
Topological phases and phase transitions in magnets and ice
Keesman, R.

Citation
Keesman, R. (2017, June 7). Topological phases and phase transitions in magnets and ice.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/49403
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/49403
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/49403


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University 
dissertation. 
 
Author: Keesman, R. 
Title: Topological phases and phase transitions in magnets and ice 
Issue Date: 2017-06-07 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/49403
https://openaccess.leidenuniv.nl/handle/1887/1�


2 Skyrmions in square-lattice
antiferromagnets

The ground states of square lattice two-dimensional antiferromagnets with
anisotropy in an external magnetic field are determined using Monte Carlo
simulations and compared to theoretical analysis. We find a new phase in
between the spin–flop and spiral phase that shows strong similarity to skyrmi-
ons in ferromagnetic thin films. We show that this phase arises as a result of
the competition between Zeeman and Dzyaloshinskii-Moriya interaction ener-
gies of the magnetic system. Moreover, we find that isolated (anti-)skyrmions
are stabilized in finite-sized systems, even at higher temperatures. The exist-
ence of thermodynamically stable skyrmions in square-lattice antiferromag-
nets provides an appealing alternative over skyrmions in ferromagnets as
data carriers.1

1 Introduction
Skyrmions have been the topic of intense research, in ferromagnetic ma-
terials [4141, 4242, 4343, 4444, 5757, 5858, 5959, 6161, 6666] as well as numerous other sys-
tems [3535, 3636, 3737, 3838, 3939, 4040]. Skyrmions in ferromagnets have promising
characteristics that make them suitable for data storage and transfer: they
can be driven by low critical currents [4545, 4646], and they are able to move past
pinning sites [7979].

Skyrmions in antiferromagnetic (AFM) thin films are perhaps more suit-
able as data carriers than their ferromagnetic counterparts. Firstly, antifer-
romagnets are more prevalent in nature than ferromagnets, allowing for a
wider range of material properties. Secondly, skyrmions in an antiferromag-
net are less sensitive to magnetic fields. Thirdly, they move faster, and in

1The contents of this chapter are largely based on the work of R. Keesman, M. Raaijmakers,
A. E. Baerends, G. T. Barkema, and R. A. Duine [22]. M. Raaijmakers and A. E. Baerends were
actively involved in the construction of the hamiltonian density in Eq. (2.22.2) and calculating
the energy densities of various phases as described in Sec 2.52.5. We thank A. Roldán-Molina
and A. S. Núñez for their feedback.
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the direction of the charge current (while skyrmions in ferromagnets exper-
ience a Magnus force with a significant component perpendicular to their
trajectory), which makes it easier to control them [8080]. For these reasons,
skyrmions have been investigated in many different antiferromagnetic sys-
tems, ranging from doped bulk materials [8181], Bose-Einstein condensates [8282],
various triangular lattice antiferromagnets [8383, 8484], to nanodisks [8585]. Isolated
AFM skyrmions [8686, 8787], as well as moving skyrmions in AFMs have been
considered theoretically [8888, 8989, 9090].

In this chapter we study thermodynamically stable inhomogeneous magnet-
ization textures in square-lattice antiferromagnets (SLA’s) with Dzyaloshinskii-
Moriya (DM) interactions. The DM interactions that we consider arise either
from bulk inversion asymmetry (symmetry class Cnv ) or from structural in-
version asymmetry along the thin-film normal direction. An example of
the latter is an interface between a magnetic metallic system and a non-
magnetic metal with strong spin-orbit coupling. For ferromagnetic sys-
tems, tunable interface-induced DM couplings have indeed been demon-
strated [4848, 4949, 5050, 5151, 5252, 5353, 5454]. Such interfaces typically also give rise to
perpendicular anisotropies, which we therefore also take into account. Finally,
we also consider an external magnetic field normal to the thin film. Previous
work by Bogdanov et al. [8686] considered the same system at zero temperature
and in the continuum limit. These authors identified three phases: an anti-
ferromagnetic phase, a spin–flop phase, and a phase where inhomogeneous
structures persist. While examples of structures in the latter phase were given,
no further phase boundaries were identified within this phase. One of our
main results is that we find a distinct phase pocket that bounds a 2q skyrmi-
onic phase and separates it from a spiral (1q) phase. Furthermore, while
in infinite systems skyrmions are not found as thermodynamically stable re-
gions of the phase diagram, we confirm the existence of stable skyrmions in
finite-sized systems below the Curie temperature.

The chapter is organized as follows: first, we present the system under
study, by defining the hamiltonian that is used in Monte Carlo (MC) simula-
tions. After that, we discuss the various spin textures and their characteristics
that arise in SLA’s. We also construct the phase diagram from MC simula-
tions, complemented by analytical results based on a continuum model. We
dedicate the last two sections to the interaction energies of skyrmions, and to
skyrmions in finite-sized systems, respectively, after which we conclude with
a discussion and summary of our results.
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2 Model
We are interested in the equilibrium spin configurations in films of SLA mater-
ials. For this purpose, we consider a square lattice of length L in the xy-plane
with Heisenberg spins Sr of unit length at position r. Nearest neighboring
spins are coupled through an antiferromagnetic Heisenberg term J > 0 and
a Dzyaloshinskii-Moriya term D and are affected by anisotropy K and an ex-
ternal magnetic field B in the ẑ-direction. The effective hamiltonian that is
used in our MC simulations is given by

H =J ∑
r

Sr · (
Sr+x̂ + Sr+ŷ

)

+K ∑
r

(Sr · ẑ)2 − B ∑
r

Sr · ẑ (2.1)
−D ∑

r

(
Sr × Sr+x̂ · ŷ − Sr × Sr+ŷ · x̂

).

For theoretical analysis, we consider a continuous field description of the
discrete hamiltonian in Eq. (2.12.1) (see also Ref. [9]). Because of the antifer-
romagnetic nature of these materials, it is natural to define sublattices with
magnetization m1 and m2 organized in a checkerboard configuration and
put the lattice constant to unity. For antiferromagnets with large Heisenberg
interaction we expect slowly varying periodic structures and the staggered
magnetization l = (m1 − m2)/2 to be large while the total magnetization
m = (m1 +m2)/2 is expected to be much smaller, ie, |l| ≈ 1 and |m| � |l| [9191].
We also assume that the spatial derivatives of m can be neglected and that the
contribution of the total magnetization to the anisotropic term is negligible
compared to that of the staggered magnetization. This results in the following
hamiltonian density

H = J
2

[( ∂l
∂x

)2
+

( ∂l
∂y

)2
+ 8m2

]
− Bmz + Kl2z (2.2)

+ D
(

lz ∂lx
∂x − lx ∂lz

∂x + lz ∂ly
∂y − ly ∂lz

∂y
)

.

Since spins are normalized to unity, such that |mi| = 1, the staggered and
total magnetization must satisfy m2 + l2 = 1 and m · l = 0 and minimizing the
hamiltonian density results in m = −l × (l × h)/(8J). Substitution leads to a
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hamiltonian density that is only dependent on the staggered magnetization:

H = J
2

[( ∂l
∂x

)2
+

( ∂l
∂y

)2]
+ B2

16J
[
l2z − 1

]
+ Kl2z (2.3)

+ D
(

lz ∂lx
∂x − lx ∂lz

∂x + lz ∂ly
∂y − ly ∂lz

∂y
)

.
Our simulations focus on systems for which the DM coupling and the coupling
to the magnetic field are of the order of the Heisenberg coupling but assume
that anisotropy strength is small. For small fields all higher order interactions
like dipole-dipole interactions are negligible in antiferromagnets because the
net magnetization is small. Note that the continuous field description is only
valid for small fields and small DM coupling where modulations are large
compared to the lattice distance.

3 Phases
We find that systems described by the hamiltonian given by Eq. (2.12.1) have
four distinct phases at zero temperature: the antiferromagnetic and spin–
flop phase are both homogeneous, whereas the spiral and 2q phases are
modulated, i.e., inhomogeneous phases with 1 and 2 dominating wave modes
respectively.

There are two homogeneous phases: the antiferromagnetic phase in which
the staggered magnetization points along the z-axis, and the spin–flop phase
in which the staggered magnetization lies in the xy-plane. The spiral phase
emerges for large enough DM coupling for which the staggered magnetiza-
tion shows the same characteristics as ferromagnetic spins in a spiral state.
Finally, there is a bounded region for which the 2q phase emerges, which
has a similar texture to the spiral phase but in which the width of the spirals
varies in length periodically. Configurations of these phases in real space, in
terms of the staggered magnetization, and the norm of their Fourier modes
are shown in Fig. 2.12.1. The Fourier modes are defined as

Aq = 1
L2

∑
r

Sr exp
[2πi

L q · r
]
. (2.4)
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Figure 2.1. Various types of configurations encountered in MC simulations
of the model described by the Hamiltonian in Eq. (2.12.1). The antiferromag-
netic (a), spin–flop (b), spiral (c), and 2q phase (d) are shown from left to
right in typical real spin configuration (top) and staggered magnetization
(middle) for an antiferromagnetic system of size L = 32 at zero temper-
ature. The arrows represent the local magnetization in the xy-plane and
the background colour shows the magnetization pointing up (red) or down
(purple). The norm of the Fourier modes (bottom), as defined in Eq. (2.42.4),
of these configurations show the distinctive modes that define the phases.
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4 Phase diagram from simulations
In one elementary move of our MC simulations, a random spin is selected
and replaced by a new spin vector, drawn uniformly from a spherical cap
around the original spin vector. The size of this cap is chosen such that
the acceptance rate in the Metropolis algorithm is roughly 50%. The time
step is defined such that each spin makes an elementary move once per
unit of time. At each temperature typically 4500 time steps are taken before
measurements are done. During annealing, the temperature is reduced from
well above the critical temperature to well below it in 200 temperature steps.
These measurements result in data obtained over a wide range of parameters
and temperatures.

We consider the Fourier transform of the spin vectors as defined by Eq. (2.42.4)
below. All four phases can be characterized by Fourier peaks. We define the
homogeneous, spiral, and 2q phases as having 1, 2, or 4 nonzero-mode peaks
respectively. To construct the phase diagram from Monte Carlo simulations
based on the discrete hamiltonian from Eq. (2.12.1) we first anneal 10 different
systems of size L = 32 at some parameter values J , D, B, and K. From these
states the one with the lowest energy is chosen, and the process is repeated
for different parameter values. For all these prospective ground states the
phase and the area in the phase diagram for which they have the lowest
energy is determined. From this the B-D-phase diagram can be constructed
for various values of anisotropy K. The phase diagrams are qualitatively
different for systems with easy-axis (K < 0) or easy-plane (K > 0) anisotropy,
as can be seen in Fig. 2.22.2.

5 Analytical phase diagram
We also construct the phase diagram by using a number of Ansätze for the
various phases. The parameters in these Ansätze are obtained from min-
imizing the hamiltonian density from Eq. (2.32.3) for these phases. For the
antiferromagnetic phase we assume l = (0, 0, 1), resulting in an energy dens-
ity HAF = K. The spin–flop phase is characterized by l = (cos φ, sin φ, 0)
with energy density HSF = −B2/(16J). For the spiral phase, l is domin-
ated by a rotation along the direction of the wave in the (1, 1) direction such
that l = (sin(q · r) cos θ, sin(q · r) sin θ, cos(q · r)). Averaging over the length of
one modulation and minimizing with respect to q leads to an energy density
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HSP = −B2/(32J) − D2/(2J) + K/2. A phase transition between the antifer-
romagnetic and spiral, and the spin–flop and spiral phase occurs along the
lines

B = 4
√

−(JK ± D2), (2.5)
for easy-axis anisotropy. For easy-plane anisotropy, we assume for the
spiral phase that the length is also variable, i.e., l = l(sin(q · r) cos θ, sin(q ·
r) sin θ, cos(q · r)). Following the same procedure, we find that l =√B2 + 8D2 − 8JK/B minimizes the energy. The energy density for the spiral
is HSP = −(B2 + 8D2 − 8JK)2/(32B2J). In the case of easy-plane anisotropy,
the phase transition between the spiral and spin–flop phase is then given by

B = 2
√

2(1 + √2)√D2 − JK. (2.6)
From simulations we find, as is explained further below, that the 2q phase
lies in a K-independent regime of moderate values for D/J . With very small
modulated structure like these, assumptions, such as very small total magnet-
ization m do not hold any longer, and so the continous field description in
Eq. (2.32.3) does not apply. These fast varying structures, including many higher-
order Fourier modes, as can be seen in Fig. 2.12.1(d), mean a simple Ansatz, to
reliably calculate energy densities for the 2q phase, could not be found.

We have constructed similar phase diagrams for various strengths of aniso-
tropy K/J ∈ 0, ±0.02, ±0.04, ±0.1. The critical strengths B0 at D = 0 and D0at B = 0 at which the transitions take place are obtained from Eqs. (2.52.5,2.62.6),
yielding B0 ∼ 4√|JK| and D0 ∼ √JK, consistent with results in Ref. [22].
These become larger for increasing strengths of anisotropy. In the simula-
tions, the size of the system limits the longest wave length of the magnetization
texture. For larger anisotropy, simulations in finite sytems are therefore in
better agreement with analytical calculations. An interesting point is that the
2q phase is always sandwiched between the spin–flop and spiral phase, at con-
stant values of DM interaction. Its size is relatively insensitive to the strength
of anisotropy. This implies that the size of modulations in the 2q phase in
antiferromagnets is related to the pitch length p ∼ J/D, which is a measure
for the length of modulation. Therefore, p only has a limited range of values,
unlike the size of skyrmions in ferromagnets.
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Figure 2.2. The complete B–D phase diagram for antiferromagnetic materi-
als with easy-plane anisotropy K/J = 0.1 (top panel) and easy-axis anisotropy
K/J = −0.1 (bottom panel) at zero temperature. The grey data points display
parameter values at which Monte Carlo simulations were performed. From
these simulations, the phases were determined, shown as different colours.
The red data points show the boundary of the 2q phase, as obtained from
these MC simulations for fixed values of B/J . The analytical solutions for
the phase transitions as given by Eqs. (2.52.5,2.62.6) are shown as solid black lines.
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6 Interaction energies
To investigate further the stability of the 2q phase in this model, we look at the
energy contributions E of all interactions in the model along a line with fixed
B/J = 3.2, through the 2q phase in the phase diagram. With increasing DM
interaction and no anisotropy, there is a transition from the spin–flop phase
to the 2q phase at D/J = 0.76. If the DM interaction is increased further, the
spiral phase is entered at D/J = 0.84, as can be seen in Fig. 2.32.3. At the phase
transition the contributions of the external field B and the DM interaction D to
the total energy make distinctive jumps. While the spin–flop state minimizes
the energy by having a net magnetization along the external field direction,
the spiral mode makes optimal use of the DM interaction. The 2q phase gives
a compromise between the two, and so a finite area between the two emerges
in which neither of them is optimal, and the 2q phase prevails.
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Figure 2.3. The energy contributions E/J to the ground state of the inter-
actions with coupling parameters J , D, B, and K are shown as a function
of D/J at parameter values J = −1, B = 3.2, and K = 0 for system of size
L = 32. The system undergoes two phase transitions at D/J = 0.76 and
D/J = 0.84 between the spin–flop, 2q , and spiral phase, respectively. These
are depicted as vertical grey lines. The discrete jumps in various energy
contributions suggest first-order phase transitions.

7 Skyrmions
An important question is whether the objects in the 2q phase as shown in
Fig. 2.12.1 can be called skyrmions, as they are not fully isolated topological
objects. For a ferromagnet, the (anti)skyrmion is defined as a topological
object for which the winding number w of the magnetization is nonzero:

w = 1
4π

∫
dxdy n · (∂xn × ∂yn

). (2.7)
In case of the antiferromagnet, the winding number w of the staggered mag-
netization can be defined instead. Although the staggered magnetization in
an antiferromagnet behaves similarly as the normal magnetization in a ferro-
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magnet there are some distinctive differences. The antiferromagnet is sym-
metric under the n Ï −n transformation, such that there is no difference
between a skyrmion and an antiskyrmion, and neither the up or down regime
in terms of the staggered magnetization is favoured over long distances. Thus
there can be no lattice of isolated thermally-activated topological objects like
in a ferromagnetic system, without breaking this symmetry.

In finite-size systems with open boundaries, skyrmions can, however, be
stable as the boundaries break the sublattice symmetry. We find that skyrmi-
ons in finite-sized systems persist even if the temperature is increased up to
the Curie temperature. To show this, we investigate a single skyrmion in a
small system of size L = 8 with open boundaries at D/J = 1, B/J = 4 and
K = 0, deep in the 2q phase (see inset of Fig. 2.42.4(a)). The system size is
chosen as the maximum size at which at most one skyrmion forms. Start-
ing well above the critical temperature we anneal the system as discussed
above. Due to sublattice symmetry, the system gets trapped in a state with
either a skyrmion or an antiskyrmion in the center. From the susceptibility
χw = 〈w2〉 − 〈w〉2 of the winding number of the staggered magnetization,
which is at a minimum at the critical temperature β−1c ≡ kBTc/J , we find
βc ≈ 3.9. Results from 104 annealings allow for an accurate picture of the
expected number of skyrmions in this system at a certain temperature. In
particular, we determine the probability density ρ(w, T) for a value w of the
winding number at temperature T . Results for χw and ρ(w, T) are shown in
Fig. 2.42.4. Within margins of error, the system contains roughly half of the
time (49.54 ± 1.0%) a skyrmion instead of an antiskyrmion, as expected from
symmetry arguments for temperatures below the critical temperature. No-
tice that the winding number is not exactly an integer due to edge effects.
In short, this shows that (anti)skyrmions as stable isolated topological objects
can exist in finite-sized systems at temperatures below the Curie temperat-
ure. Moreover, the finite size turns out to stabilize skyrmionic structures well
outside the parameter range where the 2q phase is stable2.

2We thank A. Roldán-Molina and A. S. Núñez for correspondence about this point.
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Figure 2.4. Upper panel: susceptibility of the winding number of the
staggered magnetization χw as a function of temperature kBT/J , for a system
of size L = 8 with couplings D/J = 1, B/J = 4 and K = 0. These parameters
are chosen such that a single skyrmion emerges (see inset). The arrows
represent the local Néel vector in the xy-plane and the background colour
shows the z-component as positive (red) or negative (purple). A vertical line
is drawn at the temperature kBT/J ≈ 0.25 at which point the susceptibility
is minimal. Lower panel: probability density ρ(w, T) of the winding num-
ber w of the staggered magnetization as a function of temperature. Below
kBT/J ≈ 0.25, indicated by a vertical line, the system chooses a configuration
with either a skyrmion or an antiskyrmion.
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8 Discussion and conclusion
In summary we have shown that certain types of antiferromagnetic thin films
have four phases at zero temperature including a 2q phase which was not
reported before. With Monte Carlo simulations and Fourier analysis, we con-
structed a phase diagram. The 2q phase has close relations to skyrmions in
ferromagnetic systems, but due to symmetries a lattice of topologically isol-
ated objects is not expected. We have shown however, that in finite-sized sys-
tems and at nonzero temperatures (anti-)skyrmions can be thermodynamic-
ally stable configurations. The existence of thermodynamically stable skyrmi-
ons in SLAs provides an appealing alternative over skyrmions in ferromagnets
as data carriers.

To address finite-size effects and effects of periodic boundaries, we verified
that for smaller systems of size L = 16 the phase diagram is not signific-
antly different. At very low B and D finite-size effects are stronger as long-
wave-length modulated states do not fit into the small systems anymore. For
parameters yielding the 2q phase, we verified that the conclusions presented
above, which were obtained for systems of size L = 32, still hold if the system
size is increased to L = 128. We also verified that helical boundaries with
a shift up to half a period of the 2q phase only result in a rotation of the
q-vector but otherwise do not affect the phase diagram.

Since stabilizing the 2q phase requires large fields B ∼ J , the best candidates
for experimental verification are antiferromagnets with low critical temper-
ature Tc ∼ J/kB so that the required fields can be more easily achieved. A
possibility for experimental observation would be a monolayer of an antifer-
romagnetic compound that is probed by a scanning tunneling microscope,
similar to the experiments with Fe [6666] in which temperature and fields have
similar energy scales.

In future work we intend to study quantum fluctuations of the ground states
in the phase diagram, and how the antiferromagnetic textures interact with
spin and heat current.




