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3 Finite-size scaling at infinite-order phase
transitions

For systems with infinite-order phase transitions, in which an order parameter
smoothly becomes nonzero, a new observable for finite-size scaling analysis
is suggested. By construction this new observable has the favourable property
of diverging at the critical point. Focussing on the example of the F model
we compare the analysis of this observable with that of another observable,
which is also derived from the order parameter but does not diverge, as well
as that of the associated susceptibility. We discuss the difficulties that arise
in the finite-size scaling analysis of such systems. In particular we show that
one may reach incorrect conclusions from large-system size extrapolations
of observables that are not known to diverge at the critical point. Our work
suggests that one should base finite-size scaling analyses for infinite-order
phase transitions only on observables that are guaranteed to diverge.1

1 Introduction
The study of phase transitions is a central topic in physics. In statistical phys-
ics these drastic changes in the physical properties of a system show up in
non-analytic behaviour of quantities such as the free energy f per volume. For
finite-order phase transitions (FOPTs) this takes the form of non-smoothness,
where some derivative of f makes a jump at the critical temperature. Such
discontinuous functions provide suitable observables for numerical investiga-
tion into universal as well as model-specific properties of the phase transition.
In this setting finite-size scaling (FSS) is a powerful tool to quantitatively ex-
trapolate the power-law behaviour of observables near criticality [1313, 2121].

1The contents of this chapter are largely based on the work of R. Keesman, J. Lamers,
R. A. Duine, and G. T. Barkema [33]. This work has come to fruition due to collaboration
with J. Lamers. His focus was on everything mathematical and analytical whereas mine
was on the simulation and finite-size scaling. Special thanks go out to H. van Beijeren,
H. Blöte, and H. Stoof for insightful discussions.
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38 3 Finite-size scaling at infinite-order phase transitions

For infinite-order phase transitions (IOPTs) the situation is more subtle
since the transition is not as abrupt as for FOPTs. In the prototypical ex-
ample, the XY -model in two dimensions, the critical—or perhaps more ap-
propriately ‘transition’—temperature marks the point at which free vortices
start to dominate the physics, even though the susceptibility, which character-
izes the single-vortex fluctuations, has a peak away from this temperature [9292].
From a more mathematical perspective the non-analyticity marking IOPTs is
rather weak: the free energy depends smoothly on the temperature, where
f and all its derivatives are continuous, but it has an essential singularity at
the critical temperature. (Recall that, unlike in the complex case, there are
smooth functions that are not real-analytic; a standard example is the function
given by exp(−1/x) for x > 0 and zero elsewhere.) In addition IOPTs often
exhibit logarithmic finite-size corrections [9393, 9494, 9595]; although this does not
make FSS impossible [9696, 9797] it has been shown to give rise to difficulties [9898],
and rather large systems must be investigated to accurately analyse the scal-
ing. Accordingly, various other numerical methods for studying IOPTs have
also been developed [9999, 100100, 101101].

In such a more delicate setting one has to take care to select appropriate ob-
servables for numerical analysis using FSS. Order parameters do not directly
allow one to locate the critical point for IOPTs since the numerical determ-
ination of the point at which a function smoothly becomes nonzero is a futile
task. For this reason observables that diverge at the critical point, e.g. sus-
ceptibilities for second-order phase transitions, are more suitable for studying
a model’s behaviour near criticality [9898, 102102, 103103]. One should also keep in
mind that for IOPTs there are also observables, such as the specific heat, that
do not diverge for increasing system size; they peak away from the critical
temperature and do not tend to a Dirac delta function in the thermodynamic
limit of infinite system size [9494]. In this work we propose a new observable
that, by construction, peaks at the critical temperature in the thermodynamic
limit for any model with an IOPT that is characterized by a smooth order
parameter.

Specifically we consider the F model, which is an interesting test case since
it was solved analytically on a square lattice with periodic boundaries in the
thermodynamic limit [3333, 104104]. At the same time it is related to the XY -model
via a series of dualities involving the discrete Gaussian solid-on-solid model
and the Coulomb gas [3333, 105105, 106106, 107107]. Our new observable is essentially the
logarithmic derivative of the spontaneous staggered polarization P0, for which
an asymptotic analytical expression is known for all temperatures [108108]. We
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use a FSS analysis to compare the new observable with the ordinary derivative
of P0 and the susceptibility associated with P0. These observables behave quite
differently: the logarithmic derivative nicely diverges at the critical point in the
thermodynamic limit, the ordinary derivative has a bounded peak elsewhere
for all system sizes, and for the susceptibility—which is commonly used to
analyse critical behaviour—the scaling near criticality in the thermodynamic
limit has been conjectured [109109]. In our estimates of characteristics such as
the critical temperature, however, identical analyses of these observables lead
to similar asymptotic results. This once more illustrates that one should be
careful in numerical analyses of IOPTs. In particular, our work thus suggests
that one should base FSS analyses for IOPTs only on observables that are
guaranteed to diverge.

This paper is organised as follows. In Section 3.23.2 we recall the basics of
the F model and discuss the relevant observables and their known asymp-
totic expression. The Monte Carlo cluster algorithm and data processing are
treated in Section 3.33.3. The analysis of the three observables is performed
in Section 3.43.4, and the results are discussed in Section 3.53.5. We end with a
conclusion in Section 3.63.6.

2 The F model and observables
The six-vertex model, or ice-type model, is a lattice model for which each
vertex is connected to four others by edges carrying an arrow pointing in or
out of the vertex, such that precisely two arrows point towards each vertex.
Thus there are six allowed configurations around each vertex as shown in
Fig. 3.13.1. To each such vertex configuration i one assigns a (local) Boltzmann
weight exp(−β εi), where β := 1/(kBT) is the inverse temperature and εi the
energy of that configuration. The (global) Boltzmann weight of the entire
configuration is the product of the local weights of all vertex configurations.
The F model [110110] is given by the particular choice ε1 = ε2 = ε3 = ε4 = ε > 0
and ε5 = ε6 = 0. This is the prototype of the antiferroelectric regime of
the six-vertex model, where vertex configurations 5 and 6 are energetically
favourable. At sufficiently low temperatures the system orders in an antifer-
roelectric fashion, with vertices 5 and 6 alternating in a chequerboard-like
fashion. From now on we consider the F model on a square L ×L lattice with
periodic boundary conditions in both directions, and set kB = ε = 1.

The free energy (per site) in the thermodynamic limit was found analytically
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ε1 = ε ε3 = ε ε5 = 0

ε2 = ε ε4 = ε ε6 = 0
Figure 3.1. The six allowed vertices with associated energies for the F
model, where ε > 0.

for the F model by Lieb [3333, 104104] using a Bethe-ansatz analysis. There is an
IOPT with critical (or ‘transition’) temperature βc = ln 2, or ∆c = −1 where
∆ := 1 − exp(2β)/2. In the low-temperature regime the free energy can be
expressed as a convergent series,

β fana(λ) = β − λ −
∞∑

n=1
exp(−nλ) sinh(nλ)

n cosh(nλ) (3.1)

where λ := arccosh(−∆) > 0 parametrizes β > βc, while at high temperatures
one has an integral representation

β fana(µ) = β − 1
4µ

∫ ∞
0

dt
cosh(πt/2µ) ln

(cosh(t) − cos(2µ)
cosh(t) − 1

)
(3.2)

for µ := arccos(−∆), 0 < µ < π/2, parametrizing β < βc. The entire high-
temperature region can be regarded as critical in the sense that correlations
decay as inverse power laws rather than exponentially [9393].

Although the six-vertex model has not been solved in the presence of an
external staggered electric field, Baxter [108108] found an exact expression for
the spontaneous staggered polarization P0 per site. To each microstate C
one can associate an ‘instantaneous’ spontaneous staggered polarization P0(C),
which can be computed as the ‘staggered’ sum of the net polarizations at the
vertices, where the direction of the net polarization is flipped at every other
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site (in a chequerboard-like way). Then the thermal average P0 := 〈P0(C)〉
is an order parameter for the F model, vanishing for β < βc and becoming
nonzero at the critical temperature. When β > βc it is given by

Pana0 (λ)1/2 =
√2π

λ
∞∑

n=1
exp

(
− (n − 1/2)2π2

2λ
)

. (3.3)

Like the free energy this function is smooth with an essential singularity at
β = βc, which is very weak: the functions and all their derivatives do tend to
zero as β approaches βc from above. When the F model is reinterpreted as
a height model (the body-centred solid-on-solid model) the IOPT is a rough-
ening transition [105105].

The observables on which we will focus are the derivatives β2 ∂β ln P0 and
β2 ∂βP0, where ∂β := ∂/∂β, together with the susceptibility χ := β [〈P0(C)2〉 −
〈P0(C)〉2] of the staggered polarization, which is called the spontaneous
staggered polarizability. Baxter [109109] conjectured the following form of the
susceptibility in the low-temperature regime

χ(λ) ∼ λ−2 exp(π2/2λ) . (3.4)
The preceding discussion ensures that β2 ∂β ln P0 diverges at the critical

temperature whereas β2 ∂βP0 has a (finite) peak at some βmax > βc. To the
best of our knowledge neither β2 ∂β ln P0 nor β2 ∂βP0 have been considered
before in the literature. The latter is included to demonstrate one has to be
careful in FSS for IOPT: we show that it is hard to extrapolate numerical data
to the thermodynamic limit, even when the exact limiting expressions are
known.

3 Simulations
Our Monte Carlo simulations are based on a cluster algorithm that uses the
(one-to-three) mapping from the six-vertex model to a three-colouring of the
square lattice [3333, Note added in proof]. Choose three colours, ordered in
some way, and use one of them to colour any single plaquette (face) of the
lattice. Then any configuration of the six-vertex model uniquely determines a
three-colouring, where the direction of the arrow on an edge dictates whether
the colour increases or decreases (modulo three), and the ice rule ensures
that the colouring is well defined. For the F model vertices surrounded by all
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three colours (configurations 1 to 4 in Fig. 3.13.1) are energetically less favourable
than those at which only two colours meet (configurations 5 and 6).

The multi-cluster algorithm builds clusters containing adjacent faces of two
colours, and patches these clusters together diagonally with a probability that
is such that required detailed balance is met. After no more clusters can
be included the colours in the clusters are swapped and one cluster update
has been performed [1313]. Because of the small autocorrelation times at the
temperatures near the phase transition, we take measurements after 10 of
these cluster updates for system sizes L < 128, and after each cluster update
for larger systems. At least 106 measurements are made per temperature
per system, at minimally 15 different temperatures. For the largest system
that we consider, with L = 512, we simulate at 29 different temperatures with
slightly over 8 × 106 measurements performed per temperature.

From expressions (3.13.1)–(3.23.2) for the free energy we can estimate the mean
and variance in energy measurements for finite systems at a given temperat-
ure. Moreover the specific heat Cv = β2∂2β(βf ) is bounded and, in leading or-
der, does not scale with L. Together these ensure that the parallel-tempering
and multi-histogram methods can be applied successfully.

Parallel tempering is a simulation method in which systems are simulated
at various temperatures and periodically swapped [1414]. Here the probability
of swapping two configurations at different temperatures is given by Pswap =
min[1, exp(δβ δE )], where δβ := βhigh − βlow and δE := Ehigh − Elow are the
difference in inverse temperature and energy between the two configurations,
respectively. To make sure that Pswap is large enough for configurations
to move reasonably fast through this temperature landscape we want the
histograms of the energies at different temperatures to overlap significantly.
Starting from some temperature for which we know the average energy U :=
〈E(C)〉 and the standard deviation σU from the analytical expression of the
free energy, a neighbouring temperature is chosen such that the difference
in energies is roughly σU , viz., β′ = β ± β/√Cv . After each measurement we
may swap the configuration with one at such a neighbouring temperature,
with acceptance probability Pswap between 47% and 53% for all simulations at
large system sizes.

At each measurement we record the energy E(C) and instantaneous spon-
taneous staggered polarization P0(C) for various temperatures. Using the
multi-histogram method any function of the values E(C) and P0(C) can then
be reliably estimated as a function of temperature [2323]. For this method to
work the energy histograms must have significant overlap; we have ensured
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that this is indeed the case for our data. Figure 3.23.2 shows the result for
β2 ∂β ln P0, β2 ∂βP0 and χ , together with their known and conjectured analyt-
ical form. Note that the data in the low-temperature regime are in agreement
with the analytical forms of β2 ∂β ln P0 and β2 ∂βP0. For χ the data collapse in
this regime and support the conjecture (3.43.4).
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Figure 3.2. The observables β2 ∂β ln P0 (upper panel), β2 ∂βP0 (central panel),
and χ (lower panel) versus β for system sizes up to L = 512. The data points
show the temperatures at which the simulations were run, while the solid
lines are the functions extracted from this data using the multi-histogram
method. When available the analytical form for infinite systems [cf. Eq. (3.33.3)]
is shown by a dashed black line. For sufficiently low temperatures all graphs
collapse onto these dashed black lines, corroborating the validity of our
simulations. For L → ∞ we know that β2 ∂β ln P0 must diverge at the crit-
ical temperature βc = ln 2, indicated by a vertical line, whereas β2 ∂βP0 is
bounded and peaks elsewhere. A fit to the conjectured form of χ , Eq. (3.43.4),
is indicated by a dotted-dashed black line in the lower panel.
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4 Analysis
The usual finite-size scaling procedure is to take the data, see Fig. 3.23.2, and
collapse the graphs by scaling the distance to the critical temperature and the
height as functions of the system size L. For the F model there are large
logarithmic corrections due to ‘quasi’ long-range correlations [9292] as well as
higher-order finite-size corrections [103103]. The systems size at which the finite-
size corrections become negligible do not yet seem to be within reach, so we
cannot perform a data collapse based purely on analytical expressions.

Instead we will perform a numerical data collapse. For each of the three ob-
servables that we are interested in we determine the coordinates (βmax, hmax)
of the maximum, together with the peak width w . Here we define the width
by demanding that the function passes through the point (βmax +w, 0.95 hmax).
This definition is chosen such that w can be accurately measured for large
systems given the simulation data; we focus on lower temperatures (higher β)
because of the asymmetry of the observables around the critical temperat-
ure. Thus we have three characteristics, which are well defined since any
observable is smooth and bounded for finite systems. This allows for a nu-
merical data collapse by shifting (βmax, hmax) and (βmax + w, 0.95 hmax) on top
of each other. The result for our three observables is shown in Fig. 3.33.3.
Sufficiently close to the critical point β2 ∂β ln P0 and χ scale well, which is a
positive sign for scalability to the thermodynamic limit. Note that β2 ∂βP0, for
which we know the (bounded) asymptotic solution, does not exhibit scalability
for the system sizes that we investigate. We extrapolate the characteristics
(βmax, hmax) and w , extracted from the data for various system sizes, to the
thermodynamic limit.

4.I Peak position βmax
The analytic expression in Eq. (3.33.3) reveals that β2 ∂β ln P0 must develop a
Dirac delta-like peak at βc ≈ 0.6931 as L → ∞. Instead, the peak of β2 ∂βP0remains finite and shifts to βanamax ≈ 0.7394. The large-L behaviour of the
spontaneous staggered polarizability χ is not analytically known. The form of
the leading finite-size corrections can be obtained by expanding the inverse
temperature in L as [103103]

βmax(L) = βc + Aβ
ln2 L + Bβ

ln3 L + Cβ
ln4 L . (3.5)
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Figure 3.3. The three observables scaled such that for each system size
(βmax, hmax) 7Ï (0, 1) and w 7Ï 1. This scaling works well in the low-
temperature regime for β2 ∂β ln P0 (upper panel) and χ (lower panel). For
β2 ∂βP0 (central panel) it seems to fail, cf. the deviation from the asymptotic
analytical result indicated by a dashed black line.
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Figure 3.4. The inverse temperatures at which β2 ∂β ln P0 (blue circles),
β2 ∂βP0 (green squares), and χ (yellow diamonds) are maximal, here shown
as functions of the system size. The asymptotic solutions, βc = ln 2 for
β2 ∂β ln P0 and βanamax ≈ 0.7394 for β2 ∂βP0, are shown at ln−2 L = 0. Best fits
of the form Eq. (3.53.5) to the data are shown as solid lines, and all seem to
converge to βc.

Figure 3.43.4 displays our results for βmax as a function of L as obtained from
our three observables, together with the analytic asymptotic values, and the
best fits to Eq. (3.53.5). These fits yield βfitmax = 0.6914(28) for β2 ∂β ln P0, βfitmax =
0.6955(17) for β2 ∂βP0, and βfitmax = 0.6937(11) for χ.

4.II Peak height hmax
Since we know from the asymptotic formula for P0 that β2 ∂β ln P0 diverges
as L → ∞ let us consider inverse heights. The inverse peak height of β2 ∂βP0tends to (hanamax)−1 ≈ 0.3009. If a naive linear fit is applied to h−1 as a func-
tion of ln−2 L the extrapolation yields (hfitmax)−1 ≈ −0.0095(16) for β2 ∂β ln P0and (hfitmax)−1 ≈ 0.2161(17) for β2 ∂βP0. Adding finite-size corrections to the
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Figure 3.5. The inverse maximal heights of β2 ∂β ln P0 (blue circles), β2 ∂βP0
(green squares) and χ (yellow diamonds) as functions of ln−2 L. The inset
shows the peak height of χ with differently scaled axes. The asymptotic
values, (hanamax)−1 = 0 for β2 ∂β ln P0 and (hanamax)−1 ≈ 0.3009, are included at
ln−2 L = 0. Data indeed suggests that β2 ∂β ln P0 and χ diverge while β2 ∂βP0
stays finite. Best linear fits as functions of ln−2 L are shown as solid blue
and green lines for β2 ∂β ln P0 and β2 ∂βP0, respectively, while the best fit for
χ as in Eq. (3.63.6) is displayed in yellow.

conjectured form of χ in Eq. (3.43.4) gives [103103]

hmax(L) = Aχ L ln2 L
( Bχ

ln L + Cχ
ln2 L + Dχ

ln3 L
)

(3.6)

for the maximum of the susceptibility. The peak heights of the three ob-
servables and corresponding best fits are shown as function of system size in
Fig. 3.53.5.
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Figure 3.6. The width, defined as the distance between the peak and the
(lower-temperature) position at which the curve reaches 95% of the maximal
height, shown for β2 ∂β ln P0 (blue circles), β2 ∂βP0 (green squares), and χ
(yellow diamonds) at various system sizes. The asymptotic values, wana = 0
for β2 ∂β ln P0 and wana ≈ 0.0180 for β2 ∂βP0, are indicated at ln−2 L = 0. Note
that in the observed regime all observables decrease monotonically with L,
yet β2 ∂βP0 must increase at some point to reach its asymptotic value.

4.III Peak width w
From the asymptotic expression we know that wana = 0 for β2 ∂β ln P0 and
wana ≈ 0.0180 for β2 ∂βP0 in the thermodynamic limit. Our data, together
with these analytic values, are shown in Fig. 3.63.6. Since the analytic form of
the scaling behaviour for w is lacking no best fit is performed.

5 Comparison of observables
Using our results we can compare the performance of our new observable
for the F model, β2 ∂β ln P0, with that of β2 ∂βP0 and that of χ. Asymptotic
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β2 ∂β ln P0 β2 ∂βP0 χ
βmax ana ln 2 ≈ 0.6931 0.7394 ln 2 (conj)

fit 0.6914(28) 0.6955(17) 0.6937(11)
h−1max

ana 0 0.3009 0 (conj)
fit −0.0095(16) 0.2161(17) 0

w ana 0 0.0180 0 (conj)
fit — — —

Table 3.1. All analytically known and conjectured asymptotic values of our
characteristics, together with our numerically extrapolated best values, are
shown for our three observables.

analytical and numerically extrapolated values for the three characteristics of
these observables are collected in Table 3.13.1 if available.

5.I Logarithmic derivative of P0
Our claim is that for an IOPT the logarithmic derivative of the order para-
meter is a suitable observable for numerical analysis: it must, by construction,
tend to a Dirac delta-like distribution at the critical point in the thermody-
namic limit. The extrapolated characteristics βfitc and hfitmax = −0.0095(16) for
β2 ∂β ln P0 are in agreement with this claim. Note that a linear fit for the in-
verse peak height as a function of ln−2 L yields a negative asymptotic result,
albeit close to zero, which indicate that there must be other leading finite-size
corrections that become important for system sizes outside the reach of the
simulations performed here.

5.II Ordinary derivative of P0
It is instructive to compare our new observable with a similar observable that,
by construction, should not be suitable for numerical analysis. Interestingly,
when the temperature at which β2 ∂βP0 peaks is extrapolated in a similar
fashion as for the logarithmic derivative the results are comparable. By con-
struction, however, we know that βmax must go to a much higher value in
the thermodynamic limit; there must be an inflection point outside the range
of simulated system sizes. Similarly, a linear extrapolation for the inverse
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peak height matches with the data, yet is far from the known asymptotic ex-
pression. Concerning the peak width one notes that the observed peaks for
L ≥ 128 are less wide than the peak of the asymptotic expression, cf. the
central panel in Fig. 3.23.2; thus w must start to increase at some larger system
size, even though it decreases monotonically in the simulated regime.

5.III Polarizability
Finally we turn to χ. Recall that this quantity is not known analytically but
there is a conjecture, Eq. (3.63.6), for its scaling behaviour. The observed βmax for
χ are very close to those of β2 ∂β ln P0 (cf. Fig. 3.43.4), and the extrapolated value
βfitmax = 0.6937(11) is in agreement with βc = ln 2. Together with the steadily
decreasing width for growing system sizes the data suggests that χ also tends
to a Dirac delta-like distribution. Our data fits well with the conjectured form
if higher-order finite-size corrections are taken into account, although it must
be noted that many alternative forms are also consistent with the data for
systems of sizes investigated here.

6 Conclusion
In this work we looked at infinite-order phase transitions (IOPTs), with the
case of the F model as a guiding example. We have suggested a new observ-
able that can be used for finite-size scaling analyses. For any system exhibiting
an IOPT with a smooth order parameter this observable is basically the log-
arithmic derivative of the order parameter, which by construction diverges
in the thermodynamic limit. For the F model this is β2 ∂β ln P0, where P0 is
the spontaneous staggered polarization. Since the exact asymptotic form of
P0 is known in the thermodynamic limit the F model is a good test case to
study the performance of our new observable in a finite-size scaling analysis.

For comparison we also have analysed two other observables. The first is
β2 ∂βP0, which we know to be bounded with peak away from the critical point
for all system sizes. Although it must therefore behave quite differently when
L → ∞, its observed characteristics turned out to be rather similar to that
of β2 ∂β ln P0 at the system sizes investigated. This illustrates that seemingly
reasonable yet incorrect conclusions, cf. the extrapolation to the critical point
in Fig. 3.43.4, may be reached for an IOPT when no analytical expressions are
available. The logarithmic corrections and large finite-size corrections for the
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F model require utmost caution in finite-size analysis; in particular one has to
take care to select appropriate observables in order to make hard claims by
means of extrapolation to the thermodynamic limit. Given the similarities in
FSS of different observables our work thus suggests choosing an observable
that is guaranteed to diverge at the critical point. In this way we ensure that
the FSS analysis is formally correct, although system sizes large enough to
reveal all leading-order corrections will likely be hard to reach.

The final observable that we have investigated is the (spontaneous
staggered) susceptibility χ = β [〈P0(C)2〉 − 〈P0(C)〉2], which is widely used to
analyse phase transitions. The observed characteristics show striking simil-
arities with those of β2 ∂β ln P0 and suggests that χ also diverges in the ther-
modynamic limit. The data are compatible with Baxter’s conjecture for χ ’s
scaling behaviour near criticality

Due to the ice rule the F -model is sensitive to the choice of boundary
conditions [111111, 112112]. Certain choices for fixed boundary conditions have
already been subjected to some numerical investigations [113113, 114114, 115115]. In
the near future we intend to analyse the influence of boundary conditions
using finite-size scaling. More generally it would be interesting to test our
observable for other models with an IOPT such as the XY -model.


