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82 4 The F model with domain walls

S Summary and outlook

In this work we have used Monte Carlo simulations to study the F model
with DWBCs. Although a closed form for the partition function is analytically
known for all system sizes, in practice it is particularly useful for the exact
computation of certain observables for fairly small systems and to obtain
the asymptotic form and its finite-size corrections. Simulations allow for the
investigation of systems of moderate size to complement such analytic results
as well as to study properties that are not (yet) understood from an analytic
point of view.

We have given best estimates for the parameters in the first three sublead-
ing finite-size corrections to the energy derived from the asymptotic partition
function in Eq. (4.5) at the critical point by fits to the average energies obtained
from simulations. This tests the reliability of our simulations; they are precise
enough to distinguish the different subleading corrections (Fig. 4.4). The best
estimates for the parameters suggest that the first subleading correction is
non-negligible in comparison to the leading correction even for macroscop-
ically sized systems, with L ~ 102!, We find a = 1.91 + 0.39 for a previously
unknown parameter in the asymptotic expression (4.5) of the domain-wall
partition function in the disordered regime found by Bleher and Fokin [129].

Following joint work with Duine and Barkema [3] we have further invest-
igated the order parameter based on the staggered polarization Py, of which
we gave a description in the framework of the quantum-inverse scattering
method (QISM). From a theoretical point of view it would be interesting to
explore whether it is possible to adapt Baxter’s work [108] to obtain an exact
expression for Py in the case of domain walls, at least in the thermodynamic
limit, but we have not done so in the present work. If Py is a true order
parameter for the model's IOPT, ie, it is constant on one side of the crit-
ical temperature and smoothly starts to change at the phase transition, then
the observable d In Py/dB must by definition have a divergence at the critical
point for infinitely large systems. Using finite-size scaling, and extrapolating
to the asymptotic case we have found that dIn Py/dB does indeed converge
to a delta-distribution (see Fig. 4.6), although it fails to give an accurate es-
timate for the (analytically known) temperature at which the phase transition
occurs. Of course the DWBCs together with the ice rule make the system
that we have investigated rather special; the observable proposed in Ref. [3]
may still be useful for the investigation of other models exhibiting an IOPT.
One could also try using the susceptibility of Py instead; most of its peaks
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lie outside our simulation range, though the peaks that are visible appear to
have a comparable quality for finite-size scaling.

In addition to these global (spatially averaged) properties we have studied
local properties of the system. The profiles of the c-vertex density p(c) ob-
tained for systems of size L = 512 at various temperatures with A < 1/2
are shown in Fig. 4.7. In the antiferroelectric (AF) phase our simulations
corroborate the coexistence of three spatially separated phases as found in
Refs. [113, 133], with a flat central region exhibiting frozen AF order sur-
rounded by a disordered (D) ‘temperate’ region and ferroelectrically (FE)
ordered corners. Our data agree very well with the arctic curves conjectured
by Colomo and Pronko [140] and Colomo, Pronko and Zinn-Justin [141]. It
would be desirable to have similar analytic expressions for the ‘antartic curve’
separating the temperate and AF-frozen regions for A < —1.

Regarding the structure inside the temperate region our simulations con-
firm the oscillations first found by Syljudsen and Zvonarev [133] and recently
recovered by Lyberg et al. [135]. Our findings agree with those works, repro-
ducing the patterns visible there, and uncover interesting additional features.
Each vertex density oscillates with the same dependence of the wavelength
on the position along the diagonal (Fig. 4.8). Our data confirm the con-
jecture of [133], in accordance with Ref. [135], that these oscillations are
finite-size effects: their wavelengths appear to grow sublinearly — roughly
as (0.67 + 0.06)L(0-553+0.016) __ and their average amplitudes decrease with
system size (Fig. 4.9). Our most detailed result regarding the structure of
the temperate region are Figs. 4.10 and 4.11. Here we have chosen to fo-
cus on the density difference for the c-vertices since p(c.) are in anti-phase
(cf. Fig. 4.8), so &plc) := plc_) — plc,) allows us to study the deviation of one
type of vertex around its ‘average’ without having to know an expression for
the latter. We find several types of oscillations. The ‘AF’ oscillations close to
the AF-frozen region appear to be made up of chequerboards of c.-vertices
that (unlike the AF region in case of even L) survive thermal averaging for
even as well as odd L, and are opposite between neighbouring oscillations.
The ‘FE oscillations near the FE-frozen region are dominated by the vertices
constituting that frozen region; between these oscillations there is a surplus
of the type of c-vertices favoured by the DWBCs. In addition there appear
to be weak ‘higher-order’ oscillations in c..-densities, forming various saddle-
point-like patterns. The oscillations seem to grow weaker as A increases.
Nevertheless the oscillations persist well into the D phase, with FE and AF
oscillations remaining partially visible at A = 1/2 (Fig. 4.11). A more quantitat-
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ive understanding of these vertex-density oscillations and arrow correlations
in the temperate region is desirable, both via simulations and through the
analytic methods of Refs. [137, 138], [142], or [123]. In fact, similar finite-size
oscillatory behaviour is known to occur for the eigenvalue distributions in
random-matrix models®, see e.g. [154]; this might shed light on the oscilla-
tions at least for A = 0, cf. [137, 138].

In the near future we plan to report on phase coexistence, arctic-curve phe-
nomena and the structure of the D region for various other choices of bound-
ary conditions; cf. Ref. [148]. Another interesting direction is the study the
case of quantum-integrable ‘solid-on-solid’ (SOS) models, with weights associ-
ated to the dynamical Yang—Baxter equation. The trigonometric SOS model
is a one-parameter extension of the six-vertex model, and it would be inter-
esting to understand the dependence of those phenomena on the additional
‘dynamical’ or ‘height’ parameter. It would also be very exciting if the theor-
etical and numerical investigations of the F model with domain walls would
be complemented by experimental work as in, e.g., Ref. [143].

A Relating configurations with opposite
chequerboards in the AF region

In this appendix we show that the F model has symmetries that can be used
to sample the whole of phase space starting from any initial configuration
obeying the ice rule and DWBCs. We should emphasize that the symmetries
we have in mind are symmetries of the model, not of the individual config-
urations.

We start locally, with the symmetries of the F model at the level of individual
vertices shown in Fig. 3.1. Such local symmetries must certainly preserve the
lattice near the vertex, i.e. the vertex with its four surrounding edges, so we
are led to the dihedral group D, of symmetries of the square. Concretely it
contains rotations over multiples of 71/2 as well as reflections in the horizontal,
vertical and (anti)diagonal line through the vertex. These operations clearly
preserve the ice rule. In fact, when the edges carry arrows there is one more
thing we can do that is compatible with the ice rule: reversing all arrows,
yielding an action of Zy that commutes with the D,.

One can check the preceding operations change the vertex weights as

9We thank K. Johansson for pointing this out to us.
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follows:

reflect [ : ay < by,

reflect — : a. < bz,

reflect /: a, < a_, cy < c_,

reflect.: b, < b_, c,<c_,

rotatek, : arr— by, bir—ar, cieco,

reverse arrows : a, < a_, b, < b_, cyec,

where for each reflection we omit the two weights it preserves. Notice that,
when using arrows along the edges to represent the microscopic degrees of
freedom, the F model may be characterized as the special case of the six-
vertex model for which the vertex weights are invariant under rotations over
7t/2, and that they are then further invariant under all of D x Zo.

At the global level D, x Zo acts on the configurations, where D, acts by
symmetries of the L x L lattice if we would forget about the arrows. Not all
of these global maps are allowed, though. Regarding the operations corres-
ponding to D, the DWBCs are only preserved by a subgroup isomorphic to
Zg x Zg corresponding to rotation over st and reflection in the horizontal and
vertical symmetry axes of the lattice. However, that the remaining operations
in D; also preserve the DWBCs if we combine them with arrow reversal'.

The next question is how these operations act at the level of configurations.
Recall that there are two AF ground states, with opposite chequerboard pat-
terns for the alternating c. - and c_-vertices constituting the AF region; let us
call them ‘0" and 1". Below the critical temperature (A < —1) any configura-
tion is closer (more similar) to one of these two ground states. Accordingly,
the phase space decomposes into two parts, say G;, with i € G; for i = 0,1.
For sufficiently low temperatures (or A) and large enough L it costs a mac-
roscopically large amount of energy to go from the energetically favourable
part of Gy, ie. configurations close enough to 0O, to the corresponding part
of G1: the system is practically trapped in one of these parts. Since we start
our Monte-Carlo algorithm from one of the two AF ground states we thus

19Thus the full global symmetry group of the F model with DWBCs is a subgroup of D, x Zj
isomorphic to D,. Recall that D, has a presentation in terms of two generators, r and s,
subject to the relations r* = s> = (sr)?> = e. Concretely, r acts by a rotation over /2
while s acts by a reflection. Write g* for the combination of g € D, with arrow reversal.
Then the subgroup of global symmetries is generated by r* and s, where the latter acts by
reflection in the horizontal or vertical axes; clearly (r*)* = s? = (sr*)> = e. See also (4.18).
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expect to stay in the corresponding part of the phase space as the system
thermalizes for A < —1 and large enough L.

Now we return to the model's symmetries. Consider the two AF ground
states, 0 and 1. When L is even the four axes of reflection symmetry meet
in the middle of the central face of the lattice, and it follows that the model’s
symmetries fall into two classes:

fixing i:  identity, o, /7, N,

i . (4.18)
Ot K'Y V75 = 1

where * means combination with arrow reversal. More generally, (4.18)

indicates how the model’s global symmetries relate the G;.

Since for the F model these operations do not change the vertex weights,
they preserve the energy of the configurations. Given any configuration we
can act by the model’s symmetries to generate further configurations of the
same energy; we get up to eight configurations in this way, though it may
be only four or two if the original configuration happened to possess some
amount of symmetry. (One should really check for such symmetries of the
original configuration to avoid overcounting, but at high enough L we can
skip this step as such symmetric configurations make up a negligible portion
of the phase space.) Half of the configurations we get in this way lie in Gy
and the other half in G4. The upshot is that after having run the Monte Carlo
simulation we can use the model’'s symmetries to sample the full phase space,
even from simulations that correctly sample around one of the two ground
states.



