nor a high
transcription level of TF@ appears to be a general prerequisite for the development of GS.
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Abstract

Glomerulosclerosis is a severe complication of many immunologically mediated kidney diseases,
eventually resulting in loss of renal function. In chronic graft-versus-host disease (GvHD) in
mice, a model for human lupus nephritis, the end-stage sclerotic lesions were previously shown
to contain large amounts of fibronectin (FN). This study investigated a domain-specific
accumulation process of circulating plasma FN (pFN) in sclerotic lesions.

GvHD mice were injected with FITC-conjugated pFN or pFN-fragments, with or without
heparin pre-incubation. pFN-fragments were generated by digestion of FN by Cathepsin D, after
which the fragments were separated on a heparin affinity column. Thus, two batches of fragments
were obtained with either low or high affinity for heparin.

FN accumulation was accompanied by an up-regulated expression of iottfrjihe FN
receptor, in the periphery of sclerotic lesions. pFN-FITC injected into GvHD mice was trapped in
sclerotic glomeruli within 24 hrs. Both heparin and non-anti-coagulant heparin blocked the
accumulation of pFN-FITC, indicating that the protective effect of heparin in the trapping of FN
is independent of its anticoagulant properties, and probably results from preventing direct binding
of FN in the sclerotic lesions.

To investigate whether FN binds in the glomerulus via the heparin-binding regions, pFN-
fragments were generated and injected into GvHD mice. Whereas the fraction with high affinity
for heparin did not accumulate in the sclerotic glomeruli, the fraction with low affinity for heparin
did. Partial sequencing of the isolated peptides showed that in the glomerulus fibronectin does
not bind via the heparin 1l binding region.

We hypothesize that the protective effect of heparin treatment may be the result of steric
hindrance of the specific binding sites, that is, thahd/or 1} self-assembly sites of FN.
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Fibronectin accumulation in glomerulosclerotic lesions

Introduction

Accumulation of extracellular matrix (ECM) molecules in the glomerulus leads to the
development of glomerulosclerosis, which is a prominent feature of many immunologically
mediated renal diseases. Glomerulosclerosis, together with tubulointerstitial fibrosis, causes
irreversible end-stage renal damage with poor patient prognosis. Vleming et al. reported that of
a number of matrix molecules in a variety of human renal diseases, only the amount of
intraglomerular fibronectin (FN) deposition correlates with the severity of glomerular structural
abnormalities, and inversely with renal function (1).

FN is a large adhesive glycoprotein, that is widely distributed as cellular FN (cFN) in the
ECM of various tissues and on cell surfaces, and as soluble plasma FN (pFN) in the circulation.
FN is involved in the regulation of cell adhesion, differentiation, migration, and proliferation.
This multifunctional protein consists of a dimer of two disulfide-bonded subunits, each with a
molecular weight of approximately 220 kD, that contain binding sites for heparin, collagen,
DNA, integrins, and FN itself (2,3). In the normal kidney FN is located in the mesangium, the
glomerular basement membrane (GBM), Bowman'’s capsule and the tubular basement membrane
(TBM)(4). FN has a crucial role in the organization of ECM components, and is considered to
play a key part in the pathogenesis of some glomerulonephritides, where the molecule is
present in increased amounts in the expanded mesangium (5,6).

Chronic Graft-versus-Host disease (GvHD) in mice is an experimental model for human
systemic lupus erythematosus (SLE), in which a transfer of donor lymphocytes into F1-hybrid
recipients causes uncontrolled B-cell activation with production of autoantibodies (7). This
results in an immune complex glomerulonephritis, resembling human lupus nephritis (8). Both
in the GvHD model and in human renal diseases, the end-stage glomerulosclerotic lesions
consist mainly of FN, which accumulates as a result of specific trapping of pFN from the
circulation rather than througle novosynthesis (9). The mechanism by which the specific
accumulation of pFN in the sclerotic lesions takes place is still unknown. FN accumulation may
result from its involvement in the blood coagulation system, or via direct binding of pFN to
cells or other ECM components in the damaged glomerulus.

Because the accumulation of FN in the end-stage glomerulosclerotic lesions may be the
result of an activation of the coagulation cascade, we studied the effect of heparin on the
glomerular accumulation of FITC-labeled pFN in the GvHD model. Heparin is a sulfated
glycosaminoglycan, closely related to heparan sulfate, with a long history in the treatment of
patients with thrombotic diseases. Many ECM components, such as fibronectin, laminin,
thrombospondin and different types of collagen, can bind to heparin. In addition to its anti-
coagulant function, heparin has an impact on interactions that involve matrix organization, cell
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adhesion, proliferation, and cytokine action (reviewed by (10)). With regard to the kidney,
heparin was shown to have an anti-proliferative effect on cultured vascular smooth muscle
cells, epithelial cells, and mesangial cells (11-14). In several models, e.g. renal ablation, MRL/
Ipr mice, puromycine aminonucleoside-induced nephrotic syndrome, and anti-Thy 1.1 nephritis
in the rat, administration of heparin diminishes proteinuria and hypertension, and decelerates
the progression of renal insufficiency and glomeruloscleiosivo (15-19).

Our results show that both heparin and N-desulfated heparin can block accumulation of
injected pFN-FITC and specific Cathepsin-induced FN fragments in glomerulosclerotic lesions.
These results provide evidence for a domain-specific accumulation process in the accumulation
of circulating FN in sclerotic lesions.

Materials and methods

Animals

DBA/2 and C57BL/10*DBA/2 F1 hybrid mice were purchased from Harlan BV (Horst, The
Netherlands). Female DBA/2 mice aged 7 to 8 weeks served as donors of lymphocytes in the
induction of GvHD. Eight to 10 week-old female F1 hybrids served as recipients of lymphocytes.
GvHD was induced in 61 experimental F1 hybrid mice. Eleven age- and sex-matched normal F1
hybrid mice (NF1) were used as controls. The numbers of animals used for each experiment are
detailed in the results section.

Induction of disease

GvHD was induced in F1 hybrid mice as described previously (20). In brief, single cell
suspensions were prepared from DBA/2 spleens, lymph nodes, and thymi in Hanks’ balanced
salt solution (HBSS). The total number of cells and the proportion of vital cells were determined
by Trypan blue staining. The suspensions were mixed, and injected intravenously in F1
recipients on days 0, 3, 7, and 10. Each dose of 25idile DBA/2 cells in 0.25 ml HBSS was
composed of approximately 60% spleen cells, 30% thymocytes, and 10% lymph-node cells.

Accumulation experiments

All accumulation experiments were performed 10-12 weeks after the induction of GvHD, since
specific trapping of pFN in the glomerulosclerotic lesions has been shown to occur at this
timepoint. GvHD mice were injected intravenously with B@0=ITC-conjugated mouse pFN

with or without 250 U (non-anti-coagulant) heparin. This is approximately 15% of the normal
total plasma FN content of a mouse as estimated by a quantitative sandwich-ELISA technique
(unpublished results). Where appropriate, pFN and either heparin or non-anti-coagulant heparin
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were incubated together for 1 h at@7before injection, after which the solution was spun
down for 30 sec to remove FITC-crystals. pFN-heparin complexes remained soluble during the
incubation and centrifugation step.

pFN-fragments were obtained as detailed below. Accumulation experiments with the pFN-
fragments were performed with 25§ of the FITC-conjugated low-affinity pFN fraction or 125
ug of the FITC-conjugated high-affinity pFN fraction, with or without 250 U heparin. The
amountof injected FITC-conjugated pFN-fragments were adjusted to equimolar amounts of
molecules as compared to total pFN molecules injected in previous experiments. As controls,
NF1 hybrid mice were injected intravenously with either pFN or one of the pFN fragments with
or without pre-incubation with heparin.

Follow-up of F1 mice

The urine albumin content of the GvHD F1 mice was determined at two-weekly intervals,
starting 2 weeks before disease induction. Animals were kept in urine-collection cages for 18 h
with free access to water and food. The albumin levels were assessed by rocket electrophoresis
against rabbit anti-mouse albumin, with albumin as a standard (Sigma Chemical Corporation,
St.Louis, MN, USA) (20).

Groups of three experimental mice were sacrificed at week 0, 2, 4, 6, 8, 10, and 12 of GvHD.
After perfusion with PBS, the kidneys were removed. For light microscopic examination with
periodic acid-Schiff (PAS) reagent and phosphotungstic acid haematoxylin (PTAH), a part of
the kidney tissue was fixed in 10% buffered formalin, dehydrated, and then embedded in
Paraplast (Amstelstad, Amsterdam, The Netherlands). The remaining tissue was frozen in CO
ice-cooled isopentane and stored at°€7@intil further use. Immunohistochemistry was
performed with a fluorescein-isothiocyanate (FITC)-conjugated rat anti-mouse CD49e
monoclonal antibody (Pharmingen, San Diego, CA, USA) to detect the intégeimain. The
FITC-conjugated rabbit anti-mouse CD49d monoclonal antibody (anti-integichain) was a
generous gift of Dr. E. Ruoslahti (Cancer Research Center, La Jolla, CA, USA). Fluorescence
intensity was scored semi-quantitatively on a scale from 0 to 3+, in which 0 represented no
staining and 3+ reflected a very strong staining. The slides were scored in a double-blinded
fashion by two observers independently of each other, using a Leitz fluorescence microscope.
Representative examples of the scoring are shown in figure 1.

Eighteen hours after the injection of pFN or pFN-fragments, groups of mice were sacrificed.
The numbers of animals used for each experiment are detailed in the results section. After
perfusion with PBS, the kidneys were removed and stored for light and fluorescence microscopy
as described above. The amount accumulation of pFN or pFN-fragments was scored semi-
quantitatively on a scale from 0 to 3+, in which O represented no accumulation and 3+ reflected
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a very strong accumulation. The slides were scored in a double-blinded fashion by two observers
independently of each other, using a Leitz fluorescence microscope. Representative examples
of the scoring are shown in figure .

pFN isolation and purification of pFN fragments

pFN was isolated from normal mouse plasma, in the presence of 30 mM citrate as an anti-
coagulant. The plasma was dialyzed overnight against PBS/10 mM EDT@. il plasma
was spun down at 3,000g for 20 min. to remove protein aggregates, after which the supernatant
was circulated over a gelatin-Sepharose 4B affinity column for 2 h. The column was rinsed with
PBS/10 mM EDTA. pFN was eluted from the column with 6 M urea in 0.1 M citric acid/50 mM
Tris pH 4.7. The eluate was dialyzed overnight against PBS/10 mM EDT& aedore labeling
with FITC (21). For preparation of pFN fragments 10ahaffinity-purified pFN was dialyzed
overnight against 50 mM sodium acetate/50 mM NaCl/10 mM EDTA pH 6.4. Addition of a 10%
solution of glacial acetic acid was used to adjust the pH of the dialysate to 3.5. Digestion with
Cathepsin D (Sigma-Aldrich N.V./S.A., Bornem, The Netherlands) was performed for 18 h at
37°C in a weight ratio of FN:Cathepsin D = 200:1. Adjusting the pH to 7 with 2.5 M Tris (pH 9)
terminated the reaction. The digested pFN solution was tested by SDS-PAGE, under reducing
conditions, before purification of the fragments.

The heparin-Sepharose 4B affinity column was equilibrated with 20 mM Tris/50 mM NaCl/
10 mM EDTA/5 mM Caproic aci@.2 mM PMSF pH 7.4. The digested pFN was allowed to bind
to the column by recirculation of the effluent, followed by the washing with three column
volumes of equilibration buffer. The pFN fragments were eluted by a discontinuous gradient
subsequently consisting of 0.25 M, 0.6 M and 1 M NacCl in equilibration buffer. The separate
fractions were analyzed by SDS-PAGE under reducing conditions, dialyzed overnight against
PBS/10 mM EDTA at4C, and labeled with FITC (21). Fractions were concentrated and washed
by high-pressure diafiltration in a Centricon (Amicon), and stored &G-a6til further use.

Preparation of non-anti-coagulant heparin

Heparin (Organon Teknika Nederland BV, Boxtel, The Netherlands) was converted into N-
desulfated non-anti-coagulant heparin according to the procedure of Inoue and Nagasawa
(22). In brief, sodium-heparin salt dissolved in 0.1 M HCl was converted into a pyridin-heparin
salt on a DOWEX column (Pharmacia, Uppsala, Sweden). Desulfation was performed by using
dimethyl sulfoxide/5%nethanol. Activated partial thromboplastin time (aPTT) was performed
according to the manufacturers protocol (Boehringer, Mannheim, Germany). N-desulfated non-
anti-coagulant heparin had no effect on the clotting time. In an ELISA under isotonic conditions,
non-anti-coagulant heparin and anti-coagulant heparin were found to have comparable binding
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capacities to pFN (unpublished results).

Statistical analysis
Results are presented as meaS® where indicated, and were analyzed using the Chi-square
test.P < 0.05 was considered statistically significant.

Results

Clinical course of GvHD

Four weeks after the induction of GvHD, mice developed abnormal proteinuria. Albuminuria
reached the highest levels at week 12 (results not shown). At this timepoint the majority of the
animals developed ascites and edema. Light-microscopy of kidney sections of GvHD mice
showed a lupus type of nephritis, complicated by focal and segmental glomerulosclerosis
starting 10 weeks after the induction of the disease (Fig. 1), confirming earlier results (20).
Furthermore, PTAH staining showed fibrin deposited in sclerotic regions, suggesting that the
coagulation pathway may be involved in the development of glomerulosclerosis in GvHD
(results not shown).

Altered expression of integrins that specifically bind to FN may well lead to enhanced
binding of pFN in the glomerulosclerotic lesions. Immunohistochemistry showed that both the
integrin chaing4 anda5 were expressed in minimal amounts in the glomeruli of NF1 mice
(fluorescence intensity +/-, diffuse pattern). The expression of the integritid not alter
during the development of GvHD. However, from week 6 on we observed increased amounts of
the a5 integrin chain in the periphery of sclerotic lesions (segmental staining, fluorescence
intensity 3+, Fig. 1). Control staining with an irrelevant non-immune IgG showed no fluorescence
patternin NF1 or GvHD mice.

pFN isolation and purification of pFN fragments

Figure 2shows the results of SDS-PAGE analysis of isolated pFN and pFN fragments under
reducing conditions. Total pFN was isolated by affinity chromatography and has a molecular
weight of 220 kD (lane B). Incubation of pFN with Cathepsin D for 18 hr led to complete
digestion of pFN (lane C). Digestion for a longer period of time or at a higher protein/proteinase
ratio did not provide any additional FN fragmentbands. Incubation for a shorter period showed
incomplete digestion of FN, leaving remains of the 220 kD total FN band in the SDS-PAGE gel
(results not shown). Purification of the pFN fragments on a heparin affinity column revealed
two separate fractions that could be eluted from the column with 0.25 M NaCl in an equilibration
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buffer (lane D) and with 1 M NacCl (lane E) respectively. No fragments could be eluted with 0.6
M NaCl. The fraction with low affinity for heparin contains a specific pFN fragment with an
apparent MW of 120 kD (lane D) and a mixture of additional bands with an apparent MW
around 100 kD. The fraction with high affinity for heparin contains a specific pFN fragment
with an apparent MW of 60 kD (lane E) and also a mixture of additional bands with an apparent
MW around 100 kD. No pFN protein bands were visible in the gel below the 60 kD band.

Although the mouse FN protein sequence (Swissprot: FINC_mouse, 2477aa) shows more
than 80% homology with the human FN protein sequence (Swissprot: FINC_human, 2386aa),
the digestion of mouse FN with Cathepsin D generated several different fragments (120 kD, 60
kD, and 100 kD) than digestion of human FN (70 kD gelatin bindin domain, 27 kD N-terminal
heparin binding domain, 40 kD collagen binding domain, 120 kD cell binding domain, and 55-65
kD C-terminal heparin binding domain (23,24)). Results of N-terminal sequencing of the fractions
revealed that the protein-sequence of the 60 kD high-affinity fragment started at residue 1704
(AQNRNGESQP). This fragment thus includes the high-affinity heparin Il binding domain.
Repeated N-terminal sequencing of the low-affinity fraction suggests that the N-terminus of
the 120 kD fragment was located near the low-affinity heparin-binding domain, but we were not
able to find one unequivocal starting point for the sequence. The 100 kD proteins in both
samples were not identical to each other, but the 100 kD protein fragment in the low-affinity
fraction shared sequence homology with the 120 kD pFN fragment, while the 60 kD pFN
fragment shared sequence homology with the 100 kD protein fragment in the high-affinity
fraction. Figure 3 shows a proposed schematic drawing of the FN protein sequence indicating
the proposed locations of the FN fragments.

Both heparin and N-desulfated non-anti-coagulant heparin prevent binding of pFN to
glomerulosclerotic lesions

FITC-conjugated pFN injected intravenously into mice 10-12 weeks after induction of GvHD
accumulated in the glomerulosclerotic lesions (n=9, fluorescence intensity 3+, Fig. 4A). The
segmental fluorescent staining pattern was comparable to the occurrence of PAS-positive
glomerulosclerotic lesions. This accumulation was not observed in NF1 mice (n=2), confirming
earlier results by Bergijk et al. (9). Ex vivo pre-incubation of pFN-FITC with heparin resulted in
a significantly reduced accumulation of pFN-FITC upon injectips: (0.05). Hardly any
fluorescence signal was detectable in 4 out of 5 animals with GvHD (Fig. 4B, fluorescence
intensity +/-). Injection of pFN pre-incubated with non-anti-coagulant, N-desulfated heparin
also prevented the accumulation of pFN-FITC in the glomerular lesien3.05). Five GvHD

mice showed no accumulation, while only 2 animals had a weak fluorescent staining of 1+.
There was no statistically significant difference between the accumulation of pFN-FITC pre-
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Figure 1. (Immuno-)histochemical staining of renal tissue. Figure A shows a control staining with a non-
immune 1gG antibody. Figure B is a PAS staining of a mouse glomerulus 10 weeks after the induction of GvHD,
showing extensive glomerulosclerosis. The integrinchain is expressed in minimal amounts in a glomerulus

of a NF1 mouse (C). Increased expression of the integbirchain is visible in the periphery of the
glomerulosclerotic lesion 8 weeks after the induction of GvHD (D). The integtichain was expressed in
trace amounts in glomeruli of NF1 mice (E). The expression of the integrichain did not alter during
GvHD (Fig. F, GvHD week10).

treated with heparin or non-anti-coagulant heparin. Results of the accumulation experiments
are summarized in Table 1.
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pFN binding in glomerulosclerotic

~-—220 lesions does not occur via the high-
205 - affinity binding site for heparin

_— Intravenous injection of the FITC-

16 — - - - -—120 conjugated pFN fraction with low
97 — n [— affinity for hep-a-rm resulted in |_ntense
66 — i | - - segmental staining of glomeruli from 8
- — . <60 out of 11 mice with GvHD at week 10

B e - B Ll L font (fluorescence intensity 2+, Fig. 4C).

A B C D E This accumulation did not occur when

the low-affinity fraction was injected

Figure 2. Polyacrylamide gel electrophoresis under, . _ .. .
reducing conditions of plasma-fibronectin isolated fromin NF1 mice (n=3). Ex vivo incubation

normal mouse plasma using a gelatin-Sepharose 4B affiniggf the low-affinity pFN-FITC fraction
column. Lane A represents molecular weight markers. Lane . e e . .
B contains total FN with an apparent MW of 220 kD. LaneWIth heparln inhibited its accumulation

C shows Cathepsin D induced fragments of total FN. Theri the glomerulus of GVHD mice (n=2).
is no 220 kD FN band left after enzymatic digestion. Affinity . .
purification of the fragment-mixture, on a heparin-Sepharos;l-he FITC-conjugated pFN fraction

4B column, resulted in a low-affinity fraction containing awith high affinity for heparin did not
specific 120 kD FN fragment (Lane D) and a high-affinity .
fraction containing a specific 60 kD FN fragment (Lane E).aCCumLIIate inthe glomeru"JS of GVHD

The low-affinity fraction (120kD) was completely depleted mice at week 10 (n=10, Fig. 4D), nor of
of the 60 kD band, while the high-affinity fraction (60 kD) . _
did not contain any 120 kD FN fragments. Additional pFNNFl mice (n—3). There was no

fragments with an apparent MW of about 100 kD are preserftatistically significant difference

in both fractions. .
between the accumulation of the low-
affinity fraction and the accumulation

of total pFN-FITC, but there was a strong difference between the accumulation of total pFN-

FITC and the accumulation of the high-affinity fractipr(0.02)
Discussion

Circulating pFN, which is produced by the liver, accumulates in glomerulosclerotic lesions at a
late stage in GVHD (9). This dimeric glycoprotein is known to play a role in a variety of cellular
processes, immune complex clearance, and wound healing. Several domains within the FN
molecule may be involved in the specific binding to the sclerotic lesion. The actual accumulation
of pFN may result from 1) direct binding to other ECM components in the damaged glomerulus,
2) direct binding to beta-1 integrins on cell surfaces, 3) involvement of the coagulation system,
or 4) binding to itself by polymerization via self-assembly sites into insoluble fibrils, or from a
combination of these mechanisms.
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Figure 3. Schematic drawing of the total FN protein sequence (top) and the pFN protein sequece (bottom),

with the proposed locations of the FN fragments involved in the accumulation of FN in glomerulosclerotic
lesions. Indicated are the EIlIA, EIlIB and V regions, which can be included in or excluded from the protein
by alternative splicing of the FN pre-mRNA. Rectangles represent homologous type | repeats, circles
represent homologout type Il repeats, and squares represent homologous type Ill repeats. The protein
sequence of the high-affinity fraction starts at residue 1704 (homology repghtjlist before the high-

affinity heparin-binding domain (Hep Il). The N-terminus of the low-affinity fraction is suggested to be
located near the low-affinity heparin-binding domain (Hep I, homology repeat |

Firstly, FN can bind to other ECM molecules, such as collagen and laminin, that are produced
and deposited in the kidney to maintain a stable matrix. Alterations in the ECM turnover that
may contribute to the accumulation of FN have been described to precede the development of
glomerulosclerosis in the GvHD model (25). Secondly, stabilization of the tissue is also obtained

Table 1. Summary of FN accumulation experiments 10-12 weeks after induction of GvHD.

Pre-incubation with

Administration of Buffer Heparin N-desulfated heparin
Total pFN +++ (n=9) +/- (n=5) +/- (n=5)
High-affinity pFN fraction 0 (n=10) 0 (n=2) nd
Low-affinity pFN fraction ++ (n=11) 0(n=2) nd

* Results are scored semi-quantitatively on a scale from 0 to +++, in which 0 represents no accumulation
of FITC-conjugated pFN or pFN fragments, and +++ reflects very strong accumulation in the
glomerulosclerotic lesions, as determined by direct immunofluorescence. Abbreviations are: ND, not

determined; N, number of animals.
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Figure 4. Immunofluorescence micrographs of mouse glomeruli 10 weeks after the induction of GvHD,
and 18 h after injection with pFN-FITC (A), pFN-FITC pre-incubated with heparin (B), low-affinity pFN-
FITC fraction (C), or high-affinity pFN-FITC fraction (D). Injection of the low-affinity pFN fraction pre-
incubated with heparin shows a significantly reduced pattern of accumulation, comparable to the pattern
shown in figure B.

by the cell-to-cell and cell-to-substrate attachments via integrin receptors. FN has two major
integrin binding sites. The first binding site is an RGD (Arg-Gly-Asp) sequence in the central
cell binding domain which is recognizedd§f31 integrins. The second binding site, recognized

by a431 integrins, is an LDV (Leu-Asp-Val) sequence located in the alternatively spliced V-
region. This study shows an increase in the expression af3tietegrin chain in areas
surrounding the glomerulosclerotic lesions (Fig. 1). This altered integrin expression in the
glomerulus during the course of the disease may lead to enhanced binding of pFN.

A third mechanism that may participate in the accumulation of pFN in the glomerulus, is
activation of the coagulation system. PTAH staining showed deposition of fibrin in the
glomerulosclerotic lesions during the development of GvHD, indicating an activation of the
coagulation cascade during the induction of the disease. Therapeutical intervention in the
coagulation cascade can be achieved by treating the mice with hepararliévgerformed an
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experiment that investigated whether heparin treatment in a late stage of GvHD could significantly
affect the development of glomerulosclerosis in vivo (Abstract; BergijkeE@l, J Am Soc
Nephrol6:892, 1995)Seven weeks after induction of GvHD the glomeruli showed mesangial
matrix expansion and thickening of the GBM. From this moment on, mice (N=5/group) were
treated with different doses of heparin (20 or 40 U/24h). High dose treatment significantly
diminished the development of fibronectin-containing end-stage sclerotic lesions in 50-80% of
the animals at week 11 of the disease. This points toward the involvement of the coagulation
cascade in the process of FN-accumulation leading to the development of end-stage sclerotic
lesions. However, to our surprise, treatment of mice with N-desulfated non-anti-coagulant heparin
showed a similar effect. This indicates that the protective effect of heparin in the trapping of FN
in the glomerulosclerotic lesions is independent of the anti-coagulant properties of heparin. We
then hypothesized that heparin treatment directly interferes with FN accumulation by binding to
FN, i.e., without participation of the coagulation system.

FN has been shown to contain two heparin-binding sites. The high-affinity heparin II
binding domain located at the carboxyterminal site of FN.¢Jl has a dual function. The
heparin 1l binding domain is thought to interact with cell surface glycosaminoglycans to
facilitate cell adhesion and spreading (26,27), but it also plays an important role in matrix
assembly (28), probably via interactions with In addition to the high-affinity heparin Il
binding domain, FN also has a low-affinity binding domain for heparin (heparin | binding
domain) located on.k. The heparin | domain is also involved in matrix assembly and, in
particular, FN self-assembly (29,30).

To test the possible involvement of either of the heparin-binding sites of FN in its glomerular
accumulation, we performed an experiment in which we injected GvHD mice with pFN-FITC
pre-incubated with heparin or N-desulfated heparin. Our results show that pre-incubation with
heparin prevents FN accumulation in the sclerotic lesions. Similar results were obtained using
N-desulfated non-anti-coagulant heparin (Table 1). This suggests the involvement of either
one of the heparin binding sites of FN in its glomerular accumulation. To investigate whether
FN binds to the glomerulus via its high- or low-affinity heparin-binding domain, FN was digested
with Cathepsin D, after which the fragments were separated on a heparin affinity column. Thus,
two batches of FN fragments were obtained with either low or high affinity for heparin,
respectively. The 100 kD fragments present in both fractions appeared to have no functional
effect during the accumulation experiments. Further molecular dissection of these fragments
will be required to obtain conclusive evidence for their non-involvement.

In contrast to our expectation, the fraction with FN fragments containing the high- affinity
heparin Il binding domain did not accumulate in the sclerotic glomeruli, whereas the FN fraction
containing the low-affinity binding site for heparin (heparin | binding domain) did. The
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accumulation of the latter fraction could be inhibited by pre-incubation with heparin (Table I),
suggesting that FN does not bind to the glomerulus via its high-affinity heparin-binding
region, but probably via its low-affinity heparin-binding domain, or via a site nearby. In the
latter case, we hypothesize that the protective effect of heparin treatment could result from
steric hindrance of the specific binding site, or heparin might act via other unknown mechanisms.
Therefore, we conclude that i) the protective effect of heparin is independent of its anti-
coagulant properties, suggesting that the coagulation cascade is not involved in the trapping
of FN in the sclerotic lesion, ii) the process of glomerulosclerosis is not mediated via the
heparin Il binding site of FN, and iii) the site involved in the accumulation of FN in the glomerulus

is located on or near the heparin | binding site.

A final remark concerns the possible functional involvement of the heparin | binding site in
the glomerular accumulation and stabilization of FN in the diseased glomeruli. As mentioned
above, it is known that the heparin | binding domain contains a self-assembly site which is
instrumental in polymerization of FN into insoluble FN fibrils (29,30). Self-assembly of FN
dimers into insoluble fibrils is thought to involve primarily interactions between the first five
type | (L.s) repeats located on the low-affinity heparin | binding domain, and the first type IlI
(11,) repeat located nearby (31-34). Treatment of purified FN in solution with-@hfllhgment
resulted in the appearance of FN multimers, called superfibronectin, which resemble matrix
fibrils (35). It has been suggested that this self-assembly site of FN is protected from spontaneous
polymerization by keeping it cryptic, and that it is only unmasked in response to either
physiological stimuli, or to tissue repair reactions. Based on these observations and ours, we
hypothesize that self-assembly of soluble pFN after binding to FN molecules already present
in the glomerular ECM contributes to the observed accumulation of FN during the development
of glomerulosclerosis in a late stage of GvHD.

In conclusion, our results provide evidence for progressive accumulation of FN in
glomerulosclerotic lesions in our model via its low-affinity heparin binding site or a site nearby.
This may involve a self-assembly process involving the first five typg) F@peats, or the first
type 1l (111,) repeat, or both. However, the extent to which this self-assembly process is preceded
by initial binding of FN to either ECM or beta 1 integrins requires further investigation.
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Abstract

Diabetic nephropathy is a frequent complication in patients with diabetes mellitus. To find
improved intervention strategies in this disease, it is necessary to investigate the molecular
mechanisms that are involved. To obtain more insight in the processes that lead to diabetic
nephropathy, mRNA expression profiles of diabetic glomeruli and glomeruli from healthy
individuals were compared.

Two morphologically normal kidneys and two kidneys from patients with diabetic
nephropathy were used for the study. Glomerular RNA was hybridized in duplicate on Human
Genome U95Av2 Arrays (Affymetrix®). Several transcripts were further tested in independent
patient groups and at the protein level by immunohistochemistry.

Ninety-six genes were upregulated in the diabetic glomeruli, whereas 519 genes were
downregulated. The list of over expressed genes in diabetic nephropathy includes aquaporin
1, calpain 3hyaluronoglucosidase, and platelet/endothelial cell adhesion molecule (PECAM-
1). The list of downregulated genes includes bone morphogenetic protein 2 (BMP-2), vascular
endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF-1), insulin-like growth factor
binding protein (IGFPB-2), and nephrin. Adecrease in VEGF and nephrin could be validated at
the protein level and also at the mRNA level in renal biopsies of 5 additional diabetes patients.

In conclusion, the results of oligonucleotide microarray analyses on control and diabetic
glomeruli are presented and discussed in their relation to vascular damage, mesangial matrix
expansion, proliferation, and proteinuria. Our findings suggest that progression of diabetic
nephropathy might result from a diminished tissue repair capability.
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Introduction
Diabetic nephropathy (DN) is a major cause of morbidity in patients with type 1l diabetes (1).
One of the earliest clinical signs of diabetic nephropathy is microalbuminuria, which often
progresses towards proteinuria (2). Characteristic features associated with diabetic nephropathy
include hyperfiltration, followed by a decrease in the glomerular filtration rate (GFR), glomerular
hypertrophy, progressive expansion of the mesangial matrix, and thickening of the glomerular
and tubular basement membranes (3,4). These features may precede the development of
glomerulosclerosis and interstitial fibrosis, and eventually the onset of end-stage renal disease.

Little is known about the molecular mechanisms leading to end-stage renal disease in
diabetic nephropathy. While the role of many genes in progressive renal diseases has been
described (5,6), their interrelationship remains largely unclear. With the completion of the
human genome project and the development of microarray technology it is now possible to
simultaneously screen the RNA expression of thousands of genes in healthy and diseased
organs, or in parts of them. Although gene profiling studies have been described recently in
animal models for diabetic nephropathy (7), microarray studies on isolated glomeruli from
human diabetic kidneys have not yet been reported.

In this study, we investigated the gene expression profile of glomerular RNA from patients
suffering from type Il diabetes mellitus, and glomerular RNA from individuals with normal renal
function and histology.

Material and Methods

Patients

Cadaveric donor kidneys were obtained from Eurotransplant. These kidneys were unsuitable
for transplantation for technical or morphological reasons (Table 1). We used glomeruli from
two control kidneys, and from two kidneys from patients with diabetes mellitus type Il. Diabetic
nephropathy was histologically confirmed by Periodic acid-Schiff (PAS) stained paraffin sections.
Pathologic criteria for diabetic nephropathy include glomerular hypertrophy, diffuse mesangial
and focal nodular glomerulosclerosis, arteriolar hyalinosis, and focal and segmental
glomerulosclerosis, hyaline drops between Bowman’s capsule and epithelial cells, and interstitial
fibrosis. Nodular glomerulosclerosis, arteriolar hyalinosis are characteristic for diabetic
nephropathy, and present in the diabetic kidneys that we have used for this study.

Isolation of glomeruli
Glomeruli were isolated as described earlier (8). In brief, fresh cortical tissue was first pressed
with a flattened glass pestle through a 212 um pore diameter metal sieve and then through a
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150um pore diameter metal sieve. Glomeruli were rinsed from the surface of the 150 um sieve
with ice-cold phosphate buffered saline (PBS), transferred to a tube and pelleted for 1 min at
1200Xg. The supernatant was removed and the glomeruli were frozer? &t ui@ll RNA
isolation. The purity of the glomerular suspension was controlled by light-microscopy and
was at least 90%.

RNA isolation

Glomerular RNA was isolated using a combination of two RNA isolation procedures. Glomerular
tissue (500mg) was dissolved in 5 ml Trz@nd homogenized with an ultra-turrax (Janke &
Kunkel) for 1 min. After adding 1ml chloroform and mixing for 1 min, the suspension was
centrifuged at 15,000g for 10 min. The RNA was precipitated with isopropanol. The pellet was
air-dried and dissolved in 100 pl MilliQ and further purified with an RNeasy Mini column
(QIAGEN GmbH, Germany), according to the instructions of the manufacturer.

Table 1.  Characteristics of the patients.

Control 1 Control 2 Diabetes 1 Diabetes 2
Retinopathy no no yes yes
Duration of diabetes type 2 (years) - - >5 >5
Age (years) 29 70 55 years 63 years
Gender Male Male Male Male
Serum Creatinin (mg/dE) 0.68 unknown 114 unknown
Serum Glucose(mg/dL) 133 128 326 unknown
Urine glucosé negative negative ++ +
Urine Proteit negative trace + +/-
GFR(mL/min} 181 unknown 78 unknown
Perfusion fluid uw uw? uws? uw?
Cold ischemia time (hours) 32 33 26 32
Dopamine (ug/kg BW/min) 3 0.2 (Norepinephrine) 2 3
Known other drugs - - Insulin Insulin
Cause of death ICB ICB? ICB?® ICB?
Reason of refusal Lesion upper Arteriosclerosis DN DN

arterial pole

Percentage of sclerotic glomeruli <1% <1% 33% 24%
Percentage of interstitial fibroticarea <5% <5% 25-50% 25-50%

! Levels within last 24 hours of donatiohUniversity of Wisconsin solutior? Intracerebral bleeding.
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Figure 1. Light microscopic pictures of a glomerulus from a control kidney (A) and a representative
glomerulus from a diabetic kidney (B). The diabetic kidneys show glomerular hypertrophy, diffuse mesangial
and focal nodular glomerulosclerosis, and arteriolar hyalinosis. (PAS staining, original magnification 200x)

To assess the quality of the RNA, 2 ug of RNA was applied on a 1% agarose-formalin gel.
Electrophoresis was performed for 3 h at 50 V. The gel was stained with ethidium bromide.

Microarray hybridization

Hybridizations were performed on the Human Genome U95Av2 Array (Affymetrix® Santa
Clara, CA, USA). This array contains ~12,000 sequences characterized previously in terms of
function or disease association. Ten pg of total RNA from isolated glomeruli of each kidney
was converted to complementary (cC)DNA, double stranded (ds)DNA, and transcniten
according to the instructions of the manufacturer. After hybridization, the microchips were
scanned and analyzed with Affymetrix® Microarray Suite 5.0 software. To normalize the data
from different microarragxperiments, the expression levels of all genes on the chip were
scaled to a standard value and the mean of the scaling factors was calculated. This value
serveds the normalization factor for all genes represented on the different microarray chips.
To obtain normalized expression values, the expression levels for each gene was multiplied
with the normalization factor. Statistics behind this method can be found in the Microarray
Suite User’s Guide, Version 5.0, which is available at http://www.affymetrix.com/support/
technical/manuals.affx. To determine the inter-assay variation, the labeling procedure and
hybridization for one of the controls and one of the diabetic glomerular samples were performed
in duplicate. Atotal of six chips were hybridized, three with control RNA, and three with RNA
from diabetic glomeruli.

Confirmation of microarray data by real-time PCR
We performed real-time polymerase chain reaction (PCR) (9), in combination with the Tagman
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probe technique, for three genes to confirm the data obtained
with the microarray analyses. RNA (1ug) was converted to
cDNA using avian myeloblastosis virus (AMV) reverse
transcriptase (Roche Applied Science). The transcription
levels for nephrin, transforming growth factor-beta (T F-

and vascular endothelial growth factor (VEGF) were
determined and corrected to a panel of five different
housekeeping genes, i.e., glyceraldehyde-phosphate-
dehydrogenase (GAPDH), beta-2 microglobulin (B2M),
hypoxanthine phosphoribosyl transferase (HPRT),
porphobilinogen deaminase (PBGD) and TATA box-binding
protein (TBP), as described by Vandesomple et al. (10). The
primer and probe sequences are summarized in Table 2. Tq
calculate the relative mRNA levels we measured the threshold
cycle (Ct) values of a standard curve with a known amount
of total RNA. For each housekeeping gene the relative amount
of the samples were calculated by linear regression analysis
from their standard curve. The relative values of each of the
5 different household genes of the controls were adjusted to
one by dividing the samples by the mean of all samples.
After this correction the mean of the 5 different housekeeping
genes was calculated. The relative expression level of VEGF,
TGF- and nephrin was calculated by dividing the value Qq,f
the gene by the mean of the different household genes. T%e
relative values were set to one for the controls.

We also measured the relative mRNA levels for VEG
TGF-R and nephrin in microdissected glomeruli of 5 rené®
biopsies from patients with diabetic nephropathy accordirﬂg
the method of Specht et al. (11). In brief, 4 um frozen sectios
were put on a polyethylene foil coated slide. To microdisse_kgt
the glomeruli, we used the PALM Laser-MicroBeam Systerg
(P.A.L.M., Wolfratshausen, Germany). RNA from the micro%’
dissected glomeruli was isolated with the TRIzol method s
described above. All 5 diabetic patients were suﬁ‘eringl
diabetes type Il for at least 5 years with retinopathy and Dl%

es'3equ

Renal biopsies of these patients showed glomerul&t
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Reverse primer Tagnianprobe

Forward primer

FAM

ACACCAACTATTGCTTCAGCTCCACGGA

CCTCCTGCCCGGCTCACCGC

GTCAATGTACAGCTGCCGCA

CCCAGCATCTGCAAAGCTC

TGFB

PCTTGCAGATGTGACAAGCCG TET
TET

AAACCCTGAGGGAGGCTCC

VEGF

TCAGAGCTCCACGGTCAGCACAACAG
CCCAGCCTTCTCCATGGTGGTGAA

CTGTGAAACCTCGGGAATAAGACA

CACCCATGACGAACATGGG

AGGACCGAGTCAGGAACGAAT
TTCCAGGAGCGAGATCCCT
TGCCGTGTGAACCATGTGA

Nephrin

TET
TET

GAPDH
B2M
HPRT
PBGD
TBP

TGAGCTGCTTACATGTCTCGATCCCACT
CTTGACCATCTTTGGATTATACTGCCTGACCA TET

CGAATCACTCTCATCTTTGGGCT

CCAAATGCGGCATCTTCAA

GGTCCTTTTCACCAGCAAGCT

TGACACTGGCAAAACAATGCA
CTGGTAACGGCAATGCGGCT

TET
FAM

GCAGATGGCTCCGATGGTGA

TGTGCACAGGAGCCAAGAGTGAAGA

TTTTCTTGCTGCCAGTCTGGAC

CACGAACCACGGCACTGATT
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hypertrophy, diffuse mesangial and focal nodular glomerulosclerosis, arteriolar hyalinosis,
focal and segmental glomerulosclerosis, and interstitial fibrosis. The relative mRNA levels for
VEGF, TGF- and nephrin in microdissected diabetic glomeruli were compared to those in
glomeruli from 8 control samples, which were described previously (12)

Immunohistochemistry

To validate difference in mMRNA for VEGF and nephrin at the protein level, immunohistochemical
(IHC)stainings were performed using specific antibodies. For the VEGF staining, 4 um paraffin
sections of the control and diabetic kidneys were cut. After removing the paraffin, the sections
were pre-treated with 0.4% pepsin for 20 min at 37°C. For the nephrin staining, we used 3 um
cryostat sections. The slides were washed in PB&andated for 2 h at room temperature
with the primary antibodyliluted in 1% bovine serum albumin in PBS (rabbit anti-nephrin
1:1000, a generous gift of Dr. Kawachi (12); ralaloiti-VEGF 1:100, Santa Cruz Biotechnology,

CA, USA). After washing with PBS, the slides were incubated for 30 min with horseradish
peroxidase—conjugated anti-rabbit Envision (DAKO, Glostrup, Denmark)slittes were
washed in PBS, and the staining was develojthdliaminobenzidine. The color was enhanced

by rinsing thelides in 0.5% CuS@olution for 5 min. After counterstainimgth haematoxylin,

the slides were dehydrated and mounted.

Statistics

To determine the reproducibility of the individual microarray analyses within and between
groups (i.e. the control group and the diabetic nephropathy group) we calculated coefficients
of correlation. Clustering analysis was performed using Spotfire® 7.1 software. We used the
Z-score normalization to normalize our data. The normalized value for gene a is calculated as:
(a) = (a- mean value of all samples for gene A)/ SADWhere (a) is the normalized value, a is

1000000 Figure 2. A graph of the

correlation between duplicate

5 100000 measurements of a control kidney.

§ Each point represents one gene.

E

S 10000

.g

i=) 1000

72

100 T T T

100 1000 10000 100000 1000000

Signal control 1a

95



Chapter 6

1334 80 12624

T ————
\

-0.885 1

| .
-
4
&
L e s B L

C2 C1a C1b D2 D1a D1b

1 30 B8 12624

—

AP .".l'-’rﬂs‘

22 46 12624

3

C2 C1a C1b D2 D1a D1b

Figure 3. Dendrogram of unsupervised hierarchical clustering on the basis of similarity in gene-expression
patterns of the six different arrays. (Cla = control 1, C1lb = duplicate of control 1, C2 = control 2, Dla =
diabetes 1, D1b = duplicate of diabetes 1, D2 = diabetes 2). The dendrogram showing the degree of relationships
of samples. The different colors showed the normalized Z-score for each gene. The normalized Z-score for
gene a is calculated as: (a) = (a- mean value of all samples for gene A)AFMihére (a) is the normalized

value, a is the value of sample a for gene A. Green are upregulated genes and red are downregulated genes.

the value of sample a for gene A. If all values for gene A are identical, then all values for gene
A are set to zero. These normalized expression values of the six different arrays were analyzed
in an unsupervised fashion using the hierarchical clustering method with complete linkage and
correlation. The data was ordered by average value and visualized in a dendrogram.

To identify genes of which expression was altered consistently in the diseased samples, we
used either those genes which were present on all six chips, or those which were presentin all
three control samples and absent in all three diabetic samples, or those which were absentin all
three control samples and present in all three diabetic samples. We employed multiple pair-wise
comparisons between control and disease groups using the OpenStat statistics package. We
selected only those genes for which the mRNA level showed an at least 2-fold difference
between controls and diabetic samples (students t-test, p<0.01).

Gene clustering on basis of Gene Ontology (GO), to identify gene clusters on the basis of
gene function, was performed with the MAPPfinder1.0 program (13). MAPPFinder, which can
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be downloaded frorhttp://www.genmapp.ay, is a program that works in combination with
GenMAPP and Gene Ontology to identify global biological trends in gene expression data.
MAPPFinder relates microarray data to each term in the (GO) hierarchy, calculating the percentage
of genes changed for each GO biological process, cellular component, and molecular function
term. Using this percentage and a z- score based on the mean and standard deviation of the
hypergeometric distribution, the user can order by GO function with the highest z score. This
z-score is calculated as: [r . R]

n(ffj(l_ ]f;j@_ J}\qf_—llj

where : N = the total number of genes measured, R = the total number of genes meeting the
criterion, n = the total number of genes in this specific GO term, and r = the number of genes
meeting the criterion in this specific GO term.

Statistical analysis for the real-time data was performed using the one-way analysis of
variance (ANOVA), and values of p<0.01 were considered to be significant.

Results

Patient characteristics

Characteristics of the donors are summarized in Table 1. Both kidneys with diabetic nephropathy
were obtained from patients with a clinical history of type Il diabetes for at least 5 years.
Gender, cold-ischemia time, the type of perfusion fluid used, and cause of death were similar for
the patients. Serum glucose of the control patients was normal, while the glucose levels in the
diabetic patients were elevated (up to 18.1 mmol/L). Consistent with a diagnosis of diabetic
nephropathy, the urinary protein level in the diabetic patients was increased. The control
kidneys showed a normal morphology without histological abnormalities. Both diabetic kidneys
showed glomerular hypertrophy, diffuse mesangial and focal nodular glomerulosclerosis in 20-
30% of the glomeruli, arteriolar hyalinosis, and focal and segmental glomerulosclerosis. Interstitial
fibrosis was seen in 25-50% of the tubulo-interstitial area (Fig. 1).

Gene expression profiles of control and diabetic glomeruli.

From the approximately 12,000 genes displayed on the microchip, 2042 genes gave a positive
signal on all three chips after hybridization with the RNA from the kidneys with diabetic
nephropathy. In the glomeruli from control kidneys, 4297 genes gave a positive signal in all
three samples after hybridization. The correlation coefficient between duplicate control samples
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and duplicate diabetic samples were 0.972 and 0.932 respectively. A graph of the correlation
between a duplicate of control 1 is shown in Fig. 2. The correlation between controls 1 and 2
and the two different diabetic samples were also high (0.930 and 0.900 respectively). The mean
of the correlations between the different control samples and the different diabetic samples
was lower (0.731). Unsupervised hierarchical clustering of the expression data as visualized in
a dendrogram (Fig 3), shows the same relations between the samples. This dendrogram is
based on the similarity between the different samples. By this method the software recognized
the highest similarity between duplicate hybridizations, between all three controls, and between
all three diabetic samples.

Using the statistics as mentioned in the materials and method we end up with a list of 96
candidate genes that were increased in DN and 519 that were decreased genes. A list of the top
fifty of the upregulated genes in the diabetic glomeruli is presented in Table 3 (ratios varying
between 2.3 and 4.9 fold). The fifty most down-regulated genes are presented in Table 4 (ratios
varying between 6.6 and 22.8 fold). In these lists the unidentified ESTs are not shown. A list of
all significantly up- and down regulated genes can be foungvem-onderzoek.lumc.nl/
pathology/kidney/diabeticnephropathy/

Analysis of the genes, that were either increased or decreased, with Mappfinder was
performed to cluster the genes on basis of their GO function. The results are summarized in
Table 5. If we look at the results of the decreased genes there is a high z-score for actin
cytoskeleton and actin binding GO function and for nucleobase, nucleoside, nucleotide and
nucleic acid metabolism. The increased genes are especially related to homeostasis and
phosphatases.

E Control
(real-ime)
-_g M Diabetes
© (real-ime)
o
= O Diabetes
-~
© (array)
[U]
—
* *
1 1
TGF-31 Nephrin VEGF
Figure 4. Validation of microarray results for TGFR1, nephrin, and VEGF by real-time PCR. Data have

been normalized for a panel of five different housekeeping genes, while the array data are normalized for total
chip signals and compared to the control kidneys. (* P<0.001 compared to control (one-way ANOVA)).
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Figure 5. Nephrin and VEGF mRNA levels measured with real-time PCR in an independent group of 5

patients with diabetic nephropathy. Relative levels were compared to a panel of 8 control kidneys (* P<0.05
compared to control (students t-test)).

Confirmation of microarray data by real-time PCR.

To validate the results obtained with microarray, we performed real-time PCR assays for several
transcripts. Results of the quantification of mRNA levels for TGF-3, nephrin, and VEGF are
summarized in Fig 4. With microarray and real-time PCR the ratios betweef T {&é the
controls and diabetic kidneys were found not to be significant (1.87 and 1.82, P=ns). Array
analysis showed that nephrin was downregulated (7.3-fold) in DN. Real-time PCR for nephrin
also showed a decrease (15.4-fold, P<0.01 compared to the controls) in DN. For VEGF the ratios
were 19.5 and 14.2, (P<0.01 compared to the controls) respectively. There was no significant
difference between the ratios measured with the microarray and real-time PCR techniques. We
also confirmed our data in an independent and larger patient group. The results of these
measurements are shown in Fig 5. We found a significant decrease of 2.75 times for nephrin and
2.25 times decrease for VEGF (p<0.05).

Immunohistochemistry

Results for VEGF and nephrin at the RNA level were further investigated at the protein level
using IHC. In normal kidneys, VEGF and nephrin shoarethtense epithelial staining along

the peripheral capillarpops of the glomeruli (Fig 6 A and C). VEGF also showed a weak
staining in some tubular epithelial cells. In glomeruli of diabetic kidneys, the stionimath

VEGF and nephrin was weaker or absent (Fig 6 B and D).

99



Chapter 6

o'W
&}‘i‘gh J

(N {’

3 ..‘v‘/!'«:k-
Figure 6. Representative photographs of renal tissue stained for VEGF or nephrin. The upper panel shows
VEGF staining on paraffin sections of glomeruli of a control (A) or a diabetic (B) kidney. The control kidney
shows abundant VEGF staining in glomerular podocytes. This staining was reduced in the glomerulus of a
diabetic kidney. The lower panel shows the nephrin staining on frozen sections of a control (C) or a diabetic
(D) kidney. Nephrin was also reduced in the podocytes of the diabetic kidney. Original magnification 200x

Discussion

In this study, we describe gene profiles of control and diabetic glomeruli from human kidneys.
RNA was extracted from isolated glomeruli of cadaveric donor kidneys. These kidneys were
unsuitable for transplantation due to, non-kidney involved, technical reasons. It is known that
these kidneys have been exposed to ischemia, which can alter the gene expression (14). For
this reason we compared diabetic kidneys with control kidneys that underwent the same
handling prior to the isolation of glomeruli. The isolation was performed on ice and took about
5-10 min for each kidney. From other studies it is known that handling of the glomeruli on ice
within 3 hours does not alter the mRNA expression for several pro-fibrotic genes (15). The
labeling procedure and hybridization from one of the controls and one of the diabetic glomerular
samples were performed in duplicate to calculate the inter-assay variation. The correlation
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coefficient was near to 1 indicating that the labeling and hybridization procedure is highly
reproducible. The correlation between different control samples and between different diabetic
samples was also very high, indicating relatively low heterogeneity within groups. On the
other hand the correlation coefficient between control and diabetic samples was lower, reflecting
higher heterogeneity between groups. This was also found with the hierarchical clustering
analyses (Fig. 3). By unsupervised analysis of the data, the program recognized gene clusters
specific for control and diabetic samples based on their correlation. These findings supports
the idea that, given the observations that the inter-assay variation and the variation of the
gene expression of samples within one group are relatively low, factors such as ischemia,
technical procedure, and biological variation probably influence the expression data to only
limited extent.

To confirm the data obtained from the microarray, we performed real-time PCR for nephrin,
VEGF, and TGH31. The relative levels for nephrin and VEGF were significantly decreased in
DN compared to controls. No significant differences were observed between the real-time
measurements and the microarray results. With both techniques the differencibdt@Een
the controls and diabetic kidneys was found not to be significant. To validate that our findings
obtained with cadaveric donor kidneys apply to renal biopsy material, we also measured the
mMRNA levels of nephrin and VEGF in renal biopsy specimens from 5 patients with diabetic
nephropathy and from 8 controls. These patients similarly showed a decrease in message for
nephrin and VEGF. To show where the protein was presentimmunohistochemistry was performed
for nephrin and VEGF. We found that VEGF and nephrin in particular were present in the
podocytes along the glomerular basement membrane. At the protein level a decrease for these
molecules was detected, a finding in line with that at the RNA level.

In the diabetic kidneys more genes were downregulated than there were upregulated
compared to controls. This is in accordance with the fact that the number of genes on the chip
giving a positive signal after hybridization (present genes) for the diabetic glomeruli was lower
than the number of present genes on the chips for the controls (2042 versus 4297). These
results are suggestive that downregulation of genes occurs considerably more often in the
development of diabetic nephropathy. This idea is supported by the results of Mappfinder.
The nucleotide metabolism is in the top 10 of decreased GO functions. There is also a reduction
in diabetic nephropathy of the mRNA level of genes that are involved in the formation of the
actin skeleton. Downregulation of these pathways in diabetic nephropathy might in part account
for the general downregulation seen for many other genes on the chip. Another reason for the
difference in the number of present genes between diabetic samples and control samples might
be the stringency with which the microarray analyses were performed. We wanted to be sure to
include only highly reproducible data in our list of differentially expressed genes. Therefore
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Top fifty of the most decreased genes in diabetic glomerular samples versus control glomerular samples (continued).

Table 4.

Gene function

Gene name

Accession Ratio

plays a role in synthesis of sialyl-paragloboside

alpha2,3-sialyltransferase
phospholipid scramblase 1
protein tyrosine kinase

AJ001381 7.0 myosin IB

AB022918 7.2

plays a role in the EGF-induced metabolic or mitogenic response.

receptor protein tyrosine kinase

AB006746 7.1
u18934

7.0

Member of the myosin family of motor ATPases

Receptor protein tyrosine kinase

7.0 TYROS3 protein tyrosine kinase

D17517

associated with monocyte to macrophage maturation

involved in platelet activation
component of high density lipoprotein

7.0 cartilage GP-39

6.9

Y08374

coagulation factor Il receptor

6.7 apolipoprotein D

M62424
J02611

ligand-gated ion channel selectively permeable to sodium and calcium

glutamate receptor

Al401567 6.6

only those genes, which were present in all three diabetic
arrays, were included. There is more heterogeneity in gene
expression patterns among diabetic samples than among
control samples. This would mean that, due to this difference
in heterogeneity, the chance that a certain gene is positive
on all three chips in the diabetic group is lower than the
same gene being present in all three chips of the normal
samples.

One of the major clinical problems in patients with
diabetes is the presence of vascular abnormalities, such as
increased endothelial permeability to macromolecules and
endothelial proliferation (16). Considerable research has
focused on the pathogenesis of endothelial dysfunction,
but the exact mechanisms have remained unclear. VEGF is
one of the most important factors in endothelial repair and
angiogenesis. It has recently been shown that subtotally
nephrectomized rats show a reduction of VEGF mRNA in
the kidney (17). Treatment of these rats with angiotensin
converting enzyme inhibitors leads to normalization of both
glomerular VEGF mRNA levels and capillary endothelial cell
density. In animal models for diabetic nephropathy, an
increase of VEGF was found in diseased renal tissue (18). In
contrast, in human renal biopsies with diabetic nephropathy
a decrease of VEGF at both the protein and the mRNA level
was shown (19). The notion that VEGF mRNA was found to
be decreased in human DN is supported by our observations
(20). Another gene for which expression was significantly
decreased in the diabetic glomeruli is fibroblast growth
factor 1 (FGF1). This protein functions as a modifier of
endothelial cell migration and proliferation, and an
angiogenic factor, and it can protect the kidney against
ischemia-reperfusion injury (21). The expression of PECAM-
1, amolecule that is involved in angiogenesis and leukocyte
trafficking, was increased in the diabetic kidneys.

Accumulation of extracellular matrix (ECM) proteins has
been found in animal models and in biopsies from patients
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Table 5.  Top 10 of the Mappfinder results based on gene ontology (GO) function ranked on basis
of highest z-Score.

Mappfinder results based on decreased genes

GO ID GO Name z-Score
7242 intracellular signaling cascade 2.14
5515 protein binding 2.11
15629 actin cytoskeleton 2.07
4 biological_process unknown 1.97
6886 intracellular protein transport 1.95
5488 binding 1.89
8285 negative regulation of cell proliferation 1.83
3779 actin binding 1.83
3677 DNA binding 1.81
6139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism 1.78

Mappfinder results based on increased genes

GO ID GO Name z-Score
19725 homeostasis 481
30005 di-, tri-valent inorganic cation homeostasis 4.30
16302 phosphatase 4.25
16791 phosphoric monoester hydrolase 3.84
30006 heavy metal ion homeostasis 3.72
5505 heavy metal binding 3.19
16788 hydrolase, acting on ester bonds 3.13
4437 inositol/phosphatidylinositol phosphatase 3.03
7218 neuropeptide signaling pathway 3.03
19730 antimicrobial humoral response 3.03

with diabetic nephropathy (22). Expansion of the ECM can be the result of a disturbed balance
between ECM synthesis and ECM degradation, or a combination of these mechanisms. Of
note, we found an increase of message for metargidin, a disintegrin metalloproteinase (23), and
a decrease of message for collagdflV), a major structural component of the GBM. In a
previous study, an increase for overall collagen type IV protein was observed in glomeruli from
patients with diabetic nephropathy (3). In animal cell cultures under high glucose levels an
increase in collagen type IV mRNA was mainly found for the alpha 1, alpha 3, and alpha 5
chains (24). In this study we did not find a change in the mRNA level forf.GRhe literature

the role of TGHB. has been described in several animal models (summarized in (25)) and a small
increase of the mRNA level in human glomeruli have been reported (26,27). A reason of the
opposing result for TGRB-between previous studies and our study might be that this molecule
was studied in different stages of the disease. Alternatively, the mRNA levels fob W& F-
described in our study might not reflect the level or activity of the corresponding protein. An
increase of active TGB-can also be explained by increased translation, or increased activation
of latent TGFB. A decrease of the natural inhibitors can also increase the bioactivity p.TGF-
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Recently it has also been shown that high-glucose can induce fibronectin and collagen type IlI
expression in renal fibroblasts independent of TRAE28). The growth factor BMP-2, the
growth factor inhibitor syndecan-2, and the growth factor receptor insulin-like growth factor
binding protein-2 (IGFBP-2) were all decreased in DN. These components are known to play a
role in ECM remodeling (29-31).

The diabetic kidneys analyzed in this study morphologically showed glomerular hypertrophy
and proliferation, a common event seen in diabetic nephropathy (32). With respect to proliferating
cells in diabetic glomeruli, expression profiling of these glomeruli as reported here shows many
genes that play an important role in cell cycle regulation. In kidneys with DN, we saw an
increase of hyaluronoglucosaminidase 1 and a decrease in BMP-2 and growth arrest-specific 1
protein, all suggestive for increased proliferation. It has recently shown that treatment of
streptozotocin induced diabetic rats with BMP-7 preserves the GFR, reduces the proteinuria
and prevents glomerulosclerosis (33). For breast cancer 2 (BRCA-2), nedcin, and the cytokines
FGF-1 and VEGF, arole in cell cycle control has been described (34-36).

The pathogenesis of albuminuria, one of the earliest clinical signs of diabetic nephropathy,
has not been fully clarified. It is generally assumed that the filtration apparatus of the glomerular
capillary wall is of central importance in this process. It has been shown that the slit diaphragm
located between the foot processes of the podocytes plays a crucial role in the filtration of
macromolecules (37). The expression of nephrin, a transmembrane protein that localizes in the
slit pore of the glomerular epithelial cells, was found to be decreased in diabetic glomeruli in our
study. This observation is in agreement with the reduction of glomerular nephrin gene expression
and with the increase in albuminuria at a later stage of the disease both in human diabetic
nephropathy (38,39) and in diabetic and hypertensive rats (40). The transcription of podocalyxin,
a protein expressed in the slit pore, is regulated by the transcription factor Wilms tumor 1
(WT1)(not present in the top 50, but 6.9-fold decreased) (41). Downregulation of this
transcription factor may lead to a lack of podocalyxin. These findings support the hypothesis
that slit pore-associated proteins play a role in the development of proteinuria.

In conclusion, we found that in diabetic nephropathy more genes were downregulated
than there were upregulated, compared to controls, which might be explained for a large part by
a decreased nucleotide metabolism. We also found a disturbed cytoskeleton formation in
diabetic nephropathy. Many other tissue repair related genes as BMP-2, FGF-1, insulin-like
growth factor binding protein-2 and CTGF were downregulated in diabetic nephropathy, all
suggestive for a reduced tissue repair capacity. On top of that, message for VEGF was decreased
in DN compared to controls. This finding for VEGF was validated at the protein level, and
additionally, tissue VEGF levels were found to be decreased in an independent group of diabetic
patients. These findings suggest that the progression of diabetic nephropathy might at least in
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part be a result of a diminished repair mechanism in the endothelium of the capillaries.

The results described in this study underscore the potential of gene chip technology as a
methodology for unraveling the complexities of the renal response to diabetes mellitus. This
powerful technique allows simultaneously analysis of the expression profile of thousands of
genes. We discussed several genes differentially expressed between array data sets, which are
functionally related to vascular damage, mesangial matrix expansion, proliferation, and
proteinuria, events seen in diabetic nephropathy. Further elucidation of the functional
involvement of these genes by studies in larger patients groups and time course experiments
will lead to an even better understanding of the processes leading to diabetic nephrosclerosis.
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(Colour picture from page 125)

Figure 4. Sirius Red an@D31 staining in the biopsiesA and B are representative illustrations of the Sirius
Red staining in a control patient and in a patient with DN, respectively. C-F are representative pictures of
CD31 staining: glomerulus of a control patient (C), glomerulus of a patient with DN (D), the tubulo-
interstitial part of a control patient (E) and the tubulo-interstitial part of a diabetic patient (F).
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Abstract

Vascular complications in diabetic patients are being increasingly appreciated as a significant
clinical challenge. Experiments in animal models indicate that perturbed angiogenesis and
corresponding alterations of expression of angiogenic growth factors play a role in the
development of diabetic nephropathy (DN). We investigated expression levels of angiogenic
factors in human DN in relation to fibrosis and the number of endothelial cells.

Cortical and glomerular mRNA levels for vascular endothelial growth factor (VEGF),
connective tissue growth factor (CTGF), transforming growth factor-beta B)Gibroblast
growth factor 2 (FGF2) and syndecan were measured using real-time PCR in biopsy material
from 29 patients with DN and in 24 control samples. Laser capture microdissection was applied
to obtain glomerular RNA. Interstitial fibrosis was quantified with Sirius Red staining and the
number of endothelial cells by CD31 staining.

Both cortical and glomerular VEGF and CTGF mRNA levels were decreased in DN compared
to control samples (P<0.01). Expression of TGFGF2 and syndecan was not significantly
different between diabetic patients and controls. Glomerular mRNA levels for VEGF showed an
inverse correlation with the extent of interstitial fibrosis and a positive association with CTGF
expression and the number of endothelial cells.

The results are suggestive for a disturbed angiogenesis in patients with DN. We hypothesize
that decreased secretion of VEGF and CTGF due to damage of glomerular epithelial cells in DN
leads to a disturbed maintenance of glomerular endothelial cells and a loss of glomerular and
interstitial capillaries.
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Introduction

Diabetic nephropathy (DN) is a major complication of both type 1 and tjipbetes. It is the
most common single cause of end-stage disahse (1,2). One of the earliest clinical signs of
diabetic nephropathy is microalbuminuria, which may progress to proteinuria (3) and
hyperfiltration followed by a decrease in the glomerular filtration rate (GFR). Morphologically,
DN is characterized by glomerular hypertrophy, progressive expansion of the mesangial matrix,
and thickening of the glomerular and tubular basement membranes (4,5). In later stages of the
disease, glomerulosclerosis and interstitial fibrosis, resulting from an imbaletvesen
synthesis and degradatioreatracellular matrix (ECM) components (6), are prominent.

Although many factors including high glucose, insulin, advanced glycation end products
(AGE) and high blood pressure have been found to play a role in the initiation and progression
of DN, the precise molecular mechanism is still unclear. Several cytokines and growth factors
have been proposed to mediate the development of DN. Transforming growth factor-beta
(TGF{) is the most widely investigated molecule in relation to diabetic glomerulosclerosis and
interstitial fibrosis, most notably in animal models (7). Vascular endothelial cell dysfunction is
a common finding in patients with type 2 diabetes mellitus. Endothelial cell loss may be involved
in the development of renal disease and the progression to sclerosis. In diabetic retinopathy,
neovascularization can resultin loss of vision. Increased VEGF protdiadrademonstrated
in nonvasculacells in the retina of patients with diabetes even in the absénetnopathy
(8). Arole for VEGF in DN has also been described. In STZ-inddiedxtic rats, it has been
demonstrated that treatment with monoclonal anti-VEGF antibodies decreased hyperfiltration,
albuminuriaand glomerular hypertrophy (9). Others studies have reported that VEGF is reduced
in rat glomeruli one week after diabetes induction with streptozotocin (10). In human DN it has
been suggested that VEGF is important in maintaining glomerular endothelial cell function, and
that a decrease in local VEGF levels accounts for abnormal remodelling of the glomerular
capillaries (11,12). Despite recent progress in elucidating the role of perturbed vascular biology
in progressive renal disease, the role of VEGF in the pathogenesis of DN is still unclear (13).

Several other growth factors have been identified, which play a role in angiogenesis. For
example, CTGF has been shown to play an important role in invasive new vessel formation, in
addition to its profibrotic activity downstream of T@F-A similar involvement has been
described for FGF2 (14). Syndecan can amplify the availability of FGF2 via specific binding to
FGF2 (15).

In this study we investigated the gene expression levels of different angiogenic factors in
renal biopsies from patients with DN. These factors have been identified in a previous study of
gene expression profiling of human kidneys with DN (11). Correlations of expression levels
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with clinical parameters and morphological changes were tested to obtain further insights in
the role of these mediators in the development of DN.

Materials and methods

Array studies on diabetic kidneys
Hybridizations were performed on the Human Genome U95Av2 Array (Affymetrix® Santa
Clara, CA, USA). This array contains ~12,000 sequences characterized previously in terms of
function or disease association. Ten ug of total RNA from three control kidneys and three
kidneys from patients with diabetic nephropathy (11) was converted to complementary (C)DNA,
double stranded (ds)DNA, and transcriiadvitro according to the instructions of the
manufacturer. After hybridization, the microchips were scanned and analyzed with Affymetrix®
Microarray Suite 5.0 software. To normalize the data from different micraxpayiments, the
expression levels of all genes on the chip were scaled to a standard value and the mean of the
scaling factors was calculated. This value seagthe normalization factor for all genes
represented on the different microarray chips. To obtain normalized expression values, the
expression level for each gene was multiplied by the normalization factor. Statistics of this
method can be found in the Microarray Suite User’s Guide, Version 5.0, which is available at
http://wwwaffymetrix.com/support/technical/manualéaf

To identify genes of which expression was altered consistently in the disease samples, we
used either those genes which were present on all six chips, or those which were presentin all
three control samples and absent in all three diabetic samples, or vice versa. We employed
multiple pair-wise comparisons between control and disease groups using the OpenStat statistics
package (students t-test, p<0.01).

Renal biopsies

Frozen biopsies from patients with DN (n=29) were selected from the pathology archive of the
Leiden University Medical Center and the Institute for Clinical Pathology, Heidelberg. All
patients were diagnosed with type 2 diabetes. Diabetic nephropathy was histologically
confirmed by Periodic acid-Schiff (PAS) stained paraffin sections. Criteria for diabetic
nephropathy included glomerular hypertrophy, diffuse mesangial and focal nodular
glomerulosclerosis, arteriolar hyalinosis, focal and segmental glomerulosclerosis, the presence
of hyaline drops between Bowman'’s capsule and epithelial cells, and interstitial fibrosis. Serum
creatinine levels and albuminuria of the patients are summarized in Figure 1. As a control group
(n=22), native kidneys with normal function and histology were obtained at autopsy (n=3),
from cadaver donor kidneusisuitable for transplantation for technical reasons (n = 7), and
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reverse transcriptase was used as a negative control for the PCR.

Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (Q-PCR) (17) was used in combination with
Tagmaiil probes to quantify the gene transcription levels for VEGF, BGEFGF, FGF2, and
syndecan. Primer and probe sequences can be found in Table 1. In brief, the cDNA samples
were diluted 25 times. Fiyd was used for quantitation of each transcript. Each PCR consisted

of the following components: 300 pmol primers, 100 pmol probe 0.25 mM dNTPs, 6 mM MgCl

0.5 U of Hot Gold Star polymerase, 1 x real-time PCR buffer (Eurogentec). Further details
concerning the real-time PCR protocol have been described elsewhere (18). The transcription
levels of the genes of interest were determined and corrected to a panel of three housekeeping
genes, i.e., glyceraldehyde-phosphate-dehydrogenase (GAPDH), hypoxanthine
phosphoribosyl transferase (HPRT), and TATA box binding protein (TBP), as described by
Vandesomple et al (19). These housekeeping genes were selected from a panel of 5 different
housekeeping genes (20) on basis of the highest correlations between each 0188y.(fo
calculate the relative mRNA levels we measured the threshold cycle (Ct) values of a standard
curve with a known amount of total RNA. For each housekeeping gene the relative amount of
the samples were calculated by linear regression analysis from their standard curve. The relative
values of each of the 3 different housekeeping genes of the controls were adjusted to one by
dividing the samples by the mean of all samples. After this correction the mean of the 3 different
housekeeping genes was calculated. The relative expression levels of the genes of interest
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Figure 1. Clinical characteristics of the diabetic patients. Serum creatinine levels (umol/l) (A) and

urine protein excretion (g/l) (B).
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were calculated by dividing the value of the gene by the mean of the different housekeeping
genes. The relative values were set to one for the controls.

(Immuno)histochemistry

To quantify the number of endothelial cells, frozen section were stained for CD31. In brief, the
slides were washed in PBS ancdubated for 2 h at room temperature with the primary antibody
(Rabbit anti CD31, DAKO, Glostrup, Denmard#tiiuted in 1% bovine serum albumin in PBS.

After washing with PBS, the slides were incubated for 30 min with horsepatizkidase—
conjugated anti-rabbit Envision (DAKO, Glostrup, Denmark). Siltees were again washed

with PBS, and the staining was developéti diaminobenzidine. The color was enhanced by
rinsing theslides in 0.5% CuSolution for 5 min. After counterstainimgth haematoxylin,

the slides were dehydrated and mounted. Sirius Red staining was used to quantify the amount
of interstitial fibrosis. All sections were stained in one session simultaneously.

Digital image analysis

Digital image analysis was performed using a Zeiss microscope equipped with a full-color
3CCD camera (Sony DXC 950p) and KS-400 image analysis software version 3.0 (Zeiss-Kontron,
Eching, Germany). The percentage of the area stained for CD31 was calculated and used as a
measure for the number of endothelial cells. To count the number of glomerular endothelial
cells, images of afif the glomeruli (3-15) present in the slides were taken. For the interstitial
endothelial cells 10 random images were taken. To quantify the amount of interstitial fibrosis
the percentage of the area in the sections stained by Sirius Red was measured in 10 adjacent
microscopic fields of the renal cortex.

Statistics

Statistical analysis for comparison of mMRNA expression, Sirius Red stained area and CD31
stained area, between groups was performed using independent Student’s T-test. Pearson
correlations were calculated using the SPSS version 10 software. Values of p<0.05 were
considered to be significant.

Results

Microarray experiments

In earlier gene expression profiling experiments on isolated glomeruli from patients with DN, a
significant decrease of MRNA levels for VEGF (19.5 times) and CTGF (6.5 times) was found (11).
To further expand the scope of these investigations, we have performed oligonucleotide
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microarray profiling of RNA isolated from the total cortical part of kidneys from the same
patients as those described in the previous study. A total of 6 chips were hybridized with RNA
from 3 controls and 3 patients with diabetic nephropathy. Results of these experiments can be
found in detail athttp://www-onderzoek.lumc.nl/pathology/kidney/diabeticnephropathy/ and
http://wwwncbi.nlm.nih.gov/geo/gds/gds browse.cgi?gds=961. Whole cortex mRNA levels

of VEGF (2.2 times), CTGF (1.7 times), and syndecan (2.2 times) were decreased, while expression
of fibronectin (FN) (1.7 times) was increased in patients with DN compared to controls. There
were no significant differences between DN and control tissue with respect tf TEINA

levels.

Clinical parameters

Protein excretion and serum creatinine levels at the time of biopsy for the 29 patients with DN
are summarized in Figure 1. Serum creatinine levels ranged from 70 to 700 umol/l (Fig 1A) and
protein excretion ranged from 0.061 to 6.7 gram/l (Fig 1B). There was no difference in age (60.6
+10.9 years versus 5%910.0 years) and gender between control and diabetic patients.

Glomerular and whole cortical MRNA levels.

Having identified transcripts as being differentially regulated in DN using oligonucleotide
microarrays, we validated their mRNA levels in a large, independent group of 29 patients and 22
controls. VEGF mRNA levels in microdissected glomeruli as measured by Q-PCR were 2.6 times
decreased (P<0.01) in patients with DN compared to control kidneys (Fig 2A). In whole cortex
RNA, VEGF mRNA levels in patients with DN were decreased 2.5 fold compared to controls
(P<0.01) (Fig 3A). A similar pattern of downregulation was observed for CTGF. Glomerular and
whole cortex mRNA levels for CTGF were 1.6 times decreased (P<0.05) in patients with DN (Fig
2B) (Fig 3B). There were no significant differences in TBRRNA levels between controls

and patients with DN in both glomerular and whole kidney RNA (Fig 2C and 3C). There was a
slightincrease in TGB-mRNA levels (1.3 fold) in whole kidney RNA from patients with DN
compared to controls. This difference was not significant (P= 0.103).The levels for FN mRNA in
patients with DN were 2.8 times increased in glomerular samples (P<0.05) (Fig 2D) and 1.9 times
increased in whole cortex (P<0.05) (Fig 3D), compared to controls. FGF2 and syndecan whole
cortex MRNA levels were not significantly different between diabetic patients and controls (Fig
3E and 3F).

(Immuno)histochemistry
Interstitial fibrosis was quantified by morphometric analysis on frozen sections stained with
Sirius Red. There was a significant increase in the extent of Sirius Red staining in patients with
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Figure 2. Box and whisker plots of glomerular mRNA levels. The boxes contain 50% of the values. The

upper and lower border indicate the 25th and the 75th percentile. The upper and lower whisker indicate the
highest and lowest value. The black line in the box indicates the median and open circles indicate outliers.
Relative glomerular mRNA levels for VEGF (P<0.01) (A), CTGF (P<0.05) (B), BGQRet significant) (C),

and fibronectin (P<0.05) (D).

DN compared to controls (33.3% versus 18.7%) (Fig 5 A). The numbers of CD31 positive cells
are quantified by measuring the CD31 positive area. Both in the glomerular (Fig 5B) and tubulo-
interstitial (Fig 5C) area of patients with DN there was a significant decrease in the extent of
CD31 staining compared to controls (7.0% versus 22.6% for the glomeruli and 5.8% versus
9.9% in the tubulo-interstitial part), suggesting a reduction in the number of capillaries/
endothelial cells in DN. Representative pictures of these stainings can be found in Fig 4.

Correlations

To identify statistically significant relationships between variables, Pearson correlations were
calculated between clinical, histological, and mRNA levels. Results of these correlations are
summarized in Table 2. There was a positive correlation between glomerular VEGF and CTGF
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Figure 3. Box and whisker plots of whole cortex mMRNA levels. Relative tubulo-interstitial mRNA

levels for VEGF (P<0.01) (A), CTGF (P<0.01) (B), T@Hnot significant) (C), fibronectin (P<0.05)(D),
FGF2 (not significant)(E), and syndecan 1 (not significant) (F).

MRNA levels within the diabetic patients (R=0.61, P<0.01). A negative correlation was found for
glomerular VEGF mRNA levels and Sirius Red positive area (R=-0.62, P<0.01). In other words,

122



Angiogenic factors in diabetic nephropathy

T0°0 >d
6vT'0 2S00 298°0 2’0 0S50 9050 92,0 V¥ET0 6IT0 2S00 0T90 9280 670 €620 anjea-d
0D00'T 1620 GS8€'0 L€0'O- TLT'O- 82T°0- €PT'0- <2L00- 80€0 0280 +6E0 SOT'0- 9¥0'0 68T°0 622°0- (M) uoneaiiod N4
2EV'0 «108T8'0 LT20 6120 7980 6650 ¥6T0 6280 8260 ¥.¥'0 600 TOEO anfea-d
000'T 8ST0 TI90 VET0- 952°0- GS2'0- SE0'0 80T'0- €920 G¥O'O 96T0 LvT'0- 680°0 02Z'0- () uoneauod 4910
/T€0 8ST'0 2020 9190 «900'@06'0 €610 +S00 8SO €890 9970 G250 anfea-d
000'T ¥02°0- T62°0- 192°0- SOT0- €TS0 G200 +¥92°0 28€0 TZT'0- ¥8O0ELTO- LETO- (M) uone|diod g0l [8A8]
6TT°0 €260 «I000¥Z6'0 0ES0 TZS0 8020 2OT'O 0200 €960 G920 anfea-d VYNHW
000'T /2Z€0 T200- 8I9°0- 0200 <2ET0- GET'0- T92°0- 82E0 29¥'0- TIO0 990°0- () uonelaiiod 493A  feiniswolo
x0000 6100 €ET'0  /9v'0 TE80 2SZ0 £¥000SZT0 TIPSO 2220 anfeA-d
000'T G/90 SS¥'0- 9620 6VT0 vv0'0- €€2°0- TES0 60€0- 6VT0 G920 () uoneaiiod T€Q0  fejnidwo|o
: 8vG'0  28€'0 SIZ0 €920 0910 +0E0 6800 O0STO 6T0°0 anjea-d
000'T €2T0- 2.T'0 /L¥2'0 €22°0- 8/20- 1T0Z0 ¥EEO- ¥EE0 2Lv0 (M) uonediod 1€A0
G600 0TS0 9T60 G66'0 TISZ0 6IE0 +EZO  €8€0 anfea-d
000'T  T8E0- 8ET'0- 2200 T000- €€2°0- 8020 [82°0 TI6T0 (Y)uoneauod  pay snuis [ennsisiul
: 0v0'0 T8Y'0 6v20 L1900 9120 L¥0O0 €050 anfea-d
000'T G9£'0- /ZT'0- 902°0- 680°0T22°0- 8Zv'0- LET'0- (d) uonejaiiod  ueIapuAS
090°0 «0T00 £G8°0 6600 €200 9€6°0 anfea-d
000'T 2FE0 LPPO0 €E0°0- 20E0 €870 9100 () uonediiod N4
«200'0 8650 0200 ¥¥0'0 ¥.6°0 anfeA-d
000'T 8IS0 S60°0 00¥0 Evy'0 2000 (d) uone@uod 4910
¥06'0 +«T00'0 LST'0 €920 anfeA-d
000'T 220°0- 895°0 €TE0 290°0- (¥) uone@.uod g1
926'0 S¥2Z0 ¥.20 anfea-d
000'T LT00652°0- €2z'0- (M) uone@uod 493A [9A3]
995°0 /660 anfeA-d VNHW
000'T €£T'0 TOO0 () uoneaiiod Z494  |lennsiaw
: 000 anfea-d
000'T  29v'0 () uonejeuod 10id
. anjea-4
000°'T (Y) uone|aio0d "1eaId WNIBS
Nd 4910 491 493A TedD T€AD Pay SNUISIdspuks N4 4910 ¢49L493A 2494  10id Teaid wnies
|9A8] YNHW Jejniswo|9 Je|niswo|o 1SJ91U| 19A8] YNHW [ennsialu|
‘suone|aliod uosiead ‘¢ 9|geL

123



Chapter 7

there was a relationship between the amount of interstitial fibrosis and the reduction of
glomerular VEGF mRNA. Glomerular mRNA levels for VEGF also correlated with glomerular
nephrin mMRNA levels (R=0.57, P<0.01, data not shown). Whole cortex mMRNA measurements
showed correlations between TEBnd CTGF (R=0.52, P<0.01), between TEkird FN (R=0.45,
P=0.01), between TGEand FGF-2 (R=0.57, P<0.01), and between VEGF and glomerular CD31.
When evaluating all samples together (controls and DN), a significant correlation was found
between VEGF and the CD31 positive area both for the glomerular (R=0.50, P<0.01) and the
tubulo-interstitial compartments (R=0.42, P<0.01) (data not shown).

Discussion

In the present study mRNA levels of genes involved in angiogenesis were studied in the renal
cortex and in microdissected glomeruli in renal biopsies from patients with DN and healthy
controls. We found downregulation of VEGF and CTGF. These levels were related to serum
levels of creatinine, the degree of albuminuria, the degree of interstitial fibrosis, and the number
of endothelial cells.

The genes measured in this study were identified using microarray analysis on glomerular
and tubulo-interstitial mMRNA from diabetes patients with DN and healthy controls. Many
genes were differentially expressed (datp://www-onderzoek.lumc.nl/pathology/kidney/
diabeticnephropathy/). These lists of differentially expressed transcripts showed several genes
that may play a role in endothelial cell maintenance and angiogenesis. To explore the implications
of these gene expression alterations, a number of these genes were further investigated in a
larger group of patients with different stages of disease, so that the roles of these growth
factors in each phase of the disease could be further investigated.

VEGF is one of the most important angiogenic growth factors regulating vasculogenesis
and permeability of endothelial cells. Our results show decreased VEGF mRNA levels in patients
with DN. Quantification of VEGF mRNA levels in biopsies from patients with DN was shown
for the first time by Bailey et al (21). Usiiigsituhybridization, they found a decrease in VEGF
mRNA in glomeruli from patients with DN. These results were subsequently confirmed by
others in both the interstitial (22) and the glomerular compartments (12). In addition, a correlation
was found between glomerular VEGF levels and proteinuria. Results from different animal
studies on the action of VEGF are contradictory. In streptozotocin (STZ)-indiatetic rats,
treatment with anti-VEGF antibodies decreased hyperfiltration, albumiandaylomerular
hypertrophy (23). Tumstatin peptide, an inhibitor of angiogenesis, suppressed glomerular
matrix expansion, the development of albuminuria, and renal mMRNA expression of VEGF in
STZ-induced diabetic mice (24). Other studies report that glomerular expression of VEGF is
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(Figure has been printed in full-colour on page 112)

Figure 4. Sirius Red an@D31 staining in the biopsiesA and B are representative illustrations of the Sirius
Red staining in a control patient and in a patient with DN, respectively. C-F are representative pictures of
CD31 staining: glomerulus of a control patient (C), glomerulus of a patient with DN (D), the tubulo-
interstitial part of a control patient (E) and the tubulo-interstitial part of a diabetic patient (F).
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TGF{ and FN mRNA within the diabetic patient group. Similarly, interstitial CTGF and[ GF-
mMRNA showed a significant correlation with each other. This observation corresponds with
previous studies that indicate that CTGF might act as a downstream mediatorf@bib@agtivity

(32). The observation that expression of FN is upregulated in DN, while the expression of TGF-
B and that of CTGF are not may be explained by studies demonstrating that high glucose can
induce FN independent of T@F(33) and CTGF (34).

MRNA levels measured in our study correspond in broad lines with those described in the
literature, especially with what has been reported in humans. The discrepancies between the
expression levels reported in animal models and those in our study can be explained by several
factors. Firstly, it should be noted that animal models do not completely mimic the physiological
state of patients with diabetes, and it is likely that mechanisms for initiation and progression of
DN in animals differ from those seen in humans (35). Another reason for the differences between
our findings and those reported in the literature may be that the stage of the diseases studied
is different. Animal models are often studied in an early phase of the disease while most of our
patients were already in a moderate to severe stage of the disease. In patient studies, it is often
difficult to receive biopsy material at an early stage of disease, as patients do not normally
present to a nephrologist until the disease has become manifest.

To obtain more insight into the role of the studied molecules during the progression of DN,
we quantified the amount of interstitial fibrosis in the biopsies with Sirius Red. Because we
know that histological grading of tubulo-interstifirosis is closely correlated with the loss
of renal function (36), quantitative measurements of the Sirius Red staining were used as a
morphological marker for renal function. We found a significant increase in the amount of
Sirius Red staining in patients with DN compared to controls. The observation that VEGF
MRNA levels negatively correlated with the amount of Sirius Red staining support the concept
that loss of VEGEF is related to progression of the disease. This was already suggested by
Bortoloso et al (12) who found a negative correlation between VEGF and urinary protein
excretion. There was a positive correlation between glomerular mRNA levels of CTGF and
VEGF. This suggests that CTGF, normally present in the podocyte, in combination with other
angiogenic factors, may contribute to the normal maintenance of glomerular endothelial cells.

We have also examined whether there is a correlation between the reduced mRNA levels of
angiogenic factors and the number of endothelial cells. The extent of CD31 staining, a marker
for endothelial cells, was quantified. Both the glomeruli and whole cortex showed a significant
decrease in the CD31 positive area in DN indicating a reduction in the number of endothelial
cells. This reduction correlated with the reduced VEGF mRNA levels, indicating an association
between the number of endothelial cells and the angiogenic growth factor VEGF.

The question remains as to the precise mechanism accounting for the down-regulation of

127



Chapter 7

VEGF and CTGF mRNA in DN. One explanation may be that specific down regulation occurs in
a diabetic milieu. This is unlikely since cell culture experiments have shown that glucose,
insulin, and advanced glycated end products (AGEs) increase levels of VEGF and CTGF (37-
40) . Itis more likely that the decrease in expression of angiogenic factors, normally produced
by podocytes, results from podocyte loss. The number of podocytes decreases over the
course of DN (41,42). Decreased expression in patients with DN of several podocyte specific
genes such as nephrin, Wilms tumour 1 (WT1), and GLEPP1, in our glomerular gene profile
supports this hypothesis.

From the results of this study we speculate that loss of angiogenic factors contributes to
the progression of DN. Podocyte injury in response to diabetes leads to loss of the slit
diaphragms and proteinuria. The resulting podocyte loss then leads to a reduction in expression
of angiogenic factors, which are necessary for the normal maintenance of the endothelial cells.
The reduced endothelial cell maintenance in combination with endothelial cell dysfunction
leads to a loss of endothelial cells followed by a loss of glomerular capillaries. This hypothesis
is corroborated by the finding that patients with POEMS (Crow-Fukase) syndrome, who have
elevated plasma VEGF levels, in combination with Type 2 diabetes do not develop DN (43). The
role of VEGF in the maintenance of endothelial cells is also supported by the finding that
soluble FIt1 (fms-like tyrosine kinase 1), a splice variant of the major VEGF receptor Flt1, can
induce proteinuria in preeclampsia (44). Soluble Fltl acts as a strong antagonist of VEGF.
Increased levels of circulating sFlt1 are associated with decreased circulating levels of VEGF,
and administration of soluble FIt1 to pregnant rats results in proteinuria and glomerular
endotheliosis (44). Loss of endothelial cells can lead to thrombotic microangiopathy followed
by loss of capillaries. Development of the latter has been shown by fragmented red blood cells,
and PAI-1, a marker for progression of thrombosis to sclerosis, in glomeruli from diabetic
patients with severe nodular lesions (45).

For the observed tubulo-interstitial down regulation of VEGF, we found supporting evidence
in the hypothesis of Kang et al (13) that reduction of peritubular capillaries results in impaired
delivery of oxygen and nutrients to the tubules and interstitial cells leading to ischemia, cytokine-
induced proliferation of fibroblasts, and ECM synthesis. Loss of peritubular capiifaries
interstitial fibrosis has been observed in human renal diseases (46) and in several models of
interstitial fibrosis.

In conclusion, this study demonstrates a reduction in mRNA levels of angiogenic factors in
glomerular and whole kidney mRNA samples from renal biopsies of patients suffering from
type 2 diabetes induced DN. Reduction of these factors correlated with the extent of interstitial
fibrosis. We also found a reduction of glomerular and interstitial endothelial cells measured
with CD31 staining in DN. These results may suggest an important role for angiogenic factors
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in the maintenance of endothelial cells. Reduced expression of angiogenic factors may be
involved in the progression of DN.
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Summary and general discussion

Molecular biology offers new opportunities for experimental and clinical medicine. Promising
clinical applications for patient care include identification of MRNA expression patterns (gene
profiling) in diseased organs in correlation with diagnosis, prognosis, and responsiveness to
different treatments. The development of novel technologies, such as microarray analysis and
real-time PCRallows study of gene expression networks, even in small renal biopsies. These
technologies, in combination with the development of laser capture microdissection, enables
specific gene expression analysis in a specific nephron segment.

Chapter 2 describes a method to isolate RNA from purified glomeruli. Because the size of
mouse glomeruli is similar to that of mouse tubules, mouse glomeruli cannot be isolated using
relatively simple sieving techniques. The development of a purification method for mouse glomeruli
is mandatory for extraction of mouse glomerular RNA (1-3). One of the major problems with RNA
isolation is that mMRNAs are very sensitive to degradation by endonucleases and exonucleases.
In normal living eukaryotic cells, several pathways have been identified that play a role in
MRNA degradation. One of these involves the exosome, a multi-protein complex that degrades
transcripts in the 3’ to 5’ direction and that contains nucleases related to the enzymes of the
bacterial degradosome (4). Another mechanism is de-adenylation—dependent decapping. This
decapping is triggered by removal of the poly(A) tail by exonucleases, followed by cleavage of
the 5’ cap by decapping enzymes. After decapping, which normally prevents the mRNA from
being translated, the mRNA undergoes rapid exonuclease digestion starting at the 5’ end.
Normally, mRNA degradation is strictly regulated by this multi-protein complex. However, after
cell death, endonucleases such as RNase E and RNase I, which make internal cuts in RNA
molecules, and RNase Il, which is an exonuclease that removes nucleotides in the 3' to 5’
direction are released from their regulatory complexes and rapidly degrade mRNA. In this
study, we tested the feasibility of using a novel glomerular isolation method in combination
with RNA extraction. To optimize this procedure, the necessity of using RNase inhibitors was
investigated in combination with different RNA isolation methods. We found that including
RNase inhibitors was not necessary for obtaining intact mRNA, despite the fact that the whole
procedure takes 2 to 3 hours. We conclude that the cells survive the isolation method and thus,
the RNA is protected against degradation. Indeed, in another study we demonstrated that it is
possible to culture viable mesangial cells from isolated mouse glomeruli (5). From the RNA
extraction methods we have tested, the yield of the lithium chloride (LiCl)/phenol/chloroform
method was about two to three times higher than the cesium chloride (CsCl) method (6). Based on
the levels of intact 28S and the 18S ribosomal RNA bands after gel electrophoresis and signal
intensity after hybridization with a collageri (V) cDNA probe, the LiCl/phenol/chloroform
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method gives the best RNA quality and quantity. For several years, kits based on phenol/
chloroform extraction without the use of LiCl have been available (e.g., Frirlitrogen).

More recently, silica-gel spin columns were developed [e.g., RNeasy Mini columns (QIAGEN
GmbH, Germany)], which can be used in combination with the stringency of guanidine-
isothiocyanate lysis. We successfully used these kits with glomerular samples.

Chapter 3describes the distribution of alternatively spliced fibronectin isoforms in human
renal disease with developing glomerulosclerosis. From animal studies it is known that
fibronectin is one of the major components of sclerotic lesions in the kidney (7). Furthermore,
it was found that the extent of glomerular fibronectin deposition correlated with the severity of
glomerular structural abnormalities in human renal diseases (8). The EDA exon in the fibronectin
molecule was found more often in skin wound healing compared to normal skin (9). In Chapter
3 we describe our immunohistochemical investigations into the distribution of the various
fibronectin isoforms in glomerulosclerotic lesions and in regions of tubulointerstitial fibrosis in
several progressive human renal diseases. In areas of glomerulosclerosis and interstitial fibrosis,
we found increased deposition of total fibronectin. EDA- and EDB-positive fibronectin isoforms
were found in significantly increased amounts in glomerulosclerotic lesions compared to normal
glomeruli. In areas with interstitial fibrosis, an increase in the amount of EDA-positive fibronectin
was found, but no EDB-positive fibronectin was deposited in the fibrotic interstitium. These
results show that in renal disease, oncofetal fibronectin (FDC6) and EDA- and EDB-containing
fibronectin isoforms are upregulated at specific locations within the renal tissue, suggesting a
specific pathogenic role for these fibronectin isoforms during disease development. There
were no statistically significant differences in the expression of the various fibronectin isoforms
among any of the patient groups. This finding suggests that excessive fibronectin accumulation
is a final common phenomenon in the development of glomerulosclerosis and interstitial fibrosis.

Chapter 4 describes a study of alternatively spliced isoforms of fibronectin at the mRNA
level in different animal models for immune-mediated glomerulosclerosis, and in human biopsies
from patients developing glomerulosclerosis. Using cultured mesangial cells, we studied the
effect of TGFB and IL-4 on the splicing of fibronectin in the EDA and EDB regions. Using
primers flanking the EDA or EDB regions, we performed RT-PCR on glomerular mRNA isolated
from different animal models at several time points after induction of the disease, and on mMRNA
from renal biopsies from patients suffering from different glomerulopathies. Normal mice and
rats did not express the oncofetal domains EDA and EDB. InductiarGBM nephritis,
chronic serum sickness, or anti-Thy-1 nepbhritis resulted in inclusion of both the EDA and EDB
domains in the fibronectin mMRNA. However, induction of GvHD in mice had no effect on the
splicing pattern of fibronectin mRNA. Culturing of glomerular mesangial cells in the presence
of TGF{ led to inclusion of the EDA region, while IL-4—overexpressing mesangial cells showed
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a significant decrease in EDfibronectin mRNA levels. This decrease may have resulted from
reduced TGH3 levels in the IL-4—overexpressing cells. A relation between the presence of
TGF mRNA and EDA mRNA was also found in the animal models for glomerulonephritis
and in patients developing glomerulosclerosis. This finding suggests thgb plais a role

in the induction of EDA fibronectin in the kidney and thus in the development of
glomerulosclerosis. On the other hand, GVH-diseased animals develop glomerulosclerosis
containing large amounts of fibronectin without demonstrable increase o3 T@BF=DA
inclusion. In an earlier study we have shown that in these mice, the accumulation of fibronectin
is a result of specific trapping of plasma fibronectin from the circulation (7). In addition, mice
with constitutive transgenic expression of IL-4 show progressive glomerulosclerosis with
mesangial accumulation of collagen types I, IV, and V in the absence oBT Gjfregulation.
Although TGF8 and alternative splicing of fibronectin play a role in the progression to
glomerulosclerosis, neither alternative fibronectin splicing nor high transcription levels of
TFG{ appears to be a general prerequisite for the development of glomerulosclerosis.

In Chapter 5, trapping of plasma fibronectin from the circulation during development was
investigated. Earlier studies have shown that plasma fibronectin can accumulate from the
circulation in sclerotic lesions. To obtain more insight into the molecular binding sites that play
a role in the accumulation of fibronectin in pre-sclerotic lesions, fibronectin was cut into
different fragments. The different fragments were separated on a heparin affinity column,
resulting in two batches of fragments with either low or high affinity for heparin. The fragments
were labeled with fluorescein isothiocyanate (FITC) and injected into chronic GVH mice
developing glomerulosclerosis. These fragments were also pre-incubated with heparin or N-
desulfated non-anticoagulant heparin to investigate the role of the heparin binding site in the
accumulation of fibronectin in sclerotic lesions. Whole, labelled plasma fibronectin (pFN)
molecules were injected intravenously into mice 10 to 12 weeks after induction of GVH disease
in mice and accumulated in the glomerulosclerotic lesions. The pattern of trapped fibronectin
was comparable to that seen in PAS-positive glomerulosclerotic leSionisopre-incubation
of pFN-FITC with heparin resulted in a reduced accumulation of pFN-FITC upon injection.
Injection of pFN pre-incubated with non-anticoagulant, N-desulfated heparin also prevented
the accumulation of pFN-FITC in the glomerular lesions. There was no difference between the
accumulation of pFN-FITC pre-treated with heparin or non-anticoagulant heparin. Intravenous
injection of the digested FITC-conjugated pFN fragments with low affinity for heparin resulted
in accumulation in sclerotic glomeruli. This accumulation did not occur when the low-affinity
fraction was injected in control mice. The FITC-conjugated pFN fragments with high affinity
for heparin did not accumulate in glomeruli of GvHD mice. From these results, we conclude that
the protective effect of heparin treatment may be the result of steric interference with the
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specific binding sites, and not specifically because of blockade of the heparin binding site
itself. Fibronectin can directly bind to ECM via its collagen binding sites. Secondly, fibronectin
contains integrin binding sites fab31 integrin that were increased in areas surrounding the
glomerulosclerotic lesions. A third mechanism that may be involved in the accumulation of
pFN in the glomerulus is activation of the coagulation system. However, based on the observation
that both heparin or non-anticoagulant heparin can inhibit fibronectin accumulation, it is unlikely
that this mechanism plays a role in the accumulation of fibronectin.

Chapter 6 shows the results of gene expression profiling of glomeruli from human kidneys
with DN. DN is a major cause of morbidity in patients with type Il diabetes (10). Although
several factors, including high glucose, insulin, AGEs, and high blood pressure, may be involved
in the progression of DN, the precise mechanism is still unclear. Therefore, we investigated the
gene expression profile of glomerular RNA isolated from morphologically and functionally
normal kidneys and from kidneys of patients with DN. About 100 genes were upregulated in
the diabetic glomeruli, and about 500 genes were downregulated. One of the downregulated
genes was VEGF, which is one of the most important factors in endothelial repair and
angiogenesis. Considerable research has focused on the pathogenesis of endothelial
dysfunction in patients with diabetes, but the exact role for VEGF during the development of
DN has remained unclear until now.

In Chapter 7, we investigated expression of angiogenic factors identified by microarray
analysis of kidneys from patients with DN or with normal kidneys. Endothelial cell loss and the
role of VEGF in that loss determine development of renal disease and the progression to
sclerosis. In human DN it has been suggested that VEGF is important in maintaining the
glomerular endothelial cells and that a decrease in local VEGF levels accounts for abnormal
remodeling of the glomerular capillaries (11,12). On microarray analysis, factors including CTGF,
FGF2, and syndecan, which can induce new vessel formation (13,14), showed a decrease in
patients with DN. We investigated the gene expression level of different angiogenic factors in
renal biopsies from a larger patient group with DN. We found that VEGF and CTGF mRNA
levels in both microdissected glomeruli and whole cortex were decreased in patients with DN
compared to control kidneys. A negative correlation was found between glomerular VEGF
MRNA and the extent of interstitial fibrosis. In other words, there is a relationship between
progression of the disease and the reduction of glomerular VEGF mRNA. We also found a
decreased number of endothelial cells both in glomerular and the tubulointerstitial tissue of
patients with DN. From the results of this study, we speculate that loss of angiogenic factors
contributes to the progression of DN. Podocyte injury resulting from the action of diabetic
factors leads to loss of slit diaphragms and proteinuria. The resulting podocyte loss then leads
to a reduction in expression of angiogenic factors, which are necessary for the normal
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maintenance of the endothelial cells. The reduced endothelial cell maintenance in combination
with endothelial cell dysfunction leads to a loss of endothelial cells followed by a loss of
glomerular capillaries (Fig. 1).

On the other hand, it has been shown that urinary VEGF levels in patients with DN are
increased. Although measurements of urine VEGF levels seem to be controversial in the literature,
it has recently been demonstrated in a large patient group that urinary VEGF levels were
increased and that this strongly correlated with 24-hour albumin excretion levels (15). In the
same patients, plasma VEGF levels remained unchanged compared to a control group. The
increase of urinary VEGF levels can be a result of VEGF synthesis in the kidney. The glomerular
podocyte is the major site for renal VEGF synthesis, suggesting that the increased urinary
VEGF excretion may be of glomerular origin. VEGF protein has also been found in proximal
tubules of patients with late DN (16), suggesting that VEGF originating from renal tubules can
also contribute to high levels of urinary VEGF. Based on our results and results from the
literature, which show that both glomerular and tubularinterstitial VEGF mRNA levels decrease
in DN (12,17), itis unlikely that the increased urinary VEGF levels result from increased VEGF
production in the kidney. Because plasma VEGF levels remain unchanged in patients with DN,
the explanations for higher urinary VEGF levels in patients with DN would be increased leakage
of VEGF through the glomerular filtration barrier or a diminished absorption by proximal tubular

AGE, high glucose, Ang I, high insulin
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Figure 1. Partly speculative schematic illustration of endothelial cell/glomerular capillary loss in patients
with diabetic nephropathy.
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epithelial cells. This increased leakage of VEGF through the filtration barrier may also explain
the correlation found between urinary VEGF levels and urinary albumin excretion in patients
with DN. The activity of VEGF is highly regulated by sFlt-1, a naturally occurring soluble form

of VEGF receptor. More studies are necessary to define the exact role of VEGF, together with
sFIt-1 and other angiogenic factors, in the development and progression of DN

Further perspectives of gene expression profiling in renal diseases

With microarray technology, thousands of genes can be measured within one experiment,
resulting in an expression profile of a biological sample. This information can be used for
functional categorization of renal disease and may help in improving treatment of patients.
Bioinformatics can also be used as a tool, leading to a better understanding of the molecular
mechanisms that play a role in the progression of disease. With the interconnection of databases
(e.g., NCBI, EMBL) containing information about gene sequences, chromosome locations,
SNPs, gene ontology, and gene expression levels in different tissues and diseases, important
information comes together and can be studied more easily. Also, programs such as Pathfinder®
and the KEGG database are helpful tools to use in recognizing pathways involved in biological
processes. A statistical global test for groups of differentially expressed genes within pathways
is now available for the analysis of results obtained by microarrays (18).

In addition, the development of laser microdissection techniques (19) has enabled the
separation of nephron segments in frozen or fixed sections. This development, in combination
with new amplification protocols with a more than 1,000-fold linear amplification efficiency (20),
gives us the opportunity for generation of nephron segment-specific gene profiles in frozen or
paraffin-embedded patient material. Microfluidic biochips and nanotechnology-based biochips
will gain importance as tools to study molecular mechanisms at the single-cell level (21).

The mRNA itself is not functionally active and must be translated into biologically active
proteins. As with any multi-step biological process, eukaryatic translation can be regulated at
various levels. The predominant step in the control of translation is ribosome binding. A large
number of regulatory sequences have been identified in the 5’ and especially in the 3’
untranslated regions of MRNA. In addition, several factors, eukaryotic translation initiation
factor 2 and 4E are the most important, play a crucial role in the regulation of translation
initiation. Activation of these molecules is regulated by kinases (22), which are activated by
environmental stress (23). These data imply that the number of transcripts for any mRNA
molecule is not necessarily associated with the amount of the corresponding protein being
translated. On the other hand, it is unlikely that cells expend a lot of energy on mRNA
transcription without specific reasons. Although there are discrepancies between levels of
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mMRNA and the amount of protein, these differences can usually be explained by the occurrence
of posttranslational processes, such as storage of proteins until they are necessary (for example
coagulation factor VIII), or rapid protein degradation by proteolytic enzymes. Another
explanation is slow protein turnover in normal maintenance of tissue, as occurs with ECM
molecules. Although one can measure increased mRNA levels for these matrix molecules, itis
possible to find no increase at the protein level because of a disturbed balance between
production and degradation.

Within the framework of studying molecular biological processes, the logical step after
genome-wide mRNA expression profiling is genome-wide protein expression profiling, also
called proteomics. The goal of proteomics is a comprehensive, quantitative description of
protein expression (24). The field of proteomics is growing rapidly. The rapid progress of
proteomics over the past few years is a result of: (1) the completion of the human genome
projects; (2) the improvement of gel-based protein separation techniques; and (3) the
development of mass spectrometry (MS). One of the first applications of proteomics in renal
disease was performed by Witzmann et al., who used the two-dimensional gel electrophoresis
techniqgue and MS analysis to study heat-shock and glucose-regulated proteins in the rat
kidney (25). More recently, proteins derived from whole-kidney lysate of diabetic OVE26
transgenic mice were separated by two-dimensional PAGE and identified by matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF)-MS. Several proteins were differentially
expressed in diabetic kidneys (26). Among these altered proteins, expression of monocyte/
neutrophil elastase inhibitor was increased, whereas elastase IlIB was decreased in diabetic
kidneys.

When the expression of a gene is changed during disease, studies in animal models are
necessary to confirm the functional role of that gene. Germ-line transgenic mouse models were
developed to knock out or introduce a specific gene in the mouse genome (27). The disadvantage
of this approach is that knockout of a gene often leads to (embryonic) lethality. To overcome
these problems, an alternative approach is the use of conditional knockout strategies in
combination with organ or cell specific transgene expression. Cell-type specific gene knockouts
can be made with the use of Cre/lox system (28). This Cre recombinase system can be used in
combination with an inducible cell specific promoter. Administration of a drug targeting the
cre-construct in these mice induces excision of an integrated gene flanked by loxP sites in the
selected tissues or cells (29).

Other methods for specific gene silencing are transfection of cells or tissues with RNA or
DNA constructs that can turn off a gene. Several methods for transfecting cells are available.
Commercial kits are available to transfect DNA constructs into oeNstro. Forin vivo
applications, different methods have been described. Glomerular cells have been transfected
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with the use of viruses such as hemagglutinating virus of Japan in combination with liposome
transfection (30). Alsomesangial cells have been used to carry the gene construct into the
renal glomerulus. The cDNA construct was introduced into cultured rat mesangial cells, and
stably transfected vector cells were established (31). These cells were then delivered into the
glomeruli of rats via the circulation. More recently, electroporation has been applied to introduce
DNA into several organs. DNA/RNA constructs were injected into the left renal artery followed
byelectroporation of the injected kidney between a pair of tweezers-type electrodes (32). The
advantage of electroporation compared to conventional methods is that this procedure is free
from the oncogenicity, immunogenicity, and cytotoxioityiral vectors or transfected cells. In
addition, co-transfection with a mixture of different constructs magcheeved easily by
electroporation (32).

Several methods can be used to turn off a specific gene. One of the oldest methods is the
use of antisense RNA molecules to modulate the expression of selected genes. The principle is
based on specific annealing of MRNA with complementary antisense RNA molecules resulting
in double-stranded RNA that is no longer available for translation (33). The disadvantage of
this technique is the short half-life time and the low efficiency of these antisense molecules
(34). To overcome this problem, the use of double-stranded (ds) interfering RNAwas developed.
Compared to single-stranded RNA, dsRNA is relatively stable and does not require chemical
modifications to achieve a satisfactory half-life. Long, double-stranded RNA molecules are
processed by the endonuclediser into 21- to 23-nt small interfering RNAs (siRNAs), which
specifically suppress gene expression in mammalian cell lines, including human embryonic
kidney cells (35). Formation of dsRNAs results in loss of the corresponding mRNA. Binding to
promoter and intronic sequences, results in largely ineffective transcription, and dsRNA can
induce genomic methylation of sequences homologous to the silencing trigger, resulting in
loss of transcription (36). It was found that the siRNA technique is at least 10 times more potent
than conventional antisense RNAs in silencing a gene (37). Next to inactivation of mMRNAs,
exon skipping with the use of stabilized antisense oligonucleotides (AONSs) can also be used
to knock-down a gene function. Modulation of splicing by AONs that restored normal splicing
by skipping exons with several different mutations in the 3-globin gene has been described by
Dominski et al. (38). In addition to AON-mediated modulation of splicing, loss of gene function
by skipping those exons that are necessary for a normal function of the gene has been proposed
as a useful method of gene silencing.

Despite the ability to assess expression of thousands of genes simultaneously, which can
give us insight into molecular biological processes at the single-cell level, and in spite of the
current knowledge of many different pathways involved in disease, the precise mechanisms of
the progression to glomerulosclerosis have not yet been fully clarified. We have to realize that
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of the ~30,000 known genes in the human genome, 30-40% can be alternatively spliced at at
least two different sites (39), which may theoretically result in about 100,000 different gene
products that can also influence each other in a dose-dependent manner. This probability
suggests that there is an enormous number of combinations that can influence the physiological
state of a cell. More research is necessary, especially in the field of bioinformatics, that can
recognize disease-specific gene expression patterns and improve our understanding of at least
a part of the mechanisms behind the progression to glomerulosclerosis and interstitial fibrosis.
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De nieren hebben een belangrijke functie in het menselijk lichaam: ze zijn onder andere
verantwoordelijk voor het zuiveren van bloed en het produceren van urine. Wanneer de nier
chronisch beschadigd wordt door bijvoorbeeld glomerulonefritis, hoge bloeddruk (hypertensie),
afwijkingen van de stofwisseling (diabetes) of opname van giftige stoffen (bijv. sommige
geneesmiddelen) kan dit leiden tot verbindweefseling in de nier. Deze schade kan klinisch
leiden tot een langzame achteruitgang van de nierfunctie en histologisch tot een toename van
extracellulaire matrix (ECM) componenten. Uiteindelijk zal dit leiden tot de ontwikkeling van
glomerulosclerose en interstitiéle fibrose, een proces dat ook wel fibrogenese wordt genoemd.
Dit leidt tot een totaal verlies van de nierfunctie. De toename van ECM componenten kan een
gevolg zijn van een verhoogde aanmaak in de nier, stapeling van ECM moleculen vanuit de
circulatie, een verstoorde afbraak die normaal plaats vindt in het kader van het onderhoud van
de ECM, of een combinatie van deze factoren.

Voor de aanmaak van ECM eiwitten maakt de cel gebruik van het transcriptie/translatie
systeem. In iedere celkern bevindt zich het genomische DNA dat de code bevat voor het maken
van een eiwit. Van een stukje van dit dubbelstrengs DNA wordt een enkelstrengs kopie gemaakt
(mRNA) die zich vanuit de celkern naar het cytoplasma verplaatst. Dit proces wordt transcriptie
genoemd. Op basis van de code van dit MRNA molecuul wordt door middel van translatie een
eiwit gevormd. Het meten van specifieke mMRNA moleculen (RNA expressie) in de cel kan dus
belangrijke informatie geven over een cel. Dit, samen met het aantonen van de gevormde
eiwitten, kan inzicht geven in hoe het proces van fibrogenese verloopt.

In hoofdstuk 2zijn studies beschreven over het isoleren van mRNA uit muizen glomeruli,
de filtratie eenheden in de nier. Muizen worden vaak als proefdiermodel gebruikt om de
ontwikkeling van glomerulosclerose te bestuderen. Voor het isoleren van de muizen glomeruli
werd gebruik gemaakt van magnetische retractie. Muizennieren werden hiervoor opgespoten
met ijzeroxide deeltjes die specifiek vastlopen in de vaatkluwen van de glomerulus. Vervolgens
werd de nier door een zeef geperst waardoor de glomeruli vrij in oplossing kwamen. Door
vervolgens deze suspensie tegen een magneet te houden kunnen glomeruli geisoleerd worden.
De vraag bij deze methode was of de mMRNA moleculen, die erg gevoelig zijn voor afbraak, deze
procedure zouden doorstaan en welke RNA-isolatie methode het meest geschikt was om uit de
gezuiverde glomeruli mRNA te isoleren. Uit de experimenten blijkt dat glomeruli isolatie met
magnetische retractie in combinatie met de ‘LiCI' RNA isolatie methode de beste resultaten gaf.
Northernblot hybridisatie experimenten met een probe tegen hoog moleculair mRNA (dat het
meest gevoelig is voor afbraak) gaf een positief signaal. Hieruit konden we concluderen dat de
LiCl methode het meest geschikt is om mRNA expressie experimenten mee uit te voeren.

146



Nederlandse Samenvatting

De studies inhoofdstuk 3 beschrijven de distributie van fibronectine isovormen in
nierbiopten van patiénten die glomerulosclerose ontwikkelen. Tijdens de transcriptie van DNA,
die leidt tot productie van het mRNA, dat codeert voor fibronectine kunnen er bepaalde stukken
van de code verwijderd of juist toegevoegd worden (alternatieve splicing). Hierdoor worden
eiwit moleculen gevormd waaraan bepaalde domeinen zijn toegevoegd of waaruit die zijn
verwijderd. Van het fibronectine molecuul zijn een aantal domeinen bekend die alternatief
gespliced kunnen worden: de EDA, de EDB en de V-regio. Inclusie van deze domeinen vindt
vooral plaats tijdens de embryogenese waar deze domeinen een belangrijke rol spelen in de
proliferatie en differentiatie van cellen. In normale nieren wordt vooral fibronectine gevonden
waarin de EDA en EDB domeinen ontbreken. In patiénten die glomerulosclerose ontwikkelen
vonden we naast een toename van fibronectine, dat dit fibronectine positief was voor EDA en
EDB. Dit zou erop kunnen duiden dat inclusie van deze domeinen een belangrijke rol speeltin
de ontwikkeling van glomerulosclerose.

In hoofdstuk 4is vervolgens onderzocht of de aanwezigheid van EDA en EDB domeinen
van fibronectine tijdens de ontwikkeling van glomerulosclerose konden worden aangetoond
op mRNA niveau en welke factoren een rol spelen bij het verschijnen van deze domeinen. In
verschillende proefdiermodellen voor glomerulosclerose vonden we alternatieve splicing van
EDA en EDB. In muizen met lupus nefritis was dit echter niet aanwezig. Omdat uit eerder
onderzoek bekend is dat T@@een belangrijke groeifactor is die leidt tot inclusie van het EDA
domein, werd de relatie van de aanwezigheid van F&FEDA positief fibronectine bekeken.
Hieruit bleek, dat in de diermodellen waarin een toename vanBit€Eien is ook een inclusie
van EDA plaats vindt. In muizen met lupus nefritis, waarin we geen EDA fibronectine kunnen
aantonen, vindt ook geen toename van T3#Haats. Omdat in deze ziekte het cytokine IL-4
een belangrijke rol speelt, hebben we in gekweekte glomerulaire mesangiale cellen het effect
van TGFB en IL-4 op het splicingspatroon van fibronectine onderzocht. Mesangiale cellen die
gekweekt werden met TGEieten inderdaad een toename zien van EDA inclusie, terwijl
aanwezigheid van IL-4 juist tot een afname van EDA inclusie leidde. Deze resultaten konden we
bevestigen in humane nierbiopten van patiénten met glomerulosclerose. In nierbiopten van
patiénten met lupus nefritis was geen toename van I @fF-EDA fibronectine te zien in
vergelijking met gezonde nieren. Uit deze studies concluderen we ddi @&belangrijke rol
speelt bij de inclusie van EDA fibronectine, maar dat pati€énten ook glomerulosclerose kunnen
ontwikkelen zonder een toename van T@&&n EDA fibronectine.

In hoofdstuk 5onderzochten wij de accumulatie van fibronectine vanuit de circulatie in
glomerulosclerotische laesies. Uit eerdere studies is gebleken dat er in sclerotische glomeruli
van muizen met lupus nefritis grote hoeveelheden van het ECM molecuul fibronectine te
vinden zijn, terwijl er op mMRNA niveau nauwelijks een toename van fibronectine waarneembaar
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is. Als in deze muizen gelabeld fibronectine werd ingespoten, was dit na 24 uur terug te vinden
in de laesies. Wij hebben onderzocht via welke bindingsplaatsen het fibronectine vanuit de
circulatie gebonden wordt. Hiervoor is het fibronectine molecuul gezuiverd en in kleinere
fragmenten geknipt. Ook is onderzocht of de binding van fibronectine in de laesies met heparine
voorkomen kon worden. Omdat heparine als een anti-coagulant werkt, en dus via inhibitie van
stolling de fibronectine accumulatie zou kunnen remmen, hebben we gekeken of N-desulfated
heparine, dat geen anti-coagulante werking meer heeft, de accumulatie van fibronectine kan
voorkomen. Uit de accumulatie experimenten met fibronectine is gebleken dat zowel heparine
als N-desulfated heparine de accumulatie van fibronectine kon voorkomen. Echter, uit de
accumulatie experimenten met de fibronectine fragmenten bleken juist de fragmenten die een
lage affiniteit hebben voor heparine te accumuleren in sclerotische laesies. De accumulatie van
fibronectine verloopt dus niet via de heparine-bindingsplaats. Omdat heparine de binding wel
kan voorkomen, is het waarschijnlijk een bindingsplaats direct naast de heparine-bindingsplaats,
die door sterische hindering door heparine wordt afgeschermd.

De studies ithoofdstuk 6beschrijven de resultaten van een microarray analyse in glomeruli
van patiénten met diabetische nefropathie (DN). DN is een complicatie die optreedt bij ongeveer
30-40% van de patiénten met diabetes en leidt tot verlies van de nierfunctie en de ontwikkeling
van glomerulosclerose en interstiti€le fibrose. Met behulp van DNA chips is het MRNA expressie
patroon van ongeveer 12000 genen bepaald in glomeruli van patiénten met en zonder DN. Door
nu te kijken naar de verschillen in expressie tussen controle nieren en nieren met DN kan men
inzicht krijgen in de moleculaire processen die een rol spelen in de ontwikkeling van DN. Wij
vonden dat een groot aantal genen verschillend tot expressie kwamen. Het betrof 0.a. genen
die coderen voor eiwitten die zich bevinden in de filtratie complexen tussen de cellen. Opvallend
in nieren met DN was de afgenomen expressie van een aantal genen die betrokken zijn bij hetin
stand houden van de bloedvaten, zogenaamde angiogenetische factoren.

De expressie van de angiogenetische factoren VEGF en CTGF is vervolgens verder
onderzocht in een groot aantal nierbiopten van patiénten met verschillende stadia van DN. De
resultaten hiervan zijn terug te vindenhioofdstuk 7. Het doel van dit onderzoek was het
bevestigen van de microarray resultaten in een groter patiénten cohort en het beantwoorden
van de vraag of er een relatie is tussen de expressieniveaus van de angiogenetische factoren
en het beloop van de ziekte. Lasercapture microdissectie werd toegepast om glomeruli uit deze
biopten te isoleren. VEGF en CTGF niveaus waren significant verlaagd in patiénten met DN.
Ook was er een negatieve correlatie tussen VEGF mRNA niveau en het percentage Sirius Red
positieve oppervlakte, een maat voor interstitiéle fibrose. Het lijkt er dus op dat progressie van
de nierziekte gekoppeld is aan afname van VEGF. VEGF wordt in de glomerulus voornamelijk
gemaakt door de podocyten. Een verlaging van VEGF zou het gevolg kunnen zijn van podocyt
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verlies, iets wat al eerder beschreven is in patiénten met DN. Omdat VEGF een belangrijke
factor is voor het in stand houden van endotheelcellen in de glomerulaire capillairen, zou men
kunnen speculeren dat het verlies van podocyten in de glomerulus via een afname van de
VEGF expressie leidt tot verlies van endotheel. Verlies van endotheel kan leiden tot
microangiopathie waardoor uiteindelijk de glomerulaire capillairen verloren gaan. Indien dit
mechanisme inderdaad blijkt te bestaan zou het een opening kunnen bieden voor therapeutische
interventie zoals het toedien van VEGF of anticoagulantia. Er is echter meer onderzoek nodig
om deze hypothese te bewijzen.
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Naschrift

In dit naschrift wil ik graag van de gelegenheid gebruik maken om iedereen te bedanken die op
enigerlei wijze heeft bijgedragen aan de totstandkoming van dit proefschrift. Dan denk ik aan
de mensen van de ‘nierengroep’in het bijzonder, en alle (ex)collega’s van de pathologie in het
algemeen. Bedankt voor jullie inbreng, op wat voor manier dan ook. Het is voor mij onmogelijk
om iedereen bij naam te noemen omdat ik in de afgelopen jaren veel mensen heb zien komen en
gaan die op een positieve manier hebben bijgedragen aan mijn onderzoek.

Daarnaast wil ik ook het thuisfront bedanken. Lieve Janine, zonder jou hulp was het zeker
niet gelukt. Jij hebt mij veel taken uit handen genomen zodat ik me op mijn onderzoek kon
concentreren. Wilbert, Rianne en Coert, bedankt voor het begrip dat jullie hadden voor het feit
dat papa afgelopen jaar regelmatig ‘s avonds pas heel laat thuis was of thuis geen zin meer had
om iets met jullie te gaan doen. Altijd als ik aan jullie denk besef ik dat jullie veel belangrijker
voor me zijn, hoe mooi en uitdagend het onderzoek ook is.
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