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Introduction

This work is a culmination of my efforts as a PhD student at Instituut-Lorentz
for Theoretical Physics at Leiden University. Each of the following four
chapters in this Thesis is based on published work (or accepted for pub-
lication) and can be read separately. These works, however, also share some
similarities. In particular, both the method of investigation, mainly Monte
Carlo simulations, and the overarching topic of topological phases and phase
transitions are a recurring focus in each of these chapters.

The next sections were written for readers who want to familiarize them-
selves more with these topics. The first three sections treat general concepts
in my computational physics research, whereas the last two sections are good
starting points for understanding the models used in each of the following
four chapters in this Thesis.

Topological phases and phase transitions
First, we clarify what is meant by topological phases and phase transitions.
Phases and topological phases are defined, after which phase transitions are
discussed.

The phase of matter is a term that can only be used macroscopically.
Whatever fluctuations are going on at the microscopic level averages out
at the macroscopic level which allows for the description of the system in
terms of macroscopic bulk properties in the thermodynamic (infinite size)
limit. These properties are homogeneous over (a part of) the system at a
macroscopic level. Examples are the volume of a gas, the temperature of
a liquid, or the magnetization of some solid. When such properties can be
defined, the system is in a certain phase.

Very recently (Oct 2016) David Thouless, Duncan Haldane, and Michael
Kosterlitz were awarded the Nobel Prize in Physics "for theoretical discov-
eries of topological phase transitions and topological phases of matter" [77].
Among other results they discovered that, in some cases a topological integer,
like the winding number in a plane or the number of holes in an object, can

ix



x Introduction

be assigned to a physical system. When this number is non-zero the system
is in a topologically non-trivial phase or, in short, a topological phase.

Macroscopic properties of the system can vary due to changes of the system
while being in a certain phase. An example is the temperature dependence of
the specific heat of liquid water at constant pressure. When the system is on
the verge of going from one phase into another, however, usually at least one
macroscopic property changes drastically. To distinguish between a change
within a phase or between phases one has to define the order parameter. The
order parameter is defined as being zero in one phase and non-zero in the
other[88] making the order parameter non-analytic by definition. In ferromag-
netic systems the total magnetization can serve as the order parameter as it is
zero above the Curie temperature and nonzero below it. The phase transition
is then unambiguously defined as the point at which the order parameter
changes from zero to non-zero.

There is a plethora of phase transitions that can all be grouped into certain
types of phase transitions, as well as specific classes. The different types of
phase transitions are nowadays defined by the behaviour of the temperature
of the system with respect to the energy that is poured into it.

An example of a first-order phase transition is the boiling of a cup of
water. As more energy is injected into the system via heating the temperature
increases until it reaches the boiling point. All the heat that is injected into the
system from that point onwards is being used to evaporate the liquid water
into its gaseous form instead of increasing the temperature. Only when all of
the water is gaseous will the injection of energy into the system result in an
increase of temperature. The energy as a function of temperature makes a
discrete jump. The first derivative of the energy with respect to temperature
diverges, which makes this phase transition of the first order.

Many magnetic phase transitions are of the second order. If you take an
ordinary ferromagnet at high temperatures in a small magnetic field, it will
stay disordered due to all the thermal fluctuations. When the temperature
is gradually lowered the system will, at some point, almost instantly collapse
into an ordered ferromagnetic state aligned along the external magnetic field.
These states behave quite differently, and the energy as a function of temper-
ature has a kink at the phase transition, at which the derivative is not well-
defined, resulting in a divergence in the second derivative of the energy with
respect to temperature. In a similar way all higher-order phase transitions
can be defined.

The systems in the first two chapters have a second-order phase transition.
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Close enough to the critical point, susceptibilities of observables show power-
law decay, and it is the set of exponents from the power-laws that define in
which class of phase transitions the system belongs to. It is interesting to
note that different microscopically defined systems can have the same critical
behaviour and are thus in the same universality class [99].

These systematic definitions of the order of a phase transition can be con-
tinued to third and higher order but the most curious type is that of infinite
order. In this case the energy as a function of temperature is non-analytic, as
it is described by two different analytic functions on both sides of the phase
transition, but yet is completely smooth. In other words, the energy nor its
derivatives have a discontinuity. Chapter 33 and 44 of this Thesis treat a system
that has a Berezinskĭı–Kosterlitz–Thouless transition [1010, 1111, 1212], which is an
infinite-order type phase transition.

The types of phase transitions can also be distinguished by whether or
not the state of matter changes from and to a topologically non-trivial phase.
Phase transitions into and from a topologically non-trivial phase are called
topological phase transitions whereas transitions between two topologically
trivial phases are usually just called phase transitions. Certain phase trans-
itions, however, are between two topologically trivial phases but involve the
binding or proliferation of topological excitations called (anti)-vortices. These
types of phase transitions are usually also called topological phase transitions
and the most notable example is the phase transition in the two-dimensional
classical XY -model, a lattice model in which vectors on a ring are energet-
ically favoured to align with neighbouring vectors, which is also of the KBT
type. The XY -model is also closely related to the model used in Chapter 33
and 44.

It is interesting to note that for the XY -model there is a different type of
long-range order known as quasi-long range order. Usually one can define a
completely disordered phase, that is positionally and orientationally isotropic,
and a crystalline phase that possesses long-range order in which local inform-
ation allows you to extrapolate the exact local configuration at any distance. In
two dimensions, however, it has been shown, first by Berenzinskĭı, that there
can also be quasi long-range order leading to a topological phase transition.
In this case there is still bond-orientational order but no longer any positional
order. In other words, from local information, one can still determine the po-
sitions of (quasi)particles relative to each other but nothing can be said about
their absolute positions.
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Simulation methods
Simulations are a valuable tool, not only to compare to analytical results, but
more so to address research questions currently out of reach of analytical
methods. Throughout this work all simulations have been done using some
form of the Monte Carlo method [1313]. It is very successful in approximating
the exact probability distribution of a system with lots of degrees of freedom
and a relatively smooth energy landscape.

Another very important concept is parallel tempering [1414]. This is another
algorithm-independent method to explore phase space at various temperat-
ures in parallel to reduce the difficulties that arise when the landscape is
not so smooth. It exchanges configurations at different temperatures as to
overcome energy barriers one might encounter.

Monte Carlo simulation
Monte Carlo simulations are probabilistic simulations that use random inputs
to mainly study systems that are otherwise too difficult to solve analytically. A
big class of problems considers a phase space P where each point C ∈ P has
a certain weight wC > 0. If the weights are known then the probability pC of
state C occurring is given by its relative value pC = wC/Z , where Z := ∑

C wCis the partition function. Monte Carlo simulations can be used to explore the
phase space and procure draws from the probability distribution such that the
expectation values of observables can be estimated.

In thermal equilibrium, for a classical system at temperature T connected
to a thermal bath, the probability of microstate C to occur is given by the
Boltzmann weight

pC = 1
Z exp(−βEC) , (0.1)

where β := 1/(kBT) is the inverse temperature, kB Boltzmann’s constant, and
EC the total energy of C [1515]. In turn this means that the occurrence probab-
ility ratio rCD := pC/pD = exp(−βECD) only depends on the temperature and
energy difference ECD := EC − ED between the states.

A Markov process [1616] describes a transition with probability PCÏD between
states C and D that only depends on these states. The history of the states the
system was in before this process is irrelevant. A typical Monte Carlo simu-
lation uses such a process in which C and D are relatively closeby, e.i., ECD is
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not too large, such that rCD does not deviate too much from unity. This type
of sampling is called importance sampling [1717] in which most computation
time is spent in sets of microstates that have the largest contributions to the
partition function.

To ensure correct sampling of the equilibrium distribution there are two
very important conditions that must apply to the simulation. The first is global
balance which states that the rate from and to state C must be equal∑

D
pCPCÏD = ∑

D
pDPCÏD . (0.2)

If they are equal then the system is in equilibrium. A much stricter condition
is that of detailed balance

pCPCÏD = pDPDÏC , (0.3)
which is easier to prove for algorithms and implement. Systems with detailed
balance also satisfy global balance by definition. There are, however, some
interesting algorithms that break detailed balance [1818]. The second condition
is that of ergodicity which states that every configuration C ∈ P must have
some probability of occurring if the Markov process is continued long enough
such that all of P is probed eventually.

From Eqs. (0.10.1,0.30.3) we conclude that if the transition probabilities satisfy
PDÏC
PCÏD

= exp(−βECD) , (0.4)
then the draws from P are weighted properly. To maximize the acceptance
of proposed transitions the best choice for the transition probability is given
by

PCÏD =
{exp(βECD) , ECD < 0

1 , else . (0.5)
Algorithms that satisfy this are known as Metropolis algorithms [1919].

These types of Monte Carlo simulations allow you to probe the parts of a
large phase space that are most relevant at a certain temperature. Additionally,
if the starting point of the simulations are out of equilibrium the systems will
thermalize automatically after enough time has passed. If the whole of phase
space is of interest, however, simulations need to be run over a temperature
range and large improvements of data quality can be obtained by making use
of parallel tempering.
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Parallel tempering
If various Monte Carlo simulations are run at different temperatures each
simulation probes different regions of phase space. Even at a single temper-
ature there might be disjoined regions of alike configurations and if a Monte
Carlo simulation only updates to very similar configurations it is likely to stay
in one of these regions for a long time. The Ising model is an example of
such a system with a degenerate ground state where spins are all either up or
down. If you only flip single spins at a time then at low temperatures it will be
very unlikely for the system to reverse its netto magnetization and ergodicity
is broken in practice. At higher temperatures the energy barriers between
different regions become of less importance and transitions between these
regions become easier. Parallel tempering, also known as replica exchange
Markov chain Monte Carlo (MCMC) sampling, uses this to its advantage
by allowing simulations at different temperatures to swap configurations. At
high temperatures the configurations are more likely to change rapidly and
by swapping back to low temperatures they might end up in another dis-
joined region than where they came from. Parallel tempering is also mostly
independent of the update algorithm used. As long as an update algorithm
can be used at any temperature parallel tempering can be wrapped around
it. It is most successful for systems with lots of energy barriers and disjoined
regions, like glassy systems.

To explain the general form of parallel tempering we need to distinguish
between a microstate and the tuning parameters that characterize a system.
In general we can define the microstate to contain all the information of the
degrees of freedom. For a spin glass the randomness and temperature would
be part tuning parameters and the spins part of the microstate. Microstate C
has an energy EC or EC′ depending on which parameters it is evaluated for.
The inverse temperatures of the systems are β and βC′ respectively. Similarly
as for a normal Monte Carlo move described above it follows from detailed
balance that

PCD′ÏC′D
PC′DÏCD′

= pC′pD
pCpD′

= exp(−β′EC′D′ + βECD) . (0.6)
If only the temperatures differ between the systems and the energies are
parameter independent, i.e., ECD = EC′D′ , this simplifies to

PCD′ÏC′D
PC′DÏCD′

= exp(∆βECD) , (0.7)
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with ∆β = β−β′. Using Metropolis the swapping probability is then maximized
when

PCD′ÏC′D =
{exp(−β′EC′D′ + βECD) = exp(∆βECD) , ∆βECD < 0

1 , else . (0.8)

In other words; we always accept a swap if it moves the energetically favour-
able microstate to the colder system, and otherwise swap with some probab-
ility smaller than one.

Given a set of temperatures the above provides all the means to implement
parallel tempering. Choosing an optimal set of temperatures is, however, an-
other problem that has to be faced before the simulations can be run. The set
of temperatures is typically bound by the temperature range of interest, most
likely a large range around a phase transition starting from the unordered
state to well below the critical temperature. Typically around the phase trans-
ition the specific heat, and thus the relative energy fluctuations, are rather
large and so temperature differences must decrease to have the same over-
lap of energy distributions for the different temperatures. The higher the
specific heat the more simulations must be run in a temperature range to
ensure the same swapping probability as in a region with low specific heat.
There are iterative methods of finding the most optimal temperature set that
minimize the time a configuration takes going from the lowest temperature
to the highest temperature and back [2020]. Note that there is still a choice to
be made for the size of the temperature set. If it is too small and the swap
probability goes down due to energy differences being too large but with too
many temperatures the configuration will take much longer to perform its
random walk from highest to lowest temperature.

Data analysis methods
Although it is very important to gather data using efficient algorithms it is
equally important to correctly analyse this data afterwards. In almost all cases
are we interested in the behaviour of a system in the thermodynamic limit,
meaning we would like to know what happens for large systems. Unfortu-
nately, simulations only allow for the investigation of systems at finite size, but
it is the behaviour of the system as a function of increasing system size that
allows us to make predictions for the asymptotic case of an infinite system.
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This is where finite-size scaling [1313, 2121] or other extrapolation methods come
in.

Another very elegant analysis tool is the multi-histogram method [2222, 2323],
where data obtained at specific temperatures is combined and extrapolated to
give you a best-estimate analytical function of any observable based on the
data. This method works particularly well for large systems for which data
accumulation is more tedious than the post analysis.

Finite-size scaling
Finite-size scaling (FSS) is an analysis method to extrapolate simulation results
for finite systems to the thermodynamic limit. The outcome of FSS used on a
set of data obtained for finite-sized systems is entirely dependent on the data
set and the assumed mathematical form of convergence to the asymptotic
value.

In most cases an approximation for the behaviour of a certain observ-
able for large system sizes is made, taking only the leading-order finite-size
effects into account. This leads to the separation of the behaviour of an ob-
servable into a size-dependent part and some dimensionless function. If the
large-system behaviour is assumed correctly and the fitting parameters valued
correctly then all data for large enough systems will collapse onto the same
unknown dimensionless function for which you do not need any prior know-
ledge. An example of FSS for the two-dimensional Ising model is shown in
Fig. 0.10.1 in which the magnetic susceptibility per site χ for systems of various
linear sizes L are collapsed onto each other.

For second-order phase transitions this works particularly well as power-
law divergences can be scaled rather easily. The pre-factors and exponents
that are obtained from FSS can then be used to extrapolate the behaviour of
large enough systems. There are, however, also some challenges regarding
FSS that have to do with the reliability of the data. The scaling assumptions
work well for large systems close enough to the critical point, and so there
are systematic deviations between the data and the dimensionless function for
finite-sized systems and away from the critical point. Practically that means
that data for small systems or away from the critical point must be assigned
a larger systematic error on top of the random error, although it is hard to
quantify. For large systems, or close to the critical point, random errors are
typically large due to larger fluctuations that occur in these situations.

Many other techniques have been developed to extrapolate to the asymp-
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totic limit. The scaling encountered in the Kibble-Zurek mechanism [2424, 2525]
is interesting to mention as it describes a type of finite-time scaling that can be
applied to non-equilibrium dynamics of a system that undergoes a continuous
phase transition. The Binder cumulant [2626] is a quantity in terms of higher-
order cumulants of the order parameter that, in the asymptotic limit, has a
different constant value at each side of the critical point. Since it only weakly
depends on system size this quantity changes between these asymptotic val-
ues at the same (critical) point for various system sizes giving an accurate
estimate for the critical value.
Multi-histogram method
The multi-histogram method [2222, 2323] is based on the idea that every meas-
urement you do gives you information about the free energy. In principle, if
you know the free energy you can extract any equilibrium property for the
system. At a specific temperature your system will reach equilibrium with
a certain average energy, but fluctuations allow for energies for the system
above or below this average leading to a probability distribution of the energy.
For slightly different temperatures this function of the energy will also dif-
fer only slightly, and so the whole probability function estimated at a certain
temperature can be reweighed to approximate the probability function at a
nearby temperature. In case of the multi-histogram method, all data collec-
ted at a set of temperatures is combined to give information over a larger
temperature regime.

It is important to note that, unless an exact value for the partition function
at some (typically zero or infinite) temperature is known, the partition func-
tion can only be estimated up to some overall factor. For most observables,
however, this overall factor is divided out and of no importance. Therefore
we omit this overall factors in the definitions below.

Let us assume that the simulations have been done at a set of inverse tem-
peratures βi with ni measurements taken at βi . The iterative expression for
the best estimate, given the set of measurements, of the partition function Ziat βi can then be expressed as

Zi = ∑
k,s

1∑
j njZ−1j exp(βi−βj )Eks , (0.9)

where the sum is taken over all measurements and E is the total energy of
the system. Starting from a set Zi this expression allows for the convergence
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of Zi to the true best estimate for Z(β) given the set of measurements. The
analytical expression for Z(β) in terms of Zi is given by

Z(β) = ∑
k,s

1∑
j njZ−1j exp(β−βj )Eks . (0.10)

Any observable O can be expressed in terms of the data similarly as for the
partition function. Let Oks be the s-th instantaneous value of some observable
O measured in this system at βk . The best estimate for O(β) is then given by

O(β) = 1
Z(β)

∑
k,s

Oks∑
j njZ−1j exp(β−βj )Eks . (0.11)

To ensure accurate results measurements must be made over a complete
range of the energy spectrum. This is satisfied when the energy probability
functions at neighbouring temperatures all overlap. The energy probability
functions for intermediate temperatures can then be interpolated accurately
as enough measurements around this peak have been performed. The reason
this method works so well with parallel tempering is that the requirement of
overlapping energy probability functions needs to be met for both methods.
One problem arising in the investigation of second order phase transitions is
the divergence of the specific heat for increasing system size. In other words;
around the critical temperature, a small change in temperature leads to a
large difference in average energy, and so the temperature difference must
be smaller to ensure overlap of the probability distributions of the energies.
Luckily, for the F -model which we study in Chapter 33 and 44 of this Thesis,
the specific heat per site is bounded, even for infinite sized systems, and so
this problem does not arise.

In short, the multi-histogram method allows for the interpolation of any
observable as a function of temperature that lies within the original set of
temperatures at which the simulations were performed, as long as all in-
stantaneous energies and values of that observable are saved. The only re-
quirements are that the probability functions of the energies at neighbouring
temperatures are reasonably close to ensure some overlap.
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Figure 0.1. The magnetic susceptibility per site χ for the two-dimensional
Ising Model is shown as a function of scaled inverse temperature βJ in
(a) for various linear system sizes L and collapsed in (b). The data only
collapses for correct values of exponents γ and ν as well as the inverse
critical temperature βc.
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Magnets
Magnets are a part of daily life. Without these, many electrical devices simply
would not work. Most of these magnets are not so much like the kitchen
magnet, a ferromagnet that rarely changes its state, but more so like systems
that can be changed on demand by means of some form of input. This allows
devices, such as magnetic hard disks, to function and a lot of effort is put
into researching how to improve upon our current systems by making them
faster, cheaper to produce, smaller, and more energy efficient.

The basis for my research on skyrmions, a topologically protected magnetic
configuration, in (anti)ferromagnets stems from the idea that spin textures can
be manipulated and transported over two-dimensional wires. Various groups
have shown that these skyrmions can be created, annihilated, moved, and
detected. All ingredients are present to create a working memory track from
materials in which these skyrmions are stable. An impression of how this
works with domain walls rather than skyrmions is shown in Fig. 0.20.2. For
skyrmion based racetrack memory devices the skyrmions would replace the
magnetic domains as effective data carriers.

To understand magnets in which these more exotic spin textures can oc-
cur we must investigate the spin of elementary particles. In short, spin is an
intrinsic form of angular momentum that induces a magnetic moment. The
interplay of all these magnetic moments defines the type of magnet. Most
notably, and relevant for the first two chapters, are the ferromagnet and an-
tiferromagnet. In both cases the spins couple to an external magnetic field
and want to align with it. For the ferromagnet, the spins want to align with
each other. The spins in an antiferromagnet, in contrast with the ferromag-
net, favour a configuration in which they are anti-parallel. Above the Curie
temperature [2727] the thermal fluctuations destroy the resulting order. The
classical Heisenberg model describes these systems where the spins are as-
sumed to be classical vectors on a sphere

H = − ∑
rr′

Jrr′Sr · Sr′ − B · ∑
r

Sr, (0.12)

with the sum taken over all spins. For Jrr′ > 0 we obtain a model for the
ferromagnet and for Jrr′ < 0 it models an anti-ferromagnet The interaction
strength is determined by many factors, such as the distance between the two
spins and the atoms involved. In practice most higher order contributions are
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neglected and due to crystalline structures most of the interactions are equal
in strength resulting in only a few non-zero values for the couplings Jrr′ .

Until now we have not made any assumption regarding the geometric struc-
ture of the material. It turns out that the interplay between different materials
and the complex inner structure of the materials can give rise to more exotic
features. Igor Dzyaloshinskii and Toru Moriya found that two ions can couple
indirectly via spin-orbit coupling with a third ion giving rise to an antisym-
metric exchange interaction of the form Dij · (Si × Sj ) [2828, 2929]. The form of
Dij depends on the symmetries of the system.

In the first two chapters we focus on two-dimensional square-lattice mag-
netic systems in which this asymmetry can be induced by enclosing the ma-
terial of interest by two different types of materials on either side. This can
also lead to anisotropy in which spins have a preferred alignment in a certain
direction. For easy-axis anisotropy the spins want to align along the normal
of the plane whereas for easy-plane the energy is reduced by aligning in-
plane. This is described by a term of the form K(Sr · ẑ)2. We also neglect any
Heisenberg interaction other than nearest-neighbour interaction and assume
they are all of equal strength. The most general Hamiltonian that takes all
the above into account can thus be written as

H = −J ∑
rr′

Sr · Sr′ + K ∑
r

(Sr · ẑ)2

+ ∑
rr′

Drr′ · (Sr × Sr′ ) − B · ∑
r

Sr, (0.13)

where the sum is taken over nearest neighbours in the square lattice. In
the first two chapters these types of systems, with exhibit more exotic spin
textures than are usually present, are investigated.
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Figure 0.2. This figure displays the diagram for wall nucleation propaga-
tion for racetrack memory from the original patent. Bits are made up by
magnetic domains separated by domain walls. The wire containing the data
can be build vertically rather in contrast to conventional two-dimensional
data storage techniques. At 112 and 114 in the diagram the data can be
written and read respectively. From 116 and 118 the data can be driven via
a current pulse.
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Ice
Ice as mentioned throughout this Thesis is not a typical form of ice but rather
two-dimensional square-lattice ice. Similarly to the magnets the focus lies on
fixed lattice systems with internal degrees of freedom at each vertex. There is,
however, a link with actual three-dimensional frozen water (the conventional
ice).

Although there are many different types of ice structures the most common
type in nature, an hexagonal form of ice known as Ih , is shown in Fig. 0.30.3(a).
In Ih each oxygen atom has four neighbouring oxygen atoms that form a
regular tetrahedron around it. Hydrogen bonds, where hydrogen atoms bind
tightly to one and loosely to another heavier atom, stabilize this structure.
The energy is minimized when each oxygen atom has two hydrogen atoms
nearby and two further away giving rise to a ‘two in two out’ rule also called
the ice rule[3030]. It was argued by Pauling[3131] that there are still internal
degrees of freedom for this system, even in the thermodynamic limit at zero
temperature, giving rise to a residual entropy.

(a) (b)

Figure 0.3. Parts of typical configurations of ice are shown in its hexagonal
Ih structure (a) and two-dimensional square structure (b). Red (blue) spheres
denote the position of oxygen (hydrogen) atoms. Solid lines are shown for
the intermolecular bonds and dotted lines for hydrogen bonds.

Two-dimensional square ice, see Fig. 0.30.3(b), has recently been realized[3232]
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by trapping water in between two sheets of graphene. Similar to Ih it also
has a residual entropy as a result of internal degrees of freedom[3333]. These
systems, at moderately low temperatures at which the crystalline structure
is fixed, can be effectively modelled by a square-lattice model at which each
vertex has two arrows going in and two arrows going out. These types of
models are called ice-type models or six-vertex models since the ice rule
restricts the system allowing exactly six different vertex configurations on a
single site shown in Fig. 0.40.4.

1 3 5

2 4 6
Figure 0.4. The ice rule dictates every vertex must have two arrows going
in and two arrows going out which allows for six different vertices.

Energetic six-vertex models assign different weights to some of the vertices
leading to phase transitions between a disordered phase and various ordered
phases. In Chapter 33 and 44 the F -model, a specific type of energetic six-
vertex model, is considered because of its interesting properties. Besides the
infinite-order phase transition the system is also interesting due to the effects
that boundaries can have on the system even in the limit of large systems.
Normally the effects of the boundaries disappear for increasing system size
but it can be shown for certain boundaries that the behaviour of systems
changes dramatically. Another similarity between magnets and ice studied in
this Thesis is that the F -model, here explained as a model for water ice, can
also be viewed as a model for spin ice. Spin ices are magnetic materials in
which the degrees of freedom are determined by the spins of certain fixed
atoms. The F -model can be mapped onto the XY -model which in turn is a
two-dimensional variant of the Heisenberg model, used to study magnets.



1 Degeneracies and fluctuations of Néel
skyrmions in confined geometries

The recent discovery of tunable Dzyaloshinskii-Moriya interactions in layered
magnetic materials with perpendicular magnetic anisotropy makes them
promising candidates for stabilization and manipulation of skyrmions at el-
evated temperatures. In this chapter, we use Monte Carlo simulations to
investigate the robustness of skyrmions in these materials against thermal
fluctuations and finite-size effects. We find that in confined geometries and at
finite temperatures skyrmions are present in a large part of the phase dia-
gram. Moreover, we find that the confined geometry favors the skyrmion
over the spiral phase when compared to infinitely large systems. Upon tun-
ing the magnetic field through the skyrmion phase, the system undergoes a
cascade of transitions in the magnetic structure through states of different
number of skyrmions, elongated and half skyrmions, and spiral states. We
consider how quantum and thermal fluctuations lift the degeneracies that oc-
cur at these transitions, and find that states with more skyrmions are typically
favoured by fluctuations over states with less skyrmions. Finally, we com-
ment on electrical detection of the various phases through the topological
and anomalous Hall effects.1

1 Introduction
A skyrmion is a certain type of topological field configuration which was first
introduced in particle physics. It corresponds to a classical stationary solution
of the equations of motion with which one can associate a topological invariant
and describes the emergence of a discrete particle from a continuous field [3434].

1The contents of this chapter are largely based on the work of R. Keesman, A. O. Leonov,
P. van Dieten, S. Buhrandt, G. T. Barkema, L. Fritz, and R. A. Duine [11]. Simulations were
based on code provided by S. Buhrandt and L. Fritz, the quantum corrections in Sec. 1.41.4 are
based on the work of P. van Dieten, and A. O. Leonov provided insightful comments and
ideas that resulted in investigation of transitions in small wire-like systems as in Fig. 1.31.3. It
is also a pleasure to thank G. Bauer, R. Lavrijsen, and H. Swagten for useful comments.

1



2 1 Néel skyrmions in confined geometries

More recently, skyrmions have been considered in quantum Hall devices [3535],
Bose-Einstein condensates [3636, 3737], and liquid crystals [3838, 3939, 4040]. Magnetic
skyrmions were predicted [4141] and recently observed in bulk materials like
MnSi and Cu2OSeO3 at low temperatures [4242, 4343, 4444]. In these materials,
bulk inversion symmetry is broken which allows for nonzero Dzyaloshinskii-
Moriya (DM) interactions [2828, 2929] that lead to helical, conical, and skyrmionic
spin textures depending on the applied magnetic field [4141]. It was proposed
that skyrmions are promising candidates for encoding binary data that al-
low for high-density and low power consumption magnetic memories due
to low critical currents for skyrmion motion and their inherent topological
stability [4545, 4646, 4747]. In addition to fundamental interest concerning the inter-
play between topology, geometry and fluctuations, it is therefore relevant to
understand the behavior of skyrmions at high temperature and in confined
thin-film geometries for realizing spintronic devices.

Motivated by recent experiments on domain wall motion in magnetic thin
films with perpendicular magnetic anisotropy (PMA materials) that point to
sizeable and tunable DM interactions [4848, 4949, 5050, 5151, 5252, 5353, 5454] and anisotropy,
we use Monte Carlo simulations to investigate the robustness of skyrmions in
these systems in confined wire-like geometries against thermal fluctuations.
Our main results are: i) The phase diagram in Fig. 1.11.1 that shows which
spin textures are to be expected at a certain anisotropy strength and applied
magnetic field at nonzero temperature. We find that the confining geometry
extends (with respect to systems in the thermodynamic limit) the skyrmion
phase at the expense of the spiral phase. ii) The cascade of transitions between
different magnetic structures that the system undergoes upon lowering the
magnetic field through the skyrmion phase, a typical example of which is
shown in Fig. 1.31.3. iii) The temperature dependence of relative probabilities
for occurrence of different skyrmions configurations that are degenerate at
zero temperature, shown in Fig. 1.61.6. We find that at moderate temperature
configurations with more skyrmions are typically entropically favored over
configuration with less skyrmions. Moreover, we also consider quantum fluc-
tuations and find that these also favor configurations with higher skyrmion
number.

Skyrmions are predicted to occur in several varieties [4141], two of which have
by now been experimentally identified. One of these is the Néel (somtimes
also called “hedgehog”) skyrmion, i.e., a skyrmion in which the magnetization
points radially outward from the skyrmion center. The other type of skyrmion
(where the magnetization is perpendicular to radii pointing outward from the
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skyrmion center) is called a Bloch skyrmion. (See Fig. 1 of Ref. [4646] for an
illustration.) Which of the two types is favored depends on which type of DM
interactions are present as dictated by the crystal and/or structural symmetry.
In the long-wavelength limit, the DM interactions yield a contribution to the
energy density that is a certain combination of so-called Lifshitz invariants,
i.e., antisymmetric terms of the form

Si
∂Sj
∂r − Sj

∂Si
∂r , (1.1)

with Si the i-th cartesian component of the spin and r = x, y or z, a spatial
direction. In MnSi, one of the most-studied skyrmion materials, the DM
interactions give a contribution proportional to

S · (∇ × S), (1.2)
which is straightforwardly shown to be a combination of terms of the form
as in Eq. (1.11.1), and favors Bloch skyrmions. For the PMA materials that
are the focus of this work, the DM interactions are interface-induced (see
also Ref. [5555]) and stabilize Néel skyrmions. They are proportional to the
expression

(z · S)(∇ · S) − (S · ∇)(z · S) , (1.3)
and in this particular form are shown to explicitly depend on the symmetry-
breaking direction z which denotes the normal to the interface. We note,
however, that the above form of DM interactions also arises in crystals of sym-
metry class Cnv and therefore that Néel skyrmions are stabilized by bulk DM
interactions in some materials. This was recently observed in the magnetic
semiconductor GaV4S8 [5656]. In this material there are no Lifshitz invariants
in the z-direction and a conical phase is therefore not present. Our results
therefore also apply to this case, and, particularly when grown in thin-film
form on different substrates, the magnetic anisotropy of this material may
be tuned between easy axis and easy plane which enables experimentally
exploring the full phase diagram in Fig. 1.11.1.

Previous theoretical studies have focused on the skyrmion phase diagram
of infinite systems at zero temperature [4141, 5757] and nonzero temperature in
two and three dimensions [5858, 5959]. The first experimental results on bulk
materials [4242, 4343, 4444] have been extended to confined geometries, such as thin
films, e.g. of MnSi [6060] and FeGe [6161]. Transitions between states with a differ-
ent number of skyrmions and other (non-skyrmion) magnetic configurations
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as a function of field have been discussed experimentally and theoretically (at
zero temperature) for thin films of MnSi (and thus for bulk DM interactions
leading to Bloch skyrmions) in Refs. [6262, 6363]. Evidence for such a cascade of
transitions in magnetoresistance measurements was very recently discussed
in Ref. [6464]. In these works, the Bloch skyrmion core lines (and field) lie in
the plane of the thin film or along the wire direction due to strong easy-plane
anisotropy induced by tensile strain from the substrate. As a result, only in-
plane fields stabilize skyrmions whereas fields perpendicular to the thin film
(and thus anisotropy plane) lead to conical phases. In the two-dimensional
configuration that we consider, however, (see Fig. 1.31.3) the external field is
perpendicular to the thin film and skyrmions may be observed for both easy-
plane and easy-axis anistropy. For the form of the DM interactions considered
here [Eq. (1.31.3)] the conical phase is absent and the easy-plane anisotropy leads
to a large external-field range over which skyrmions are stable (see Fig. 1.11.1).
Moreover, the confined geometry stabilizes skyrmions over spirals as the
skyrmion phase becomes larger in the wire geometry with respect to the
case of an infinite system.

Very recently, Du et al. reported on real-space observation of a cascade of
transitions in the magnetic structure of a FeGe wire [6565]. Although this sys-
tem stabilizes Bloch skyrmions, this work gives experimental corroboration
of many of our findings, such as the existence of elongated skyrmions, the
creation of skyrmions from edge states, and the enhanced stability of skyrmi-
ons in the confining geometry. Moreover, these authors also observe that
spirals orient themselves with their wave vector along the edge of the wires
(see also Ref. [6666]), which is in line with our results as well.

Finally, we note for completeness that single Bloch skyrmions in nanodisks
were considered in Ref. [6767] without taking into account anisotropy and that
the effects of thermal fluctuations and confining geometry on single-skyrmion
dynamics was considered in Refs. [5959, 6868, 6969].

The remainder of this chapter is organized as follows. In Sec. 1.21.2 we dis-
cuss our model hamiltonian and the algorithm used in our simulations. Using
these simulations we then construct the anisotropy-external field phase dia-
gram for wire-like systems at moderate temperature and discuss the various
magnetic phases and cascade of transitions between them in Sec. 1.31.3. Here-
after we focus on points in the phase diagram where degeneracies occur at
zero temperature and investigate how fluctuations lift these degeneracies. We
end with a conclusion and outlook, and briefly discuss electrical detection of
the various magnetic configurations.
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Figure 1.1. The anisotropy-external field phase diagram for a wire geometry
with L = 16 and p = 8 at kBT/J = 0.5 (solid line) and zero temperature
(dashed line). The dotted line corresponds to the case of an infinite system
at zero temperature [7070]. These lines encircle the region where the winding
number is larger than one half. The susceptiblity of the winding number at
finite temperature χw is also indicated.
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2 Model and simulations
We consider Heisenberg spins Sr of unit length, where r denotes the location
on a two-dimensional square lattice in the x-y-plane. The spins interact via
a ferromagnetic Heisenberg coupling J > 0, Dzyaloshinskii-Moriya coupling
D, and are subject to an anisotropy term K and an external magnetic field B.
The effective hamiltonian is given by

H = −J ∑
r

Sr · (
Sr+x̂ + Sr+ŷ

)

+K ∑
r

(Sr · ẑ)2 − B · ∑
r

Sr (1.4)
−D ∑

r

(
Sr × Sr+x̂ · ŷ − Sr × Sr+ŷ · x̂

).
The above form of the DM interactions (i.e., the term in the hamiltonian
proportional to D) corresponds to the discretized version of Eq. (1.31.3) and
is therefore to lowest order in nearest-neighbor coupling appropriate for
the PMA materials of interest to us here, i.e., for the situation that the DM
interactions arise due to inversion asymmetry induced by the presence of an
interface. In the hamiltonian we have neglected dipole-dipole interactions.
This is appropriate in the limit of strong DM interactions that lead to small
skyrmions and where the dipolar field will only renormalize parameters such
as the anisotropy. We note that throughout this chapter we consider a wire
geometry, i.e., a two-dimensional system with periodic boundary conditions in
one direction and open boundary conditions in the other direction.

For simplicity we assume B = Bẑ perpendicular to the x-y-plane and take
B > 0 without loss of generality. The dimensionless parameters kBT/J ≡
1/(βJ), with kBT the thermal energy, BJ/D2, and KJ/D2 determine the state
of the system. An important length scale is the pitch length p (in units of
the lattice constant) that determines the periodicity of magnetic textures that
arise due to competition between DM interaction D and exchange J . In case
of a spiral state, for example, the pitch length will be the period of the spirals.
In the absence of anisotropy, K = 0, the pitch length is given by [5959] D/J =
tan(2π/p) and we will use this definition throughout. This relation can be used
to coarse-grain the system by keeping the ratio between the dimensions of
the system and the pitch length constant while changing discretization.

We use classical Monte Carlo simulations to sample phase space at finite
temperatures T . A typical simulation starts with a completely randomized
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square lattice of spins with L × L sites (with one open and one periodic
boundary) at fixed parameters BJ/D2 and KJ/D2 at a scaled temperature
kBT/J = 10.0 far above the critical temperature of the system. After sev-
eral lattice updates the temperature is lowered to a fraction of 0.95 of the last
temperature until a temperature kBT/J = 0.01 is reached. At each temper-
ature data is collected and 100 simulations are independently run per set of
parameters.

At every temperature the lattice is updated using the Metropolis algorithm
followed by a cluster-flipping algorithm. The Metropolis algorithm consists
of choosing a spin at random from the lattice and proposing a new direction
for this spin. The proposed spin direction is chosen uniformly from the area
that is the spherical cap around the original direction where the maximal
angle between the original and the proposed spin direction is α, and α is
dynamically adjusted so that the acceptance probability is approximately 50%.
The cluster-flipping algorithm grows a cluster of spins and flips all the spins
in the opposite direction similar to the Wolff algorithm for Ising spins. In both
cases acceptance rates for changing a spin (or cluster of spins) are based on
the energy difference between the spin states before and after the move such
that the system is sampled according to the Boltzmann distribution [1313].
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Figure 1.2. Simulations snapshots of spin systems of size L × L = 32 × 32
for different parameter values and temperatures with the parameter D/J
chosen such that the pitch length p = 8. The periodic boundary is drawn as
a red solid line and spin vectors are represented by colored arrows where
the color scales linearly with the ẑ-component of the vector to highlight
spin textures. From top to bottom kBT/J takes on values 5.00, 0.50, and 0.01
respectively and the system undergoes a transition from an unpolarized state
to an ordered state in this temperature range. In all cases KJ/D2 is zero
and from left to right BJ/D2 has values 0.0, 0.5, and 1.5, resulting in a spiral,
skyrmion and polarized state, respectively, for low enough temperatures.
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3 Magnetic phases and phase diagram
Throughout this chapter we use a nonstandard definition of phases and phase
diagram. In the systems we consider there can, strictly speaking, not be any
thermodynamic phase transition breaking a continuous symmetry for two
reasons: (a) we always work at finite temperature in a two-dimensional system
where the Mermin-Wagner theorem forbids the breaking of a continuous
symmetry even in the thermodynamic limit; (b) we explicitly consider finite
size systems where a real thermodynamic phase transition is also ruled out.
Nonetheless, it is possible to identify phases that are distinct in their magnetic
configurations, such as phases that may or may not have magnetic skyrmions.

In order to distinguish such phases, a useful quantity is the winding number
w , which plays the role of a topological charge. It is quantized in a system with
periodic boundary conditions and in terms of the unit vector n = 〈S〉/|〈S〉|
(we choose n instead of S to distinguish between the microscopic spin and
the order parameter field) it reads

w = 1
4π

∫
dxdyn · (∂xn × ∂yn

) , (1.5)
in the continuum limit. In the definition of n and throughout this chapter
angular brackets denote the expectation value in the canonical ensemble. A
single (anti-) skyrmion contributes (minus) one to the winding number. This
effectively means that the number of skyrmions in an ordered state can be
counted. From a set of independent simulations with identical parameters
the susceptiblity of the winding number χw = (〈w2〉 − 〈w〉2)J/kBT is calcu-
lated. In the latter expression the expectation values are determined by using
Eq. (1.51.5), with n replaced by S and the integral replaced by a sum, for a given
spin configuration in the simulations and then averaging over many such con-
figurations. Whenever the system undergoes a transition between states with
different number of skyrmions this susceptibility will be enhanced.

To determine the phase diagram we take the linear system size L equal to
16 with one periodic boundary condition (i.e., a wire geometry) at fixed para-
meter values BJ/D2 and KJ/D2. We note here that we simulate a square lattice
for convenience throughout, and have not performed finite-size scaling as a
function of wire length as we expect our findings to merely change quantitat-
ively for larger system size in the periodic direction. We slowly cooled down
the system below the critical temperature and measured the susceptibility of
the winding number χw . For kBT/J = 0.5 and zero temperature we find the
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phase diagram in Fig. 1.11.1, divided into an easy-axis (K < 0) and easy-plane
(K > 0) part. Within the solid line in this figure, the average winding num-
ber is larger than one half, so that magnetic skyrmion configurations are
expected. The dashed line corresponds to the zero temperature case for the
same wire-like confined geometry. The dotted line corresponds to the infinite
system at zero temperature [7070]. Below the skyrmion phase boundary one
finds a phase where spiral states rather than skyrmions are stabilized in the
infinitely large system. At elevated temperatures (kBT/J = 0.5) and in the con-
fined geometry we also find spiral states for fields below the skyrmion phase,
albeit that more complicated textures also appear (depending on system size,
pitch length, and anistropy; below we discuss the magnetic configurations in
this region in more detail). In the confined geometry the skyrmion phase
becomes larger (with respect to the infinite system) at the expense of the
spiral phase. We attribute this to the larger ability of skyrmions as compared
to spirals to adapt to the repulsive forces away from the edges of the sys-
tem [6969]. Du et al. have observed this enhanced stability for Bloch skyrmions
in FeGe nanowires [6565].

For fields too large to stabilize skyrmions, the spins are uniformly polarized.
In this part of the phase diagram and for fields larger than 2K (with K > 0)
the spins are pointing along the field, i.e., along the z-direction. For smaller
fields and K > 0 the easy-plane anisotropy tilts the spins away from the field
direction.

The colors in the phase diagram indicate the susceptibility of the winding
number. Depending on system size relative to pitch length, the magnetic
configuration within the skyrmion phase may undergo transitions between
phases with different number of skyrmions. At each such transition the wind-
ing number susceptibility is enhanced.

Finally, we note that the phase diagram at zero temperature was studied
before for infinite system size with different methods [5757]. Contrary to this
latter work we do not find a tri-critical point where polarized, spiral and
skyrmion phases meet in the easy-plane part of the phase diagram from
our simulations. Representative spin configurations of the polarized state, the
spiral state, and the skyrmion state at small temperature can be found in
Fig. 1.21.2(g), (h), and (i), respectively. We also note that for Bloch skyrmions
the role of anisotropy on the ground-state phase diagram was discussed in
Ref. [6060].

As we have already mentioned in the discussion of the phase diagram,
the system goes through different magnetic configurations upon lowering
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B
J/D

2

(a) 0.00

(b) 0.28

(c) 0.29

(d) 0.50

(e) 0.60

(f) 0.70

Figure 1.3. Magnetization (left column), energy density ρE (central column),
and topological charge density ρw (right column) for different values of the
field for a square system with linear size L = 16 with periodic boundaries
in the horizontal direction. The pitch lengh is p = 7 and the temperature
is zero. The color coding indicates out of plane magnetization (left column)
and energy and topological charge densities (central and right column).
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the field through the skyrmion phase to zero. The precise configuration
depends on the ratio of system size to pitch length. In Fig. 1.31.3 we show
the situation for a wire geometry with linear size L = 16 and one periodic
boundary at zero temperature and for zero anisotropy. Starting from large
fields (and hence from the polarized phase), at a certain field strength (see
Fig. 1.11.1) the magnetic configuration changes from being uniformly polarized,
into a configuration with skyrmions, upon lowering the field. As the distance
between skyrmions depends on the field (with larger field leading to larger
distance) the number of skyrmions increases discontinuously as the field is
lowered. Roughly speaking, the number of skyrmions jumps once the field
(and thus preferred skyrmion distance) is low enough to accommodate more
skyrmions in the confined geometry. Note that this clearly depends on system
size. For lower fields, the skyrmion configuration changes into a spiral state
via a state where the skyrmions are elongated. Such extended skyrmions are
reminiscent of “fingers” in liquid crystals that appear in many varieties [3838, 3939,
4040]. Also note that for low enough fields half skyrmions appear at the edge of
the system. For very low fields, the spiral state is stabilized and in the middle of
the system the elongated skyrmions and spirals orient themselves 90 degrees
with respect to the lattice to maximize the period of the spiral (and thus
minimize exchange energy). Similar anisotropies may very well be present
in some materials and in our simulations result from the underlying lattice.
For simulations that would need to give quantitative predictions for continuum
systems, one could add additional terms that make the exchange interactions
more isotropic [5858]. Here, we do not pursue this route as we are interested
in the qualitative features of the phases and cascade of phase transitions. At
the edge of the wire the influence of exchange is less important with respect
to DM interactions and the spirals are parallel to the edge. Because of the
strong easy-plane anisotropy of MnSi thin films, Wilson et al. considered
helicoids with wave vector perpendicular to the edges, and, moreover, only
considered edge states without internal structure [6363]. In the geometry we
consider, the edge states may also consist of half skyrmions, and, as a result,
the spiral states that finger out of the skyrmions and half skyrmions upon
lowering the field will have their wave vector parallel to the edges of the
wire. Again, we note that several of the features we dicuss, such as half and
elongated skyrmions, and spiral orientation at the edges, were very recently
experimentally observed by Du et al. for Bloch skyrmions [6565].

In Fig. 1.31.3 we show, in addition to the magnetization in the top row, the
energy density ρE [the expectation value of the summand in Eq. (1.41.4)] in the
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middle row of figures, and the topological charge (winding number) density
ρw [integrand in Eq. (1.51.5)] in the bottom row, where the brighter colors indicate
higher values. At the skyrmion (and half skyrmion) positions the energy is
largest as the spin at the skyrmion core points opposite to the external field.
We also note that the figure of the magnetization clearly shows edge states
where the magnetization tilts away from the field direction at the boundaries
of the system [6969]. The middle row shows that the energy density is minimized
at the edges. Note that for low enough field the half skyrmions at the edge
are formed from these edge states, as was also discussed in Ref. [7171] for Bloch
skyrmions. We note that in structures where half skyrmions appear the edges
show alternating positive and negative contributions to the winding number,
while in the skyrmion phase the contributions to the winding number are
positive and due to the skyrmions only.

4 Degeneracies and fluctuations
At the transitions between different magnetic configurations as a function
of field, two magnetic configurations are degenerate. Such degeneracies oc-
cur generically in a confining geometry as a function of field, ratio of DM
to exchange interaction, or system size, because the geometry prevents the
skyrmions from reaching their preferred (in an infinitely large system) pos-
ition. This leads, at some particular set of values of the parameters, e.g. to a
degeneracy between a state with fewer but larger skyrmions and a state with
more but smaller skyrmions. An example of two degenerate spin configura-
tions is given in Fig. 1.41.4. In this figure, the skyrmions are elliptical as the edge
states effectively push the skyrmions away from the boundaries [6969] thereby
deforming the skyrmions. Skyrmion deformation due to anisotropy was dis-
cussed in Ref. [6262]. We now turn to the question of how fluctuations lift zero-
temperature degeneracies between two magnetic configurations, in particular
for degenerate configurations containing a different number of skyrmions.

To investigate this in detail we look again at a wire geometry of size
L × L = 16 × 16 with KJ/D2 = 0.0 and BJ/D2 = 0.5. We vary the pitch
length p and determine the classical energy of different skyrmion configur-
ations. These energies are found by initiating the simulations with a certain
number of skyrmions and using simulated annealing to force the configura-
tion to an energetic local minimum at zero temperature. The upper panel of
Fig. 1.41.4(a) shows the classical ground-state energies for various configurations
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as a function of the pitch length relative to the energy of a system without
any skyrmions. There is a range of pitch lengths 5.5 . p . 13.5 for which
the classical ground state is a configuration containing skyrmions.

We note that a similar result can be obtained by varying the system size
rather than the pitch length, since the ratio between these two length scales
determines the preferred amount of skyrmions in the system. This means
that for a given material with certain values for J , D, and K and some applied
magnetic field such that skyrmions are expected, wires can be made with a
certain thickness so that their classical magnetic ground state is degenerate.

To investigate the effect of quantum and thermal spin-wave (magnon) fluc-
tuations at zero and nonzero temperature, respectively, we use the method
outlined in Refs. [7272] and [7373]. We quantize the spins and use a Holstein-
Primakoff transformation to bosonic operators âr and â†

r. It is given by
Ŝr · Ωr = S − n̂r ;

Ŝ−
r = âr

√2S − n̂r , (1.6)
where Ŝ−

r is the usual spin-lowering operator and n̂r = â†
râr. Moreover, Ωrdenotes the classical spin configuration that is found from the simulations at

zero temperature and S is the spin quantum number (which we take equal to
one as the simulations are done for normalized spins). We insert the above
transformation in the hamiltonian and keep terms up to quadratic order in the
creation and annihilations operators which amounts to a linear approximation
in which interactions between spin waves are neglected, which is sufficient for
low temperatures. The hamiltonian acquires terms ∼ ââ and ∼ â†â† that are
removed by a Bogoliubov transformation to new bosonic operators γ̂†

i and γ̂ithat respectively create and annihilate a spin wave with energy εi . Here, i is an
index that labels the spin-wave modes. After the Bogoliubov transformation,
the hamiltonian is in the above-mentioned harmonic approximation given
by [7272]

H = Ecl + E0 + ∑
i

εi
(

γ̂†
i γ̂i + 1

2
)

. (1.7)

The first term is the classical ground-state energy as found in the simula-
tions whereas the second term is a quantum contribution that arises in the
Bogoliubov approach outlined aboved. This latter contribution is absent at the
classical level.
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Figure 1.4. (a): Difference in energy (upper panel: classical energy, lower
panel: energy including quantum correction) between configurations with
skyrmions and the state without skyrmions at zero temperature versus pitch
length, for various numbers of skyrmions and system size L × L = 16 × 16
with one periodic and one open boundary and parameters KJ/D2 = 0.0
and BJ/D2 = 0.5. The blue circular, yellow rectangular, green diamond-
shaped, and red triangular data points correspond to systems with 0, 1, 2,
and 4 skyrmions respectively. (b) and (c): Magnetic configuration of two
classically-degenerate ground states with energy E = −596.17J of a system
at pitch length p = 9.336 deep in the skyrmion regime with one periodic
(horizontal direction) and one open (vertical direction) boundary.
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Using the above hamiltonian, the ground-state energy including quantum
corrections is found to be

E = Ecl + E0 + ∑
i

εi
2 . (1.8)

At a point where two magnetic configurations in our simulations are found
to be degenerate, the first term Ecl is equal for them. The spin-wave spec-
trum (and hence the quantum correction represented by the last two terms
in the above expression for the energy) is, however, generically different for
two classically degenerate configurations, so that quantum fluctuations may
indeed remove classical degeneracies. In the lower panel of Fig. 1.41.4(a) we
show the energy including quantum corrections for magnetic configurations
containing up to four skyrmions as a function of pitch length and for the
same parameters as the upper panel of this figure. This result shows that the
energies are shifted by the quantum corrections. Moreover, they are shifted
in such a way that the region where the configuration with four skyrmions
is the true lowest-energy state is enlarged with respect to the classical result.
This conclusion is in line with the finding of Roldán-Molina et al. [7373] that
quantum fluctuations stabilize skyrmion textures over the collinear ferromag-
netic phase. Loosely speaking this comes about because larger gradients in
the spin direction lead to more quantum fluctuations.

Having discussed the effect of quantum, i.e., zero-temperature, fluctuations,
we now turn to thermal fluctuations. To investigate which configuration is en-
tropically preferred, we i) compute the entropy due to the spin waves around
two degenerate skyrmion configurations (an approach appropriate at low tem-
peratures), and ii) directly measure the relative probability of occurrence of
configurations at nonzero temperatures within our simulations (and approach
valid at intermediate and high temperatures). In the first approach the spin
waves (or magnons) are considered as non-interacting bosonic particles thus
taking into account their quantum statistics. We refer to this approach as the
spin-wave analysis.

We look at a system with p = 9.336 and p = 7.284. At these values of
the pitch length, the classically degenerate ground states contain either one
or two skyrmions for p = 9.336 as in Fig. 1.41.4 or two or four skyrmions for
p = 7.284. At nonzero temperature, the total energy of the system is in the
harmonic approximation given by

E(T) = Ecl + ∑
i

εini , (1.9)
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with the Bose-Einstein distribution function ni = [exp(βεi)−1]−1. In the above
equation and following discussion we neglect the quantum corrections to the
energy discussed previously. The spin-wave entropy is given by

S(T) = −kB
∑

i

[ni ln ni − (1 + ni) ln(1 + ni)] . (1.10)

Since the simulations are classical we expect them to correspond to the
Rayleigh-Jeans limit, ni → 1/βεi , of the above formulas, which leads to equipar-
tition of energy such that in this limit the total energy is equal to NkBT ,
with N the number of spins. In Fig. 1.51.5 we display the average energies of
the degenerate ground states as a function of temperature. As expected, at
low temperatures the simulation agrees with this classical equipartition result,
whereas the quantum-mechanical result is suppressed with respect to equipar-
tition. This is because apart from a few (nearly) zero modes, most spin-wave
excitations have energies ∼ B, such that at temperatures kBT � B our sim-
ulations overestimate their contribution to the energy. The deviation of the
simulations from equipartition at high temperatures is because in this limit
the harmonic approximation starts to break down.

At nonzero temperatures, the probability of the system being in one out of
two degenerate ground states depends on their difference in entropy. Besides
the entropy due to magnons there is also translational entropy that depends
on the number of skyrmions, and that needs to be included in the overall
entropy of a configuration. The simulations automatically include this extra
entropy, but it is not accounted for in the expression in Eq. (1.101.10) and needs
to be included on top of this expression. For example, the skyrmion con-
figurations in Fig. 1.41.4 can be translated in the periodic direction by a lattice
constant. For a single skyrmion there are 16 (for system size 16 in the peri-
odic direction) translations, whereas for two skyrmions the configuration can
be mapped onto itself by a translation over 8 lattice site in combination with
a reflection. Hence, the configurations with one and two skyrmions have the
same translational entropy. Similar counting leads to the conclusion that there
are twice as much translations possible for the situation of two, as compared
to four skyrmions so that the translational entropy of the configuration with
two skyrmions is kB ln 2 higher than that of four skyrmions.

Figure 1.61.6 displays the ratio of probabilities for occurrence of skyrmion
configurations with different number of skyrmions: two and one skyrmions
for p = 9.336, and four and two skyrmions for p = 7.284, as a function of
temperature. In this figure, both simulation results (dots) and results from
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Figure 1.5. The energy of various spin configurations, with pitch length p =
9.336 (top panel) and p = 7.284 (bottom panel), as a function of temperature
kBT/J and where Ecl is put equal to zero. In both cases the parameters are
KJ/D2 = 0.0 and BJ/D2 = 0.5. The data points represent data from Monte
Carlo simulations that are in agreement with results from the equipartition
theorem at low temperatures (shown by the black dashed line). The solid
black lines represent the energies resulting from the spin-wave analysis.
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Figure 1.6. Ratio of probabilities of having a certain amount of skyrmions
for two different situations with parameters KJ/D2 = 0.0 and BJ/D2 = 0.5
and pitch length p = 9.336 (top panel) and p = 7.284 (bottom panel) as a
function of temperature. The dots correspond to results from the Monte
Carlo simulations, the solid-line from the spin-wave analysis not including
translation entropy, and the dashed line to the zero-temperature classical
limit.
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Figure 1.7. Winding number (left axis) and average magnetization in the z-
direction (right axis) as a function of magnetic field for the same parameters
as Fig. 1.31.3. Labels a-f refer to states in Fig. 1.31.3. All parameters are taken
the same as for the results in Fig. 1.31.3.

the spin-wave analysis without the translational entropy are shown (black
solid line). The probability that results from the classical limit of the entropy
[Eq. (1.101.10) with the replacement ni → 1/βεi , dashed black line] leads to a
probability ratio that agrees with the low-temperature limit of our simulations,
where the ratio was measured by cooling a system down 104 times while
measuring the number of skyrmions in the system. According to the spin-
wave analysis, the probability ratio is in the low-temperature only determined
by translation entropy. Both the quantum-mechanical result for the entropy as
well as the simulations show a peak around the ferromagnetic phase transition
kBT/J ∼ 1. At moderate temperatures (0.1J − 0.5J) our results show that the
configuration with the most skyrmions is entropically favored.
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5 Conclusions, discussion, and outlook
In this chapter we have shown that in finite systems and at elevated temperat-
ures skyrmions are present in a large part of the phase diagram. We have also
discussed how the magnetic field tunes the system through a cascade of trans-
itions between different magnetic configurations, and how zero-temperature
degeneracies between such magnetic configurations are lifted by fluctuations.
Throughout this chapter we have focused on PMA materials where the DM
interactions are believed to arise due to interfaces between very thin layers of
magnetic materials (such as Co) and materials with strong spin-orbit coupling
(such as Pt) [4848, 4949, 5050, 5151]. Such DM interactions give rise to Néel skyrmi-
ons. Because the magnetic layers in these system are very thin (only a few
atoms), our two-dimensional treatment is appropriate. In particular, the two-
dimensional nature and form of the DM interactions prevent the formation
of conical phases in the phase diagram. This situation is different from the
situation of thin films of MnSi in which Bloch skyrmions are stabilized and
conical phases are present [6262, 6363].

In this chapter we have focused on the confined geometry of a wire. The
cascade of transitions as a function of field is generic and appears for any
confined geometry because the field influences the preferred skyrmion dis-
tance. Which particular magnetic structures occur in the cascade depends
on the confined geometry, however, and on the form of the DM interactions
and anisotropy. In particular, we expect that the half-skyrmions that we have
found will only appear in a wire geometry.

Jumps in the magnetoresistance in MnSi nanowires have been observed
recently, and were attributed to changes in the number of skyrmions in the
magnetic configuration [6464]. Measurements of changes in the topological Hall
effect due to the appearance of single skyrmions in a confined geometry were
performed on FeGe [7474]. Motivated by these experiments we now investig-
ate whether the transitions between various configurations that appear in our
system as a function of field (see Fig. 1.31.3) can be detected electrically. To
this end, we compute the total winding number and the total magnetization
in the z-direction as a function of field for the same parameters as Fig. 1.31.3
(see Fig. 1.71.7). The total winding number determines (up to prefactors) the
topological Hall signal, provided spin-orbit coupling is small [7575, 7676]. The res-
ult in Fig. 1.71.7 clearly shows jumps in the winding number as the magnetic
configuration undergoes a structural transition. For PMA materials, however,
the topological Hall signal is expected to be very small [7777]. An alternative for
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electrical detection of the magnetization configuration is then the anomalous
Hall signal that is proportional to the total magnetization in the z-direction
for our geometry. Figure 1.71.7 shows that this quantity also jumps as the mag-
netization configuration undergoes a transition as a function of field. Based
on this analysis we conclude that the transitions between various magnetic
configurations that have we found may be detected electrically.

Using experimental parameters for PMA materials from Ref. [4848] we es-
timate that KJ/D2 ∼ −1 and BJ/D2 ∼ 10−4 − 10−1 for these experiments. The
route to observe skyrmions in these systems would therefore be to increase
the field and lower the anisotropy (or preferably make it easy-plane). Very re-
cently, Moreau-Luchaire et al. have reported the observation of skyrmions at
room temperature in multilayers of Co and Pt with PMA [7878]. The skyrmions
observed in these measurements are rather large and stabilized as a result
of both dipole-dipole and DM interactions, and are therefore in a somewhat
different regime from the skyrmions that we have studied in this chapter.

In future work, we will investigate how current-induced torques manipulate
the skyrmionic magnetic structures we have found. Finally, motivated by the
recent experimental results of Du et al. [6565] we also intend to consider Bloch
skyrmions.



2 Skyrmions in square-lattice
antiferromagnets

The ground states of square lattice two-dimensional antiferromagnets with
anisotropy in an external magnetic field are determined using Monte Carlo
simulations and compared to theoretical analysis. We find a new phase in
between the spin–flop and spiral phase that shows strong similarity to skyrmi-
ons in ferromagnetic thin films. We show that this phase arises as a result of
the competition between Zeeman and Dzyaloshinskii-Moriya interaction ener-
gies of the magnetic system. Moreover, we find that isolated (anti-)skyrmions
are stabilized in finite-sized systems, even at higher temperatures. The exist-
ence of thermodynamically stable skyrmions in square-lattice antiferromag-
nets provides an appealing alternative over skyrmions in ferromagnets as
data carriers.1

1 Introduction
Skyrmions have been the topic of intense research, in ferromagnetic ma-
terials [4141, 4242, 4343, 4444, 5757, 5858, 5959, 6161, 6666] as well as numerous other sys-
tems [3535, 3636, 3737, 3838, 3939, 4040]. Skyrmions in ferromagnets have promising
characteristics that make them suitable for data storage and transfer: they
can be driven by low critical currents [4545, 4646], and they are able to move past
pinning sites [7979].

Skyrmions in antiferromagnetic (AFM) thin films are perhaps more suit-
able as data carriers than their ferromagnetic counterparts. Firstly, antifer-
romagnets are more prevalent in nature than ferromagnets, allowing for a
wider range of material properties. Secondly, skyrmions in an antiferromag-
net are less sensitive to magnetic fields. Thirdly, they move faster, and in

1The contents of this chapter are largely based on the work of R. Keesman, M. Raaijmakers,
A. E. Baerends, G. T. Barkema, and R. A. Duine [22]. M. Raaijmakers and A. E. Baerends were
actively involved in the construction of the hamiltonian density in Eq. (2.22.2) and calculating
the energy densities of various phases as described in Sec 2.52.5. We thank A. Roldán-Molina
and A. S. Núñez for their feedback.

23
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the direction of the charge current (while skyrmions in ferromagnets exper-
ience a Magnus force with a significant component perpendicular to their
trajectory), which makes it easier to control them [8080]. For these reasons,
skyrmions have been investigated in many different antiferromagnetic sys-
tems, ranging from doped bulk materials [8181], Bose-Einstein condensates [8282],
various triangular lattice antiferromagnets [8383, 8484], to nanodisks [8585]. Isolated
AFM skyrmions [8686, 8787], as well as moving skyrmions in AFMs have been
considered theoretically [8888, 8989, 9090].

In this chapter we study thermodynamically stable inhomogeneous magnet-
ization textures in square-lattice antiferromagnets (SLA’s) with Dzyaloshinskii-
Moriya (DM) interactions. The DM interactions that we consider arise either
from bulk inversion asymmetry (symmetry class Cnv ) or from structural in-
version asymmetry along the thin-film normal direction. An example of
the latter is an interface between a magnetic metallic system and a non-
magnetic metal with strong spin-orbit coupling. For ferromagnetic sys-
tems, tunable interface-induced DM couplings have indeed been demon-
strated [4848, 4949, 5050, 5151, 5252, 5353, 5454]. Such interfaces typically also give rise to
perpendicular anisotropies, which we therefore also take into account. Finally,
we also consider an external magnetic field normal to the thin film. Previous
work by Bogdanov et al. [8686] considered the same system at zero temperature
and in the continuum limit. These authors identified three phases: an anti-
ferromagnetic phase, a spin–flop phase, and a phase where inhomogeneous
structures persist. While examples of structures in the latter phase were given,
no further phase boundaries were identified within this phase. One of our
main results is that we find a distinct phase pocket that bounds a 2q skyrmi-
onic phase and separates it from a spiral (1q) phase. Furthermore, while
in infinite systems skyrmions are not found as thermodynamically stable re-
gions of the phase diagram, we confirm the existence of stable skyrmions in
finite-sized systems below the Curie temperature.

The chapter is organized as follows: first, we present the system under
study, by defining the hamiltonian that is used in Monte Carlo (MC) simula-
tions. After that, we discuss the various spin textures and their characteristics
that arise in SLA’s. We also construct the phase diagram from MC simula-
tions, complemented by analytical results based on a continuum model. We
dedicate the last two sections to the interaction energies of skyrmions, and to
skyrmions in finite-sized systems, respectively, after which we conclude with
a discussion and summary of our results.
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2 Model
We are interested in the equilibrium spin configurations in films of SLA mater-
ials. For this purpose, we consider a square lattice of length L in the xy-plane
with Heisenberg spins Sr of unit length at position r. Nearest neighboring
spins are coupled through an antiferromagnetic Heisenberg term J > 0 and
a Dzyaloshinskii-Moriya term D and are affected by anisotropy K and an ex-
ternal magnetic field B in the ẑ-direction. The effective hamiltonian that is
used in our MC simulations is given by

H =J ∑
r

Sr · (
Sr+x̂ + Sr+ŷ

)

+K ∑
r

(Sr · ẑ)2 − B ∑
r

Sr · ẑ (2.1)
−D ∑

r

(
Sr × Sr+x̂ · ŷ − Sr × Sr+ŷ · x̂

).

For theoretical analysis, we consider a continuous field description of the
discrete hamiltonian in Eq. (2.12.1) (see also Ref. [9]). Because of the antifer-
romagnetic nature of these materials, it is natural to define sublattices with
magnetization m1 and m2 organized in a checkerboard configuration and
put the lattice constant to unity. For antiferromagnets with large Heisenberg
interaction we expect slowly varying periodic structures and the staggered
magnetization l = (m1 − m2)/2 to be large while the total magnetization
m = (m1 +m2)/2 is expected to be much smaller, ie, |l| ≈ 1 and |m| � |l| [9191].
We also assume that the spatial derivatives of m can be neglected and that the
contribution of the total magnetization to the anisotropic term is negligible
compared to that of the staggered magnetization. This results in the following
hamiltonian density

H = J
2

[( ∂l
∂x

)2
+

( ∂l
∂y

)2
+ 8m2

]
− Bmz + Kl2z (2.2)

+ D
(

lz ∂lx
∂x − lx ∂lz

∂x + lz ∂ly
∂y − ly ∂lz

∂y
)

.

Since spins are normalized to unity, such that |mi| = 1, the staggered and
total magnetization must satisfy m2 + l2 = 1 and m · l = 0 and minimizing the
hamiltonian density results in m = −l × (l × h)/(8J). Substitution leads to a
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hamiltonian density that is only dependent on the staggered magnetization:

H = J
2

[( ∂l
∂x

)2
+

( ∂l
∂y

)2]
+ B2

16J
[
l2z − 1

]
+ Kl2z (2.3)

+ D
(

lz ∂lx
∂x − lx ∂lz

∂x + lz ∂ly
∂y − ly ∂lz

∂y
)

.
Our simulations focus on systems for which the DM coupling and the coupling
to the magnetic field are of the order of the Heisenberg coupling but assume
that anisotropy strength is small. For small fields all higher order interactions
like dipole-dipole interactions are negligible in antiferromagnets because the
net magnetization is small. Note that the continuous field description is only
valid for small fields and small DM coupling where modulations are large
compared to the lattice distance.

3 Phases
We find that systems described by the hamiltonian given by Eq. (2.12.1) have
four distinct phases at zero temperature: the antiferromagnetic and spin–
flop phase are both homogeneous, whereas the spiral and 2q phases are
modulated, i.e., inhomogeneous phases with 1 and 2 dominating wave modes
respectively.

There are two homogeneous phases: the antiferromagnetic phase in which
the staggered magnetization points along the z-axis, and the spin–flop phase
in which the staggered magnetization lies in the xy-plane. The spiral phase
emerges for large enough DM coupling for which the staggered magnetiza-
tion shows the same characteristics as ferromagnetic spins in a spiral state.
Finally, there is a bounded region for which the 2q phase emerges, which
has a similar texture to the spiral phase but in which the width of the spirals
varies in length periodically. Configurations of these phases in real space, in
terms of the staggered magnetization, and the norm of their Fourier modes
are shown in Fig. 2.12.1. The Fourier modes are defined as

Aq = 1
L2

∑
r

Sr exp
[2πi

L q · r
]
. (2.4)
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Figure 2.1. Various types of configurations encountered in MC simulations
of the model described by the Hamiltonian in Eq. (2.12.1). The antiferromag-
netic (a), spin–flop (b), spiral (c), and 2q phase (d) are shown from left to
right in typical real spin configuration (top) and staggered magnetization
(middle) for an antiferromagnetic system of size L = 32 at zero temper-
ature. The arrows represent the local magnetization in the xy-plane and
the background colour shows the magnetization pointing up (red) or down
(purple). The norm of the Fourier modes (bottom), as defined in Eq. (2.42.4),
of these configurations show the distinctive modes that define the phases.
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4 Phase diagram from simulations
In one elementary move of our MC simulations, a random spin is selected
and replaced by a new spin vector, drawn uniformly from a spherical cap
around the original spin vector. The size of this cap is chosen such that
the acceptance rate in the Metropolis algorithm is roughly 50%. The time
step is defined such that each spin makes an elementary move once per
unit of time. At each temperature typically 4500 time steps are taken before
measurements are done. During annealing, the temperature is reduced from
well above the critical temperature to well below it in 200 temperature steps.
These measurements result in data obtained over a wide range of parameters
and temperatures.

We consider the Fourier transform of the spin vectors as defined by Eq. (2.42.4)
below. All four phases can be characterized by Fourier peaks. We define the
homogeneous, spiral, and 2q phases as having 1, 2, or 4 nonzero-mode peaks
respectively. To construct the phase diagram from Monte Carlo simulations
based on the discrete hamiltonian from Eq. (2.12.1) we first anneal 10 different
systems of size L = 32 at some parameter values J , D, B, and K. From these
states the one with the lowest energy is chosen, and the process is repeated
for different parameter values. For all these prospective ground states the
phase and the area in the phase diagram for which they have the lowest
energy is determined. From this the B-D-phase diagram can be constructed
for various values of anisotropy K. The phase diagrams are qualitatively
different for systems with easy-axis (K < 0) or easy-plane (K > 0) anisotropy,
as can be seen in Fig. 2.22.2.

5 Analytical phase diagram
We also construct the phase diagram by using a number of Ansätze for the
various phases. The parameters in these Ansätze are obtained from min-
imizing the hamiltonian density from Eq. (2.32.3) for these phases. For the
antiferromagnetic phase we assume l = (0, 0, 1), resulting in an energy dens-
ity HAF = K. The spin–flop phase is characterized by l = (cos φ, sin φ, 0)
with energy density HSF = −B2/(16J). For the spiral phase, l is domin-
ated by a rotation along the direction of the wave in the (1, 1) direction such
that l = (sin(q · r) cos θ, sin(q · r) sin θ, cos(q · r)). Averaging over the length of
one modulation and minimizing with respect to q leads to an energy density



5 Analytical phase diagram 29

HSP = −B2/(32J) − D2/(2J) + K/2. A phase transition between the antifer-
romagnetic and spiral, and the spin–flop and spiral phase occurs along the
lines

B = 4
√

−(JK ± D2), (2.5)
for easy-axis anisotropy. For easy-plane anisotropy, we assume for the
spiral phase that the length is also variable, i.e., l = l(sin(q · r) cos θ, sin(q ·
r) sin θ, cos(q · r)). Following the same procedure, we find that l =√B2 + 8D2 − 8JK/B minimizes the energy. The energy density for the spiral
is HSP = −(B2 + 8D2 − 8JK)2/(32B2J). In the case of easy-plane anisotropy,
the phase transition between the spiral and spin–flop phase is then given by

B = 2
√

2(1 + √2)√D2 − JK. (2.6)
From simulations we find, as is explained further below, that the 2q phase
lies in a K-independent regime of moderate values for D/J . With very small
modulated structure like these, assumptions, such as very small total magnet-
ization m do not hold any longer, and so the continous field description in
Eq. (2.32.3) does not apply. These fast varying structures, including many higher-
order Fourier modes, as can be seen in Fig. 2.12.1(d), mean a simple Ansatz, to
reliably calculate energy densities for the 2q phase, could not be found.

We have constructed similar phase diagrams for various strengths of aniso-
tropy K/J ∈ 0, ±0.02, ±0.04, ±0.1. The critical strengths B0 at D = 0 and D0at B = 0 at which the transitions take place are obtained from Eqs. (2.52.5,2.62.6),
yielding B0 ∼ 4√|JK| and D0 ∼ √JK, consistent with results in Ref. [22].
These become larger for increasing strengths of anisotropy. In the simula-
tions, the size of the system limits the longest wave length of the magnetization
texture. For larger anisotropy, simulations in finite sytems are therefore in
better agreement with analytical calculations. An interesting point is that the
2q phase is always sandwiched between the spin–flop and spiral phase, at con-
stant values of DM interaction. Its size is relatively insensitive to the strength
of anisotropy. This implies that the size of modulations in the 2q phase in
antiferromagnets is related to the pitch length p ∼ J/D, which is a measure
for the length of modulation. Therefore, p only has a limited range of values,
unlike the size of skyrmions in ferromagnets.
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Figure 2.2. The complete B–D phase diagram for antiferromagnetic materi-
als with easy-plane anisotropy K/J = 0.1 (top panel) and easy-axis anisotropy
K/J = −0.1 (bottom panel) at zero temperature. The grey data points display
parameter values at which Monte Carlo simulations were performed. From
these simulations, the phases were determined, shown as different colours.
The red data points show the boundary of the 2q phase, as obtained from
these MC simulations for fixed values of B/J . The analytical solutions for
the phase transitions as given by Eqs. (2.52.5,2.62.6) are shown as solid black lines.
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6 Interaction energies
To investigate further the stability of the 2q phase in this model, we look at the
energy contributions E of all interactions in the model along a line with fixed
B/J = 3.2, through the 2q phase in the phase diagram. With increasing DM
interaction and no anisotropy, there is a transition from the spin–flop phase
to the 2q phase at D/J = 0.76. If the DM interaction is increased further, the
spiral phase is entered at D/J = 0.84, as can be seen in Fig. 2.32.3. At the phase
transition the contributions of the external field B and the DM interaction D to
the total energy make distinctive jumps. While the spin–flop state minimizes
the energy by having a net magnetization along the external field direction,
the spiral mode makes optimal use of the DM interaction. The 2q phase gives
a compromise between the two, and so a finite area between the two emerges
in which neither of them is optimal, and the 2q phase prevails.
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Figure 2.3. The energy contributions E/J to the ground state of the inter-
actions with coupling parameters J , D, B, and K are shown as a function
of D/J at parameter values J = −1, B = 3.2, and K = 0 for system of size
L = 32. The system undergoes two phase transitions at D/J = 0.76 and
D/J = 0.84 between the spin–flop, 2q , and spiral phase, respectively. These
are depicted as vertical grey lines. The discrete jumps in various energy
contributions suggest first-order phase transitions.

7 Skyrmions
An important question is whether the objects in the 2q phase as shown in
Fig. 2.12.1 can be called skyrmions, as they are not fully isolated topological
objects. For a ferromagnet, the (anti)skyrmion is defined as a topological
object for which the winding number w of the magnetization is nonzero:

w = 1
4π

∫
dxdy n · (∂xn × ∂yn

). (2.7)
In case of the antiferromagnet, the winding number w of the staggered mag-
netization can be defined instead. Although the staggered magnetization in
an antiferromagnet behaves similarly as the normal magnetization in a ferro-
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magnet there are some distinctive differences. The antiferromagnet is sym-
metric under the n Ï −n transformation, such that there is no difference
between a skyrmion and an antiskyrmion, and neither the up or down regime
in terms of the staggered magnetization is favoured over long distances. Thus
there can be no lattice of isolated thermally-activated topological objects like
in a ferromagnetic system, without breaking this symmetry.

In finite-size systems with open boundaries, skyrmions can, however, be
stable as the boundaries break the sublattice symmetry. We find that skyrmi-
ons in finite-sized systems persist even if the temperature is increased up to
the Curie temperature. To show this, we investigate a single skyrmion in a
small system of size L = 8 with open boundaries at D/J = 1, B/J = 4 and
K = 0, deep in the 2q phase (see inset of Fig. 2.42.4(a)). The system size is
chosen as the maximum size at which at most one skyrmion forms. Start-
ing well above the critical temperature we anneal the system as discussed
above. Due to sublattice symmetry, the system gets trapped in a state with
either a skyrmion or an antiskyrmion in the center. From the susceptibility
χw = 〈w2〉 − 〈w〉2 of the winding number of the staggered magnetization,
which is at a minimum at the critical temperature β−1c ≡ kBTc/J , we find
βc ≈ 3.9. Results from 104 annealings allow for an accurate picture of the
expected number of skyrmions in this system at a certain temperature. In
particular, we determine the probability density ρ(w, T) for a value w of the
winding number at temperature T . Results for χw and ρ(w, T) are shown in
Fig. 2.42.4. Within margins of error, the system contains roughly half of the
time (49.54 ± 1.0%) a skyrmion instead of an antiskyrmion, as expected from
symmetry arguments for temperatures below the critical temperature. No-
tice that the winding number is not exactly an integer due to edge effects.
In short, this shows that (anti)skyrmions as stable isolated topological objects
can exist in finite-sized systems at temperatures below the Curie temperat-
ure. Moreover, the finite size turns out to stabilize skyrmionic structures well
outside the parameter range where the 2q phase is stable2.

2We thank A. Roldán-Molina and A. S. Núñez for correspondence about this point.



34 2 Skyrmions in square-lattice antiferromagnets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0

0.0

10-4 0.001 0.01 0.1 1 10

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

kBT/J

Figure 2.4. Upper panel: susceptibility of the winding number of the
staggered magnetization χw as a function of temperature kBT/J , for a system
of size L = 8 with couplings D/J = 1, B/J = 4 and K = 0. These parameters
are chosen such that a single skyrmion emerges (see inset). The arrows
represent the local Néel vector in the xy-plane and the background colour
shows the z-component as positive (red) or negative (purple). A vertical line
is drawn at the temperature kBT/J ≈ 0.25 at which point the susceptibility
is minimal. Lower panel: probability density ρ(w, T) of the winding num-
ber w of the staggered magnetization as a function of temperature. Below
kBT/J ≈ 0.25, indicated by a vertical line, the system chooses a configuration
with either a skyrmion or an antiskyrmion.
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8 Discussion and conclusion
In summary we have shown that certain types of antiferromagnetic thin films
have four phases at zero temperature including a 2q phase which was not
reported before. With Monte Carlo simulations and Fourier analysis, we con-
structed a phase diagram. The 2q phase has close relations to skyrmions in
ferromagnetic systems, but due to symmetries a lattice of topologically isol-
ated objects is not expected. We have shown however, that in finite-sized sys-
tems and at nonzero temperatures (anti-)skyrmions can be thermodynamic-
ally stable configurations. The existence of thermodynamically stable skyrmi-
ons in SLAs provides an appealing alternative over skyrmions in ferromagnets
as data carriers.

To address finite-size effects and effects of periodic boundaries, we verified
that for smaller systems of size L = 16 the phase diagram is not signific-
antly different. At very low B and D finite-size effects are stronger as long-
wave-length modulated states do not fit into the small systems anymore. For
parameters yielding the 2q phase, we verified that the conclusions presented
above, which were obtained for systems of size L = 32, still hold if the system
size is increased to L = 128. We also verified that helical boundaries with
a shift up to half a period of the 2q phase only result in a rotation of the
q-vector but otherwise do not affect the phase diagram.

Since stabilizing the 2q phase requires large fields B ∼ J , the best candidates
for experimental verification are antiferromagnets with low critical temper-
ature Tc ∼ J/kB so that the required fields can be more easily achieved. A
possibility for experimental observation would be a monolayer of an antifer-
romagnetic compound that is probed by a scanning tunneling microscope,
similar to the experiments with Fe [6666] in which temperature and fields have
similar energy scales.

In future work we intend to study quantum fluctuations of the ground states
in the phase diagram, and how the antiferromagnetic textures interact with
spin and heat current.





3 Finite-size scaling at infinite-order phase
transitions

For systems with infinite-order phase transitions, in which an order parameter
smoothly becomes nonzero, a new observable for finite-size scaling analysis
is suggested. By construction this new observable has the favourable property
of diverging at the critical point. Focussing on the example of the F model
we compare the analysis of this observable with that of another observable,
which is also derived from the order parameter but does not diverge, as well
as that of the associated susceptibility. We discuss the difficulties that arise
in the finite-size scaling analysis of such systems. In particular we show that
one may reach incorrect conclusions from large-system size extrapolations
of observables that are not known to diverge at the critical point. Our work
suggests that one should base finite-size scaling analyses for infinite-order
phase transitions only on observables that are guaranteed to diverge.1

1 Introduction
The study of phase transitions is a central topic in physics. In statistical phys-
ics these drastic changes in the physical properties of a system show up in
non-analytic behaviour of quantities such as the free energy f per volume. For
finite-order phase transitions (FOPTs) this takes the form of non-smoothness,
where some derivative of f makes a jump at the critical temperature. Such
discontinuous functions provide suitable observables for numerical investiga-
tion into universal as well as model-specific properties of the phase transition.
In this setting finite-size scaling (FSS) is a powerful tool to quantitatively ex-
trapolate the power-law behaviour of observables near criticality [1313, 2121].

1The contents of this chapter are largely based on the work of R. Keesman, J. Lamers,
R. A. Duine, and G. T. Barkema [33]. This work has come to fruition due to collaboration
with J. Lamers. His focus was on everything mathematical and analytical whereas mine
was on the simulation and finite-size scaling. Special thanks go out to H. van Beijeren,
H. Blöte, and H. Stoof for insightful discussions.

37
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For infinite-order phase transitions (IOPTs) the situation is more subtle
since the transition is not as abrupt as for FOPTs. In the prototypical ex-
ample, the XY -model in two dimensions, the critical—or perhaps more ap-
propriately ‘transition’—temperature marks the point at which free vortices
start to dominate the physics, even though the susceptibility, which character-
izes the single-vortex fluctuations, has a peak away from this temperature [9292].
From a more mathematical perspective the non-analyticity marking IOPTs is
rather weak: the free energy depends smoothly on the temperature, where
f and all its derivatives are continuous, but it has an essential singularity at
the critical temperature. (Recall that, unlike in the complex case, there are
smooth functions that are not real-analytic; a standard example is the function
given by exp(−1/x) for x > 0 and zero elsewhere.) In addition IOPTs often
exhibit logarithmic finite-size corrections [9393, 9494, 9595]; although this does not
make FSS impossible [9696, 9797] it has been shown to give rise to difficulties [9898],
and rather large systems must be investigated to accurately analyse the scal-
ing. Accordingly, various other numerical methods for studying IOPTs have
also been developed [9999, 100100, 101101].

In such a more delicate setting one has to take care to select appropriate ob-
servables for numerical analysis using FSS. Order parameters do not directly
allow one to locate the critical point for IOPTs since the numerical determ-
ination of the point at which a function smoothly becomes nonzero is a futile
task. For this reason observables that diverge at the critical point, e.g. sus-
ceptibilities for second-order phase transitions, are more suitable for studying
a model’s behaviour near criticality [9898, 102102, 103103]. One should also keep in
mind that for IOPTs there are also observables, such as the specific heat, that
do not diverge for increasing system size; they peak away from the critical
temperature and do not tend to a Dirac delta function in the thermodynamic
limit of infinite system size [9494]. In this work we propose a new observable
that, by construction, peaks at the critical temperature in the thermodynamic
limit for any model with an IOPT that is characterized by a smooth order
parameter.

Specifically we consider the F model, which is an interesting test case since
it was solved analytically on a square lattice with periodic boundaries in the
thermodynamic limit [3333, 104104]. At the same time it is related to the XY -model
via a series of dualities involving the discrete Gaussian solid-on-solid model
and the Coulomb gas [3333, 105105, 106106, 107107]. Our new observable is essentially the
logarithmic derivative of the spontaneous staggered polarization P0, for which
an asymptotic analytical expression is known for all temperatures [108108]. We
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use a FSS analysis to compare the new observable with the ordinary derivative
of P0 and the susceptibility associated with P0. These observables behave quite
differently: the logarithmic derivative nicely diverges at the critical point in the
thermodynamic limit, the ordinary derivative has a bounded peak elsewhere
for all system sizes, and for the susceptibility—which is commonly used to
analyse critical behaviour—the scaling near criticality in the thermodynamic
limit has been conjectured [109109]. In our estimates of characteristics such as
the critical temperature, however, identical analyses of these observables lead
to similar asymptotic results. This once more illustrates that one should be
careful in numerical analyses of IOPTs. In particular, our work thus suggests
that one should base FSS analyses for IOPTs only on observables that are
guaranteed to diverge.

This paper is organised as follows. In Section 3.23.2 we recall the basics of
the F model and discuss the relevant observables and their known asymp-
totic expression. The Monte Carlo cluster algorithm and data processing are
treated in Section 3.33.3. The analysis of the three observables is performed
in Section 3.43.4, and the results are discussed in Section 3.53.5. We end with a
conclusion in Section 3.63.6.

2 The F model and observables
The six-vertex model, or ice-type model, is a lattice model for which each
vertex is connected to four others by edges carrying an arrow pointing in or
out of the vertex, such that precisely two arrows point towards each vertex.
Thus there are six allowed configurations around each vertex as shown in
Fig. 3.13.1. To each such vertex configuration i one assigns a (local) Boltzmann
weight exp(−β εi), where β := 1/(kBT) is the inverse temperature and εi the
energy of that configuration. The (global) Boltzmann weight of the entire
configuration is the product of the local weights of all vertex configurations.
The F model [110110] is given by the particular choice ε1 = ε2 = ε3 = ε4 = ε > 0
and ε5 = ε6 = 0. This is the prototype of the antiferroelectric regime of
the six-vertex model, where vertex configurations 5 and 6 are energetically
favourable. At sufficiently low temperatures the system orders in an antifer-
roelectric fashion, with vertices 5 and 6 alternating in a chequerboard-like
fashion. From now on we consider the F model on a square L ×L lattice with
periodic boundary conditions in both directions, and set kB = ε = 1.

The free energy (per site) in the thermodynamic limit was found analytically
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ε1 = ε ε3 = ε ε5 = 0

ε2 = ε ε4 = ε ε6 = 0
Figure 3.1. The six allowed vertices with associated energies for the F
model, where ε > 0.

for the F model by Lieb [3333, 104104] using a Bethe-ansatz analysis. There is an
IOPT with critical (or ‘transition’) temperature βc = ln 2, or ∆c = −1 where
∆ := 1 − exp(2β)/2. In the low-temperature regime the free energy can be
expressed as a convergent series,

β fana(λ) = β − λ −
∞∑

n=1
exp(−nλ) sinh(nλ)

n cosh(nλ) (3.1)

where λ := arccosh(−∆) > 0 parametrizes β > βc, while at high temperatures
one has an integral representation

β fana(µ) = β − 1
4µ

∫ ∞
0

dt
cosh(πt/2µ) ln

(cosh(t) − cos(2µ)
cosh(t) − 1

)
(3.2)

for µ := arccos(−∆), 0 < µ < π/2, parametrizing β < βc. The entire high-
temperature region can be regarded as critical in the sense that correlations
decay as inverse power laws rather than exponentially [9393].

Although the six-vertex model has not been solved in the presence of an
external staggered electric field, Baxter [108108] found an exact expression for
the spontaneous staggered polarization P0 per site. To each microstate C
one can associate an ‘instantaneous’ spontaneous staggered polarization P0(C),
which can be computed as the ‘staggered’ sum of the net polarizations at the
vertices, where the direction of the net polarization is flipped at every other
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site (in a chequerboard-like way). Then the thermal average P0 := 〈P0(C)〉
is an order parameter for the F model, vanishing for β < βc and becoming
nonzero at the critical temperature. When β > βc it is given by

Pana0 (λ)1/2 =
√2π

λ
∞∑

n=1
exp

(
− (n − 1/2)2π2

2λ
)

. (3.3)

Like the free energy this function is smooth with an essential singularity at
β = βc, which is very weak: the functions and all their derivatives do tend to
zero as β approaches βc from above. When the F model is reinterpreted as
a height model (the body-centred solid-on-solid model) the IOPT is a rough-
ening transition [105105].

The observables on which we will focus are the derivatives β2 ∂β ln P0 and
β2 ∂βP0, where ∂β := ∂/∂β, together with the susceptibility χ := β [〈P0(C)2〉 −
〈P0(C)〉2] of the staggered polarization, which is called the spontaneous
staggered polarizability. Baxter [109109] conjectured the following form of the
susceptibility in the low-temperature regime

χ(λ) ∼ λ−2 exp(π2/2λ) . (3.4)
The preceding discussion ensures that β2 ∂β ln P0 diverges at the critical

temperature whereas β2 ∂βP0 has a (finite) peak at some βmax > βc. To the
best of our knowledge neither β2 ∂β ln P0 nor β2 ∂βP0 have been considered
before in the literature. The latter is included to demonstrate one has to be
careful in FSS for IOPT: we show that it is hard to extrapolate numerical data
to the thermodynamic limit, even when the exact limiting expressions are
known.

3 Simulations
Our Monte Carlo simulations are based on a cluster algorithm that uses the
(one-to-three) mapping from the six-vertex model to a three-colouring of the
square lattice [3333, Note added in proof]. Choose three colours, ordered in
some way, and use one of them to colour any single plaquette (face) of the
lattice. Then any configuration of the six-vertex model uniquely determines a
three-colouring, where the direction of the arrow on an edge dictates whether
the colour increases or decreases (modulo three), and the ice rule ensures
that the colouring is well defined. For the F model vertices surrounded by all
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three colours (configurations 1 to 4 in Fig. 3.13.1) are energetically less favourable
than those at which only two colours meet (configurations 5 and 6).

The multi-cluster algorithm builds clusters containing adjacent faces of two
colours, and patches these clusters together diagonally with a probability that
is such that required detailed balance is met. After no more clusters can
be included the colours in the clusters are swapped and one cluster update
has been performed [1313]. Because of the small autocorrelation times at the
temperatures near the phase transition, we take measurements after 10 of
these cluster updates for system sizes L < 128, and after each cluster update
for larger systems. At least 106 measurements are made per temperature
per system, at minimally 15 different temperatures. For the largest system
that we consider, with L = 512, we simulate at 29 different temperatures with
slightly over 8 × 106 measurements performed per temperature.

From expressions (3.13.1)–(3.23.2) for the free energy we can estimate the mean
and variance in energy measurements for finite systems at a given temperat-
ure. Moreover the specific heat Cv = β2∂2β(βf ) is bounded and, in leading or-
der, does not scale with L. Together these ensure that the parallel-tempering
and multi-histogram methods can be applied successfully.

Parallel tempering is a simulation method in which systems are simulated
at various temperatures and periodically swapped [1414]. Here the probability
of swapping two configurations at different temperatures is given by Pswap =
min[1, exp(δβ δE )], where δβ := βhigh − βlow and δE := Ehigh − Elow are the
difference in inverse temperature and energy between the two configurations,
respectively. To make sure that Pswap is large enough for configurations
to move reasonably fast through this temperature landscape we want the
histograms of the energies at different temperatures to overlap significantly.
Starting from some temperature for which we know the average energy U :=
〈E(C)〉 and the standard deviation σU from the analytical expression of the
free energy, a neighbouring temperature is chosen such that the difference
in energies is roughly σU , viz., β′ = β ± β/√Cv . After each measurement we
may swap the configuration with one at such a neighbouring temperature,
with acceptance probability Pswap between 47% and 53% for all simulations at
large system sizes.

At each measurement we record the energy E(C) and instantaneous spon-
taneous staggered polarization P0(C) for various temperatures. Using the
multi-histogram method any function of the values E(C) and P0(C) can then
be reliably estimated as a function of temperature [2323]. For this method to
work the energy histograms must have significant overlap; we have ensured
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that this is indeed the case for our data. Figure 3.23.2 shows the result for
β2 ∂β ln P0, β2 ∂βP0 and χ , together with their known and conjectured analyt-
ical form. Note that the data in the low-temperature regime are in agreement
with the analytical forms of β2 ∂β ln P0 and β2 ∂βP0. For χ the data collapse in
this regime and support the conjecture (3.43.4).
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Figure 3.2. The observables β2 ∂β ln P0 (upper panel), β2 ∂βP0 (central panel),
and χ (lower panel) versus β for system sizes up to L = 512. The data points
show the temperatures at which the simulations were run, while the solid
lines are the functions extracted from this data using the multi-histogram
method. When available the analytical form for infinite systems [cf. Eq. (3.33.3)]
is shown by a dashed black line. For sufficiently low temperatures all graphs
collapse onto these dashed black lines, corroborating the validity of our
simulations. For L → ∞ we know that β2 ∂β ln P0 must diverge at the crit-
ical temperature βc = ln 2, indicated by a vertical line, whereas β2 ∂βP0 is
bounded and peaks elsewhere. A fit to the conjectured form of χ , Eq. (3.43.4),
is indicated by a dotted-dashed black line in the lower panel.
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4 Analysis
The usual finite-size scaling procedure is to take the data, see Fig. 3.23.2, and
collapse the graphs by scaling the distance to the critical temperature and the
height as functions of the system size L. For the F model there are large
logarithmic corrections due to ‘quasi’ long-range correlations [9292] as well as
higher-order finite-size corrections [103103]. The systems size at which the finite-
size corrections become negligible do not yet seem to be within reach, so we
cannot perform a data collapse based purely on analytical expressions.

Instead we will perform a numerical data collapse. For each of the three ob-
servables that we are interested in we determine the coordinates (βmax, hmax)
of the maximum, together with the peak width w . Here we define the width
by demanding that the function passes through the point (βmax +w, 0.95 hmax).
This definition is chosen such that w can be accurately measured for large
systems given the simulation data; we focus on lower temperatures (higher β)
because of the asymmetry of the observables around the critical temperat-
ure. Thus we have three characteristics, which are well defined since any
observable is smooth and bounded for finite systems. This allows for a nu-
merical data collapse by shifting (βmax, hmax) and (βmax + w, 0.95 hmax) on top
of each other. The result for our three observables is shown in Fig. 3.33.3.
Sufficiently close to the critical point β2 ∂β ln P0 and χ scale well, which is a
positive sign for scalability to the thermodynamic limit. Note that β2 ∂βP0, for
which we know the (bounded) asymptotic solution, does not exhibit scalability
for the system sizes that we investigate. We extrapolate the characteristics
(βmax, hmax) and w , extracted from the data for various system sizes, to the
thermodynamic limit.

4.I Peak position βmax
The analytic expression in Eq. (3.33.3) reveals that β2 ∂β ln P0 must develop a
Dirac delta-like peak at βc ≈ 0.6931 as L → ∞. Instead, the peak of β2 ∂βP0remains finite and shifts to βanamax ≈ 0.7394. The large-L behaviour of the
spontaneous staggered polarizability χ is not analytically known. The form of
the leading finite-size corrections can be obtained by expanding the inverse
temperature in L as [103103]

βmax(L) = βc + Aβ
ln2 L + Bβ

ln3 L + Cβ
ln4 L . (3.5)
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Figure 3.3. The three observables scaled such that for each system size
(βmax, hmax) 7Ï (0, 1) and w 7Ï 1. This scaling works well in the low-
temperature regime for β2 ∂β ln P0 (upper panel) and χ (lower panel). For
β2 ∂βP0 (central panel) it seems to fail, cf. the deviation from the asymptotic
analytical result indicated by a dashed black line.
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Figure 3.4. The inverse temperatures at which β2 ∂β ln P0 (blue circles),
β2 ∂βP0 (green squares), and χ (yellow diamonds) are maximal, here shown
as functions of the system size. The asymptotic solutions, βc = ln 2 for
β2 ∂β ln P0 and βanamax ≈ 0.7394 for β2 ∂βP0, are shown at ln−2 L = 0. Best fits
of the form Eq. (3.53.5) to the data are shown as solid lines, and all seem to
converge to βc.

Figure 3.43.4 displays our results for βmax as a function of L as obtained from
our three observables, together with the analytic asymptotic values, and the
best fits to Eq. (3.53.5). These fits yield βfitmax = 0.6914(28) for β2 ∂β ln P0, βfitmax =
0.6955(17) for β2 ∂βP0, and βfitmax = 0.6937(11) for χ.

4.II Peak height hmax
Since we know from the asymptotic formula for P0 that β2 ∂β ln P0 diverges
as L → ∞ let us consider inverse heights. The inverse peak height of β2 ∂βP0tends to (hanamax)−1 ≈ 0.3009. If a naive linear fit is applied to h−1 as a func-
tion of ln−2 L the extrapolation yields (hfitmax)−1 ≈ −0.0095(16) for β2 ∂β ln P0and (hfitmax)−1 ≈ 0.2161(17) for β2 ∂βP0. Adding finite-size corrections to the
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Figure 3.5. The inverse maximal heights of β2 ∂β ln P0 (blue circles), β2 ∂βP0
(green squares) and χ (yellow diamonds) as functions of ln−2 L. The inset
shows the peak height of χ with differently scaled axes. The asymptotic
values, (hanamax)−1 = 0 for β2 ∂β ln P0 and (hanamax)−1 ≈ 0.3009, are included at
ln−2 L = 0. Data indeed suggests that β2 ∂β ln P0 and χ diverge while β2 ∂βP0
stays finite. Best linear fits as functions of ln−2 L are shown as solid blue
and green lines for β2 ∂β ln P0 and β2 ∂βP0, respectively, while the best fit for
χ as in Eq. (3.63.6) is displayed in yellow.

conjectured form of χ in Eq. (3.43.4) gives [103103]

hmax(L) = Aχ L ln2 L
( Bχ

ln L + Cχ
ln2 L + Dχ

ln3 L
)

(3.6)

for the maximum of the susceptibility. The peak heights of the three ob-
servables and corresponding best fits are shown as function of system size in
Fig. 3.53.5.



5 Comparison of observables 49

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.01

0.02

0.03

0.04

0.05

Figure 3.6. The width, defined as the distance between the peak and the
(lower-temperature) position at which the curve reaches 95% of the maximal
height, shown for β2 ∂β ln P0 (blue circles), β2 ∂βP0 (green squares), and χ
(yellow diamonds) at various system sizes. The asymptotic values, wana = 0
for β2 ∂β ln P0 and wana ≈ 0.0180 for β2 ∂βP0, are indicated at ln−2 L = 0. Note
that in the observed regime all observables decrease monotonically with L,
yet β2 ∂βP0 must increase at some point to reach its asymptotic value.

4.III Peak width w
From the asymptotic expression we know that wana = 0 for β2 ∂β ln P0 and
wana ≈ 0.0180 for β2 ∂βP0 in the thermodynamic limit. Our data, together
with these analytic values, are shown in Fig. 3.63.6. Since the analytic form of
the scaling behaviour for w is lacking no best fit is performed.

5 Comparison of observables
Using our results we can compare the performance of our new observable
for the F model, β2 ∂β ln P0, with that of β2 ∂βP0 and that of χ. Asymptotic
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β2 ∂β ln P0 β2 ∂βP0 χ
βmax ana ln 2 ≈ 0.6931 0.7394 ln 2 (conj)

fit 0.6914(28) 0.6955(17) 0.6937(11)
h−1max

ana 0 0.3009 0 (conj)
fit −0.0095(16) 0.2161(17) 0

w ana 0 0.0180 0 (conj)
fit — — —

Table 3.1. All analytically known and conjectured asymptotic values of our
characteristics, together with our numerically extrapolated best values, are
shown for our three observables.

analytical and numerically extrapolated values for the three characteristics of
these observables are collected in Table 3.13.1 if available.

5.I Logarithmic derivative of P0
Our claim is that for an IOPT the logarithmic derivative of the order para-
meter is a suitable observable for numerical analysis: it must, by construction,
tend to a Dirac delta-like distribution at the critical point in the thermody-
namic limit. The extrapolated characteristics βfitc and hfitmax = −0.0095(16) for
β2 ∂β ln P0 are in agreement with this claim. Note that a linear fit for the in-
verse peak height as a function of ln−2 L yields a negative asymptotic result,
albeit close to zero, which indicate that there must be other leading finite-size
corrections that become important for system sizes outside the reach of the
simulations performed here.

5.II Ordinary derivative of P0
It is instructive to compare our new observable with a similar observable that,
by construction, should not be suitable for numerical analysis. Interestingly,
when the temperature at which β2 ∂βP0 peaks is extrapolated in a similar
fashion as for the logarithmic derivative the results are comparable. By con-
struction, however, we know that βmax must go to a much higher value in
the thermodynamic limit; there must be an inflection point outside the range
of simulated system sizes. Similarly, a linear extrapolation for the inverse
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peak height matches with the data, yet is far from the known asymptotic ex-
pression. Concerning the peak width one notes that the observed peaks for
L ≥ 128 are less wide than the peak of the asymptotic expression, cf. the
central panel in Fig. 3.23.2; thus w must start to increase at some larger system
size, even though it decreases monotonically in the simulated regime.

5.III Polarizability
Finally we turn to χ. Recall that this quantity is not known analytically but
there is a conjecture, Eq. (3.63.6), for its scaling behaviour. The observed βmax for
χ are very close to those of β2 ∂β ln P0 (cf. Fig. 3.43.4), and the extrapolated value
βfitmax = 0.6937(11) is in agreement with βc = ln 2. Together with the steadily
decreasing width for growing system sizes the data suggests that χ also tends
to a Dirac delta-like distribution. Our data fits well with the conjectured form
if higher-order finite-size corrections are taken into account, although it must
be noted that many alternative forms are also consistent with the data for
systems of sizes investigated here.

6 Conclusion
In this work we looked at infinite-order phase transitions (IOPTs), with the
case of the F model as a guiding example. We have suggested a new observ-
able that can be used for finite-size scaling analyses. For any system exhibiting
an IOPT with a smooth order parameter this observable is basically the log-
arithmic derivative of the order parameter, which by construction diverges
in the thermodynamic limit. For the F model this is β2 ∂β ln P0, where P0 is
the spontaneous staggered polarization. Since the exact asymptotic form of
P0 is known in the thermodynamic limit the F model is a good test case to
study the performance of our new observable in a finite-size scaling analysis.

For comparison we also have analysed two other observables. The first is
β2 ∂βP0, which we know to be bounded with peak away from the critical point
for all system sizes. Although it must therefore behave quite differently when
L → ∞, its observed characteristics turned out to be rather similar to that
of β2 ∂β ln P0 at the system sizes investigated. This illustrates that seemingly
reasonable yet incorrect conclusions, cf. the extrapolation to the critical point
in Fig. 3.43.4, may be reached for an IOPT when no analytical expressions are
available. The logarithmic corrections and large finite-size corrections for the
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F model require utmost caution in finite-size analysis; in particular one has to
take care to select appropriate observables in order to make hard claims by
means of extrapolation to the thermodynamic limit. Given the similarities in
FSS of different observables our work thus suggests choosing an observable
that is guaranteed to diverge at the critical point. In this way we ensure that
the FSS analysis is formally correct, although system sizes large enough to
reveal all leading-order corrections will likely be hard to reach.

The final observable that we have investigated is the (spontaneous
staggered) susceptibility χ = β [〈P0(C)2〉 − 〈P0(C)〉2], which is widely used to
analyse phase transitions. The observed characteristics show striking simil-
arities with those of β2 ∂β ln P0 and suggests that χ also diverges in the ther-
modynamic limit. The data are compatible with Baxter’s conjecture for χ ’s
scaling behaviour near criticality

Due to the ice rule the F -model is sensitive to the choice of boundary
conditions [111111, 112112]. Certain choices for fixed boundary conditions have
already been subjected to some numerical investigations [113113, 114114, 115115]. In
the near future we intend to analyse the influence of boundary conditions
using finite-size scaling. More generally it would be interesting to test our
observable for other models with an IOPT such as the XY -model.



4 Numerical study of the F model with
domain-wall boundaries

We perform a numerical study of the F model with domain-wall boundary
conditions. Various exact results are known for this particular case of the six-
vertex model, including closed expressions for the partition function for any
system size as well as its asymptotics and leading finite-size corrections. To
complement this picture we use a full lattice multi-cluster algorithm to study
equilibrium properties of this model for systems of moderate size, up to L =
512. We compare the energy to its exactly known large-L asymptotics. We
investigate the model’s infinite-order phase transition by means of finite-size
scaling for an observable derived from the staggered polarization in order to
test the method put forward in our recent joint work with Duine and Barkema.
In addition we analyse local properties of the model. Our data are perfectly
consistent with analytical expressions for the arctic curves. We investigate the
structure inside the temperate region of the lattice, confirming the oscillations
in vertex densities that were first observed by Syljuåsen and Zvonarev, and
recently studied by Lyberg et al. We point out ‘(anti)ferroelectric’ oscillations
close to the corresponding frozen regions as well as ‘higher-order’ oscillations
forming an intricate pattern with saddle-point-like features.1

1 Introduction
The F model for antiferroelectric materials [110110] is a special case of the
six-vertex, or ice-type, model that exhibits an infinite-order phase transition

1The contents of this chapter are largely based on the work of R. Keesman and J. Lamers[44].
J. Lamers contributions, besides extensive knowledge of relevant literature on the topic,
is the translation of general mathematical work into our physics framework as well as
working out the exact solution of the partition function for finite-sized systems including
the staggered polarization field in Section 4.24.2. R. Keesman has performed the simulations
and analyses in Sections 4.34.3 and 4.44.4. We thank P. Zinn-Justin for bringing CFTP under
our attention, G. Barkema and F. Colomo for feedback on earlier versions of this work,
P. Bleher for correspondence, and C. Hagendorf, I. Lyberg, and K. Johansson for useful
discussions.
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(IOPT) [104104]. Amongst others, studying the F model may thus be instructive
to get a better grasp of the well-known IOPT of the two-dimensional XY -
model as it offers a more simple setting in which the microscopic degrees
of freedom are discrete. By definition, at an IOPT the physics of a system
does not change as abruptly as it does for finite-order phase transitions, which
makes numerical investigations a rather subtle issue. In Ref. [33], together with
Duine and Barkema, we proposed a new observable for numerical studies
of IOPTs: the logarithmic derivative of the (smooth but not analytic) order
parameter for the IOPT. By construction this quantity exhibits a peak at the
critical — or rather ‘transition’ — temperature βc of the model, which makes
it a suitable candidate for the analysis of the physics near the IOPT. We used a
finite-size scaling analysis to compare the performance of our observable with
that of other observables commonly used in the literature, focussing on the
F model with periodic boundary conditions (PBCs) in both directions. In the
present work we test the observable in a different, yet closely related, setting.
At the same time this allows us to investigate other intriguing features of the
F model, such as the dependence of its thermodynamics, i.e. the behaviour at
asymptotically large system size, on the boundary conditions.

The microscopic degrees of freedom of the six-vertex model are arrows
pointing in either direction along the edges of a square lattice. Around each
vertex the arrows have to obey the so-called ice rule, which turns out to
be rather restrictive2. On the one hand this condition famously allows for
a Bethe-ansatz analysis that provides exact results (see, e.g., Ref. [117117] and
references therein) in the thermodynamic limit. On the other hand it causes
the model’s thermodynamics to depend on the choice of boundary conditions
used at the intermediate analysis for finite size [111111, 112112, 116116]. (In fact, this
phenomenon in the context of graphene [118118] originally motivated Ref. [33]
and the present work.) PBCs are commonly employed and are compatible
with the translational invariance that is present for infinite systems. For the
six-vertex model this choice is important for the Bethe ansatz; cf. Ref. [104104].
This choice was also used in our previous work [33]. The same thermodynamic
behaviour is obtained for ‘free’ and (conjecturally) ‘Néel’ boundary conditions,
where the arrows on the external edges are respectively left free or fixed to
alternate [115115, 116116]. This is not true for ‘ferroelectric’ boundary conditions,

2To see that the ice rule is crucial here consider the eight-vertex model, where the ice rule is
slightly relaxed. This model cannot be tackled with a straightforward Bethe-ansatz analysis,
and its thermodynamics are insensitive to the choice of boundary conditions; cf. Ref. [116116]
below.
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where the arrows at the boundary all point, e.g., up or to the right, but with a
single allowed microstate the resulting thermodynamics is trivial.

An interesting intermediate case is provided by domain-wall boundary con-
ditions (DWBCs), where on two opposite boundaries the arrows all point out-
wards whereas on the other two boundaries all arrows point inwards. Such
boundary conditions first appeared in the calculation of norms of Bethe vec-
tors in the quantum inverse-scattering method (QISM) in the work of Kore-
pin [119119]. Indeed, the QISM allows for an algebraic construction of the
Bethe-ansatz vectors for the Heisenberg XXX and XXZ spin chains and the
six-vertex model with PBCs. These algebraic Bethe-ansatz vectors simul-
taneously diagonalize the spin-chain Hamiltonian and the transfer matrix of
the six-vertex model provided the parameters featuring in the ansatz obey
constraints known as the Bethe-ansatz equations; see, e.g., Ref. [117117]. The
partition function of the six-vertex model with DWBCs, also known as the
domain-wall partition function, is related to the norm of the algebraic Bethe-
ansatz vectors [119119]. Later this quantity was found to have applications ranging
from the combinatorics of alternating-sign matrices [120120, 121121] (see also the
book [122122]) to one-dimensional quantum systems with inhomogeneous initial
conditions that are relevant for cold-atom physics [123123] to three-point amp-
litudes in N = 4 super Yang–Mills theory [124124, 125125].

The domain-wall partition function admits a concise closed expression for
all system sizes [126126, 127127]. From this the infinite-size asymptotics can be
found [111111, 128128], as well as the form of the leading finite-size corrections [129129,
130130, 131131, 132132]. The phase diagram of the six-vertex model has the same form
for PBCs and DWBCs, but the details are different [9393, 111111, 128128]; for example,
even though the F model exhibits an IOPT in both cases, the free energy per
site of the F model is larger for DWBCs than for PBCs. In the past decade or
so DWBCs have also attracted considerable attention in relation to the arctic-
curve phenomenon: they lead to coexisting phases that are spatially separated,
with an arctic curve separating the ‘frozen’ (ordered) and ‘temperate’ spatial
regions. This has been investigated from numerical [113113, 133133, 134134, 135135] as
well as analytic [123123, 136136, 137137, 138138, 139139, 140140, 141141, 142142] viewpoints.

The remainder of this paper is organized as follows. In Sec. 4.24.2 we review
the F model with DWBCs, its partition function, and the relevant observ-
ables; in particular we give a description of the staggered six-vertex model
(cf. Ref. [108108]) in the framework of the QISM. The Monte Carlo cluster al-
gorithm and data processing are discussed in Sec. 4.34.3. The results are treated
in Sec. 4.44.4. We fit the exact asymptotic expressions for the energy, giving best
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estimates for the free parameters in the finite-size corrections, and perform
a finite-size scaling analysis to test our observable at the IOPT. Besides these
global averaged properties we use our simulations to examine local proper-
ties: the coexisting phases, arctic curves, and the structure in the temperate
region of the lattice. We conclude with a summary and outlook in Sec. 4.54.5. In
App. 4.A4.A we review the global symmetries of the F model and describe how
these can be exploited to sample the full phase space.

2 Theory
2.I The F model and domain walls
The six-vertex model, or (energetic) ice-type model, is a vertex model on a
square lattice. The arrows on the edges are restricted by the ice rule, which
demands that at every vertex two arrows point inwards and two point out-
wards. This leaves the six allowed vertex configurations shown in Fig. 3.13.1.
To each such vertex configuration i one assigns (local) Boltzmann weight
exp(−β εi), with β := 1/(kBT) the inverse temperature, kB > 0 the Boltzmann
constant that we put to unity from here on, and εi the energy of the vertex
configuration. The energy is additive, so the weight of a configuration is the
product of these local weights. Summing these over all allowed configura-
tions, subject to some choice of boundary conditions, one obtains the model’s
partition function.

The F model can be obtained by taking ε1 = ε2 = ε3 = ε4 and ε5 = ε6 such
that the corresponding vertex weights are related by a = b = exp(−β ε) c for
some ε > 0, making vertices 5 and 6 energetically favourable. Interestingly,
this model has experimental realizations using artificial spin ice [143143]3. The
phase diagram is shown in Fig. 4.24.2. For low enough temperatures the system
is in the antiferroelectric (AF) phase. As temperature increases there is a
transition to the disordered (D) phase. For PBCs the ground state consists
of vertices 5 and 6 alternating in a chequerboard-like manner; this global AF
order persists throughout the AF phase and is destroyed upon entering the
D phase.

The six-vertex model does not have a thermodynamic limit in the usual
sense: the physical properties of macroscopic systems remain sensitive to the
choice of boundary conditions. Rather than imposing PBCs we consider an

3We thank P. Henelius for making us aware of this.
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a+ = exp(−β ε1) b+ = exp(−β ε3) c+ = exp(−β ε5)

a− = exp(−β ε2) b− = exp(−β ε4) c− = exp(−β ε6)
Figure 4.1. The six vertices allowed by the ice rule and their weights for
the six-vertex model. Often one assumes arrow-reversal symmetry: a± = a,
b± = b, c± = c. The F model is defined by a = b < c.

L × L portion of the lattice with domain-wall boundary conditions (DWBCs),
where the arrows on external edges are fixed and point out (inwards) on
all horizontal (vertical) edges, say. This change in boundary conditions has
several interesting consequences that will be reviewed momentarily. Similarly
to the case of PBCs (see, e.g., Refs. [9393, 144144] for reviews) one obtains exact
results for the DWBC F model by extending it to the six-vertex model with
general vertex weights a, b, and c as in Fig. 3.13.1. The ‘reduced coupling
constant’ is defined as

∆ := a2 + b2 − c2
2 ab . (4.1)

The phase diagram looks again like in Fig. 4.24.2. At high temperatures the
system is in the D phase, −1 < ∆ < 1. As the temperature is lowered it
transitions into the AF phase, ∆ < −1, or one of the two the ferroelectric (FE)
phases, ∆ > 1, depending on the ratio a : b : c. The D–AF phase transition is
of infinite order for PBCs [104104] as well as DWBCs (cf. the end of the following
subsection) [128128, 131131], while those between the D and FE phases are of first
order for PBCs [145145] but of second order for DWBCs [111111, 146146].

In the FE phase the DWBCs are compatible with the FE order, while for
∆ < 1 (including the F model) the boundaries raise the free energy per site
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Figure 4.2. The phase diagram of the six-vertex model, parametrized by
the ratios a/c and b/c since common rescalings of the vertex weights yield
only an overall factor for the partition function. The colours show contours
for ∆ at steps of 1/2 for −4 ≤ ∆ ≤ 4. The dashed arc is the so-called free-
fermion line. The dotted line corresponds to the F model, with an infinite-
order phase transition between the antiferroelectric (AF) and disordered (D)
phases. The thick dot is the ice point a = b = c, which can be interpreted
as β = 0. There are two ferroelectric (FE) phases.

with respect to the case of PBCs. Zinn-Justin [112112] suggested that this can be
understood as a consequence of coexisting phases that are spatially separated.
This phenomenon had also been found for various choices of fixed boundary
conditions for the ice model (a = b = c) before [147147]. Through the ice
rule the DWBCs induce ordered regions that extend deep into the bulk, and
translational invariance is lost even far away from the boundary. For example,
the ground state is no longer a chequerboard-like configuration of vertices
5 and 6 as for PBCs, which would after all lead to alternating arrows along
the boundary. Instead the DWBC ground state consists of a central diamond-
shaped area with AF order [see also Fig. 4.74.7(a) below], consisting of vertices 5
and 6 like before, enclosed by corners that each possess FE order, containing
a homogeneous configuration of one of the vertices 1 to 4. (When L is even
there are two ground-state configurations of this form.) The domain walls
thus raise the ground-state energy per site in the thermodynamic limit from
0 for PBCs to ε/2 for DWBCs. When the temperature becomes nonzero a
disordered region appears that separates the regions of AF and FE order, and
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above the critical temperature the region with AF order disappears to leave
a central disordered region surrounded by FE-ordered regions [113113, 133133].
There are sharp transitions between the regions, and the curves separating
the ‘frozen’ (AF or FE ordered) and ‘temperate’ regions in the scaling limit
(i.e. let L → ∞ while decreasing the lattice spacing to keep total system size
fixed) are known as arctic curves. These curves have four contact points
with the boundary, which for the F model lie in the middle of each side [140140].
For the ‘free-fermion point’ ∆ = 0 the arctic curve is a circle [136136] up to
fluctuations of order ∼ L1/3 governed by an Airy process [137137, 138138]. The
arctic curve has also been conjectured for |∆| < 1 [139139, 140140] and ∆ < −1
[141141], where the latter focusses on the curve separating the FE and D regions.

Because we are interested in the F model from now on we focus on the
D and AF phases. The following (real) parametrization of the vertex weights
are often used in these regimes4:

D:



a = sin(γ − t)
b = sin(γ + t)
c = sin 2γ

, AF:



a = sinh(γ − t)
b = sinh(γ + t)
c = sinh 2γ

. (4.2)

Here t ∈ [−γ, γ] is called the spectral parameter, while γ ≥ 0 is the crossing
parameter, which for the D phase is further restricted to γ < π/2; it is related
to (4.14.1) via ∆ = − cos 2γ for D and ∆ = − cosh 2γ for AF. The F model then
corresponds to t = 0, with ∆ = 1 − e2βε/2 or γ encoding the temperature as

eβε = c
a = c

b =
{2 cos γ , γ ∈ [0, π/3] (D) ,

2 cosh γ , γ ≥ 0 (AF) . (4.3)

The phase transition of the F model occurs at βc ε = ln 2 (∆ = −1, γ =
0). At this point the parametrization (4.24.2) vanishes identically, which can be
avoided by simultaneously rescaling the weights to set c equal to unity. At the
level of the partition function this may be implemented by keeping (4.24.2) with
t = 0 but considering the ‘renormalized’ partition function c−L2ZL(a, b, c) =
ZL(a/c, b/c, 1). We will denote this quantity simply by ZL .

4Computations using quantum integrability for finite size are often done over C, for which
a = sinh(u + η), b = sinh u, c = sinh η is another convenient parametrization. Setting
u = −γ − t and η = 2γ + i π yields the AF parametrization in (4.24.2) up to a common sign;
including a factor of i in front of γ and t gives that for D up to a common factor of i.
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2.II The domain-wall partition function
In some sense the six-vertex model with DWBCs is a theorist’s dream. Unlike
for PBCs, for which exact results are only available for asymptotically large
systems, the domain-wall partition function ZL can be found exactly for all
system sizes. In brief the computation goes as follows; see, e.g., Ref. [121121]
for more details. For the ith row (jth column) of the lattice one introduces
a parameter ui (vj ). This allows one to further extend the model to an in-
homogeneous version where the weight (4.24.2) at position (i, j) features ui − vjinstead of t . Korepin [119119] showed that ZL , viewed as a function of the ui ,obeys certain properties that determine it uniquely in the inhomogeneous
setting; most importantly there is a recursion relation that expresses ZL with
one ui specialized to a specific value in terms of ZL−1. Izergin [126126, 127127]
found a remarkably concise expression in the form of a determinant of an
L ×L matrix. Since it meets all Korepin’s requirements, Izergin’s determinant
provides a formula for the domain-wall partition function valid for all L. Upon
carefully evaluating the homogeneous limit, ui − vj → t for all i and j , this
results in a Hankel determinant:

ZL = (ab/c)L2
∏L−1k=0(k!)2 detL×L M , Mi,j := ∂i+j−2

t
c

ab , (4.4)

where the definition of Mi,j assumes a parametrization of the form (4.24.2). Spe-
cializing this quantity to the ice (or ‘combinatorial’) point a = b = c (so ∆ =
1/2) one finds that the number of domain-wall configurations for L = 1, 2, . . .
is 1, 2, 7, 42, 429, 7436, 218348, . . . [121121]. For the F model the domain-wall
partition function factorizes as Z2L = 2 X2LX2L+1, Z2L+1 = X2L+1X2L+2 for
certain polynomials XL [121121, Thm. 3]; cf. Ref. [148148, Thm. 4].

Using the explicit results found by Korepin–Izergin the bulk free energy
was evaluated in the thermodynamic limit by Korepin and Zinn-Justin [111111]
and Zinn-Justin [128128]. Prior to that only some special cases in the D phase
were known: the free-fermion point (∆ = 0, γ = π/4) corresponding to the
2-enumeration of alternating-sign matrices [120120, Sec. 6], and the ice point
(∆ = 1/2, γ = π/3) as well as the point ∆ = −1/2 (γ = π/6) related to the
3-enumeration of alternating-sign matrices [121121]. Here we recall that the ‘c2-
enumeration of alternating-sign matrices’ (cf., e.g., Refs. [121121, 122122]), is given
by cL ZL(1, 1, c) since the DWBCs imply that # c− = L + # c+.

A rigorous and more detailed analysis for the D and AF phases and the
corresponding transition, which is most relevant for us, was given by Bleher
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et al. [129129, 130130, 131131, 132132]. The asymptotic expressions for the domain-wall
partition function ZL , together with the first subleading terms in system size,
are as follows for the F model. In the disordered regime one has [129129]

Zasym
D = CD(γ) fD(γ)L2Lκ(γ) [1 + O(L−α)] , (4.5)

where CD(γ) > 0 and α > 0 are unknown, while

fD(γ) = π tan γ
4γ , κ(γ) = 1

12 − 2γ2
3π(π − 2γ) . (4.6)

For the antiferroelectric regime one finds [130130]
Zasym

AF = CAF(γ) fAF(γ)L2θ4(Lπ/2) [1 + O(L−1)] , (4.7)
with CAF(γ) > 0 another unknown normalization factor, and the extensive
part of the free energy is

fAF(γ) = π tanh γ
4γ

θ ′1(0)
θ1(π/2) , (4.8)

where θ1 and θ4 denote the Jacobi theta functions with temperature-dependent
elliptic nome q := exp(−π2/2γ).

From these exact asymptotics of the domain-wall partition function it can
be shown that, as for PBCs, the phase transition is of infinite order [128128, 131131].
Indeed, when subtracting the regular part, (π/4γ) tanh γ [differing from (4.64.6)
only in the parametrization used], from the AF free energy (4.84.8) one is left with
an expression that is smooth but exhibits an essential singularity as γ → 0+.

2.III The staggered polarization
An order parameter for the D–AF phase transition is defined as follows.
For any microstate C one can compute the spontaneous staggered polariza-
tion P0(C). This quantity is a measure of the likeness of C to one of the two
AF ground states C′ of the system with PBCs. At each vertex the local spon-
taneous staggered polarization can be defined as ∑

i σiσ ′i /4, where the sum
is taken over the four edges surrounding the vertex, and σi = ±1 (σ ′i = ±1)
depending on whether arrows on those edges point outwards or inwards in
C (C′). Then P0(C) is the sum over all these local quantities; since the AF
ground state is two-fold degenerate its sign depends on the choice of C′ to
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which C is compared. Additionally, for even L states come in pairs with equal
energy but opposite spontaneous staggered polarization. To avoid cancellation
of these contributions one defines the staggered polarization as the thermal
average P0 := 〈 |P0(C)| 〉 of the absolute value of P0(C). Note that the situation
is analogous to what happens for the magnetization in the two-dimensional
Ising model.

For the system with PBCs Baxter derived the exact large-L asymptotics of
P0 for all temperatures [108108]. This quantity becomes smoothly nonzero when
the system transitions from the D to the AF phase. Let us assume that it
continues to be a valid order parameter for the transition of the system with
DWBCs. For this case an expression for P0 that is manageable for all system
sizes is not known. We still have

P0 = d ln Z+L (s)
ds

∣∣∣s=0 , (4.9)

where ZL(s) is the partition function of the F model on an L × L lat-
tice with DWBCs in the presence of an external staggered electric field of
strength s ≥ 0. The superscript ‘+’ in (4.94.9) indicates that the absolute value
of each coefficient is to be taken in order to prevent the aforementioned
cancellation. No analogue of (4.44.4) is known when s 6= 0. Nevertheless the
framework of the quantum inverse-scattering method (QISM) does allow for
the direct computation of ZL(s), and thus P0, for low system size. Let us in-
dicate how this works; we refer to Ref. [117117] and references therein for more
about the QISM.

Let us give a description of the staggered six-vertex model based on Bax-
ter [108108]. We focus on the homogeneous case; inhomogeneities may be in-
corporated as usual. View the square lattice as being bipartite by dividing
its vertices into two sets in a chequerboard-like manner. The vertex weights
from Fig. 3.13.1 are given by a± = a, b± = b, while c± is equal to e±sc on one
sublattice (‘black’ vertices) and to e∓sc on the other (‘white’ vertices). These
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vertex weights can be encoded in the so-called R-matrix5

R(s) = s =



a 0 0 0
0 b es c 0
0 e−s c b 0
0 0 0 a


, (4.10)

defined with respect to the basis | 〉, | 〉, | 〉, | 〉 for the ‘incoming’ lines
and 〈 |, 〈 |, 〈 |, 〈 | for the ‘outgoing’ lines at the vertex. In the diagram-
matic notation in (4.104.10) one should think of time running along the diagonal
from bottom left to top right. R(s) contains the vertex weights for the ‘black’
vertices and R(−s) for the ‘white’ vertices.

A row of the lattice is described by the staggered (row-to-row) monodromy
matrix

T(s) :=
1 2 L

s −s ±s· · ·

= RL(±s) · · · R2(−s) R1(s) ,
(4.11)

where Rj contains the weights for the jth vertex in that row. It is customary
to write B(s) for the 2L × 2L matrix sitting in the upper right quadrant of T(s).
This matrix accounts for a row of the staggered six-vertex model with arrows
on the horizontal external edges pointing outwards as for DWBCs:

B(s) =
1 2 L

s −s ±s· · · . (4.12)

The staggered domain-wall partition function can then be expressed as an
entry of a ‘staggered’ product of L such matrices6:

ZL(s) = 〈 · · · | B(±s) · · · B(−s) B(s) | · · · 〉 . (4.13)
5Note that R(s) = (δs/2 ⊗ δ−s/2) R(0) (δ−s/2 ⊗ δs/2) for δs := exp(s σz/2) with σz the third Pauli

matrix, and R(0) the R-matrix of the ordinary (zero-field) six-vertex model. By the ice rule
one can rewrite R(s) = (I ⊗ δ−s) R(0) (δs ⊗ I) = (δs ⊗ I) R(0) (δ−s ⊗ I) with I the 2 × 2 identity
matrix. Direct horizontal and vertical fields would correspond to (δh ⊗ δv ) R(0) (δh ⊗ δv ),
which can be used to compute the direct polarization in a similar fashion.

6The partition function for an L × L lattice with L even and PBCs (cf. Ref. [33]) is obtained
by defining the staggered transfer matrix t(s) := tr T(s) = A(s) + D(s), where A(s) and D(s)
are similar to (4.124.12) but with both arrows pointing left and right, respectively. Then the
partition function is ZPBCL (s) = tr{[t(−s) t(s)]L/2}.
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For example, if L = 1 then B(s) is
( 0 0

es c 0
)

and Z1(s) = es c. The ordinary
domain-wall partition function is recovered in this algebraic language as ZL =
ZL(0). We have evaluated (4.134.13) for general s up to L = 12, accounting for
little over 1016 configurations.

To conclude this section let us comment on whether quantum integrability
may be used to get some concise expression for Z(s) valid for all L. The
answer appears to be negative; at least the Korepin–Izergin approach men-
tioned in Sec. 2.II2.II does not simply extend to s > 0. Indeed, one can still write
four recursion relations obeyed by the inhomogeneous extension of (4.134.13),
namely for u1 = v1 − γ , u1 = vL + γ , uL = v1 + γ and uL = vL − γ . However,
for s 6= 0 the inhomogeneous partition function is not symmetric in the ui ,so one does not get further Korepin-like recursion relations and the condi-
tions do not uniquely determine Z(s) for general L. The failure of Z(s) to be
symmetric in the ui is of course closely related to the fact that the staggered
R-matrices (4.104.10) do not obey a Yang–Baxter equation; even writing the latter
is problematic since the triangle featuring in that relation is not bipartite. The
latter also obstructs the computation of P0 using the so-called F-basis [149149].

3 Simulations
Recall that the six-vertex model is equivalent to a height model known as the
(body-centred) solid-on-solid model [105105]. In this picture fixed boundary con-
ditions ensure that the height of a configuration is bounded from below and
above. Going around the boundary in some direction the DWBCs correspond
to the height increasing along two opposite ends, say from 0 to L, and then
decreasing from L back to 0 along the other two ends. There are unique
configurations of minimal and maximal height: the former corresponds to
a valley of height 0 running along one diagonal, and the latter to a ridge
of height L along the other diagonal. (Note that these are the ground-state
configurations of the two FE phases. The AF ground state corresponds to a
diamond-shaped plateau, of height as close as possible to L/2, surrounded by
steep slopes to the pits and peaks at the corners.) The existence of configur-
ations of minimal and maximal height allows one to use coupling from the
past (CFTP) algorithms [150150, 151151], which ensure that one draws configurations
from the equilibrium distribution making it a perfect simulation. Although
CFTP can in principle be ‘shelled’ around a variety of updating schemes, in
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practice it is used only in combination with local updates due to the difficulties
that arise when the same global update needs to be performed on both the
lower and higher configuration. In this work we prefer speed over sample
accuracy as this allows us to investigate much larger systems, thus improving
the reliability of our subsequent analysis of the thermodynamic limit. Rather
than CFTP we thus use the full lattice multi-cluster algorithm [152152], as in
Ref. [33], with a reported dynamic exponent z = 0.005 ± 0.022 for PBCs [153153],
so that the correlation time can be considered independent of system size in
practice. The accuracy of our simulations is checked in Sec. 4.44.4 against the
theoretical expressions that were reviewed in Sec. 4.24.2.

Our results are procured from Monte Carlo simulations using the full lat-
tice multi-cluster algorithm in combination with parallel tempering [1414]. We
use the multi-histogram method [2222, 2323] to interpolate observables, the en-
ergy and staggered polarization in particular, in a temperature range around
the critical temperature. The F model is well suited for both parallel tem-
pering and the multi-histogram method as the specific heat is analytically
known and bounded [cf. (4.144.14) below] such that a set of temperatures can be
constructed a priori at which the energy distributions of ‘adjacent’ configura-
tions overlap significantly. Given a configuration at inverse temperature β, its
neighbouring configurations are set at β′ = β ±β/√Cv . In each simulation the
acceptance probability of swapping two configurations is never less than 47%.
After each update a measurement is taken, with a minimum of 106 measure-
ments per system size per temperature, at up to 30 different temperatures
per system size. At each measurement we determine the total energy and
staggered polarization, calculated based on the description in the first para-
graph of Sec. 2.III2.III, of the system as well as the local vertex density at each
vertex in the system. In principle one can estimate the thermal average of
any time-independent (local) observable that can be defined for the system,
such as arrow correlations, in a similar fashion. Note that all cluster updates
that would change the arrows on the boundary are rejected to preserve the
DWBCs.
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4 Results
4.I Energy and specific heat
Unlike the energy, the partition function itself can not be directly measured
in Monte Carlo simulations. Exceptions are very small systems (L ≤ 6) for
which our simulations happen to sample all microstates so that we are able
to reconstruct the full staggered partition function. The resulting expressions
for E(β) = 〈E(C)〉 and P0(β) precisely match those obtained via the QISM as
described in Sec. 2.III2.III. In general just a part of the phase space is sampled so
the partition function cannot be reconstructed as the total energy E(β) is not
known for all temperatures. However, the multi-histogram method allows
us to use simulations done at finitely many temperatures to determine the
partition function, up to an overall factor, on some finite temperature range.

Figure 4.34.3 shows the energy per site e(β) := E(β)/L2 and the specific heat
per site cv (β) := Cv (β)/L2 as functions of inverse temperature. The simulation
data are shown together with the exact expressions for infinite size extracted
from Eqs. (4.54.5) and (4.74.7) using

E(β) = −∂ ln Z
∂β , Cv (β)

β2 = −∂E
∂β = ∂2 ln Z

∂β2 , (4.14)

which yields e(βc) = 2/3 and cv (βc) = 8 ln2(2)/45. We observe a convergence
of the simulation data to the analytically known asymptotic values over all
simulated temperature ranges.

To investigate the effects of the subleading corrections in the system size
for the partition function further we focus on the critical point. Because of
the smoothness of the partition function we can take the expressions for the
disordered regime and evaluate them at the phase transition. Starting from
Eq. (4.54.5) we find the following expression for the energy per site eL(βc) at the
critical point for system size L:

eL(βc) = 2
3 − 4

3π2
ln L
L2 − C1

L2 + O(L−(α+2)) , (4.15)
with C1 = −limγ→0+C′D(γ)/[γ CD(γ)] an unknown parameter. Equation (4.154.15)
can be checked against the expression for the energy derived directly from
(4.44.4) for small system sizes (L ≤ 16) as well as the simulation data for moderate
system sizes. This is shown in Fig. 4.44.4 where e∞(βc)−eL(βc) and E∞(βc)−EL(βc)are plotted versus system size. The best unweighed fit, including only the



4 Results 67

asymptotically next-to-leading correction C1 = 0.669 ± 0.019, already shows
very good agreement with both the exact and numerically obtained values.
For L ≤ 141 this next-to-leading correction, ∼ 1/L2, is more important than
the asymptotically leading correction, ∼ ln L/L2. This means that even at
L ∼ 1021 the two corrections in (4.154.15) just differ by a factor 10. Also note the
high precision at which both the leading and first subleading corrections are
measurable for systems as large as L = 256, for which these corrections are
of the order 10−5.

A best estimate for the value of α can be found by assuming that the sub-
leading terms in (4.54.5), i.e. the O(L−α), is of the form g(γ) L−α. This yields

eL(βc) ' 2
3 − 4

3π2
ln L
L2 − C1

L2 + C2
L2 (Lα + C3) , (4.16)

where C2 = limγ→0+ g ′(γ)/γ and C3 = limγ→0+ g(γ) are again unknown. We
assume that these limits make sense; the corrections are finite and must
disappear for infinite systems. If we use our best value for C1 and fit Eq. (4.164.16)
to the energies of small systems obtained from direct computation of (4.134.13)
(see again Fig. 4.44.4), the best estimates are C2 = 1.6±1.2, C3 = 14±12, and α =
1.91±0.367. The inclusion of these subleading correction does improve the fit
qualitatively although error margins for best estimates of the parameters C2and C3 are very large. With these values the crossover point where the terms
proportional to C1 and C2 become comparable occurs already at L = 3.9. The
exact analytical values for the energy can be computed using (4.44.4) or (4.134.13).
We have done so for L ≤ 16; in either case most computation time was spent
on the derivation of the energy from the partition function at the critical point
rather than the calculation of the partition function itself.

7In fact, Ref. [132132, Thm. 6.1.3] shows that α ≥ 1. Our value would mean that b1 = 0 in the
proof of that result. In principle it is possible to check this analytically, but the expression
for b1 is rather complicated. We thank P. Bleher for correspondence about this point.
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Figure 4.3. The average energy per site e(β) (top) and specific heat per site
cv (β) (bottom) as functions of inverse temperature β. The critical points at
βc are indicated by the gray lines. The black lines are the exact asymptotic
expressions extracted from Eqs. (4.54.5) and (4.74.7). From the data points, indic-
ating the temperatures at which the simulations are done, the coloured solid
lines are calculated using the multi-histogram method. For both observables
we see a convergence of the data to the analytically known expressions in
the thermodynamic limit.
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Figure 4.4. The difference between the energy per site (top) and total en-
ergy of the system (bottom), with E∞(βc) := L2 e∞(βc) = 2 L2/3, is shown as
a function of system size. The solid blue disks represent the exact known
values for small system sizes obtained from Eq. (4.44.4). The open red squares
denote best estimates obtained from our simulations. The error bars are es-
timates based on the fluctuations in the energy and the number of measure-
ments taken. The expressions from Eq. (4.154.15) with only the leading correc-
tion (C1 ≡ C2 ≡ 0) and with first subleading correction (C1 = 0.669 ± 0.018),
as well as the expression from Eq. (4.164.16) (C2 = 1.6 ± 1.2, C3 = 14 ± 12,
α = 1.91 ± 0.36) are shown as dotted, dashed, and solid curves, respectively.
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4.II The logarithmic derivative of P0
Similar to our work in Ref. [33] we now study d ln P0/dβ, which must have a
peak at the critical point for infinitely large systems if P0 is a true observable
of the infinite-order phase transition. As for the energy the multi-histogram
method is used to obtain d ln P0/dβ by interpolation between the temperatures
at which the systems were simulated. Figure 4.54.5(a) shows d ln P0/dβ as a
function of inverse temperature for various system sizes up to linear size
L = 256. To obtain a numerical collapse for each system size we determine
the peak coordinates (βmax, hmax) as well as the typical width w , which is
defined as the absolute difference between βmax and the lower temperature
at which d ln P0/dβ attains 95% of the peak height. The numerical collapse
is shown in Fig. 4.54.5(b); unfortunately it is less clean than its counterpart for
PBCs in [33].

Previously we found behavioural similarities between d ln P0/dβ and the
susceptibility χ of the staggered polarization for PBCs [33]. Since there are no
known analytical expressions for the asymptotic behaviour of P0 for DWBCs
we fall back on the leading corrections known for PBCs [103103]. In the case of
PBCs the leading correction for the peak position of χ is of the form ln−2 L,
and so for DWBCs one could make the educated guess that the form of the
peak of d ln P0/dβ scales like

x = Ax + Bx ln−2 L + Cx ln−3/2 L + Dx ln−4 L, (4.17)
where x is either the inverse peak height h−1max, the peak width w , or the
position βmax of the peak. Figure 4.64.6 shows these quantities as a function
of ln−2 L with the best fit of Eq. (4.174.17) to the three characteristics. The best
estimates from an unweighed fit to all data points for the peak height are
Ah−1max = −0.01 ± 0.03, Bh−1max = 5.4 ± 1.1, Ch−1max = −3 ± 3, and Dh−1max = −2 ± 3.
For the peak width the best estimates are given by Aw = −0.009 ± 0.009,
Bw = 2.4 ± 0.4, Cw = −5 ± 1, and Dw = 3.0 ± 0.8. A similar fit for βmaxdoes not seem to work. Indeed, the best estimate for Aβmax = 0.83 ± 0.02
is far from the analytically known value βc = ln 2. Alternatively one could
fix Aβmax = βc, in which case the fit does not go through the data in a clean
fashion. Although this method does not reliably give an estimate for the
critical point it does show the convergence of d ln P0/dβ to a Dirac delta-like
distribution as the system size tends to infinity. From Fig. 4.64.6 we see that in
practice direct computation using (4.134.13) cannot be used outside of the regime
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in which subleading finite-size corrections are important. Simulations reveal
the decrease in βmax for increasing system size.
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Figure 4.5. The observable d ln P0/dβ is shown in (a) as a function of inverse
temperature β for various system sizes up to L = 256. In the thermodynamic
limit, under the assumption that P0 is a valid order parameter, this function
must have its peak at the critical point. In (b) the peak and the point where
the curves attain 95% of their peak height (at higher β) are scaled on top
of each other, with the two points indicated by black circles. From this
collapse we extract the peak position and typical width for further analysis;
cf. Fig. 4.64.6.
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Figure 4.6. Values of the inverse peak height h−1max (upper panel), peak po-
sition βmax (central panel), and peak width w (lower panel) are shown for
d ln P0/dβ up to system size L = 256 as a scaled function of ln−2 L. Exact
values for small system sizes obtained from Eq. (4.134.13) are shown as solid
blue disks and best estimates obtained from our simulations as open red
squares. The best unweighed fits of the form (4.174.17) are drawn as black
dashed lines. For βmax a fit through all data points results in a best estimate
for the critical point Aβmax = 0.87 ± 0.03 far from the analytically known
value βc = ln 2 ≈ 0.69. For h−1max (Ah−1max = −0.01 ± 0.03, Bh−1max = 5.4 ± 1.1,
Ch−1max = −3 ± 3, Dh−1max = −2 ± 3) and w (Aw = −0.009 ± 0.009, Bw = 2.4 ± 0.4,
Cw = −5 ± 1, Dw = 3.0 ± 0.8) the fits work well and are in agreement with
d ln P0/dβ becoming a Dirac delta-like distribution as L → ∞.
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4.III Arctic curves
So far we have investigated global quantities. For inhomogeneous (not trans-
lationally invariant) systems such as the F model with DWBCs such properties
provide rather coarse information, as a lot of the local information is averaged
away.

Figure 4.74.7 shows the thermally averaged c-vertex density ρ(c), together
with several contour lines, for a system of linear size L = 512 at various
temperatures: zero temperature (β → ∞, ∆ → −∞), below the critical point
(β = 2βc, ∆ = −7), at the critical point (βc = ln 2, ∆ = −1), at the free-
fermion point (β = βc/2, ∆ = 0), and at infinite temperature (β = 0, ∆ =
1/2). For nonzero temperature 10 independent simulations, each yielding
106 measurements, were performed per temperature to calculate the local
vertex density. We use the global symmetries described in App. 4.A4.A to get a
smoother ρ(c)-profile by averaging at a given ∆. At the centre ρ(c) is always
at a maximum. For zero temperature, the critical temperature, and the free-
fermion point the maximal values are 1 and about 2/3 and 1/2, respectively.
At low temperatures there is a AF region, with constant ρ(c) close to unity
signalling its ordered nature. As the temperature rises from zero a temperate
region emerges that encloses the central AF region, completely engulfing it at
the critical point; cf. Ref. [113113]. The arctic curves, exactly known for ∆ = −∞
and ∆ = 0 [137137, 138138] and conjectured for ∆ < 1 [139139, 140140, 141141] are also
shown in Fig. 4.74.7. The outer contours are drawn at temperature-dependent
values for ρ(c) (see Table 4.14.1) chosen such that those contours are qualitatively
comparable to the known and conjectured forms of the arctic curves. We
see that our data match very well with the analytic expressions; for nonzero
temperature the deviation from zero of the values given in Table 4.14.1 is a
measure of the influence of finite-size effects.

4.IV Oscillations in vertex densities
Finally we turn to the structure inside the temperate region. In Fig. 4.84.8 we
show the thermally averaged densities ρ along the diagonal from the FE
region dominated by b−-vertices (r = L/√2, bottom left corner in Fig. 4.74.7) to
the centre (r = 0) of a system of size L = 512 at the critical point ∆ = −1.
Along this diagonal one has ρ(a+) = ρ(a−). Moreover if one considers r
to cover the full diagonal, −L/√2 ≤ r ≤ L/√2, then ρ(a±) and ρ(c±) are
even as functions of r while r 7Ï −r reverses ρ(b+) ↔ ρ(b−). This once
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Figure 4.7. The thermally averaged density ρ(c) of c-vertices at L = 512
show phase separation at different temperatures. The density lies between
zero (shown in purple) and one (red). White solid contour lines are drawn at
the values 1/3, 1/2, 2/3, and 0.98, as indicated, of ρ(c). The outer white solid
contours are drawn at temperature-dependent values of ρ(c) (see Table 4.14.1)
that give the best qualitative match with the arctic curves [137137, 138138, 139139,
140140, 141141], which are shown as dashed black curves. At zero temperature (a)
the AF region is a diamond. At slightly elevated temperatures (b) the AF
and FE regions are separated by a temperate region. As the temperature
increases past its critical value (c), at which the AF region disappears, the
arctic curve deforms to a circle at the free-fermion point (d). The system
at infinite temperature is shown in (e), in which the arctic curve is a sort
of inflated circle, with the arcs deformed somewhat towards the corners of
the domain.
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(a) (b) (c) (d) (e)
β ∞ 2βc βc= ln 2 βc/2 0
∆ −∞ −7 −1 0 1/2
ρ(c) 0.500 0.012 0.021 0.018 0.014

Table 4.1. The values for β and ∆ at which the simulations for Figs. 4.74.7(a)–
4.74.7(e) were performed are given together with the values for ρ(c) at which
the outer contours are drawn. For finite ∆ this gives a measure of the
deviation from the asymptotic values ρ(c) = 0 due to finite-size effects.

more allows us to exploit the global symmetries as explained in App. 4.A4.A to
average for the densities of ρ(a±) and ρ(b±) in Fig. 4.84.8. Note that some of
these transformations exchange a± ↔ b± as they involve arrow reversal to
preserve the boundary conditions.

Using numerics, Syljuåsen and Zvonarev [133133] first noticed oscillatory be-
haviour (‘small wiggles’) of the arrow polarization density for ∆ < −1; see
Fig. 6 therein8. Recently Lyberg et al. [135135] recovered these oscillations while
studying the local vertex densities exactly; cf. the asymptotic expression of the
arrow polarization found for ∆ = 0 in Ref. [123123], as well as numerically. In
Fig. 4.84.8 we observe oscillations for all of the vertex densities in the temperate
region. The wavelengths of these oscillations are comparable functions of
r for each of the vertices. For lower temperatures these ripples are more
pronounced yet the region in which they appear, viz.,the temperate region,
becomes smaller. The thermally averaged densities ρ(c+) and ρ(c−) are in an-
tiphase (cf. Fig. 4.84.8) so these oscillations are masked if just ρ(c) is considered as
in Fig. 4.74.7. The complicated oscillatory behaviour in the temperate region can
more clearly be seen from the thermally averaged c-vertex density difference
δρ(c) := ρ(c−)−ρ(c+). Let us emphasize that we focus on the density difference
for the c-vertices because ρ(c±) are in anti-phase, so δρ(c)/2 = ρ(c)/2 − ρ(c+)
allows us to study the oscillations of ρ(c+) about its ‘average’ by approximating
the latter with the average ρ(c)/2 of ρ(c±). We should also point out that ρ(c)
itself exhibits oscillations, visible near the arctic curve for finite ∆ in Fig. 4.74.7;
we have verified, however, that the ρ(c)- and δρ(c)-oscillations have a phase
difference of π/2, so the ripples in Fig. 4.74.7 are related to the ‘FE oscillations’
that we will introduce momentarily.

8We thank I. Lyberg for bringing this to our attention.
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Figure 4.8. The thermally averaged densities ρ for all six vertices in a sys-
tem of linear size L = 512 at the critical point ∆ = −1 are shown along
the diagonal from the b−-dominated FE region to the centre at r = 0. The
grey vertical line marks the transition between the FE and temperate re-
gion [141141]. Each vertex density oscillates in the temperate region. Note that
ρ(c±) are in antiphase around their average.

To study the dependence on the system size of the oscillations in the temper-
ate region Fig. 4.94.9 shows δρ(c) along the diagonal for system sizes L = 32 up
to L = 512. The wavelength of the oscillations is always largest at the edges of
the temperate region. We observe a sublinear growth of the wavelength in L.
A best unweighed fit to the distance between the centre of the system (r = 0)
and the position of the maximum of δρ(c) gives (0.67±0.06)L(0.553±0.016). Such
a fit cannot be made for the maximal amplitude as our data are not accur-
ate enough to distinguish between logarithmic or power-law behaviour. Still
Fig. 4.94.9 does clearly show that the average wave amplitude monotonically de-
creases with system size, suggesting that the oscillations are finite-size effects,
as was conjectured in Ref. [133133]; cf. Sec. 4 of Ref. [135135].

Figure 4.104.10 shows the profile of δρ(c) for systems at ∆ = −1 and ∆ = −7.



78 4 The F model with domain walls

0
-0.10

-0.05

0.00

0.05

r

L

32

64

128
256
512

Figure 4.9. The difference δρ(c) is shown as a function of distance r along
the diagonal to the centre (at r = 0) for systems up to size L = 512 at ∆ =
−1. The coloured lines are a guide to the eye, and the grey vertical line
denotes the transition between the FE-frozen and temperate region as in
Ref. [141141]. The wavelength of the oscillations seems to increase sublinearly
while the average wave amplitude decreases monotonically with system size,
suggesting that these are finite-size effects.

Inside the temperate region there are at least two types of oscillations: one
type, let us call them ‘AF oscillations’, follows the boundary between the AF-
frozen and temperate regions (which at ∆ = −1 degenerates to the horizontal
and vertical lines separating the quadrants), while the other type, ‘FE oscil-
lations’, follows the contours of the arctic curve between the temperate and
FE-frozen regions. (Both of these types of oscillations may be discerned in
Ref. [135135, Fig. 6] too, and the FE oscillations arguably already in Figs. 10 and 11
of Ref. [133133]. We should point out that in Ref. [133133] the term ‘AF oscillations’
is instead used for the chequerboard patterns of c±-vertices typical for AF
order.)

Interestingly, upon closer inspection of Fig. 4.104.10 we observe a
chequerboard-like pattern inside the AF oscillations (cf. Ref. [135135, Fig. 6,
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∆ = −10]), signalling site-to-site anti-correlations for ρ(c±) that persist over
long distances along the oscillations, and justifying the name ‘AF’ for these
types of oscillations. Note that, albeit in a weaker form, these chequerboards
survive thermal averaging: unlike the one in the AF region for even L it
is a physical property of the system. We observe that the chequerboards
in adjacent oscillations are opposite, so the bands separating the oscillations
can be understood as the result of destructive interference between the two
chequerboards. Also note that such chequerboard-like anti-correlations are
invisible when one focusses on the densities along the diagonal. Next we turn
to the FE oscillations. The profile of ρ(b−) reveals that the interior of the
FE oscillations near the frozen region dominated by b− are also dominated
by b−, and similar statements are true for the other quadrants. Figure 4.104.10
further shows that the regions between the FE oscillations are dominated by
c−-vertices (δρ(c) > 0) to account for the constraint # c− > # c+ imposed by
the DWBCs. Notice that as the FE oscillations approach the median, at the top
of Fig. 4.104.10, they reduce to a chequerboard pattern on the median to merge
with the interior of the largest AF oscillation.

To justify our observations let us explain in more detail how Fig. 4.104.10 was
obtained. We use the same data as for Fig. 4.74.7, based on 10 independent
simulations each with 106 measurements of local vertex density. We use
the model’s global symmetries to produce further configurations from those
obtained from our simulations and sample over the full phase space as de-
scribed in App. 4.A4.A. Averaging over these configurations we obtain the profile
for δρ(c) shown in Fig. 4.104.10, which correctly vanishes both in the FE and AF
regions. For even as well as odd L, however, the site-to-site anti-correlations
between the AF oscillations in the temperate region survive this averaging:
unlike for the chequerboard in the AF region for even L, this seems to be a
statistical property of the system. See also (the end of) App. 4.A4.A.

Besides the AF and FE oscillations following the curves separating the tem-
perate and corresponding frozen regions there are also additional ‘higher-
order’ oscillations in δρ(c) that form intricate patterns in the temperate region
that are barely visible in Fig. 4.104.10. To visualize these oscillations more clearly
we truncate δρ(c) in the upper panel of Fig. 4.114.11 at 10% of the minimal and
maximal values from the upper panel of Fig. 4.104.10. Even though the relative
errors sometimes exceed the average value for very small δρ(c) the patterns
exhibit a lot of structure, and cannot be attributed to random noise. These
higher-order oscillations exhibit several saddle-point-like patterns around the
centre of the temperate region. The structure is similar for lower ∆; we
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Figure 4.10. [High quality online.] The thermally averaged density differ-
ence δρ(c) is shown for a system of size L = 512 at ∆ = −1 (upper panel)
and ∆ = −7 (lower panel). Each pixel corresponds to a vertex. The FE-
frozen region in the bottom left contains only b−-vertices. Below the critical
point the AF-frozen region appears (lower panel) in which δρ(c) = 0 due
to the two-fold degeneracy for even L. Inside the intermediate temperate
region at least two types of oscillations are visible. There appear to be
chequerboard-like patterns in the ‘AF oscillations’ even after thermal aver-
aging, with opposite chequerboards in neighbouring oscillations. The ‘FE
oscillations’ are dominated by the vertices constituting the FE-frozen region
(here b−), with δρ(c) > 0 between them.

have chosen ∆ = −1 to get the largest temperate region. Some higher-order
oscillations can be found in Fig. 7 of Ref. [135135] for ∆ = −10.

The oscillations persist above the critical point. At ∆ = −1/2 one can see FE
oscillations in Ref. [135135, Fig. 6]. Going deeper into the D phase the profiles of
δρ(c) on the free-fermion line (∆ = 0) and at the ice point (∆ = 1/2) are shown
in the lower panels of Fig. 4.114.11. At ∆ = 0 the FE oscillations are still clearly
visible. Interestingly, even though the AF region has disappeared it leaves
behind a ‘ghost’ in the form of AF oscillations. Close inspection suggests there
are higher-order oscillations too, with at least one saddle-point-like feature.
At ∆ = 1/2 most structure of the temperate region is beyond the resolution
of our data, yet one can still see weak FE oscillations as well as the tails of
AF oscillations in the top-left and bottom-right corners of that panel.
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Figure 4.11. [High quality online.] The thermally averaged c±-density differ-
ence δρ(c) for size L = 512 at ∆ = −1 (upper panel), truncated at 10% of the
values from the upper panel in Fig. 4.104.10. Every pixel represents one vertex.
This reveals weak ‘higher-order’ oscillations in the temperate region with
various saddle-point-like features; we can distinguish at least four of these
along the diagonal, and more along the top and right. The lower panels
show δρ(c) at ∆ = 0 (left) and ∆ = 1/2 (right), each again truncated at 10%
of its minimal and maximal value.
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5 Summary and outlook
In this work we have used Monte Carlo simulations to study the F model
with DWBCs. Although a closed form for the partition function is analytically
known for all system sizes, in practice it is particularly useful for the exact
computation of certain observables for fairly small systems and to obtain
the asymptotic form and its finite-size corrections. Simulations allow for the
investigation of systems of moderate size to complement such analytic results
as well as to study properties that are not (yet) understood from an analytic
point of view.

We have given best estimates for the parameters in the first three sublead-
ing finite-size corrections to the energy derived from the asymptotic partition
function in Eq. (4.54.5) at the critical point by fits to the average energies obtained
from simulations. This tests the reliability of our simulations; they are precise
enough to distinguish the different subleading corrections (Fig. 4.44.4). The best
estimates for the parameters suggest that the first subleading correction is
non-negligible in comparison to the leading correction even for macroscop-
ically sized systems, with L ∼ 1021. We find α = 1.91 ± 0.39 for a previously
unknown parameter in the asymptotic expression (4.54.5) of the domain-wall
partition function in the disordered regime found by Bleher and Fokin [129129].

Following joint work with Duine and Barkema [33] we have further invest-
igated the order parameter based on the staggered polarization P0, of which
we gave a description in the framework of the quantum-inverse scattering
method (QISM). From a theoretical point of view it would be interesting to
explore whether it is possible to adapt Baxter’s work [108108] to obtain an exact
expression for P0 in the case of domain walls, at least in the thermodynamic
limit, but we have not done so in the present work. If P0 is a true order
parameter for the model’s IOPT, i.e., it is constant on one side of the crit-
ical temperature and smoothly starts to change at the phase transition, then
the observable d ln P0/dβ must by definition have a divergence at the critical
point for infinitely large systems. Using finite-size scaling, and extrapolating
to the asymptotic case we have found that d ln P0/dβ does indeed converge
to a delta-distribution (see Fig. 4.64.6), although it fails to give an accurate es-
timate for the (analytically known) temperature at which the phase transition
occurs. Of course the DWBCs together with the ice rule make the system
that we have investigated rather special; the observable proposed in Ref. [33]
may still be useful for the investigation of other models exhibiting an IOPT.
One could also try using the susceptibility of P0 instead; most of its peaks
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lie outside our simulation range, though the peaks that are visible appear to
have a comparable quality for finite-size scaling.

In addition to these global (spatially averaged) properties we have studied
local properties of the system. The profiles of the c-vertex density ρ(c) ob-
tained for systems of size L = 512 at various temperatures with ∆ ≤ 1/2
are shown in Fig. 4.74.7. In the antiferroelectric (AF) phase our simulations
corroborate the coexistence of three spatially separated phases as found in
Refs. [113113, 133133], with a flat central region exhibiting frozen AF order sur-
rounded by a disordered (D) ‘temperate’ region and ferroelectrically (FE)
ordered corners. Our data agree very well with the arctic curves conjectured
by Colomo and Pronko [140140] and Colomo, Pronko and Zinn-Justin [141141]. It
would be desirable to have similar analytic expressions for the ‘antartic curve’
separating the temperate and AF-frozen regions for ∆ < −1.

Regarding the structure inside the temperate region our simulations con-
firm the oscillations first found by Syljuåsen and Zvonarev [133133] and recently
recovered by Lyberg et al. [135135]. Our findings agree with those works, repro-
ducing the patterns visible there, and uncover interesting additional features.
Each vertex density oscillates with the same dependence of the wavelength
on the position along the diagonal (Fig. 4.84.8). Our data confirm the con-
jecture of [133133], in accordance with Ref. [135135], that these oscillations are
finite-size effects: their wavelengths appear to grow sublinearly — roughly
as (0.67 ± 0.06)L(0.553±0.016) — and their average amplitudes decrease with
system size (Fig. 4.94.9). Our most detailed result regarding the structure of
the temperate region are Figs. 4.104.10 and 4.114.11. Here we have chosen to fo-
cus on the density difference for the c-vertices since ρ(c±) are in anti-phase
(cf. Fig. 4.84.8), so δρ(c) := ρ(c−) − ρ(c+) allows us to study the deviation of one
type of vertex around its ‘average’ without having to know an expression for
the latter. We find several types of oscillations. The ‘AF’ oscillations close to
the AF-frozen region appear to be made up of chequerboards of c±-vertices
that (unlike the AF region in case of even L) survive thermal averaging for
even as well as odd L, and are opposite between neighbouring oscillations.
The ‘FE’ oscillations near the FE-frozen region are dominated by the vertices
constituting that frozen region; between these oscillations there is a surplus
of the type of c-vertices favoured by the DWBCs. In addition there appear
to be weak ‘higher-order’ oscillations in c±-densities, forming various saddle-
point-like patterns. The oscillations seem to grow weaker as ∆ increases.
Nevertheless the oscillations persist well into the D phase, with FE and AF
oscillations remaining partially visible at ∆ = 1/2 (Fig. 4.114.11). A more quantitat-
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ive understanding of these vertex-density oscillations and arrow correlations
in the temperate region is desirable, both via simulations and through the
analytic methods of Refs. [137137, 138138], [142142], or [123123]. In fact, similar finite-size
oscillatory behaviour is known to occur for the eigenvalue distributions in
random-matrix models9, see e.g. [154154]; this might shed light on the oscilla-
tions at least for ∆ = 0, cf. [137137, 138138].

In the near future we plan to report on phase coexistence, arctic-curve phe-
nomena and the structure of the D region for various other choices of bound-
ary conditions; cf. Ref. [148148]. Another interesting direction is the study the
case of quantum-integrable ‘solid-on-solid’ (SOS) models, with weights associ-
ated to the dynamical Yang–Baxter equation. The trigonometric SOS model
is a one-parameter extension of the six-vertex model, and it would be inter-
esting to understand the dependence of those phenomena on the additional
‘dynamical’ or ‘height’ parameter. It would also be very exciting if the theor-
etical and numerical investigations of the F model with domain walls would
be complemented by experimental work as in, e.g., Ref. [143143].

A Relating configurations with opposite
chequerboards in the AF region

In this appendix we show that the F model has symmetries that can be used
to sample the whole of phase space starting from any initial configuration
obeying the ice rule and DWBCs. We should emphasize that the symmetries
we have in mind are symmetries of the model, not of the individual config-
urations.

We start locally, with the symmetries of the F model at the level of individual
vertices shown in Fig. 3.13.1. Such local symmetries must certainly preserve the
lattice near the vertex, i.e. the vertex with its four surrounding edges, so we
are led to the dihedral group D4 of symmetries of the square. Concretely it
contains rotations over multiples of π/2 as well as reflections in the horizontal,
vertical and (anti)diagonal line through the vertex. These operations clearly
preserve the ice rule. In fact, when the edges carry arrows there is one more
thing we can do that is compatible with the ice rule: reversing all arrows,
yielding an action of Z2 that commutes with the D4.

One can check the preceding operations change the vertex weights as
9We thank K. Johansson for pointing this out to us.
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follows:
reflect : a± ↔ b± ,

reflect : a± ↔ b∓ ,
reflect : a+ ↔ a− , c+ ↔ c− ,
reflect : b+ ↔ b− , c+ ↔ c− ,
rotate : a± 7Ï b∓ , b± 7Ï a± , c+ ↔ c− ,

reverse arrows : a+ ↔ a− , b+ ↔ b− , c+ ↔ c− ,
where for each reflection we omit the two weights it preserves. Notice that,
when using arrows along the edges to represent the microscopic degrees of
freedom, the F model may be characterized as the special case of the six-
vertex model for which the vertex weights are invariant under rotations over
π/2, and that they are then further invariant under all of D4 × Z2.

At the global level D4 × Z2 acts on the configurations, where D4 acts by
symmetries of the L × L lattice if we would forget about the arrows. Not all
of these global maps are allowed, though. Regarding the operations corres-
ponding to D4 the DWBCs are only preserved by a subgroup isomorphic to
Z2 ×Z2 corresponding to rotation over π and reflection in the horizontal and
vertical symmetry axes of the lattice. However, that the remaining operations
in D4 also preserve the DWBCs if we combine them with arrow reversal10.

The next question is how these operations act at the level of configurations.
Recall that there are two AF ground states, with opposite chequerboard pat-
terns for the alternating c+- and c−-vertices constituting the AF region; let us
call them ‘0’ and ‘1’. Below the critical temperature (∆ < −1) any configura-
tion is closer (more similar) to one of these two ground states. Accordingly,
the phase space decomposes into two parts, say Ci , with i ∈ Ci for i = 0, 1.
For sufficiently low temperatures (or ∆) and large enough L it costs a mac-
roscopically large amount of energy to go from the energetically favourable
part of C0, i.e. configurations close enough to 0, to the corresponding part
of C1: the system is practically trapped in one of these parts. Since we start
our Monte-Carlo algorithm from one of the two AF ground states we thus
10Thus the full global symmetry group of the F model with DWBCs is a subgroup of D4 ×Z2isomorphic to D4. Recall that D4 has a presentation in terms of two generators, r and s,

subject to the relations r4 = s2 = (s r)2 = e. Concretely, r acts by a rotation over π/2
while s acts by a reflection. Write g∗ for the combination of g ∈ D4 with arrow reversal.
Then the subgroup of global symmetries is generated by r∗ and s, where the latter acts by
reflection in the horizontal or vertical axes; clearly (r∗)4 = s2 = (s r∗)2 = e. See also (4.184.18).
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expect to stay in the corresponding part of the phase space as the system
thermalizes for ∆ < −1 and large enough L.

Now we return to the model’s symmetries. Consider the two AF ground
states, 0 and 1. When L is even the four axes of reflection symmetry meet
in the middle of the central face of the lattice, and it follows that the model’s
symmetries fall into two classes:

fixing i : identity , , ∗ , ∗ ,
0 ↔ 1 : ∗ , ∗ , , , (4.18)

where ‘∗’ means combination with arrow reversal. More generally, (4.184.18)
indicates how the model’s global symmetries relate the Ci .Since for the F model these operations do not change the vertex weights,
they preserve the energy of the configurations. Given any configuration we
can act by the model’s symmetries to generate further configurations of the
same energy; we get up to eight configurations in this way, though it may
be only four or two if the original configuration happened to possess some
amount of symmetry. (One should really check for such symmetries of the
original configuration to avoid overcounting, but at high enough L we can
skip this step as such symmetric configurations make up a negligible portion
of the phase space.) Half of the configurations we get in this way lie in C0and the other half in C1. The upshot is that after having run the Monte Carlo
simulation we can use the model’s symmetries to sample the full phase space,
even from simulations that correctly sample around one of the two ground
states.



Outlook

The main focus of this Thesis is the behaviour of two-dimensional materials,
namely (anti)-ferromagnetic materials in the first two chapters, which show
topological phases, and energetic square ice in the third and fourth chapter.
The magnetic materials are of interest in part due to foreseen practical applic-
ations in which skyrmions can act as data carriers for which we have shown
that skyrmions can exist in the ground state. Energetic square ice is of the-
oretical interest due to its anomalous behaviour at the infinite-order phase
transition and as a purely mathematical analytically solvable model. We used
this model to test the order parameter we constructed that, by definition, can
be used to detect these infinite-order phase transitions. We also show agree-
ment between conjectured and known properties for energetic square ice
with special boundaries and show the existence of oscillations that go beyond
current theories.

Further research, however, is necessary in both of these topics. For fer-
romagnetic systems we developed tools to calculate quantum fluctuations on
given configurations. It would be interesting to use these to investigate the
changes these fluctuations bring to the classical phase diagram for both the
ferromagnetic as well as the anti-ferromagnetic case. As skyrmionic tex-
tures are of interest in search for new data transfer methods more research
is needed to investigate the behaviour of stable ground state configurations
when manipulated by spin and heat currents.

The chapter on energetic ice also brings forth some yet unanswered ques-
tions. More numerical investigation into the F -model with even more exotic
boundary conditions, which can lead to drastic changes for the phase dia-
gram, can be compared to and used in combination with analytical results.
Since the order parameter we constructed should, in principle, work for all
infinite-order phase transitions it would be interesting to test our proposed
observable for other models that exhibit these types of phase transitions.
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[10] V. L. Berezinskĭı, Destruction of Long-range Order in
One-dimensional and Two-dimensional Systems hav-
ing a Continuous Symmetry Group I. Classical Systems,
Soviet Journal of Experimental and Theoretical Physics 32, 493 (1971)Soviet Journal of Experimental and Theoretical Physics 32, 493 (1971).
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Samenvatting

Omdat niet iedereen zich innig vertrouwd voelt met natuurkunde volgt hier
een samenvatting in het Nederlands. Deze samenvatting is gericht op familie,
vrienden, en (andere) leken die graag willen weten waar mijn focus lag de
laatste jaren, zonder dat zijzelf al te diep in de stof hoeven te duiken.

Aan de hand van de titel van dit proefschrift, Topologische Fasen en Fa-
seovergangen in Magneten en IJs, hoop ik duidelijk te maken hoe de ver-
schillende hoofstukken aan elkaar gerelateerd zijn. Daarvoor behandelen we
eerst in zijn algemeenheid topologische fasen en faseovergangen om ver-
volgens inhoudelijk te gaan kijken naar zowel magneten als ijs. Voor deze
twee systemen, magneten en ijs, richten we ons eerst op de motivatie om hier
onderzoek naar te doen waarna een samenvatting volgt van de bijdrage van
deze Thesis aan deze onderzoeksgebieden.

Topologische fasen en faseovergangen
In de natuurkunde wordt het deel van de wereld dat beschreven wordt altijd
het systeem genoemd. Alles buiten dit systeem wordt buiten beschouwing
gelaten. Als in het systeem een substantie is met een bepaalde eigenschap,
dan kan hier vaak een fase aan worden toegeschreven. De fase van een stof
beschrijft welke eigenschappen de stof heeft. Denk bijvoorbeeld aan een sys-
teem waarin een pan met water in een ruimte met lucht wordt verhit. De pan,
het water, en de lucht zijn in verschillende fasen (vast, vloeibaar, en gasvor-
ming). Hoewel de fase enkele eigenschappen vastlegt van de stof is er nog
wel enige vrijheid. Zo kan de temperatuur van het vloeibare water onder
normale omstandigheden tussen de 0◦C en 100◦C liggen. Wanneer genoeg
energie wordt toegevoegd aan het water begint het water te koken. Dit is het
proces waarbij vloeibaar water onder verwarming wordt omgezet in water-
damp. De fase van het water is veranderd van vloeibaar naar gasvorming en
dit proces vindt plaats op de faseovergang.

Naast verscheidene eigenschappen kan een fase ook topologisch niet-
triviaal zijn. Een dergelijke fase wordt ook wel een topologische fase ge-
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noemd. Aan een topologische fase kan een beschermd geheel getal worden
toegekend. Dit getal, zoals het aantal gaten in een object, is beschermd in
de zin dat het niet kan worden veranderd zonder een extreme transformatie,
zoals het prikken van een gat, toe te brengen aan het systeem. Een niet-
extreme transformatie, zoals de buiging of uitrekking van een object, laat dit
getal onveranderd. Het verschil tussen deze types van transformaties is dat
de niet-extreme transformatie steeds kleiner gemaakt kan worden terwijl dat
niet geldt voor extreme transformaties zoals het maken van een gat. Er kan
immers geen half gat gemaakt worden. Dit is het type topologische fasen dat
vaak genoemd wordt omdat het tot de verbeelding spreekt. De topologische
fasen zoals behandeld in deze Thesis daarentegen gaan meer over topologi-
sche texturen op een materiaal waarover hieronder meer volgt. Topologische
faseovergangen is een ietwat vaag begript dat slaat op faseovergangen tussen
fasen waarvan er minstens één topologisch is of waarbij topologische objec-
ten een relevante rol spelen. Recentelijk (okt 2016) hebben David Thouless,
Duncan Haldane, en Michael Kosterlitz de Nobelprijs voor Natuurkunde ont-
vangen voor theoretische ontdekkingen van topologische faseovergangen en
topologische fasen van materie [77].

Magneten
Magnetische materialen zijn al bekend sinds de oudheid maar pas na de mid-
deleeuwen zijn er theorieën ontwikkeld die hebben geleid tot onze huidige
kennis omtrend magnetisch gedrag. Praktisch gezien zijn magneten overal
om ons heen; van de koelkast magneet tot mobieltjes. Magneten zijn belang-
rijk voor elektronica omdat deze interageren met elektrische stromen. Dit
stelt ons er toe in staat om magneten te beïnvloeden en af te tasten met behulp
van stroom wat uiteindelijk heeft geleid tot apparaten zoals de magnetische
harde schijf.

Om magneten te kunnen begrijpen moeten we onderzoeken wat er gebeurt
op microscopisch niveau. Met het Stern–Gerlach experiment is aangetoond
dat sommige ongeladen deeltjes, zoals zilver atomen, in een niet-uniform mag-
netisch veld afgebogen kunnen worden (in verschillende richtingen). Hieruit
moet geconcludeerd worden dat sommige elementaire deeltjes een eigen-
schap, spin, moeten hebben die bepaald hoe deze deeltjes beïnvloedt worden
door magnetische velden. De spin van een elementair deeltje is een vector;
het heeft een grootte en een richting en kan dus worden weergegeven met
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een pijl. Hoewel kwantummechanisch gezien de spin gekwantiseerd is, dat
wil zeggen, gelimiteerd in het aantal toegestane richtingen, mogen we (in de
klassieke limiet) aannemen dat deze vrij kan draaien in de ruimte.

Ampère’s wet, voor het eerst bewezen door Maxwell, laat zien dat bewe-
gende elektrische lading (stroom) een magnetisch veld opwekt. Omgekeerd
geldt dat een magnetisch veld geladen deeltjes in beweging kan zetten. Vol-
gens Ampère’s wet kunnen we de spin van een elementair deeltje, sterk gere-
lateerd aan het intrinsiek magnetisch moment, opvatten als een soort instrin-
sieke elektrische stroom die behouden is in grootte. Anderzijds kan het ook
worden opgevat als een magnetische dipool; een oneindig kleine magneet met
een noord- en zuidpool. In Figuur 5.15.1 worden de opgewekte magneetvelden
van een stroomkring, een magneet, en een elementair deeltje met spin met
elkaar vergeleken. De magneetvelden van een oneindig kleine stroomkring
en een oneindig kleine magneet zijn equivalent aan die van de magnetische
dipool.

Een deeltje met spin zal enerzijds een magnetisch veld opwekken en ander-
zijds beïnvloed worden door externe magnetische velden. Door de zogeheten
(puur kwantummechanische) Heisenberg interactie is het voor naburige deel-
tjes in (anti)ferromagneten energetisch voordelig om de spins (anti)parallel
te ordenen waardoor in het geval van de ferromagneet een macroscopisch
magnetisch veld opgewekt wordt. De configuratie van de spins in een mate-
riaal kan worden beïnvloed door temperatuur, externe magnetische velden,
en stromen zonder dat de atomen daarbij van hun vaste plek in het rooster
komen.

Deze mogelijke spin texturen wordt vergroot door meer exotische magne-
ten te bekijken zoals in de eerste twee hoofdstukken van dit werk. Hierbij
worden naast de Heisenberg interactie, die zorgt voor de (anti)parallelle or-
dening, ook nog andere type interacties meegenomen. Zo kunnen lagen
van verschillende typen materialen een zogenaamde Dzyaloshinskii-Moriya
interactie (DMI) bewerkstelligen waarbij naburige spins onder een hoek ten
opzichte van elkaar gedraaid willen zijn. Ook kan er anisotropie optreden
waarbij spins uit het vlak, of juist in het vlak, de energie verlagen. Typische
magneten, zoals ook hier behandeld, proberen de spins ook langs een aange-
legd extern magnetisch veld te richten. Al deze interacties bij elkaar zorgen
voor een verscheidenheid aan mogelijke grondtoestanden, configuraties met
minimale energie, afhankelijk van de parameter waarden.

De spin texturen waar in dit werk de focus op ligt zijn degenen met skyrmi-
onen. Skyrmionen zijn topologische objecten, of lokale spin configuraties, die
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(a) (b) (c)

Figuur 5.1. Magneetvelden voor een magneet (a), een stroomkring (b), en
een elementair deeltje met spin (c). De magneetveldlijnen zijn weergegeven
door de zwarte lijnen waarbij de pijl de richting van het veld weergeeft. Een
elementair deeltje met spin (c) gedraagt zich als een magnetische dipool.
De velden lijken vooral op grote afstand van de objecten op elkaar omdat
oneindig kleine stroomkringen en oneindig kleine magneten equivalent zijn
aan magnetische dipolen.

zich in een zee van spins kunnen bevinden (zie Figuur 5.25.2). Deze zijn topolo-
gisch beschermd en zijn dus in grote mate robuust tegen externe fluctuaties
door onder andere de temperatuur.

In het eerste hoofdstuk van deze Thesis onderzoeken we de robuustheid
van skyrmionen in ferromagnetische systemen van (on)-eindige grootte wan-
neer deze onderhevig zijn aan opwarming. Hiervoor is gebruikt gemaakt van
computer simulaties die de spins in magnetische systemen nabootsen waarna
uit de typische configuraties die gerealiseerd worden relevante informatie ge-
haald kan worden. Ook laten we zien dat skyrmionen kunnen voorkomen in
microscopische draden wat voordelig is wanneer deze daadwerkelijk ingezet
moeten worden in elektronische apparaten. De simulaties zijn gebaseerd op
een klassiek model en daarom bekijken we ook de invloeden van kwantum
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Figuur 5.2. Eén skyrmion in een zee van parallel gerichte spins. Elk pijltje
representeert de grootte en richting van de spin van een deeltje. De kleur
geeft aan of de spin naar beneden (rood) of omhoog (paars) is gericht. Het
skyrmion is een topologisch object dat zich duidelijk onderscheidt van de
omliggende homogene spin structuur.

fluctuaties die berekend kunnen worden aan de hand van de klassieke spin
configuraties.

In het tweede hoofdstuk onderzoeken we anti-ferromagnetische systemen
met computer simulaties en we onderbouwen de resultaten met enkele ana-
lytische berekeningen. Voor deze materialen vinden we de globaal anti-
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ferromagnetische fase, de spiraal fase, en een nieuwe skyrmionische fase
die enkele eigenschappen deelt met de skyrmionische fase in de ferromag-
neet. Ook voor dit materiaal construeren we een fasediagram als functie
van enkele materiaaleigenschappen. Daarnaast laten we zien dat een enkel
skyrmion ook in een anti-ferromagneet gestabiliseerd kan worden in een
microscopisch klein vlak wanneer de temperatuur laag genoeg is.

IJs
Net als magneten speelt ijs ook een belangrijke rol in ons leven ook al is het
minder voor de hand liggend dan bij magneten. Water heeft de eigenaardige
eigenschap dat ijs, de normale variant die wij kennen, een lagere dichtheid
heeft dan vloeibaar water waardoor ijs blijft drijven. Dit is van invloed voor
de warmte van de aarde die getemperd blijft door grote ijsvlakten die, doordat
deze aan de oppervlakte liggen, grote hoeveelheden zonlicht kunnen weer-
kaatsen. Naast ‘normaal’ ijs zijn er nog veel meer soorten ijs. Afhankelijk
van de druk, de temperatuur, en de manier waarop ijs kristalliseert zijn er
ontzettend veel vormen van ijs te produceren die allemaal een andere kris-
talstructuur kennen. Een enkel watermolecuul bestaat uit een zuurstofatoom
waaraan twee waterstofatomen dicht gebonden zijn. De zuurstofatomen in
ijs zitten zo dicht bij elkaar dat er tussen hen ook nog bindingen, ook wel
waterstofbruggen genoemd, ontstaan tussen waterstofatomen en zuurstofato-
men waaraan ze niet dicht gebonden zitten. Deze bindingen stabiliseren de
kristalstructuur van ijs.

IJs zoals behandeld in deze Thesis is een speciale tweedimensionale vier-
kante vorm van ijs. Hoewel dit nogal theoretisch klinkt is deze vorm van ijs
onlangs gerealiseerd[3232] door water te vangen tussen twee lagen van grafeen.
De watermoleculen liggen in een perfect platte laag op de vertices in een vier-
kant rooster. Elk van de moleculen vormt waterstofbruggen met twee van de
vier buren. Wanneer een waterstofbrug gerepresenteerd wordt door een pijl
vanaf het zuurstofatoom waaraan het waterstofatoom gebonden zit heeft elk
molecuul twee pijlen naar binnen en twee naar buiten. Dit wordt ook wel de
ijsregel genoemd. Er bestaan zes mogelijke configuraties, zie Figuur 5.35.3, per
molecuul en daarom wordt dit model ook wel het zes-vertex-model genoemd.

In de laatste twee hoofdstukken kijken we naar een energetisch ijs-model,
het F model, waarbij sommige van deze toegestane vertexconfiguraties een
andere energie toegekend krijgen dan de andere. Dit zorgt voor een speci-
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1 3 5

2 4 6
Figuur 5.3. De ijsregel eist dat er bij elke vertex twee pijlen naar binnen
en twee pijlen naar buiten gaan. Dit resulteert in zes toegestane vertex
configuraties.

ale oneindige-orde faseovergang van een ongeordende naar een geordende
fase. De orde van een faseovergang geeft informatie over de manier waarop
fasen in elkaar overgaan en het typische gedrag van oneindige-orde fase-
overgangen is dat deze juist weinig speciaals doen tijdens de faseovergang.
In tegenstelling tot de meeste faseovergangen gebeurt er niet iets speciaals op
de faseovergang “maar begint er iets te gebeuren”. Dit maakt het erg moei-
lijk om deze faseovergang te detecteren. Wij hebben een nieuwe observabele
geconstrueerd die per definitie wel uitzonderlijk gedrag vertoond op de fa-
seovergang en laten zien dat deze kan worden gebruikt om de faseovergang
te detecteren. Ook maken we duidelijk dat het een redelijk subtiel systeem
is waarbij het, zelfs met deze nieuwe observabele, nog steeds erg moeilijk is
om scherpe kwantitatieve uitspraken te kunnen doen doordat eindige-grootte
effecten een zeer grote rol spelen.

In hoofdstuk drie kijken we naar het F model met periodieke randen, waar-
bij de pijltjes aan de randen zo gericht zijn dat de tegenovergestelde randen
als het ware aan elkaar gelijmd kunnen worden. In hoofdstuk vier kijken we
naar nog steeds naar het F model maar dan met speciale randvoorwaarden.
Hierbij zijn de pijltjes aan de linker- en rechterrand naar buiten gericht, en bij
de boven- en onderrand naar binnen gericht. In de meeste modellen verdwij-
nen de effecten van de gekozen randen voor systemen die voldoende groot
zijn. Bij het F model blijkt dit niet zo te zijn. Zelfs voor systemen van onein-
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dige grootte laten we zien dat het gehele systeem zich anders gedraagt voor
deze speciale randen, domein muren genaamd, ten opzichte van periodieke
muren.
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