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General Introduction 

1. Introduction 
Atherosclerosis, a pathological process characterized by vascular remodeling, 

is a leading cause of mortality and morbidity in the western world. Interestingly, 

atherosclerosis occurs rarely in premenopausal women, but rises sharply after the 

menopausal transition, when ovarian secretion of sex hormones is low [1-3]. This is 

associated with an increase in risk factors for atherosclerosis, including dyslipidaemia, 

insulin resistance, central obesity and hypertension in the postmenopausal period. 

These observations suggest that female sex steroid hormones provide protection 

against atherosclerosis in premenopausal women. Indeed, numerous studies have 

shown an atheroprotective role for estrogens. Estrogens can exert beneficial effects 

directly on the vessel wall, but they have also been shown to induce favorable effects 

on serum lipid, glucose and insulin levels [4-6]. Unfortunately, estrogens have also 

been postulated to induce adverse effects like endometrial cancer, breast cancer, and 

gallstones [7,8]. In addition, results of the Women’s Health Initiative (WHI) trial 

regarding the vascular effects of hormone replacement therapy (HRT) have shown no 

demonstrable benefit of HRT [9]. Although some have criticized the design of the 

WHI study [10], it is also clear that an improved understanding of estrogen action in 

specific target tissues is required.  

This thesis centers on the mechanisms of estrogen action and the effects on the 

development of atherosclerosis. We have focused on the liver as central organ in lipid 

and glucose metabolism and the vessel wall as the actual site where the injury occurs. 

To gain insight in tissue-specific actions of estrogens, we have spent considerable 

effort to develop tools for liver and blood vessel specific modulation of the estrogen 

receptor (ER) signaling cascade. The generation, characterization and application of 

these tools in vitro and in vivo will be described in the different chapters of this thesis. 

2. Estrogen action 
2.1 Estrogen production

17- -Estradiol (E2) is a steroid hormone that is primarily synthesized in the 

ovary of (premenopausal) women. These hormones function as an endocrine signal by 

exerting selective effects on distal target tissues. In addition to the female 

reproductive system, non-reproductive tissues such as the cardiovascular system, the 

immune system, the central nervous system, bone and brain are target tissues. Thus, 
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Chapter 1

E2 elicits multiple tissue-specific responses throughout the body, resulting in 

beneficial but also detrimental responses. In postmenopausal women, systemic E2

production is ceased and E2 is no longer able to function as an endocrine factor 

affecting distal tissues. Nevertheless, both in postmenopausal women and in men, E2

plays an important physiological role in a number of extragonadal tissues. These 

tissues, which include adipose tissue, bone, numerous sites in the brain, vascular 

endothelial and aortic smooth muscle cells, have the capacity to express aromatase. 

Aromatase cytochrome P450, which is encoded by the CYP19 gene, catalyzes the 

biosynthesis of E2 and thus these tissues are able to produce E2 themselves. However, 

E2  generated via aromatase, acts predominantly at the local tissue level as a paracrine 

or even intracrine factor in stead of an endocrine factor [11,12]. In addition, in 

contrast to the ovary, these extragonadal tissues do not contain a full complement of 

steroidogenic enzymes [13] and therefore are dependent on substrate for aromatase 

activity on circulating C19 androgenic precursors. Because the levels of circulating 

androgenic precursors are lower in postmenopausal women as compared to the 

circulating androgenic precursors in men [14], E2 action is lower in postmenopausal 

women and thus could accelerate the postmenopausal gender differences.  

FA/B C D E

AF-1 DNA Ligand AF-2

Figure 1.  Functional domains of the estrogen receptor

2.2 The Estrogen Receptor 

Part of the biological effects of E2 is mediated through ERs. ERs are members of the 

steroid/thyroid hormone nuclear receptor superfamily that function as ligand-activated 

transcription factors [15]. These receptor proteins share a common architecture of six 

distinct domains designated alphabetically, A-F (Fig. 1) These domains are 

responsible for ligand binding, DNA binding and transcriptional activation [16-18]. In 

more detail, the amino terminus (A and B domains) contains a transcriptional 

activation function (AF-1) that does not require ligand for activity. In stead, it is 

constitutively active when linked to a suitable DNA-binding domain (DBD) [19]. This 

linked DBD (C domain) consists of two zinc fingers that recognize specific DNA 
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General Introduction 

sequences, referred as estrogen response elements (EREs) [20]. Next to the DBD, 

there is a flexible hinge region (D domain) and a ligand binding domain (LBD) (E 

domain). The ligand binding cavity in association with the carboxy terminal region, 

which contains a ligand-dependent transcriptional activation domain (AF-2) (F-

domain) contributes to transcription activity. Upon ligand binding, conformational 

changes are induced leading to an interaction surface for cofactors such as steroid 

receptor coactivator-1 [21]. Maximal activation of ER requires an interaction between 

the two activation domains AF-1 and AF-2, occurring when ligand and coactivator 

proteins are present [22].

The different ER domains coordinately regulate ER mediated transcription. In 

the initially described models, ERs reside in the cytoplasm in complex with heat 

shock protein 90 (HSP90). Upon ligand binding, ERs dissociate from HSP90, form 

dimers and interact with EREs within the promoter of their target genes to initiate 

transcription [23]. However, it is now clear that E2 action is much more complex than 

previously thought. ERs not solely function as transcription factors, but also serve as 

co-activators for other transcription factors. In addition, it seems likely that they have 

a function outside the nucleus to mediate very rapid cellular responses to E2. As a 

consequence, E2 effects not only depend on the presence of its receptor, but also on 

the presence and abundance of several interactive proteins that are involved in these 

different ER pathways. Understanding of these multiple and cross-talking pathways 

(Fig. 2) in the different E2 responsive tissues is required for mechanistic insight in the 

time and tissue-specific effects of E2.

ER
ER

ERER

EREERE

AP1AP1
FosJun

ER

p

Protein Protein kinasekinase
cascadecascade

P13K

AKT
p

Ras

1.

2.

3.

Figure 2. Estrogen receptor (ER) mediated 
action. 
ERs are involved in several independent 
pathways. 1. The classical pathway. ER 
initiates transcription via binding to ERE 
sites. 2. The non-classical pathway. ER 
initiates or represses genes via interfering 
with other transcription factors. 3. The non-
genomic pathway. ER rapidly induces effects 
by activating cytoplasmic proteins 
(phosphorylation)  

11



Chapter 1

2.3 Classical ER mediated transcription

The most well-studied pathway of ER action is as ligand activated nuclear 

transcription factor at classical ERE sites. In this so-called classical mode of ER 

action, E2 binding to cytoplasmic ER hormone induces conformational changes in the 

receptor, which causes dissociation of heat shock proteins that normally maintain the 

ER in an inactive but activatable configuration. The activated ERs are translocated to 

the nucleus, homodimerize and bind as dimers to two ERE half-sites that are found 

within the regulatory regions of their target genes. The conformational changes 

induced within the LBD allow the recruitment and interaction with basal transcription 

factors and co-activator proteins, which co-coordinately induce transcription. The 

ERE binding site has been discovered as a 13-base pair inverted repeat sequence 

(GGTCAnnnTGACC). However most of the estrogen responsive genes contain non-

consensus elements, which exist as single or multiple full or half sites or they contain 

composite sites, consisting of EREs flanked by response elements for other 

transcription factors.  

2.4 Non-classical ER mediated transcription  

It has become apparent that ERs can also mediate transcription via a 

mechanism that deviates from the classical mode of action. Around one third of the 

genes in humans that are regulated by ERs do not contain ERE-like sequences [24]. 

These genes do contain alternative response elements, like AP-1 [25,26], CRE-like 

elements [27] and USF sites [28], from which ER can also regulate transcription. In 

this so-called non-classical genomic pathway, ERs do not bind directly to DNA, but 

modulate the function of other transcription factors through protein-protein 

interactions with these transcription factors or their co-activators [29]. In this 

complex, ER functions as a co-activator that stabilizes the DNA binding of the 

transcription factor complex and/or that recruits other co-activators. Several genes are 

known to be regulated by E2 through this non-classical mode of ER action, including, 

collagenase [30], insulin like growth factor receptor 1 [31] and cyclin D1[32,33].

2.5 Non-genomic ER mediated pathway 

 Recently, in addition to the well-known genomic effects, E2 mediated non-

transcriptional mechanism of signal transduction have been identified. In these so-
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General Introduction 

called non-genomic pathways, the effects are very rapid, arising within seconds to few 

minutes from the challenge with E2 and frequently involves activation of cytoplasmic 

or cell membrane bound protein kinases. The E2 mediated non-genomic actions that 

have been reported include the mobilization of intracellular calcium [34], the 

regulation of cell membrane-ion channels [35] and of G-protein-coupled receptors 

[36] and activation of tyrosine kinases and mitogen activated (MAP) kinases [37]. 

Evidence that a distinct subpopulation of cell membrane bound ERs exist was already 

provided in 1977s by Pietras and Szego [38]. However, since the 90’s reports have 

appeared that documented that ERs which were localized at the plasma membrane 

[39-41] could indeed exert important E2 mediated cellular effects [42]. With respect to 

ligand affinity, receptor protein size, and immunological epitopes, the membrane and 

nuclear ERs are identical. However, since ERs do not have an intrinsic trans-

membrane domain [43], the mechanism underlying membrane localization remained 

unidentified. Recently, it has been discovered in endothelial cells that a subpopulation 

of ERs is localized to the membrane via interaction with membrane-associated 

caveolae. Here, E2 rapidly induces nitric oxide release via a phosphatidylinositol 3-

kinase/Akt/endothelial nitric-oxide synthase (eNOS) pathway [44,45]. It has been 

demonstrated that palmitoylation of ER is required for this ER:protein interaction with 

caveolin-1 and subsequently for the receptor localization to and maintenance at the 

plasma membrane. 

2.6 Structure of ER  and ER

For a long time, studies to unravel E2 action have focused only on a single ER 

(nowadays referred as ER ), which was cloned and reported in 1986 [46,47]. 

However in 1996 a second ER, ER , was found [48-51].

Despite the high homology between ER  and ER , there is accumulating

evidence that the two receptors function differently leading to distinct biological

activities. These differences include, for instance, lower transcriptional activity of E2-

bound ER  on ERE containing promoters [52,53], higher binding affinity of ER  for 

the phytoestrogens coumestrol and genistein [54] and opposite actions on gene 

transcription, as has been observed in response to E2 and raloxifene at AP-1 sites [55]. 

Molecular mechanisms for such transcriptional differences are poorly understood, but 

studies characterizing the structure and function relationships between the ER 
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subtypes have provided a molecular basis for at least some of their differential 

transcriptional activities. The DBD and to a lesser extent the LBD of ER  and ER

exhibit a high degree of homology (96% and 58% amino acid identity, respectively) 

[56]. Likewise, functions associated with these structural domains such as ERE 

binding, dimerization, but also affinity to the natural estrogen E2 are very similar for 

ER  and ER  [57-60]. However, as a consequence of reduced homology in the LBD, 

ligands exhibiting different affinities for ER  and ER  have also been reported 

[61,62]. These ligands induce ER subtype specific changes [63,64] resulting in 

recruitment of diverse co-activators and co-repressors. For example, affinity of ER

for SRC-3 is much higher than that observed for ER  [65]. Thus the LBD is at least 

partly involved in mediating ER subtype specific actions. The amino-terminal 

domain, exhibiting the AF-1 region, is poorly conserved between ER  and ER  and 

thus may play a significant additional role in mediating their different transcriptional

activation properties. Indeed several studies provided evidence for an important role 

of the AF-1 region. For instance, amino-terminal deletion of the AF-1 region in ER

led to a loss of transcriptional activity induced via the classical mode of action, 

whereas amino-terminal deletion in ER  resulted in an increased transcriptional 

activity [66].  Thus, ER  and ER  have different transcriptional activation properties 

that could result at least in part from structurally divergent LBD and amino-terminal

domains. 

2.7 Tissue expression pattern ER  and ER

 Since ER  and ER  have distinct transcriptional abilities, which could even 

be opposite to each other, their tissue specific expression pattern is a determinant of 

the E2 mediated effects. Both ERs are widely distributed throughout the body. ER  is 

expressed primarily in the uterus, liver, kidney, and heart, whereas ER  is expressed

primarily in the ovary, prostate, lung, gastrointestinal tract, bladder and central 

nervous systems. Tissues, which express both ER  and ER , are the mammary gland, 

the adrenals, bone, adipose tissue, vascular endothelium and smooth muscle cells and 

regions of the brain. In these tissues, there is a potential interplay between the two 

ERs, and thus their balance is important. For certain genes it has been found that ER

exhibits an inhibitory activity on ER -mediated gene expression [67-69]. It remains 
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to be seen whether this ER -dependent antagonism of ER  responses is restricted to a 

limited number of genes or that it represent a general mechanism in ER signaling.

3. Modulation of estrogen action 
3.1 Mouse models

Mice are used as experimental models, because they are small, relatively easy 

to handle, have a short generation time, and, the strains are genetically defined, which 

reduces genetic noise. In addition, animal studies allow direct access to tissues for 

histological and molecular analyses. Thus, although results from mice models cannot 

always be extrapolated directly to humans, they provide unique mechanistic insight in 

the actions of E2 and the role of the ERs. 

To explore E2 signaling, surgical and/or pharmacological manipulations, like 

ovariectomy (ovx) and systemic administration of estrogenic compounds have been 

done. Additional insight into the underlying molecular pathway of E2 action has been 

obtained from ER knockout and transgenic mouse models. These models include ER

knockout (ER -/-), ER -/- and ER / -/- double knockout mice [70-73] and aromatase 

deficient mice (ArKO) [74,75]. Of the ER -/- mice, two separate lines have been 

generated, which displayed remarkably different phenotypes. The first generated 

ER -/- mice line carries a Neo cassette in exon 1, hereafter designated as ER neo
-/-

mice [76]. In these mice, the reproductive function is abolished, but several other 

effects of estrogen, such as estrogen induced uterine hypertrophy, persist. The 

persistency of these estrogenic effects is caused by the presence of a chimeric ER

protein of 55 kDa (ER 55). This chimeric ER  is able to exert transcriptional 

activity, although reduced when compared with the WT full-length ER 66 [77-79]. 

Thus, precaution has to be taken with interpretation of the data obtained using this 

mouse model. The second mouse line deficient in ER  was generated in 2000 by 

deletion of exon 2 [80], designated as ER 2
-/-. These mice displayed a complete and 

unambiguous inactivation of ER . Some caution has to be taken with the 

interpretation of data from this mouse model too, since ER 2
-/- female mice have 

approximately 10-fold higher levels of estrogen and also increased testosterone levels 

as compared to their wt counterparts [81]. In addition, a ERß-/- mouse line has been 

generated [82]. Those appear to have a quite normal phenotype, in which ER
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deficiency did not affect circulating estrogen and testosterone levels. And although 

litter size is slightly reduced, they are able to reproduce [83]. 

Estrogen deficient mice have been generated by disruption of the Cyp19 gene 

(ArKo mice). Since they lack a functional aromatase enzyme [84], plasma E2 levels 

are undetectable. Interestingly, both male and female ArKO mice have elevated 

plasma levels of testosterone and the luteinizing hormone, which should be taken into 

account when interpreting data obtained with this model.  

Overall, the knockout mouse models have proven to be useful, providing 

valuable information about E2 action and the nuclear receptors involved. However, 

insight in cell and tissue specific actions of E2 in relation to vascular disease is 

relatively sparse. 

3.2 Gene transfer into liver and the vascular system 

An effective strategy to modulate gene expression is by means of adenovirus 

(Ad) mediated gene transfer. Both wild type and constitutive active or dominant 

negative variants of the estrogen receptor can be delivered using Ad vectors. In 

general, the liver is the easiest target to accomplish gene transfer in vivo. The main 

reason for efficient hepatic gene transfer is the presence of a fenestrated endothelium 

of 100 nm width that covers the hepatic sinusoids. Consequently, macromolecules 

such as viral particles that are injected in the blood circulation can cross the 

endothelium and reach hepatocytes effortless. In addition, hepatic blood flow 

represents one-fifth of the cardiac output. In contrast, systemic application of vectors 

to deliver full-length or mutated ERs to vascular tissue is more difficult. On the one 

hand, treatment efficacy is decreased because vectors are sequestered by liver. On the 

other hand, the endothelium is refractory to transduction and forms a tight non 

fenestrated barrier for the underlying vascular smooth muscle cell (VSMC) layer. 

Thus, introduction of genes to vascular cells in vivo remains a major challenge for 

current gene therapy strategies. 

3.2.1 Adenoviral vectors 
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Ad vectors are a highly efficient tool for hepatic gene transfer [85,86] and are 

a commonly used vector for gene delivery to the vascular system. These vectors are 

generated from human adenovirus serotype 5, which are non-enveloped icosahedral 

DNA viruses of about 90-nm diameter that can cause infections of the respiratory 

tracts in humans. The particle is composed of an outer capsid that contains three major 

components, the hexon, penton base and fiber (Fig 3). The protruding fibers consist of 

a knob that has a high affinity towards the coxsackie adenovirus receptor (CAR) and 

thus docks the particle to CAR expressing host cells [87-89]. After this initial binding, 

the RGD motifs on the penton base interact with v 3 or v 5 integrins, which leads to 

clathrin-mediated endocytosis of the virus particle [90-92]. Once endocytosed, the 

virus escapes the endosome to 

enter the nucleus. Once the virus

has passed its genome to the 

nucleus, selective transcription and

translation are initiated. First, the 

virus modulates the function of the 

host cell to facilitate its replication, 

transcription and translation of the 

viral genome. Then, the newly 

synthesized viral components are 

assembled into new viral particles, 

which will be released upon cell 

lysis. These can then initiate a new 

round of infection and viral replication.

y

Cell surface

Hexon

Penton base

Fiber

CAR

Figure 3. Adenovirus Morphology

To use Ad5 as a delivery device, recombinant Ad vectors have been rendered 

replication-deficient and less immunogenic by removing the E1 and E3 regions. These 

regions are essential for the activation of replication of the viral genome and the 

initiation of a host immune response, respectively. The essential E1 functions are 

complemented in trans by means of specific cell lines that constitutively express the 

E1 proteins, such as the 293, 911 and PerC6 cell lines [93,94]. Subsequently, up to 

6.5 kb of foreign coding DNA can be introduced into the E1/E3 deleted vector. To 

transfer the transgene to a particular cell type, the expression pattern of CAR and 

A5B3 integrins are essential. Although many cell types can be infected with 
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adenovirus vectors in vitro, for refractory cell types this requires high multiplicities of 

infection (MOI). High MOI’s are associated with cytotoxicity that may interfere with 

the interpretation of the results. 

3.2.2 Targeting adenoviral vectors

Vascular cells express very little, if any CAR and are thus refractory to Ad 

mediated infection. To improve gene delivery to vascular cells in terms of efficiency 

(achieve gene transfer to a high percentage of cells with low doses and low 

immunogenicity) and selectivity (diminish affinity for non-target sites), Ad vectors 

have been engineered. Two different approaches are used to target transgene 

expression to alternative non-CAR expressing cells such as endothelial cells (EC) and 

VSMCs. The first approach modifies the viral capsid through genetic alteration, for 

example by engineering endothelium-binding peptides into the Ad fiber protein 

[95,96], or by psuedotyping (exchange of Ad fiber for a fiber from an alternative 

serotype possessing a more favourable cell binding profile) [97]. The second approach 

employs bi-valent molecules where one part of the molecule binds to the vector and 

the other part of the molecule will target the complex to an alternative receptor that is 

expressed at the surface of the desired target tissue. A commonly used example of a 

bi-valent molecule is the bispecific antibody [98,99]. In addition to targeting, tissue 

specific expression can be enhanced by using promoter/enhancer sequences from 

endothelium- or VSMC-restricted genes [100]. The endothelial specificity of minimal 

promoters derived from Tie II (angiopoietin receptor), von Willebrand factor, fms-like 

tyrosine kinase-1, thrombomodulin, E-selectin and ICAM-2 have been demonstrated 

by transgenic mouse models expressing lacZ driven by these promoters.  

4. Estrogen action in the vascular system 
4.1 The vessel wall 

The vessel wall consists of three well-defined layers: the innermost layer is 

called the endothelium, the middle layer is called the media, and the outermost layer 

is known as the adventitia (Fig 4A). Of these three layers, the endothelium is 

separated from the media by the internal elastic lamina and the media is separated 

from the adventitia by the external elastic lamina. The endothelium consists of a 

single contiguous lining of endothelial cells that forms the barrier between the blood 
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flow and the artery. It has become evident that this endothelium is not a passive 

barrier. On the contrary, it plays a major role in several processes, including 

maintaining vascular homeostasis, controlling vascular permeability, inhibiting 

platelet adhesion and aggregation and limiting activation of the coagulation system. 

The media consists of VSMC and an extracellular matrix (ECM). The major role of 

VSMC is to regulate blood pressure and thus blood flow. The outermost layer of the 

artery, the adventitia, consists of loose matrix of elastin, smooth muscle cells, 

fibroblasts and collagen.                                                                                                                             

4.2 Role of estrogen in vascular tone

Vascular tone and function seem to differ between men and women, as women 

have lower blood pressure than age-matched males [101]. Moreover, hypertension 

occurs with higher frequency in men and postmenopausal women than in 

premenopausal women. In part this has been related to the presence of endogenous 

estrogens, as healthy men treated with aromatase inhibitor displayed impaired 

vascular dilatation [102,103]. Vascular tone is regulated by a complex set of 

vasodilator and vasoconstrictor factors that adjust the contractile state of VSMC 

[104,105]. The endothelium is mainly responsible for the synthesis and secretion of 

these factors, including angiotensin II, endothelin-1 and NO. In humans, the 

endothelium-dependent vasodilatory effect of E2 could at least be partly explained by 

its enhancement of NO production [106]. Moreover, in vitro studies have confirmed 

that the endothelial mediated NO release is increased by E2. This release occurred 

through both the ER  mediated classical genomic pathway as well as through the 

rapid non-genomic pathways [107-109]. Recent data have demonstrated that in 

addition to ER , ER  is involved in the regulation of endothelial NO production. 

Both the ER - as well as the ER -selective agonist, DPN and PPT rapidly induced 

eNOS activity in EC [110].

The contractile response of the underlying VSMC layer can also be modulated 

in an endothelium-independent manner. By denudation (stripping of the endothelial 

layer) of the vessel wall, it has been shown that E2 is capable of reducing 

vasoconstriction in an endothelium-independent manner [111]. A predominant role 

for the E2 mediated vascular dilatation in endothelial-denuded vessels seemed to be 

played by ER . In mice, ER  deficiency led to a nearly two-fold enhancement of 
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phenylephrine -induced vasoconstriction compared to wt controls. In addition, blood 

pressure was increased in ER -/- mice. Inducible NOS (iNOS) appears to be involved 

in ER  mediated vascular dilatation. In E2 treated denudated vessels, enhanced 

expression of iNOS protein was detected [112,113], whereas reduced iNOS protein 

levels was observed in aorta of ER neo
-/-/ER -/- mice [114]. The effect of ER  on 

iNOS expression seems to be induced by VSMCs, as demonstrated by an in vitro 

iNOS promoter study [115].  Overall, E2 induced stimulation of endothelium 

dependent and independent vascular relaxation may contribute to the observed gender 

differences in vascular tone. Depending on the vascular cell type, ER  and ER  seem 

to have opposite effects and/or could exert subtype specific effects. 

4.3 Role of estrogen in vascular injury 

An intact vascular endothelium is critical to the maintenance of normal arterial 

tone and provides an anti-inflammatory, anti-coagulatory surface. In the case of injury 

of the endothelium, caused by a wide range of genetic and environmental factors like 

elevated levels of LDL cholesterol, obesity, diabetes mellitus, cigarette smoking, and 

exposure to infectious agents [116], EC-activation and VSMCs proliferation are 

initiated (Fig 4B). These processes are thought to be the precursor of vascular 

pathologies, including atherosclerosis and restenosis [117,118].

In mouse models, vascular injury can be obtained by denudation of the carotid 

artery. In this model E2 has been demonstrated to inhibit VSMC proliferation 

[119,120]. To clarify the role of ERs in the protective mechanism of E2 after vascular

injury, both ER -/- and ER -/- mice have been used. In wt as well as in ER neo
-/- and 

ER -/- mice, E2 still attenuates injury induced VSMC proliferation [121,122]. In 

contrast, in the follow-up study were ER 2
-/- mice have been used, E2 was no longer 

protective [123]. Thus, ER  is involved in E2 mediated inhibition of VSMC 

proliferation after vascular injury and the chimeric ER  present in the aorta of 

ER neo
-/- mice [124] is sufficient to confer complete protection by E2. Remarkably, in 

the absence of E2, ER 2
-/- mice displayed significantly smaller vascular injury 

responses as compared to wt and ER -/- mice [107, 108]. This signifies either a 

potential harmful role for E2-independent ER  mediated activity in the vascular injury 

response, or in the absence of E2, ER  has a beneficial role, which in wt mice is 

overshadowed by ER . Rapid restoration of endothelial integrity and reduction of 
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endothelial activation has a favorable impact on VSMC proliferation [125,126] and 

thus potentially could reduce the vascular injury response. The E2 induced attenuation 

of the response to injury might be due to enhanced re-endothelialization of the 

damaged arterial segment. Indeed, by use of wt, ER -/- and ER 2
-/- mice models it 

has been demonstrated that E2 accelerates endothelial re-growth via ER  [127]. In 

general, the ability of the endothelium to renew depends on the migration of 

surrounding mature EC, but also on the attraction and adhesion of circulating 

endothelial progenitor cells (EPCs) to the injured region, which then differentiate into 

endothelial-like cells. E2 has been shown to increase the number of EPCs in the 

Figure 4. Schematic Overview of the 
vessel wall and its involvement in the 
initiation of vascular pathologies 
A. The vessel B. Initiation of endothelial 
dysfunction C. Recruitment of 
inflammatory cells by activated 
endothelial cells. Initiation vscular 
smooth muscle cell proliferation leading 
to the (D) plaque formation 
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circulation but also at the site of vascular lesion. As a consequence, the vascular 

injury response has been reduced [128]. Thus, the protective vascular effects of E2 are 

at least partly due to effects on circulating EPCs. Accordingly, the available mouse 

models of estrogen deficiency provide evidence that E2 mediated activation of ER

reduces the vascular injury response. However, whether this effect fully accounts on 

the enhanced attraction and adhesion of circulating EPCs or whether there is also an 

effect locally at the surrounding mature ECs remains to be addressed. 

4.3.1 Atherosclerosis 

Vascular injury is an important initial step in the development of 

atherosclerosis, a progressive disease in which fat and cholesterol are deposited along 

artery walls (Fig. 4C). In short, due to vascular injury, permeability and expression of 

endothelial adhesion molecules is enhanced. Consequently, circulating monocytes and 

lymphocytes interact with the vessel wall. These inflammatory cells secrete cytokines 

and chemokines (chemoattractive cytokines), which initiate a whole spectrum of 

reactions leading to vascular smooth muscle cell hyperplasia, intimal migration and 

further accumulation of lipids. If the damaging insult persists, the inflammatory 

process may become chronic, the fibro proliferative response persists and lipids 

continue to accumulate within the vessel wall. Eventually, the enlarged fatty lesion 

may restrict blood flow through the blood vessel, increasing the risk of heart attack 

and stroke.

To study the role of E2 in the pathogenesis of atherosclerosis, atherosclerosis-

prone mouse models, including apolipoprotein E (ApoE) knockout and low-density 

lipoprotein (LDL) receptor (Ldlr) knockout mice have been used. In ovariectomized 

(ovx) ApoE-/- female mice, systemic administration of E2 resulted in a consistent and 

dramatic inhibition of lesion initiation and progression [129-131]. In addition to its 

inhibitory effect in females, estrogen appears to be equally efficacious in males. For 

example, Nathan and coworkers [132] have shown that orchidectomy increased lesion

size in Ldlr-/- males, which was reversed by exogenous administration of either E2 or 

testosterone. Co-administration of an aromatase inhibitor, on the other hand, removed 

the atheroprotective effect of exogenous testosterone, suggesting that local conversion 

of testosterone to E2 in vascular cells attenuates atherosclerosis in male mice. In

addition, in the aorta of streptozotocin-induced hyperglycemic Apoe-/- males, E2
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reduced lesion size and prevented calcified cartilaginous metaplasia [133]. The 

observed E2 mediated inhibition of lesion size was in some studies associated with a 

reduction in total plasma cholesterol levels, [134-136], but not in all [137,138]. Thus, 

E2 possesses cardiovascular protective actions beyond an effect on plasma lipids, most 

likely via direct effects on the vessel wall.  

The atheroprotective action of E2 could be established trough ER  and ER ,

as both ERs are present in VSMC and EC. Absolute expression levels of ERs in 

diverse vascular beds and between the two sexes have not been characterized yet. But, 

the overall expression level in vascular cells is low. Moreover, ERs are absent from 

various vascular cells kept in culture, which complicates the analsysis of the role of 

ERs in the vasculature. Thus far, to investigate the relative contribution of each 

receptor in the atheroprotective role of E2, ER -/- and ER -/- mice crossbred with 

ApoE-/- mice have been used. The inhibitory effect of E2 on atherosclerotic lesion 

progression obtained in ApoE-/- females was almost completely abrogated in ER neo
-/-

Apoe-/- mice [139]. In addition, the plasma lipid-lowering effect of E2 was eliminated.

However, fibrous caps and other advanced lesion characteristics were reduced in E2

treated ER neo
-/-Apoe-/- as compared to control ER neo

-/-Apoe-/- mice [140]. Probably, 

this residual protective effect is mediated by the presence of the chimeric ER

protein. Conversely, it has been found that in ER -/-Apoe-/- mice, E2 treatment 

inhibited atherosclerotic lesion progression equally as compared to Apoe-/- females. 

Thus E2 is fully atheroprotective in the absence of ER (reviewed in [141], manuscript 

data in preparation), demonstrating that at least at early stages of plaque formation, 

the anti-atherogenic effect of E2 is primarily mediated through ER and independent 

of ER .

4.3.2 Restenosis 

Occlusion of the artery, as occurs in atherosclerotic vessels, can be 

mechanically treated. The most commonly used therapy of atherosclerotic 

complications consists of percutaneous transluminal coronary angioplasty (PTCA) 

followed by endovascular stent implantation [142]. This procedure depends on a 

catheter containing a deflated balloon. Once the catheter is passed into the narrowed 

part of the artery, the balloon is inflated allowing more blood flow. The immediate 

results are good, but as a consequence of constrictive remodeling and formation of a 
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neointima rich in proliferating SMC and ECM, restenosis occurs within a few months 

in 30–50% of treated patients. An implanted stent, a spring-like device designed to 

push open the artery, can prevent constrictive remodeling. However, neointimal 

proliferation still occurs and is responsible for restenosis in 20–30% of the stent-

treated patients. [143,144]. Currently, to prevent intrastent restenosis, stents have been 

coated with the anti-mitotic drug, Rapamycine or Taxol, which seems very efficient in 

preventing neointimal hyperplasia. However, these drugs also inhibit the re-

endothelialization process, as was demonstrated in large animal models [145].  

There is currently considerable attention for drugs that favor re-

endothelialization, including drugs that act on the vascular endothelial growth factor 

(VEGF) and fibroblast growth factor (FGF)-1 or –2. However, these drugs have failed 

due to pleiotropic and deleterious effects. Within this context E2 has also been 

considered. The vascular injury models have already demonstrated its anti-mitotic and 

endothelial re-growth properties [146,147]. In addition, pig models have been used, 

which displayed improved endothelial function, enhanced re-endothelialization and 

decreased neointima formation after intra-muscular injections of E2 during stenting 

[148], but also after local delivery of E2 during percutaneous transluminal coronary 

angioplasty and stenting [149-151]. In humans, a pilot study with E2-eluting stents has 

been performed, which did not demonstrate deleterious affects [152]. A randomized 

follow-up study is required to fully evaluate the potential benefit of E2-coated stents. 

At the moment, the underlying mechanism and the subsequent involvement of ER

and ER  are unknown and receptor-specific ligands may have differential effects.

5. Estrogen and Lipid & Glucose Metabolism 
5.1 Lipid & glucose metabolism 

Hyperlipidemia and insulin resitance are major risk factors for the 

development of cardiovascular disease.The body has developed a sophisticated 

lipoprotein and glucose transport system to meet to the diverse demands from 

different tissues under different conditions. These two systems are heavily 

interconnected and excess energy intake or genetic defects can deregulate lipid and 

glucose metabolism, leading to hyperlipidemia and insulin resistance and increased 

risk for cardiovascular disease. Insulin resistance is characterized by a diminished 

biological effect of insulin on glucose and free fatty acid (FFA) uptake by skeletal 
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muscle and adipose tissue, respectively and the suppression of glucose output by the 

liver (via decreased glyconeogenesis and glycogenolysis).

The liver forms the central site of lipid and glucose metabolism and therefore, 

plays an essential role in the maintenance of whole body energy homeostasis. It 

removes remnant lipoproteins from, and delivers newly synthesized lipoproteins to the 

bloodstream. To maintain the fairly steady concentration of glucose in the blood, the 

liver takes up and releases glucose into the bloodstream. Furthermore, it expresses a 

well-orchestrated network of genes that maintain the intra-hepatic cholesterol and 

glucose homeostasis. It is the main organ involved in de novo FA synthesis. Newly 

synthesized FA can be converted into triglycerides (TG) to be stored or secreted as 

VLDL-TG. FA can also be used for energy production via -oxidation. Glucose can 

be produced directly through gluconeogenesis from non-carbohydrate sources like 

amino acids, glycerol and lactate. The liver is also able to produce glucose through 

phosphorylation of glycogen, the storage form of glucose. This process is called 

glycogenolysis. On the other hand, when blood glucose levels are high, the liver will 

function as reservoir to take up and convert the excess of glucose into glycogen for 

future needs.

5.2 Effects of estrogen on lipid and glucose metabolism

Estrogens seem to be implicated in whole body energy homeostasis. Both 

gender and menopausal status influence lipid and glucose metabolism [153-155]. For 

example, menopause is associated with lipid abnormalities. Moreover, menopause is 

also associated with fat accumulation in the abdominal regions, which again is 

associated with increased plasma FFA and decreased adiponectin levels, both 

important components of the insulin-resistance syndrome [156,157]. The importance 

of estrogens has been revealed by individuals that carry mutations in the gene 

encoding aromatase. They develop obesity, insulin resistance, hypercholesterolemia, 

and hypertriglyceridemia [158-162]. Models of estrogen deficiency have been used to 

obtain more insight. ArKO mice age-progressively develop hypercholesterolemia, 

hyperleptinemia, and become obese. By 1 yr of age, ArKO males also exhibit elevated 

plasma triglyceride levels and develop hepatic steatosis [163]. MRI data of ArKO 

mice reveal that females have three times and males have twice as much adipose 

tissue as compared to wt mice. ER deficient models have highlighted the importance 

25



Chapter 1

of ER  and ER  in lipid and glucose metabolism. Both ER -/- and ER /ER -/- mice 

develop a lipid phenotype similar to the ArKOs, whereas no lipid phenotype is 

described in ER -/- mice [164,165]. ER  deficiency also results in insulin resistance, 

glucose intolerance, and adipose hyperplasia and hypertrophy in both sexes, as studied 

in ER neo
-/- [166]. This seems to be comparable with the human situation. One adult 

male with ER  deficiency has been described [167] and the clinical features of this 

patient include glucose intolerance, hyperinsulinemia, and lipid abnormalities 

[168,169]. Interestingly, a role of ER  was indicated by estrogen depletion (ovx) and 

exogenous E  treatment of 2 ER neo
-/- mice. These experiments demonstrated that

removing of the E2/ER  signaling cascade by ovx resulted in reduced body and fat-

pad weights and adipose size, which could be reversed by E2 treatment. This indicates 

that ER  mediates effects on adipose tissue that are opposite to those of ER  [170]. In 

addition, estrogen depletion of ER neo
-/- mice improved glucose tolerance and insulin 

sensitivity, suggesting a harmful role for ER  in glucose metabolism. Thus, a clear 

physiological role in the regulation of lipoprotein metabolism in mice has been 

ascribed to ER , whereas both ER  and ER  influence glucose metabolism. 

However, it should be mentioned that ER  most likely plays the most dominant role 

in glucose metabolism, since thus far the role of ER  is only apparent under ER

deficient conditions.

5.3 Role of estrogen in the liver 

In the liver, estrogens can enhance liver regeneration and suppress liver 

fibrosis [171,172]. However, the involvement of estrogens in the hepatic lipid and 

glucose signaling cascade is less clear. Relatively few reports have appeared in the 

literature, focusing on hepatic lipid and glucose regulated genes.  Of the two ERs only 

ER  is expressed in liver [173-175], which is in accordance with the fact that ER

seems to play a more important role in lipid metabolism than ER  [176,177]. The 

involvement of estrogens and ER  in the regulation of intra-hepatic lipid levels has 

been demonstrated in ArKO, ER neo
-/- and ER 2

-/- mice. In all these models analysis 

of their hepatic lipid content revealed a 3- to 5-fold increase in the TG level 

[178,179]. In addition, 6 weeks of E2 treatment in ArKO males effectively blocked the 

development of hepatic steatosis. Molecular characterization of ArKO mice revealed 
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that the intra-hepatic signaling pathway was disturbed towards a situation of both 

enhanced input (enzymes involved in fatty acid synthesis were increased) as well as 

reduced output (enzymes involved -oxidation were decreased). These data 

demonstrate that estrogens do seem to play an important role in hepatic lipid and 

carbohydrate metabolism, however because the hepatic lipid phenotype in the ArKO 

and ER -/- mice is still sex dependent, it seems likely that estrogens are not the sole 

determinant of the gender-related differences.  

A small number of studies have gained more insights in the (direct) effect of 

estrogens on hepatic genes regulating glucose and lipid homeostasis. The orphan short 

heterodimer partner (SHP) appears to be induced by chronic [180], but also instant 

administration of estrogen [181] in liver of wt mice. However, induction of SHP did 

not inhibit expression of the known SHP target genes cholesterol 7 -hydroxylase

(CYP7A1) or sterol 12 - hydroxylase (CYP8B1) and thus the biological implication 

of estrogen induced expression of hepatic SHP remains to be determined. SR-BI and 

SR-BII are both HDL receptors involved in the internalization of HDL cholesterol 

esters, with SR-BII being approximately 4-fold less efficient than SR-BI. Rat studies 

have found E2 mediated regulation of hepatic SR-BI and SRBII expression levels 

[182,183]. However, the underlying mechanism and its impact on HDL metabolism is 

unclear. Hepatic lipase (HL) participates in the uptake of HDL particles by 

hepatocytes. E2 has been shown to increase HL mRNA as well as HL activity with the 

concomitant lowering of plasma levels of HDL [184]. Apo A-I is the major protein 

constituent of HDL and has been attributed to its cardioprotective effect [185,186].

Estrogens have been shown to induce Apo A-I promoter activity and gene expression

[187-189]. In summary, E2 clearly affects lipid and glucose metabolism. Although 

some studies have reported hepatic lipid target genes, the role of liver is not 

thoroughly known.

6. Thesis Outline
In this thesis we have addressed the role of estrogen signaling in liver and 

vessel wall with emphasis on the link with vascular disease. To study E2 signaling in 

selected tissues, we set out to develop tools to modulate the E2 signaling cascade in a 

tissue-specific manner. In chapters 2-4, we have focused on the liver and addressed 

the physiology of estrogen signaling in the development of metabolic disorders. In 
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chapter 2, we have generated short interfering RNA constructs to down-regulate 

mouse ER  mRNA levels. By producing Ad vectors expressing shRNA against 

mER  (Ad.shER ), we generated a model to study the role of hepatic ER signaling. 

Both hepatic ER  RNA levels, as well as hepatic ER  activity were monitored in 

time and found to be significantly decreased. The Ad.shER  is further explored in 

chapter 3, in which the effect of hepatic ER  repression on lipid metabolism has 

been analyzed. Ad.shER  was intravenously injected in APOE*3-Leiden mice, a 

mouse model for hyperlipidemia. After several days, when hepatic ER  RNA and 

protein levels were significantly down-regulated, hepatic VLDL-TG production, lipid 

levels, and mRNA levels of relevant lipid-related genes were analyzed. Surprisingly, 

we found that the hepatic ER  levels are not a limiting factor in lipid metabolism. In 

chapter 4, we have studied the acute effect of E2 on insulin sensitivity. Although E2

was applied systemically, we found by using a sophisticated in vivo imaging setup 

that exclusive and maximal activation of hepatic ER was achieved six hours after E2

administration. Taken into account that the effects were examined after this short 

period of time, this study provides evidence for a role for hepatic ER  in maintaining 

glucose homeostasis.   

In chapters 5-8 of this thesis, we set out to develop models to modulate 

estrogen signaling in the vessel wall. In chapter 5, Ad vectors have been targeted to 

enhance gene transfer to transformed as well as to primary vascular cells. The 

targeting approach is based on a bi-functional linker construct, which contains the 

extra cellular domain of the Ad receptor linked to a cRGD peptide. This resulted in a 

targeting construct that binds to the Ad vector at one side and to v 3/5 integrins at the 

other site. Both primary as well as transformed vascular cells were infected with a 

high efficiency using this construct. In a subsequent study, we set out to target Ad 

vectors to the carotid artery of mice in vivo. Chapter 6 describes the work that has 

been performed to obtain vascular gene transfer in vivo. Although de-targeting of the 

liver was achieved successfully, targeting using two independent ligands failed to 

redirect tropism of the Ad vectors. Experiments indicate that stability of Ad in the 

circulation may be an important limitation. In chapter 7, the effect of E2 on the 

expression of adhesion molecules in EC in presence of normal and reduced ER

levels has been analyzed. In this study, we have generated shER  expressing 

lentiviral vectors that result in persistent reduction of ER  levels. These data 
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demonstrate that E2 reduces the expression of adhesion factors, suggesting an anti-

inflammatory role for E2. In this response, ER  is required but not a rate limiting 

factor. In chapter 8, we evaluated the specific role of ER  and ER  in the vascular 

wall in vivo. A non-constrictive drug-eluting collar was placed around the femoral 

artery of mice, which simultaneously induces intimal proliferation and releases either 

placebo, ER  or ER  specific agonists. These data demonstrated that in adition to 

ER , ER  is able to inhibit neointima formation. In the last chapter, chapter 9, the 

findings presented in this thesis and possibilities for future research are discussed. 
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Abstract
Background: Adenovirus (Ad) mediated gene transfer is a well-established tool to transiently 

express constructs in livers of mice in vivo. In the present study, we determined the specificity 

and efficiency of Ad vectors expressing short hairpin (sh) RNA constructs to knock-down the 

estrogen receptor  (ER ). Results: Two different shRNA constructs derived from the murine 

ER  coding sequence were designed (shER ). In vitro, transfection of three mouse cell lines 

with pSUPER-shER  constructs resulted in up to 80% reduction of endogenous ER  activity. 

A single mismatch in the target sequence eliminated the reduction of ER  activity, 

demonstrating the specificity of shER . The subsequently generated Ad.shER  vectors were 

equally effective in vitro. In vivo, intravenous administration of Ad.shER  resulted in 70% 

reduced hepatic mouse ER  mRNA levels. Co-injection of Ad.shER  with an Ad vector 

containing a luciferase (luc) gene driven by an estrogen responsive element (ERE) containing 

promoter resulted in a significant (90% on day five) down-regulation of hepatic luciferase 

activity, as determined by non-invasive optical imaging. Down-regulation was sustained up to 

day seven post-injection. Conclusion: Ad mediated transfer of shER  expression constructs 

results in efficient and specific knockdown of endogenous ER  transcription both in vitro and

in vivo.

Introduction
Estrogen exerts various biological effects in numerous organs throughout the body and has 

been implicated in the pathophysiology of a number of diseases including breast cancer, 

osteoporosis and cardiovascular disorders. Most of the estrogenic effects are mediated via the 

two known estrogen receptors, ER  and ER . These estrogen receptors are ligand-dependent 

transcription factors that can modulate gene transcription directly but also indirectly. Thus far, 

there is a relative paucity in the description of the role of estrogen and estrogen receptors in 

specific organs. Most studies have been performed using non-tissue specific manipulation of 

ER signaling such as complete knockouts either via deletion of the estrogen receptor or via 

deletion of estrogen production by ovariectomy. The availability of tools to specifically 

address the role of ER signaling in individual tissues would thus fill a void.

Short synthetic duplexes of 21 nucleotides long RNA molecules can specifically 

inhibit gene expression in mammalian cells [1]. Because of their efficacy and specificity, 

siRNA molecules provide a powerful tool to dissect gene function. To expand the 

applicability of the siRNA approach, Brummelkamp and co-workers [2] have introduced 
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vector-based siRNA expression systems. By directing the synthesis of shRNA via the 

polymerase-III H1 RNA gene promoter, effective siRNA molecules are formed intracellular 

after transfection of shRNA expression constructs. To further expand the applicability of the 

siRNA approach, recombinant retro- and adenoviral based vectors have been designed [3,4]. 

Of these, adenoviral vectors offer the advantage of highly efficient infection of a broad range 

of cells, independent of active cell division. Moreover, high titers can be obtained and 

intravenous injection results in efficient transduction of the liver.

The present study was designed to generate tools to address the role of ER  in a 

tissue- and time- specific manner. To this end, we have developed recombinant Ad vectors 

encoding shRNA’s directed against mouse ER  (Ad.shER ). Introduction of shER , either 

by transfection or by Ad mediated gene transfer into different murine cell lines, led to 

efficient sequence specific repression of ER mediated transcription. Furthermore, 

intravenously administration of Ad.shER  resulted in efficient reduction of hepatic ER

mRNA levels (P< 0.005) and ER  functionality.

Results

Efficient and specific knock-down of endogenous mER in vitro: Transfection with 

pSUPER-shER  constructs

Three pSUPER-derived vectors [2] designed to drive expression shER  sequences 

were constructed. Two vectors contained sh sequences derived from the boundary of the DNA 

binding domain and the hinge region (shER _1103), or from the ligand binding domain 

(shER _1395) of mER , respectively. A third expression vector contained both the 

shER _1103 and shER _1395 expression cassettes in series (shER _tandem).  

The efficiency of the shER  constructs for reducing endogenous ER  activity in vitro

was determined using a luciferase reporter assay. For this purpose, the pSUPER-

shER _1395, pSUPER-shER _1103, or pSUPER-shER _tandem were transfected together 

with a reporter plasmid carrying a trimer of ERE plus TATA box upstream of luciferase 

(pERE-Luc) into endothelial cell lines (EOMA and H5V) and in mouse breast cancer cells 

(MXT). As shown in Figure 1A, upon transfection with shER _1395, relative luciferase 

activity in lysates of all three cell lines was reduced by 70-80%. A similar result was obtained 

with shER _1103 in EOMA’s. In addition, the shER _tandem expression construct proved to 
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be more efficient than either of single shER  contructs alone in the EOMA cells, adding some 

15% to the 70% reduction observed with shER _1395 (Fig. 1A).

To evaluate the specificity of the shER  construct, shER _1395 was introduced into 

EOMA cells over-expressing either mouse ER  or human ER . The ER _1395 target 

sequence contains only a single mismatch with the human ER  (Fig. 1B). Significant 

suppression of ER  mediated transcription was only observed in lysates of cells that were 

transfected with mouse ER  but not with human ER  (Fig. 1C). Thus, the observed effects of 

shER _1395 are specific for mouse ER . Moreover, changing a single nucleotide in 

shER _1395 completely abolished the silencing effect (data not shown). By western blotting, 

the effect of shER  on ER  protein expression was studied (Fig. 1D). In the presence of 

shER _1395, ER  protein levels were reduced to 33% as compared to control transfected 

cells. This reduction correlated well with our findings in the luciferase reporter assay. Thus, 

the observed inhibition of luciferase activity upon treatment with shER _1395 or  

shER _1103 is caused by reduced accumulation of mER  protein. All together, the 

shER _1395 and shER _1103 expression vectors are effective and specific in repression of 

murine ER  expression.

Knock-down of hepatic ER  expression in vivo: using Ad.shER  vectors 

To repress ER  activity in vivo, Ad vectors expressing either shER _1395

(Ad.shER _1395), shER _1103 (Ad.shER _1103) or both (Ad.shER _tandem) were 

generated (Fig. 2A). The H1 RNA promoter plus shER  expression cassettes were sub-cloned 

from the corresponding pSUPER into pAdTrack [5], which is engineered to co-express GFP 

enabling the tracking of infected cells. In addition, we constructed a control AdTrack plasmid, 

carrying only the H1 RNA promoter, which allowed for the generation of Ad.Empty. Prior to 

the evaluation of recombinant Ad vectors in vivo, we tested the functionality of the vectors in 

vitro. EOMA and MXT cells were transfected with pERE-luc, and subsequently infected with 

Ad.Empty or the Ad.shER  vectors. Fluorescence analysis indicated a near 100% infection 

percentage. The luciferase experiments (Fig. 2B) were comparable to those obtained with 

transfection of the pSUPER constructs (Fig. 1A): both Ad.shER  vectors repressed luciferase 

reporter activity up to 90%. Thus, Ad.shER  vectors were found to be fully functional with 

respect to repression of mER  activity. 
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Figure 1. Affectivity and specificity of pSUPER mediated expression of shER  in mouse cell lines 
(A+C) The indicated mouse cell lines were co-transfected with, ERE-Luc, CMV-LacZ, and pSUPER-
empty, pSUPER-shER _1395, pSUPER- shER _1103, or pSUPER- shER _tandem. Subsequently, the 
cells were treated 24 hours with 10-9 M 17- -estradiol. Luciferase activity was measured 48 hours after 
transfection and after correction for LacZ expression, represented as the mean (n=3) ± SD relative to the 
transfection with pSUPER-empty. (A) Endogenous mouse ER  mediated transcription in EOMA, H5V 
and MXT cells after introducing pSUPER +/- shER . (B) The 19-nt target-recognition sequence of 
ER _1395 contains one mismatch with human ER  and five mismatches with the mouse ER  sequence. 
(C) ER  mediated transcription in EOMA cells after over expression of either mouse ER - or human 
ER -expression vectors in presence of pSUPER empty or pSUPER shER _1395 (D) Western blot 
analysis of H5V cells co-transfected with pCMV-mER  and pSUPER-empty or pSUPER-shER _1395. 
The lysates were analysed by immunoblotting (insert-photo) with anti-mouse ER  and anti-p38. The 
intensity of the bands was quantified and normalized to cells transfected with pSUPER-empty. The 
relative ER  protein levels are presented (bar-diagram) as mean (n=3) +/- SD.

50



In Vivo knock-down ER

Figure 2. ER-mediated luciferase activity after Ad-mediated transfer of shER in vitro
(A) Schematic representation of the recombinant Ad vectors, carrying GFP and shER  expression 
cassettes that were used in this study. (B) EOMA and MXT cells were co-transfected with pERE-Luc and 
pCMV-LacZ and than infected either with Ad.Empty, Ad.shER _1395, or Ad.shER _1103. 10-9 M
Estrogen was administrated for 24 hours. Luciferase activity was measured 48 hours after infection. Data 
represented as mean ± SD relative to infection with Ad.Empty. 

We then proceeded with the application of our vectors in vivo. The Ad vectors 

(Ad.Empty, Ad.shER _1395, or Ad.shER _tandem) were injected in the tail vain of C57Bl/6 

mice. This allowed examination of inhibition by shER  of endogenous hepatic mER . Four 

days post-injection, animals were sacrificed, and the livers were studied for GFP expression 

and ER  mRNA level. Similar GFP expression patterns were observed in all groups, 

indicating equally efficient transduction (data not shown). ER  mRNA levels were studied by 
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real time PCR analysis (Fig. 3). Administration of Ad.shER _1395 reduced ER  mRNA 

levels 70%, whereas hepatic expression of shER _tandem resulted in an 85% reduction.  

Figure 3. Hepatic ER  mRNA levels after 
Ad-mediated transfer of shER in vivo.
Male C57Bl/6 mice (n=5) were injected with 
4x109 pfu Ad.Empty, Ad.shER _1395 or 
Ad.shER _tandem. Livers were harvested 
four days after Ad. administration and 
subjected to taqman analysis. The 
cyclophillin gene was used as internal 
standard. Data represented as mean ± SD. 

Subsequently, we sought to examine the 

extent of shER -mediated repression of hepatic 

mER  transcription activity. For this purpose, 

we constructed an Ad vector carrying the 

estrogen responsive luciferase reporter gene 

(Ad.ERE-Luc). First the estrogen-

responsiveness of this vector was determined in

vivo (Fig. 4A). Five days post-injection of 

8x108 pfu Ad.ERE-Luc, the mice were injected 

s.c with increasing concentrations of estrogen, 

ranging from 0 to 50 g/kg. As shown in Fig 

4A, six hours post-injection, estrogen induced 

hepatic luciferase activity in a dose-dependent 

manner. Maximal stimulation was reached 

after applying 25 g/kg estrogen. Then, we 

determined to what extend Ad.shER  down-

regulates the transcriptional activity of hepatic 

ER . Ad.shER  together with Ad.ERE-Luc 

reporter vector was administrated 

intravenously to C57BI/6 mice. Luciferase 

expression was detected by a CCD camera in living mice. Without estrogen treatment, all 

mice exhibited the same basal expression of the reporter construct (data not shown). 

Administration of 5 g/kg estrogen, three and seven days after transduction with 

Ad.shER _1103, resulted in a significant repression of hepatic ER -mediated luciferase 

activity (Fig. 4B). These data were confirmed by measuring luciferase activity in liver 

extracts of mice that received estrogen (5 g/kg, sc) five days post-injection with Ad.ERE-

Luc plus Ad.Empty or Ad.shER _1103 (Fig. 4C).

We conclude that Ad-mediated introduction of shER in vivo results in an almost 

complete repression of hepatic mER  mRNA levels, as well as mER -mediated transcription 

activity. 
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Figure 4. Hepatic ER  activityFigure 4. Hepatic ER  activity
(A) Male wt/ C57Bl/6 mice, pre injected with 5x108 pfu Ad.LacZ, were injected with 8x108 pfu 
Ad.ERELuc. Five days later, the recipients were treated for 6 hours with increasing amounts of estrogen (0-
50 g/kg, s.c). Then, the mice were sacrificed, and the livers were processed for luciferase assays. 
Luciferase activity is expressed as relative luciferase units (RLU) per mg total liver protein. (B) Male 
C57Bl/6 mice (n=5) were injected with Ad.ERE-Luc (5x108 pfu) plus Ad.Empty or Ad.shER _1103 (3x109

pfu). Three or seven days post-infection, the mice were injected with 5 g/kg estrogen. The (inset) photo 
shows the result of optical imaging of the bioluminescence at day three, the bar-diagram is a quantitative 
representation of hepatic luciferase activity at day three or day seven. (C) Male C57Bl/6 mice (n=5) were 
co-injected with Ad.ERELuc (5x108 pfu) + Ad.Empty or Ad.shER _1103 (3x109 pfu). Five days later, the 
mice received 0 or 5 g/kg estrogen. After 6 hours, the animals were sacrificed, and hepatic luciferase 
activity was determined. Luciferase activity is expressed as relative luciferase units (RLU) per mg total liver 
protein. Data represented as mean ± SD. 

(A) Male wt/ C57Bl/6 mice, pre injected with 5x10
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8 pfu Ad.LacZ, were injected with 8x108 pfu 
Ad.ERELuc. Five days later, the recipients were treated for 6 hours with increasing amounts of estrogen (0-
50 g/kg, s.c). Then, the mice were sacrificed, and the livers were processed for luciferase assays. 
Luciferase activity is expressed as relative luciferase units (RLU) per mg total liver protein. (B) Male 
C57Bl/6 mice (n=5) were injected with Ad.ERE-Luc (5x108 pfu) plus Ad.Empty or Ad.shER _1103 (3x109

pfu). Three or seven days post-infection, the mice were injected with 5 g/kg estrogen. The (inset) photo 
shows the result of optical imaging of the bioluminescence at day three, the bar-diagram is a quantitative 
representation of hepatic luciferase activity at day three or day seven. (C) Male C57Bl/6 mice (n=5) were 
co-injected with Ad.ERELuc (5x108 pfu) + Ad.Empty or Ad.shER _1103 (3x109 pfu). Five days later, the 
mice received 0 or 5 g/kg estrogen. After 6 hours, the animals were sacrificed, and hepatic luciferase 
activity was determined. Luciferase activity is expressed as relative luciferase units (RLU) per mg total liver 
protein. Data represented as mean ± SD. 
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Discussion
In this paper, we demonstrate that efficient silencing of mouse ER can be achieved in 

vitro as well as in vivo by use of Ad-mediated transfer of shRNA molecules that target the 

ER  mRNA. Two independent shER  plasmid and Ad vector expression constructs were 

generated and shown to be effective in repressing endogenous ER  activity up to 80% in 

several different cell lines and in vivo (Fig. 1A, 2B and 3). In addition, a construct was made 

expressing both shER  sequences simultaneously. In vitro as well as in vivo, this construct 

was shown to be more effective (Fig. 1A and 3) than either of the two shER  constructs 

alone. Non-invasive optical imaging of living mice, allowed us to quantify shER  activity in 

vivo. Significant reduction of mouse ER  transcription levels were observed up to seven days 

post-transduction (Fig. 4B).

 Thus far, bystander effects caused by shRNA constructs targeted to an unrelated gene 

have not been reported, and the specificity of the shER _1395 construct was verified by the 

observation that human ER , which has a single mismatch with the murine ER  target 

sequence, is not down-regulated (Fig. 1C). The number of mismatches with the murine ER

sequence totals five, making it unlikely that the shER _1395 construct would affect 

expression of ER . Similarly, the shER _1103 construct has three mismatches with the 

human ER  and nine mismatches with murine ER , making it unlikely that the shER _1103

construct would interfere with either of them. A single mismatch in the shER _1395

sequence did render the construct ineffective in down-regulating murine ER  (data not 

shown). Thus, the two independent shER  constructs described here are exquisitely suited to 

demonstrate that a specific effect is mediated by down-regulation of ER  expression and not 

by down-regulation of a related sequence.

A key challenge in the application of an shRNA based approach is efficient delivery of 

the shRNA constructs to target cells in vitro and in vivo. For application of shRNA in vivo,

the sh oligopair, driven by H1 RNA polymerase [2] or U6 promoter [6], can be cloned in viral 

vectors. Here, the Ad vector was chosen as delivery vector, because of the relative ease of 

generation and amplification. Moreover, the natural tropism of Ad vectors for the liver 

enables the rapid analysis of the hepatic knock-down phenotype. Since Ad vectors 

predominantly infect the parenchymal cells [7,8], it is important to note that most abundant 

hepatic ER  expression was detected in parenchymal cells while ER  expression was barely 

detected in hepatic endothelial cells or kupffer cells (data not shown). This supported the 

rationale for application of shER  Ad vectors in vivo. Another interesting observation was 
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that upon administration of 4x109 pfu Ad.shER , an 85% reduction of ER  mRNA levels was 

obtained (Fig. 5), whereas co-injection of 3x109 pfu Ad.shER _1103 with 5x108 pfu 

Ad.ERE-Luc resulted in an almost complete absence of luciferase activity (Fig. 4C). The ratio 

of Ad.ERE-Luc versus Ad.shER _1103 (1:6) should ensure that all cells that were transduced 

by Ad.ERE-Luc also received Ad.shER _1103. Thus, the remainder of ER  expression 

determined by real-time PCR likely reflects ER  expression in non-parenchymal and non-

infected cells. 

Thus far, relative few reports describe the application of Ad vectors as delivery system 

for RNAi in vitro [9-12]. Similarly, relative few studies on effective RNA interference in vivo 

using Ad mediated gene transfer have been reported [13-15]. One potential explanation for 

this relative paucity in the application of Ad mediated gene transfer for shRNA expression 

constructs could lie in the recent observations of Lu and Cullen [16], that VA1 non-coding 

RNA, expressed by wild type adenovirus is a potent inhibitor of RNA interference. However, 

replication-incompetent adenovirus vectors such as the vectors used in our study have been 

reported to express low levels of VA1. Moreover, in our hands the effect of the pSUPER 

shRNA construct shER _1935 on reduction of ER  activity in vitro was not affected by 

super-infection with the Ad.empty vector (data not shown). Thus, the Ad vectors applied in 

this study seem to have no or a minor inhibitory effect on the RNAi response in vitro and in 

vivo. Whether this effect is also insert specific and/or depends on the particular target gene 

remains to be investigated. 

The strongest evidence for efficient reduction of endogenous hepatic ER  RNA levels 

in vivo was obtained by co-injection of Ad.ERE-luc and advanced non-invasive in vivo optical 

imaging. Administration of Ad.ERE-luc led to readily detectable levels of luciferase activity 

from day 3 up to day 7 and disappeared at day 10 (data not shown). In agreement with this, 

the Ad.shERa mediated knock-down effect was present at day three, five, and seven post-

injection (Fig 4B). This represents a 4 to 5-day window of expression to determine the 

phenotypic effects of hepatic shRNA-mediated reduction of mRNA levels. 

Conclusion
We have shown significant repression of hepatic ER  activity in mice utilizing Ad.shER

vectors. In addition, using advanced non-invasive optical imaging technology, the dynamics 

of the knock-down effect in vivo have been demonstrated. Thus, our data confirm that 

application of shRNA represents a powerful tool for targeted gene silencing. We conclude 
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that Ad-mediated delivery of shER  constructs represents an elegant tool to gain more insight 

in the role of the hepatic ER .

Methods
Plasmids

Two oligonucleotide pairs (mER _1395: 5’-gatccccgctcctgtttgctcctaacttcaag

agagttaggagcaaacaggagctttttggaaa-3’ and 5’-agcttttccaaaaagctcctgtttgctcctaa 

ctctcttgaagttaggagcaaacaggagcggg-3’, mER _1103: 5’-gatccccgaatagccctgc

cttgtcc ttcaagagaggacaaggcagggctattc tttttggaaa-3’ and 5’-agc ttttccaaaaaga 

atagccctgccttgtcctctcttgaaggacaaggcagggctattcggg) were ordered (Eurogentec, United 

kingdom). The bold nucleotides correspond to nucleotides 1395-1418 and 1103-1120 of the 

mRNA mER  sequence (GenBank accession number NM_ 007956). The underlined 

nucleotides represent a BglII and a HindIII site. These oligo’s were annealed and ligated 

between the BglII and HindIII sites of pSUPER-H1prom [2]. The pSUPER-shER  sequences 

were verified by restriction and sequence analysis (ABI 3700, LGTC, Leiden).   

The H1prom plus or minus shER  were cloned from the pSUPER into the promoter 

less pAdTrack vector [5] by use of XbaI and XhoI restriction sites. The Ad.shER _tandem

construct was generated by ligation of H1prom-shER _1103 between the NotI and KpnI sites 

of pTrack-H1prom- shER _1395.

The (ERE)3TATA-Luc was cloned from pGl3-basic as a ClaI-blunt/ KpnI fragment in 

EcoRV- and KpnI- digested promoter less Shuttle vector (pShuttle) (He et al. 2509-14). The 

functionality of this construct was verified by transfection. hER  was cloned from pCMV5 

(pCMV5-hER ) [17] as a BamHI fragment in the BglII digested pShuttle-CMV vector. The 

pcDNA3.1-mER  expression vector was provided by Larry Jameson [18] and subcloned as a 

EcoRI-blunt fragment in the EcoRV digested pShuttle-CMV vector.

Cell Culture 
The MXT+ (murine breast cancer) cell line was generously provided by Dr. Bernards. 

H5V (a murine endothelial cell line derived from heart), EOMA (murine hemangioma-

derived micro vascular cell line) and MXT cells were maintained in Dulbecco's modified 

Eagle's medium (DMEM) (Gibco BRL) supplemented with 10% fetal calf serum, 100 

units/ml Penicillin, 100 g/ml Streptomycin and glutamax (Invitrogen) (Complete DMEM). 

PERC6 cells [19] were maintained in complete DMEM supplemented with 10mM MgCl2+.

56



In Vivo knock-down ER

For large-scale production of recombinant Ad in PERC6 cells (Crucell, Leiden, he 

Netherlands), complete DMEM with 2% horse serum (Gibco) was used.  

Luciferase reporter assays 

Transient transfections were performed in triplicate in 12-wells plates (1.105 cells per 

well) using Lipofectamine (Invitrogen). The effect of shER  on ER  mediated transcription 

regulation was determined by co-transfecting the cells with 100ng of reporter construct 

(ERE)3TATA-LUC and 500 ng expression vector pSUPER-shER  or an empty pSUPER 

control vector together with 100 ng pCMV-LacZ. After 24 hours, the cells were stimulated 

with complete DMEM containing 10-9M Estrogen for an additional 24 hours. The cells were 

lysed with reporter lyses buffer (Promega) and after centrifugation of 2 min, supernatant was 

used for determining -galactosidase normalized luciferase activity by adding 100 μl 

luciferyl-CoA (Promega) to 20 μl of cell extract in a monolight luminometer (BD 

Biosciences). -galactosidase was measured in a 96-well microtiter plate using the -

Galactosidase Enzyme Assay System in reporter lyses buffer (Promega). Absorbance at 450 

nm was determined in a microplate reader. Luciferase activities were normalized for 

transfection efficiency with the -galactosidase activity and expressed as a percentage relative 

to expression levels induced by endogenous estrogen receptor (ER). Expression of 

endogenous ER  in those cells was verified by real time PCR. 

Western blot analysis 

Immunoblotting procedures were as described previously [20]. H5V cells seeded in 

triplicate in 12-wells plate were co-transfected with 20 ng pCMV-mER  and 500ng 

expression vector pSUPER-shER  or an empty pSUPER control vector as described above. 

28 hours post-transfection, the cells were lysed in 200 l of RIPA buffer (1% NP40, 0.5% 

DOC, 0.1% SDS, 50mM Tris pH 8.0, 150mM NaCl, 2.5mM EDTA) containing protease 

inhibitor (40ul/ml, Roche). Extracts were cleared by centrifugation (4°C, 14 000 g, 5 min), 

and protein content was determined using the BCA kit (Pierce). Protein samples were 

denaturated (5 min, 90 C) and separated on SDS/PAGE by use of 8% gradient gels and were 

transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Germany). Blots were 

stained with Ponceau S before blocking to verify equal loading and appropriate protein 

transfer. Membranes were blocked for 90 min in PBS, pH 7.4, containing 0.05% Tween 

20 and 10% milk powder. Thereafter, membranes were incubated for 16 h at 4°C with ab 

MC20, 1:1000 (mER  rabbit polyclonal antibody, Santa Cruz Biotechnology, CA). After 

extensive washing with blocking buffer without milk powder or BSA, membranes were
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incubated for 2 h with horseradish peroxidase-conjugated goat anti-rabbit IgG, 1:5000 

(Promega). Membranes were again extensively washed and bound peroxidase conjugates were 

visualized by enhanced chemiluminescence (ECL, Amersham) on a LumiImager workstation. 

Additionally, filters were stripped by a 30 min incubation in 100 mM -mercaptoethanol, 2% 

SDS, 62.5 mM Tris–HCl pH 6.8 at 50°C, to proceed with the whole procedure as described 

above. However, now membranes were incubated for 16 h at 4°C with p-38 ab, 1:1000 (N-20, 

cs-728, rabbit polyclonal antibody, Santa Cruz Biotechnology, CA). Immunoblots were 

quantified using LUMIANALYST software on a LumiImager (Boehringer-Mannheim).  

Adenoviral vectors 

Recombinant adenoviral plasmids were generated by homologous recombination of 

pAdtrack or pShuttle vectors with pAdEasy1 in BJ5183 cells as described previously [5]. 

Correct clones were propagated in DH5  cells (Life Technologies). For the generation of the 

Ad.shER  vectors, Ad.Empty and Ad.ERE-Luc, PERC6 cells were transfected with 4 μg Pac-

I-linearized adenoviral construct using LipofectAMINE PLUS (Life Technologies). After 16 

hours transfection medium was replaced by growth medium. Transfected cells were harvested 

at day seven post-transfection and after three freeze-thaw cycles the lysate was used for large-

scale production of Ad vectors in PERC6 cells. Virus was purified by double CsCl 

centrifugation and subsequently dialysed as described previously [21]. Final yields as 

assessed by plaque assays on 911 cells were approximately 2 × 1010 plaque forming units 

(pfu)/ml. The control virus (Ad.Empty) carries the green fluorescent protein (GFP) under 

control of cytomegalovirus promoter (CMV) and contained the H1prom. Ad.shER _1395 and 

Ad.shER _1103 carry GFP under control of CMV and shER _1395 or shER _1103 under 

control of H1prom. Ad. shER _tandem carries both shER _1395 and shER _1103 under 

control of their own H1prom. Ad.ERE-Luc does not contain CMV-GFP and its functionality 

was verified in vitro and in vivo.

Infection cells 

24 hours before transfection, 1.105 cells per well were seeded into12 wells-plate. Cells 

were transiently transfected by use of lipofectamine with a total of 450ng of DNA per well 

(150ng of reporter plasmid (ERE)3TATA-LUC and 300ng pCMV-LacZ). After 4 hours cells 

were infected with either Ad.shER  or control Ad.Empty (MOI 5.000). Additionally, they 

received 10-9M estrogen for 24 hours.  Cells were lysed in 300 l reporter lyses buffer. -

galactosidase and luciferase activity was determined as described above.  
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Animals and Ad Injection 
The Ethics Committee for Animal Experiments of the Leiden University approved all 

animal work and the experimental protocols complied with the national guidelines for use of 

experimental animals. Male C57Bl/6JIco (Charles river, The Netherlands) were given a 

standard m diet Chow (Hope Farms, Woerden, NL) and housed under standard conditions in 

conventional cages with free access to water and food. 

Recombinant Ad, with a maximum of 4 × 109 pfu in 200 μl of PBS, were administered 

by injection into the tail vein of mice at the age of 14 weeks. Within five days post-infusion, 

mice were sacrificed; liver pieces were removed and immediately deep-frozen in liquid 

nitrogen and stored at -80°C. 

Pharmacological treatment.

The experiment was carried out in 12-wks old C57BL/6 male mice. To prevent

sequestration of low doses of Ad.ERE-Luc by liver Kupffer cells, mice were pre-injected with 

Ad.LacZ (5x10  pfu) 4 hours before administration of 8x10  pfu Ad.ERE-Luc. 178 8 -estradiol 

(Sigma, E8875) was dissolved in sesame oil (Sigma). In the dose-response experiment, five 

days post-injection of Ad.ERE-Luc, 0, 5, 25 and 50 g/kg 17 -estradiol was injected for 6 

hours. Then liver pieces were rapidly dissected and immediately deep-frozen in liquid 

nitrogen and stored at -80°C for further analysis.

Bioluminescent reporter imaging. 

The experiment was carried out in 12 wks old C57BL/6 male mice co-injected with 

Ad.ERELuc (5x108 pfu) plus either Ad.Empty or Ad.shER  (3x109 pfu). Bioluminescent 

signals (BLS) were performed at time 0 and at several days after 6 and 24 hours s.c injections 

of 5 g/kg 17 -estradiol with the Xenogen IVIS imaging system (IVIS 100). The living mice 

were intraperitoneal (ip) injected with the luciferase substrate, luciferin, at a dose of 150 

mg/kg body weight approximately 5 minutes before imaging. The mice were anaesthetized 

with isoflurane/oxygen and placed on the imaging stage. Total photon emission of each 

animal was acquired for 1 minute. Captured images were then quantified by using the Living 

Image software (Xenogen Corp, Almeda, CA) and the IGOR software (WaveMetrics Corp, 

Lake Oswego, OR). BLS from the region of interest (ROI) was expressed using the pseudo 

colour scale (Red most intense and Blue least intense luminescence) and the data were 

presented as the cumulative photon counts collected within each ROI. Because layers of tissue 

may limit photon emission from inner organs, the experiment was repeated. Of these mice the 

livers were rapidly dissected at day 5, 6 hours after 17 -estradiol administration, verifying the 
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results from the bioluminescent reporter imaging by determining the luciferase activity in 

liver lysates 

Luciferase enzymatic assay.

The liver extracts were prepared by homogenisation with the minibead beater in 

reporter lyses buffer (Promega), two cycles of freeze-thawing and 2 min. of centrifugation at 

maximum speed. Supernatants were used for determining protein-normalized luciferase 

activity by adding 100 μl luciferyl-CoA (Promega) to 20 μl of liver extract in a monolight 

luminometer (BD Biosciences). Protein content was measured in a 96-well microtiter plate 

using the BCA protein assay kit (Pierce). Absorbance at 562 nm was determined in a 

microplate reader.   

Real time quantitative PCR analysis 

Total RNA was extracted from liver using TRIzol reagent (Life technologies). Purified 

RNA was treated with RQ1 RNase-free DNase (Promega, 1 units/ 2 μg of total RNA) and 

reverse transcribed with SuperScript II Reverse Transcriptase (Invitrogen) according to the 

manufacturer’s protocol. Quantitative gene expression analysis was performed on an ABI 

prism7700 Sequence Detection System (Applied Biosystems) using SYBR Green as described 

earlier [22]. PCR primer sets (Cyclophilline, Fw: AAAAGGAAGACGACGGAGCC Rev: 

TCGGAGCGCAATATGAAGGT and mER , Fw: CTAGCAGATAGGGAGCTGGTTCA, 

Rev: GGAGATTCAAGTCCCCAAAGC) were designed via Primer Express 1.7 software 

with the manufacturer's default settings (Applied Biosystems) and were validated for 

amplification efficiency. The absence of genomic DNA contamination in the RNA 

preparations was confirmed in a separate PCR reaction on total RNA samples that were not 

reverse transcribed. Cyclophilline was used as a control.

Data Analysis—The significance of differences in relative gene expression numbers Ct

(Ct((Cyclo)–Ct(target gene))  measured by real time quantitative PCR was calculated using a two-

tailed Student's t test. Probability values less than 0.05 were considered significant. 
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Abstract
Estrogens have been shown to modulate the lipoprotein profile. However, the role of the 

hepatic estrogen receptor  (ER ) in this process is unclear. In the present study, we have 

addressed the role of hepatic ER  signalling in lipid metabolism of APOE*3 Leiden 

transgenic mice fed a high fat diet. Hepatic ER  was down regulated using adenovirus-

mediated transfer of a short hairpin (sh) RNA directed against the ER  (Ad.shER ). Despite 

significant down-regulation of hepatic ER  RNA and protein levels (60%), plasma 

cholesterol, triglyceride and glucose levels were not changed. In addition, no effects on the 

VLDL-TG secretion rate and intra-hepatic lipid levels were observed. In contrast, expression 

of the Cyp7a and PPAR  genes was up regulated 2- and 2.5-fold, respectively, and the SHP 

gene was down regulated 2-fold. Apparently, the changes in the expression of these lipid 

related genes is compensated for by alternative transcriptional or post-transcriptional 

mechanisms and does not affect plasma lipid levels. In conclusion, repression of hepatic ER

gene expression does affect genes involved in lipid metabolism, but does not have an obvious 

impact on lipid parameters. 

Introduction
Epidemiological studies have shown that the menopausal transition is association with 

changes in circulating lipid levels, including elevated plasma levels of total cholesterol, low-

density lipoprotein cholesterol (LDL-C), and reduced levels of high-density lipoprotein 

cholesterol (HDL-C). Since estrogen treatment has been reported to influence these lipid 

levels in the opposite manner [1-4], estrogen has been postulated to be beneficial in

cholesterol homeostasis.  

 The estrogenic effects are predominantly mediated via activation of either of two 

estrogen receptors (ERs), ER  and ER . These ligand-dependent transcription factors 

modulate gene transcription but can also interfere with intracellular signaling pathways [5-7]. 

To date, mouse models of estrogen deficiency, such as aromatase knockout (ArKO) and ER

and ER  knockout mice have been used to gain insight into the role of estrogens in lipid 

metabolism. ArKO mice, ER  - and double ER /  knockout mice all develop 

hypercholesterolemia [8-10], whereas no lipid phenotype was described in ER  knockout 

mice [10]. These results demonstrate a role for estrogen in lipid homeostasis, and indicate that 

ER  is involved. 
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The liver plays a central regulating role in lipid metabolism. To gain insight into the 

role of hepatic ER  in lipid homeostasis, Ad vectors encoding shRNA’s directed against 

mouse ER  (Ad.shER ) [11] were administered to hyperlipidemic APOE*3-Leiden female 

mice. Hepatic ER  mRNA and protein levels were repressed by 60%, and were associated 

with changes in the expression level of genes involved in lipid metabolism. However, plasma 

lipid parameters were not affected upon Ad.shER  administration. These results indicate that 

the hepatic ER  level does not play a rate limiting role in lipid metabolism.  

Results

Basal body weight and plasma parameters 

To induce hyperlipidemia, two groups of female APOE*3-Leiden mice were fed a high fat 

cholesterol enriched diet (diet W) for eight weeks. After this period, mice in both groups had 

an average bodyweight of 21 gram, serum glucose levels of 6 mM and triglyceride (TG) level 

of 1.9 mM. In addition, both groups of mice exhibited hypercholesterolemia (13.4 and 13.8 

mM) (table 1). 

Table 1. Bodyweight and glucose levels in 4 hrs-fasted ApoE*3-Leiden female mice fed a 
high fat diet, before and after Ad-mediated gene transfer of shER

Day 0 Day 5 

Ad.Empty Ad.shER Ad.Empty Ad.shER

Bodyweight (gr) 

Glucose (mmol/l) 

Cholesterol  

20.9 ± 1.4 

  6.1 ± 1.0 

13.4 ± 4.4 

21.2 ± 1.2 

  5.8 ± 1.1 

13.8 ± 3.3 

20.1 ± 1.2 

  6.5 ± 0.7 

  8.6 ± 0.9 

20.2 ± 1.3 

  6.6 ± 0.8 

  8.6 ± 1.4 

  1.9 ± 0.9   1.9 ± 0.5  3.2 ± 0.5Triglycerides  3.1 ± 0.6 

Hepatic ER  levels in ApoE*3-Leiden mice after Ad.shER  treatment 

To down-regulate the hepatic ER , the hyperlipidemic female APOE*3-Leiden mice were 

injected either with Ad.Empty or with Ad.shER . Five days after Ad.shER  treatment 

(1.5.109 pfu), the hepatic ER  RNA and protein levels were repressed by 60% as compared to 

Ad.Empty treated mice (P<0.05, P<0.001, respectively; Figure 1A and 1B).
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Figure 1. Hepatic ER  levels after Ad mediated transfer of shER in vivo 
Female APOE*3-Leiden mice were injected with 1,5.109 pfu Ad.Empty or Ad.shER
(n=5). Livers were harvested five days after Ad. administration and subjected to taqman 
(A) and western (B) analysis. Respectively, HPRT and p38 were used as internal 
standard. Data represent as mean ± SD 

Body weight and plasma parameters in Ad.shER  treated mice

At day five after Ad administration, cholesterol and TG levels were modulated to the same 

extent in both Ad.Empty and Ad.shER  treated mice (Table 2). Thus, down-regulation of 

hepatic ER  did not affect serum lipid nor glucose levels.  

Hepatic VLDL-TG production

After down regulation of hepatic ER  in APOE*3-Leiden mice, the VLDL-TG production 

rate was determined by injection of Triton WR1339. Triton WR1339 blocks VLDL-TG 

lipolysis and VLDL remnant clearance and the increase in plasma TG is a measure for VLDL-

TG production. Reduced hepatic ER  levels did not affect the VLDL-TG production rate 

(Figure 2).
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Hepatic Lipid content 

In addition, hepatic TG and Chol content were analyzed. As depicted in Figure 3, the hepatic 

lipid content of the Ad.shER  treated APOE*3-Leiden mice did not differ from the 

Ad.Empty treated group (Chol; 14.4 ± 1.7 versus 13.8 ± 2.9, for TG; 104.5 ± 38.7 versus 93.1 

± 31.9, for Chol esters; 33.8 ± 7.6 versus 29.9 ± 6.2 mM, respectively).  

Figure 2. Hepatic VLDL-TG 
production after Ad mediated 
transfer of shER in vivo 
Female APOE*3-Leiden mice were 
injected with 1,5.109 pfu Ad.Empty or 
Ad.shER  (n=4). VLDL-TG 
production was measured 5 days post-
injection. Fasted serum TG level was 
determined between 0 and 120 min 
after Triton WR 1339 injection. 
Values are represented as mean ± SD. 

Figure 3. Hepatic lipid content 
after Ad mediated transfer of 
shER in vivo
Hepatic TG and cholesterol 
content was analyzed in APOE*3-
Leiden female mice five days 
after Ad.Empty and Ad.shER
administration. Values represent 
the mean±SD of 11 mice. 

Hepatic mRNA expression levels  

To further investigate the effect of short-term repression of ER  in liver, hepatic expression 

of genes involved in lipogenesis were assessed by real-time PCR. Short-term repression of 

hepatic ER  led to a significant enhancement of peroxisome proliferator-activated receptor 
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(PPAR)  and Cyp7  and a significant repression of short heterodimer partner SHP (Fig 4). 

Transcription levels of apolipoprotein E (ApoE) and ApoAV were unchanged (Fig 4). 

Figure 4. Hepatic gene expression after Ad mediated transfer of shER in vivo
Gene expression was analyzed by real time PCR in APOE*3-Leiden female mice five days after 
Ad.Empty and Ad.shER  administration. The HPRT gene was used as internal standard. Values represent 
the mean±SD (n=5) relative to the percentage of expression in Ad.Empty treated mice. *, statistically 
significant difference of P<0.05 compared with Ad.Empty treated mice. 

Discussion
The present study evaluates the direct role of hepatic ER  in lipid homeostasis. To this 

end, hepatic ER  was down-regulated in hyperlipidemic APOE*3-Leiden female mice using 

Ad mediated transfer of a shRNA construct targeted against the ER . This resulted in a 60% 

reduction in hepatic ER  RNA and protein levels and significant changes in PPAR , Cyp7

and SHP gene transcription. However, hepatic lipid levels and serum lipid and glucose levels 

were not affected by ER  down-regulation. Apparently, the hepatic ER  is involved in 

regulating hepatic gene transcription, but ER  level does not play a rate limiting role in 

determining serum lipid or glucose levels in hyperlipidemic APOE*3Leiden mice. 

The application of vector-based systems expressing small hairpin RNA (shRNA) to 

dissect gene function is now well established in mammalian cells in vitro. In vivo application 

requires highly efficient delivery of the shRNA expression construct and for this, in the 

current paper Ad vectors are used. These have been shown to efficiently knock-down ER  in 
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liver in vivo, resulting in highly efficient reduction of ER  transcriptional activity [11]. Ad 

vectors predominantly transduce hepatic parenchymal cells, which also most abundantly 

express ER  (data not shown) [12,13]. We were able to repress hepatic ER  RNA and 

protein levels to an extent of 60% with a moderate viral dose (1,5.109 pfu/mice). At higher 

viral dosages, the reduction in gene expression was not further increased and hepatotoxicity 

did occur (data not shown). 

We previously demonstrated that the shER  construct used here is specific for the 

murine ER  [11]. Since the ER  is expressed at very low levels in parenchymal cells, and our 

shRNA construct harbours nine mismatches with the murine ER , it seems unlikely that off 

target effects explain the effect of shERa expression on hepatic gene expression. However, we 

cannot exclude that some of the effects on gene expression are mediated by the so called a-

specific interferon response to double stranded RNA. However, it is likely that the Ad 

transduction per se induces a much more dramatic cellular stress response as compared to the 

dsRNA. This ad specific effect was controlled for in the comparison with the ad empty treated 

groups.

The reduction in ER  level is associated with significant changes in the expression of 

genes involved in lipid metabolism. The Cyp7  gene encodes the enzyme controlling the first 

and rate-limiting step in cholesterol degradation to bile acids. Upregulation of the Cyp7  gene 

is in line with the observed down regulation of SHP, as SHP negatively regulates expression 

of Cyp7 . Interestingly, SHP appears to be induced by estrogen in liver of wt mice [14,15], 

and a decrease of estrogen signaling would thus be in line  with SHP downregulation. 

Agonists of the transcription factor PPAR  prevent lipid accumulation in liver by stimulating 

fatty acid -oxidation in liver [16,17] a process which is also found to be induced by 

estrogens [18]. The upregulation of PPARa in response to a reduction in Era could therefore 

be a compensatory effect. Since we did not find a lipid phenotype associated with these gene 

expression changes, it seems likely that the gene expression changes them selves or post-

transcriptional regulatory events counterbalance each other. Apparently, the liver can 

compensate for changes in estrogen signaling in such a manner as to maintain normal plasma 

and liver lipid levels. 

The role of ER  in lipid metabolism has been addressed using whole-body knockout 

mouse models lacking ER . These ER  knockout mouse models as well as the aromatase 

knock out mouse model, which lacks the final step in estrogen synthesis, display a lipid 

phenotype that is apparent upon aging [10,19,20]. The phenotype associated with any 
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knockout mouse model needs to be considered with the provision that compensatory changes 

that counteract some of the knockout effects may have occurred. The delayed lipid phenotype 

of the ER  knockout and ARKO mouse models could be explained by a failure of this 

compensation in time. By reducing the hepatic ER  mediated signalling cascade during 

adulthood and assessing the parameters relatively soon thereafter, our data indicate that the 

lack of a lipid phenotype of ER  knock outs is not due to compensatory changes. In stead, we 

conclude that hepatic ER  level is not rate-limiting in its role to maintain whole body lipid 

metabolism. 

If the liver is not directly mediating the effects of estrogen on lipid metabolism, what 

could be the cause of the lipid changes seen after prolonged absence of the ER  or estrogen? 

Although we have not addressed this, it seems likely that secondary effects of estrogen 

signaling on other tissues that are involved in regulating lipid metabolism, such as brain, 

muscle and adipose tissue, play an important role in the development towards a change in 

lipid profile upon aging. In this respect, changes in for example adipose tissue distribution and 

size, as have been attributed to estrogen, would only have an effect on lipid metabolism 

beyond a certain level of change and thus time.  

In conclusion, we find that short-term repression of hepatic ER  gene and protein 

expression does not have an overt impact on plasma and liver lipid levels. Apparently, the 

changes induced via the hepatic ER  are effectively compensated for or play a relatively 

minor role in maintaining cholesterol and triglyceride homeostasis.  

Methods
Plasmids and Adenoviral vectors 

The p.Empty, p.shER  plasmids and the Ad.Empty, Ad.ERE-Luc and Ad.shER  vectors 

have been generated as previously described [11]. 

Animals and Ad Injection 

All animal work was approved by the Animal Ethic Committee from the Leiden University 

Medical Center and TNO-Prevention and Health, Leiden, the Netherlands and the 

experimental protocols complied with the national guidelines for use of experimental animals. 

APOE*3-Leiden female mice were housed under standard conditions in conventional cages 

with free access to water and food. The study was performed in 17-19 weeks old APOE*3-

Leiden mice (n=11) that were fed a Western type diet  (Hope Farms, Woerden, The 
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Netherlands) starting 8 weeks prior to the experiment. For Ad-mediated gene transfer 

experiments, mice were transferred to filter-top cages, placed in a designated room, and

allowed to adapt for at least five days. For in vivo adenoviral transductions, 2x109 plaque 

forming units Ad.shER  or Ad.Empty in total volume of 200 μl (phosphate-buffered saline) 

were injected into the tail vein of mice. Within five days post-infusion, mice were sacrificed; 

liver pieces were removed and immediately deep-frozen in liquid nitrogen and stored at -

80°C.

Plasma parameters 

At day –6 and day 5 of Ad. injections, APOE*3-Leiden  female mice were fasted for 4 h.

Blood samples were taken via tail bleeding in paraoxon-coated capillaries, to prevent lipolysis 

[21]. Plasma was collected by centrifugation at 4°C. Plasma levels of total Chol and TG were 

determined enzymatically using commercially available kits and standards (Sigma 

Diagnostics, St. Louis, MO; Roche Molecular Biochemicals GmbH, Mannheim, Germany; 

and Wako Chemicals GmbH, Neuss, Germany). Blood glucose levels were measured by a 

Freestyle hand glucose analyzer (Disetronic, Vianen, The Netherlands). All plasma 

parameters were determined according to the manufacturers’ instructions. 

Hepatic VLDL-TG production 

At day 5 after 1.5.109 pfu Ad.Empty or Ad.shER  administration, APOE*3-Leiden  female 

mice were fasted for 4 h and then intravenously injected with 500 mg/kg Triton WR 1339

(Sigma) as described [22]. Blood samples of Ad.Empty and Ad.shER  treated mice were 

collected 1, 30, 60, 90 and 120 min after Triton injection (n=4 and n=5 respectively). Serum

TG concentrations were measured enzymatically, as described above. The hepatic VLDL-TG 

production rate was measured as the accumulation of serum TG after Triton injection and 

expressed as mg/dl/min.

Hepatic Lipid levels 

Liver and muscle samples were homogenized in H2O (~10% wet wt/vol). Lipids were 

extracted according to Blight and Dyer’s method [23]. In short, a solution was made of each 

sample of 200 g protein in 800 l H2O. 3 ml methanol/chloroform (2:1) was added and 

mixed thoroughly, after which 500 l chloroform, 100 l internal standard and 1 ml demi-

water were added. After centrifugation the chloroform layer was collected and dried. The 
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remaining pellet was dissolved in 50 l chloroform and put on a HPTLC plate. With HPTLC 

analysis, triglycerides, cholesterol and cholesterol esters were separated and the amount was 

quantified by scanning the plates with a Hewlett Packard Scanjet 4c and by integation of the 

density using Tina version 2.09 software (Raytest, Staubenhardt, Germany) 

Real time quantitative PCR analysis  

Total RNA was extracted from liver using TRIzol reagent (Life technologies). Purified RNA 

was treated with RQ1 RNase-free DNase (Promega, 1 units/ 2 μg of total RNA) and reverse 

transcribed with SuperScript II Reverse Transcriptase (Invitrogen) according to the 

manufacturer’s protocol. Quantitative gene expression analysis was performed on an ABI 

prism7700 Sequence Detection System (Applied Biosystems) using SYBR Green as described 

earlier [24]. PCR primer sets (table 2) were designed via Primer Express 1.7 software with the 

manufacturer's default settings (Applied Biosystems) and were validated for amplification 

efficiency. The absence of genomic DNA contamination in the RNA preparations was

confirmed in a separate PCR reaction on total RNA samples that were not reverse transcribed. 

HPRT was used as the standard housekeeping gene. The significance of differences in relative 

gene expression numbers Ct (Ct(HPRT)–Ct(target gene))  measured by real time quantitative PCR 

was calculated using a Mann-Whitney U test. Probability values less than 0.05 were 

considered significant. 

Gene Forward primer Reverse primer 

Western blot analysis 

Immunoblotting procedures were performed as described previously [25]. Livers of both 

Ad.Empty and Ad.shER  treated mice (n= 5) were lysed and homogenized in 200 l of RIPA 

HPRT

mER

ApoE 

IL-6 

ApoAV 

SHP

Cyp7A 

PPAR

5’-TTGCTCGAGATGTCATGAAGGA 

5’-CTAGCAGATAGGGAGCTGGTTCA 

5’-AGCAGGTCAGCAAAGAACTTATAG 

5’-GGAGATTCAAGTCCCCAAAGC

5’-AGCCAATAGTGGAAGACATGCA 5’-GCAGGACAGGAGAAGGATACTCAT 

5’-AAGAATTTCTAAAAGTCACTTTGAGATCTA 

5’-GAGCAAAGGCGTGATGGG 

5’-CACAGTGAGGAATGTCCACAAAC 

5’-TGCTCGAAGCTGCCTTTCA 

5’-CTATTCTGTATGCACTTCTGAGCCC 5’-GGCAGTGGCTGTGAGATGC 

5’-CTGTCATACCACAAAGTCTTATGTCA 5’-ATGCTTCTGTGTCCAAATGCC 

5’-CCTCAGGGTACCACTACGGAGT 5’-GCCGAATAGTTCGCCGAAA 

Table 2. Primer sequences of genes used for mRNA quantification
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buffer (1% NP40, 0.5% DOC, 0.1% SDS, 50mM Tris pH 8.0, 150mM NaCl, 2,5mM EDTA) 

containing protease inhibitor (40ul/ml, Roche). Extracts were cleared by centrifugation (4°C, 

14 000 g, 5 min), and protein content was determined using the BCA kit (Pierce). Protein 

samples were denaturated (5 min, 90 C) and separated on SDS/PAGE by use of 8% gradient 

gels and were transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, 

Germany). Blots were stained with Ponceau S before blocking to verify equal loading and 

appropriate protein transfer. Membranes were blocked for 90 min in PBS, pH 7.4, containing 

0.05% Tween 20 and 10% milk powder. Thereafter, membranes were incubated for 16 h at 

4°C with ab MC20, 1:1000 (mER  rabbit polyclonal antibody, Santa Cruz Biotechnology, 

CA). After extensive washing with blocking buffer without milk powder or BSA, membranes 

were incubated for 2 h with horseradish peroxidase-conjugated goat anti-rabbit IgG, 1:5000 

(Promega). Membranes were again extensively washed and bound peroxidase conjugates were 

visualized by enhanced chemiluminescence (ECL, Amersham) on a LumiImager workstation. 

Additionally, filters were stripped by an 30 min incubation in 100 mM -mercaptoethanol, 

2% SDS, 62.5 mM Tris–HCl pH 6.8 at 50°C, to proceed with the whole procedure as 

described above. However, now membranes were incubated for 16 h at 4°C with p-38 ab, 

1:1000 (N-20, cs-728, rabbit polyclonal antibody, Santa Cruz Biotechnology, CA). 

Immunoblots were quantified using Lumianalyst software on a LumiImager (Boehringer-

Mannheim). 

Statistical analysis 

Results are presented as mean  SD values for the number of animals indicated. Differences 

between the experimental groups were determined by Mann-Whitney U test. The level of 

statistical significance of the difference was set at P < 0.05. 
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17- -estradiol improves hepatic insulin sensitivity acutely 

Abstract
Prolonged 17- -estradiol (E2) administration affects insulin sensitivity. However, it is 

unknown whether E2 influences insulin sensitivity directly or indirectly e.g. via modulation of 

plasma free fatty acid levels and/or intra-hepatic lipid levels. Therefore, acute effects of E2

administration were studied by performing a hyperinsulinemic-euglycemic clamp in an 

insulin resistant mouse model (APOE*3-Leiden mice, which had been fed a high fat diet for 

13 weeks). Six hours after E2 administration, estrogen receptor mediated transcription was 

induced predominantly in liver, but plasma triglyceride, insulin, free fatty acid and intra-

hepatic lipid levels were unaffected. During the hyperinsulinemic clamp, the hepatic glucose 

production was significantly inhibited in the E2 treated mice as compared to control mice 

(4.5 11 versus 34 29 μmol·min–1·kg–1; P=0.013), whereas the peripheral glucose disposal 

rate was significantly lower in the E2 treated mice (29.8±8.9 versus 50.9±26.4 μmol·min–1·kg–

1; P=0.017).  The E2-induced increased sensitivity of liver was accompanied by a significant 

decrease in the expression of hepatic genes involved in gluconeogenesis. Thus, administration 

of E2 to an insulin resistant mouse model acutely improves hepatic insulin sensitivity at the 

expense of peripheral insulin sensitivity, through mechanisms independent of plasma lipid 

levels and hepatic lipid accumulation. 

Introduction
17- -estradiol (E2) is a sex hormone that plays a major role in the establishment and 

maintenance of the reproductive tract and mammary glands [1-4]. In addition, E2 is implicated 

in the regulation of a host of physiological processes including lipid and glucose metabolism 

[5-8]. E2-deficiency, such as occurs after menopause in humans, is associated with many 

features of the metabolic syndrome including central obesity, insulin resistance and 

dyslipidemia (for review see [9]). Conversely, hormone replacement therapy has been 

associated with a reduction in the incidence of diabetes, which is a major complication 

associated with the metabolic syndrome [10,11]. However, it’s obvious that menopause 

occurs as a function of aging, and aging itself is also associated with an increased incidence of 

the metabolic syndrome. Therefore, controversy remains regarding the role of E2 in the 

metabolic syndrome. 

  More direct evidence for the effects of estrogens on glucose and lipid homeostasis has 

been obtained in mouse models. Ovariectomized mice become obese and insulin resistant [5].

Similarly, estrogen receptor  (ER -/-) and aromatase knockout mice (ArKO, an estrogen-
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deficient model) develop insulin resistance and impaired glucose tolerance [12-16]. However, 

also in these estrogen (receptor) deficient mouse models the glucose and lipid phenotypes 

require weeks to months to develop, implying involvement of many additional metabolic 

pathways. Thus, it is evident that estrogens have a multitude of effects on different processes 

in different organs, which apparently interact at multiple levels to achieve metabolic 

regulation. Consequently, it remains unclear to which extent the effects of E2 on insulin 

sensitivity are the consequence of direct effects of E2 and/or of indirect effects, e.g. related to 

long term effects of E2 on triglyceride tissue distribution and ensuing tissue function.

To examine the short-term effects of E2 on insulin sensitivity, we have studied the 

acute effects of E2 in an insulin resistant mouse model. Male APOE*3-Leiden mice were 

used, which on a high-fat diet, develop many features of the metabolic syndrome, including 

obesity, hyperlipidemia, and insulin resistance [17]. Our results indicate that E2 administration 

improves hepatic insulin sensitivity within several hours of administration at the expense of 

peripheral insulin sensitivity, independent of plasma and intra-hepatic lipid levels. 

Results
Body weight and plasma parameters 

To induce features of the metabolic syndrome, two groups of male APOE*3-Leiden mice 

were put on a high fat diet for a period of 13 weeks. This resulted in obese mice with a body 

weight of 35-37 grams. In addition, the mice exhibited hypercholesterolemia (4.5-4.7 mmol/l) 

and

Basal Hyperinsulinemic

Table 1. Plasma parameters in overnight-fasted APOE*3-Leiden mice fed a high fat diet 
that received E2 or vehicle for 6 hrs 

    Vehicle     6 hrs EVehicle 6 hrs E2 2

Bodyweight (gr) 35 ± 5 37 ± 3 

TG (mmol/l) 1.2 ± 0.6 1    ± 0.6 

Chol (mmol/l) 4.5 ± 1.6 4.7 ± 2.3 

Glucose (mmol/l) 7.9 ± 2.4 9.7 ± 2.8  8.3 ± 1.6 8.9 ± 3.4  

Insulin (ng/ml) 

FFAs (mmol/l) 

GIR (μmol · min–1 · kg–1)

1.5 ± 1.1 

1.4 ± 0.4

1.7 ± 1.1 

1.2 ± 0.5

4.8 ± 2* 5.6 ± 3.6*

   0.9 ± 0.4*    0.7 ± 0.2*

 26.3 ± 14.2 ± 13.9  25.7

Plasma levels were measured during basal and clamp conditions. Body weight was 

measured just before the clamp. Values represent the mean ± SD of 8 mice per group. * p< 

0.005 compared to basal conditions
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moderate hyperinsulinemia (1.5-1.7 ng/ml) (table 1). Acute administration of E2 did not affect 

body weight, plasma triglycerides (TG), cholesterol, insulin and free fatty acids (FFA) levels 

(table 2). 

ER activity in vivo

The biodistribution and peak activation time of E2 after bolus injection depends on the type 

and site of administration and dissolvent used. To determine the tissues that are activated and 

time course of activation by E  in our hands, E2 2-activity was monitored in vivo using a 

luciferase (luc) reporter system and a highly sensitive CCD camera. Non-invasive optical 

imaging was performed at different time points after E2 injection in male transgenic reporter 

mice, in which the luc gene was driven by an estrogen response element (ERE) containing 

promoter (ERE-Luc mice), (Fig. 1). At time point t = 6 hours, in vivo luc expression peaked 

and was almost exclusively limited to liver. Therefore, the t = 6 hours after treatment point 

f Ewas taken as the moment to assess the acute effects o

sulin sensitivity after E2-treatment 

2

treate  as compared to control mice (29.8±8.9 

P=0.017; Fig 2A). Moreover, no significant insulin-m

2 administration. 

In

To determine the acute effect of E

administration on insulin sensitivity, a 

hyperinsulinemic-euglycemic clamp 

study was performed six hours after E2

administration. During hyperinsulinemic 

conditions, no significant differences

were observed in plasma glucose levels 

(table 2). FFA levels were suppressed (P 

= 0.002) to a similar extent in both 

vehicle and E2 treated mice (table 2). 

The clamp results showed a 

significantly lower insulin-mediated

Figure 1. E2 induced ER mediated transcription in 
ERE-Luc transgenic male mice. 
Optical imaging of bioluminescence emitted from E2

(50 g/kg, sc) treated ERE-Luc transgenic male mice 
in time whole-body glucose uptake in the E2

versus 50.9±26.4 μmol · min–1d mice · kg–1;

ediated suppression of hepatic glucose 

production (HGP) was observed in control mice, indicative for a state of hepatic insulin 

resistance. In contrast, in the E treated mice, HGP was significantly suppressed under 2
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hyperinsulinemic conditions, from 39.3±11.5 to 4.5±11.2 μmol · min–1 · kg–1 (P=0.0002; Fig 

2B). Thus, acute E2 treatment attenuates peripheral insulin sensitivity with regard to glucose 

disposal, but improves hepatic insulin sensitivity with regard to suppression of HGP. 

epatic lipid content after E2 treatment 

fat diet develop steatosis, which may be causally 

Figure 2. Peripheral and Hepatic insulin sensitivity E2 treated APOE*3-Leiden mice 
Hyperinsulinemic-euglycemic clamp of APOE*3-Leiden male mice six hours after vehicle or E2 (100 

e uptake (B) μg/kg, sc) treatment. (A) Basal and insulin-mediated stimulation of whole-body glucos
Basal and insulin-stimulated rates of HGP. Data are means±SD, n=8. *P<0.05, using nonparametric 
Mann-Whitney tests. 

H

Male APOE*3-Leiden mice on a high-

related to hepatic insulin resistance. Since hepatic insulin sensitivity improved acutely after E2

Figure 3. Effect acute E2 administration 
on hepatic lipid content.

yperinsulinemic 
Hepatic TG and cholesterol content was 
analyzed under h
conditions in E2 versus control treated 
APOE*3-Leiden male mice. Values 
represent the mean±SD of 8 mice. *, 
statistically significant difference of 
P<0.05 compared with vehicle treated 
mice.

treatment, hepatic TG and cholesterol content were analyzed. As depicted in Fig 3, the E2

treated mice did not exhibit a change in hepatic lipid content compared to the vehicle treated 

group (cholesterol content: 17.8±5.1 versus 21±6.8 g/mg; TG content: 106±16.8 versus
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117±30.9 g/mg, respectively) indicating that E2 improves hepatic insulin sensitivity 

independently of a change in hepatic lipid content.

Hepatic mRNA expression levels  

ity of the liver to insulin-mediated inhibition of  HGP in To examine the improved sensitiv

more detail, mRNA levels of relevant genes were analyzed by taqman analysis. Short-term 

induction of hepatic ER activity led to a 2.3- fold reduction of hepatic peroxisomal 

proliferators-activated receptor-  coactivator-1  (PGC-1 ) RNA levels (P = 0.0002) (Fig 

4A). The expression of PhosphoEnolPyruvateCarboxyKinase (PEPCK) and Glucose-6-

phosphatase (G6P) were unchanged (Fig 4A). In addition the expression of Glycogen 

Phosphorylase (GP) was 1.7-fold decreased (P=0.0016) (Fig 4A).
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Since the hepatic glucose pathway is linked to the hepatic lipogenic pathway and since it has 

iscussion
esent study demonstrates for the first time that E2 acutely improves hepatic 

insulin

ific differences with respect to insulin sensitivity 

betwee

eiden mice, fed a high fat diet for 13 weeks, are highly resistant to 

insulin-mediated suppression of HGP, as demonstrated by no reduction in HGP by insulin 

been shown that long-term modulation of E2 signaling affects expression of enzymes involved 

in fatty acid -oxidation and fatty acid synthesis, genes involved in these pathways were also 

analyzed. The expression of PPAR , Acyl-CoA oxidase (ACO, catalyzing the initial step of 

peroxisomal -oxidation) and thiolase (catalyzing the final step of -oxidation) were not 

significantly affected by acute E2 administration (Fig 4B). On the other hand, acetyl CoA 

carboxylase  (ACC ) and fatty acid synthase (FAS), both key enzymes involved in de novo

synthesis of fatty acids were significantly repressed (6.3- and 2.8-fold, respectively), while the 

sterol regulatory element-binding protein-1c (SREBP-1c), a transcription factor able to 

activate lipogenic genes like FAS and ACC  was unchanged (Fig 4C).  

D
The pr

 resistance with regard to HGP, whereas it attenuates peripheral insulin sensitivity with 

regard to glucose disposal in an insulin resistant mouse model. The improvement in hepatic 

insulin resistance was associated with decreased hepatic expression of the transcription factor 

PGC-1  and the glycogenolysis enzyme GP. Simultaneously, plasma FFA levels and hepatic 

lipid content were not affected. Thus E2 has acute effects on hepatic insulin sensitivity, 

independent of hepatic lipid accumulation. 

Our results show that there are spec

. In rat and mice models, long-term En acute and long-term administration of E2 2

modulation results in an improvement of both hepatic and peripheral insulin sensitivity with 

respect to glucose output and disposal [16,18,19]. In contrast, short-term E2 administration 

improves hepatic insulin sensitivity but attenuates peripheral insulin sensitivity. Since long-

term E2 administration does affect TG distribution and body weight, it is possible that the 

long-term effects of E2 on peripheral insulin sensitivity are a long term consequence of these 

physiological changes. Specifically, the preventive effect of estrogen on steatosis would 

positively affect hepatic insulin sensitivity, since steatosis and hepatic insulin resistance are 

highly correlated. However, since E2 will affect many organs and also affects neuro-endocrine 

signaling, it is likely that the net effect of long-term E2 administration is the result of multiple 

complex interactions.  

 The APOE*3-L
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(Fig 2B). In comparison, chow-fed age-matched APOE*3-Leiden mice show 40-50% 

suppression of HGP by insulin. The single dose of E2 acutely increased the insulin-mediated 

suppression of HGP in the fat-fed APOE*3-Leiden mice at least to the level of chow-fed 

APOE*3-Leiden mice. Thus a single dose of E2 has a highly potentiating effect on insulin 

sensitivity of HGP. 

Peripheral glucose disposal is approximately 150% increased by insulin in chow-fed 

age-matched APOE*3-Leiden mice. In high fat-fed APOE*3-Leiden mice it is only increased 

by 50%

is and glycogenolysis. In contrast, under insulin resistant 

conditi

ulation of E2 signaling is known to affect intrahepatic 

lipid le

. Thus peripheral glucose disposal is also insulin resistant. This situation is further 

deteriorated by administration of E2. At the moment, we have no explanation for this 

phenomenon. Since acute E2 treatment did not reveal ER activity in muscle and adipose tissue 

in living ERE-Luc reporter mice, is seems likely that non-transcriptional E2-mediated 

processes play a role. However, it is also possible that the bioluminescence method is not 

sensitive enough to detect limited, but potentially physiologically relevant ER activation in 

skeletal muscle and adipose tissue. 

Under physiological insulin sensitive conditions, insulin reduces HGP through 

inhibition of hepatic gluconeogenes

ons, insulin is unable to suppress HGP and this has been associated with a failure in the 

down regulation of hepatic genes involved in glucose output [20]. In the present study, acute 

administration of E2 in insulin resistant mice did not change expression levels of G6P and 

PEPCK (Fig 4A), which both play important roles in gluconeogenesis. However, the 

transcriptional coactivator protein PGC-1 , identified as an important inducer of 

gluconeogenesis [21], was significantly reduced upon acute administration of E2 (Fig 4A). 

This apparent discrepancy indicates that under these conditions, down regulation of PGC-1

is not a dominant effect in the down regulation of G6P and PEPCK gene expression. More in 

line with the observed effect of E2, expression of GP, an enzyme involved in glycogenolysis 

was significantly decreased. Whether this effect is directly related to down regulation of PGC-

1  remains to be determined. Our data demonstrate that acute E2 treatment regulates hepatic 

glucogenic genes, which could at least partly explain the observed E2 mediated improvement 

of insulin-mediated inhibition of HGP.  

Acute E2 administration did not affect intrahepatic TG levels in high fat-fed APOE*3-

Leiden mice. In contrast, long term mod

vels. For example, constitutive E2 deficiency, such as occurs in male aromatase 

knockout mice results in severe hepatic steatosis [13]. This phenotype has been associated 
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with decreased expression of genes involved in fatty acid -oxidation [22,23] such as ACO 

and Thiolase, but also with increased expression of genes involved in de novo synthesis of 

fatty acids, including FAS and ACC  [13].

 We found that acute E2 treatment in insulin resistant APOE*3-Leiden did not change 

mRNA levels of genes involved in hepatic -oxidation (Fig 4B). However, the fatty acid 

synthes

h respect to HGP in obese, hyperlipidemic and insulin resistant mice fed a high-

fat diet

nimals

ork was approved by the Animal Ethic Committee from the Leiden University 

enter and TNO-Prevention and Health, Leiden, the Netherlands and the 

he experiment was carried out in male transgenic reporter mice, in which the luciferase gene 

e element containing promoter (ERE-Luc mice) [24]. At

is genes, FAS and ACC  were clearly suppressed (Fig 4C). Nevertheless, E2 mediated 

suppression of FAS and ACC  did not result in decreased intrahepatic TG levels. It is 

possible that the six hour time window in the current study may not be sufficient to detect 

differences in intrahepatic TG flux. Alternatively, the effects of reduced FAS and ACC  gene 

expression are overruled by other compensatory transcriptional and/or post-transcriptional 

mechanisms. 

In conclusion, administration of E  results in an acute improvement of hepatic2 insulin 

sensitivity wit

. This effect is independent of body weight, plasma lipid levels and/or intrahepatic TG 

content. Concomitantly, the administration of E2 acutely impairs peripheral insulin sensitivity, 

through mechanisms not understood. These data demonstrate that acute and long-term 

administration of E2 differentially affects tissue-specific insulin sensitivity.  

Methods
A

All animal w

Medical C

experimental protocols complied with the national guidelines for use of experimental animals. 

32 Wks old APOE*3-Leiden male mice (n=16) generated in the animal facility of TNO-

Prevention and Health, were housed under standard conditions in conventional cages with free 

access to water and food. At the age of 19 wks, they were fed a high fat diet containing 45.4% 

fat (Hope Farms, Woerden, The Netherlands) for 13 wks. 

Bioluminescent reporter imaging. 

T

was driven by an estrogen respons

time point 1, 3, 6 and 24 hours after s.c injection of 100 g/kg 17 -estradiol (dissolved in 

sesam oil, Sigma) in the neck, bioluminescent signals (BLS) were measured by Xenogen 
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IVIS imaging system (IVIS 100). The living mice were intraperitoneally injected with the 

luciferase substrate, luciferin, at a dose of 150 mg/kg body weight approximately 5 minutes 

before imaging. The mice were anaesthetized with isoflurane/oxygen and placed on the 

imaging stage. Total photon emission of each animal was acquired for 1 minute. Captured 

images were quantified by using the Living Image software (Xenogen Corp, Almeda, CA) 

and the IGOR software (WaveMetrics Corp, Lake Oswego, OR). BLS from the region of 

interest (ROI) was expressed using the pseudo colour scale (Red most intense and Blue least 

intense luminescence) and the data were presented as the cumulative photon counts collected 

within each ROI.  

Plasmaparameters

lood samples were taken via tail bleeding in paraoxon-coated capillaries, to prevent lipolysis 

llected by centrifugation at 4°C. Plasma levels of total Chol, TG and FFAs 

emic euglycemic clamp  

ale APOE*3-Leiden mice fed a high fat diet, fasted overnight (food withdrawn at 05.00 

, 100 g/kg) (Sigma, E8875) (n=8) or vehicle (sesame 

B

[25]. Plasma was co

were determined enzymatically using commercially available kits and standards (Sigma 

Diagnostics, St. Louis, MO; Roche Molecular Biochemicals GmbH, Mannheim, Germany; 

and Wako Chemicals GmbH, Neuss, Germany). Plasma insulin was measured by ELISA 

(Mercodia Ultrasensitive mouse insulin ELISA, Mercodia, Sweden). Levels of plasma 

glucose were determined were determined using a commercially available kit (Sigma; 

Boehringer Mannheim, Mannheim, Germany). During the clamp experiment, whole-blood 

glucose was measured by a Freestyle hand glucose analyzer (Disetronic, Vianen, The 

Netherlands). All plasma parameters were determined according to the manufacturers’

instructions.

Hyperinsulim

M

hour p.m.) were given 17 -estradiol (s.c

oil, Sigma) (n=9) at 06.00 hour a.m. Six hours after treatment insulin-mediated suppression of 

endogenous (hepatic) glucose production was studied by performing a hyperinsulinemic-

euglycemic clamp analysis using 3H-D-Glucose as tracer. The clamp analysis and calculations 

were performed as described previously [26]. After the last blood sample, mice were 

sacrificed, livers were taken out and immediately frozen using liquid nitrogen and stored at -

80°C until further analysis. 
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Calculations
3H-glucose radioactivity was determined in10-μl plasma and in supernatants 

epatic lipid analysis 

mogenized in PBS. Protein content was measured by BCA protein 

Real time quantitative PCR analysis  

Total RNA was extracted from liver using TRIzol reagent (Life technologies). Purified RNA 

was treated with RQ1 RNase-free DNase (Promega, 1 units/ 2 μg of total RNA) and reverse 

Gene Forward primer Reverse primer 

Total plasma 

after trichloric acid (20%) precipitation and water evaporation to eliminate [3H]-H2O. The 

rates of glucose oxidation were determined as previously described [27]. Under steady state

conditions for plasma glucose concentrations, the rate of glucose disappearance equals the rate 

of glucose appearance (Ra; i.e. endogenous glucose production plus exogenous D-glucose

infusion). Ra glucose was calculated as the ratio of the rate 3of infusion of [3- H] glucose 

(dpm) and the steady-state plasma 3[ H] glucose specific activity (dpm/μmol glucose). The

hepatic glucose production was calculated as the difference between the rate of glucose 

disappearance and the infusion rate of exogenous D-glucose.

H

Liver samples were ho

assay kit (Pierce) at 562 nm. Hepatic lipids were extracted according to Bligh and Dyer [28].

After dissolving the lipids in 2% Triton X-100, the contents of Chol and TG in liver tissues 

were determined as described above.

HPRT

FAS

ACC1 

SREBP1c

mER

PEPCK

G6P 

GP

PGC1

PPAR

ACO

Thiolase 

5’-TTGCTCGAGATGTCATGAAGGA 

5’-GGCATCATTGGGCACTCC 

5’-GCCATTGGTATTGGGGCT 

5’-GGAGCCATGGATTGCACA 

5’-CTAGCAGATAGGGAGCTGGTTCA 

5’-CCATGAGATCTGAGGCCACA

5’-CAGGTCGTGGCTGGAGTCTT 

5’-GCGGTGACCGGTGTAGCAA 

5’-TTTTTGGTGAAATTGAGGAATGC 

5’-CCTCAGGGTACCACTACGGAGT 

5’-GCCACGGAACTCATCTTCGA-3’ 

5’-GGCAGGTTGTCACGCTACTCA-3’ 

5’-AGCAGGTCAGCAAAGAACTTATAG 

5’-GCTGCAAGCACAGCCTCT 

5’-CCCGACCAAGGACTTTGTT 

5’-CCTGTCTCACCCCCAGCA 

5’-GGAGATTCAAGTCCCCAAAGC 

5’-GTATTTGCCGAAGTTGTAGCCG 

5’-GACAATACTTCCGGAGGCTGG 

5’-CTTGTCTGGTTCTAGCTCGCTG 

5’-CGGTAGGTGATGAAACCATAGCT 

5’-GCCGAATAGTTCGCCGAAA 

5’-CCAGGCCACCACTTATGGA-3’ 

5’-ATGGATACCACGCCGTAAGC-3’ 

Table 2. Primer sequences of genes used for mRNA quantification
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transcribed with SuperScript II Reverse Transcriptase (Invitrogen) according to the 

fact l. Quantitative gene ex lysis was performed on ABI 

rism7700 Sequence Detection System (Applied Biosystems) using SYBR Green as described 

 [2 esig it  the 

fact ed Biosy or amplific  

e RN transcribed. 

P estroge e stan ard 

ekee lative g ulated  Ct

PRT)– rified b usekee ing 

cyc

a

Results are presented as mean  SD values for the number of animals indicated. Differences 

re determined by Mann-Whitney U test. Probability 

steroid receptors and their role in ovarian function. Mol Cell Endocrinol
2002, 191: 27-33. 

ust A, Gansmuller A, Dierich A, Chambon P, Mark M: Effect of single and 
nockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on 

17: 169-176. 

manu urer’s protoco pression ana

p

earlier 9]. PCR primer sets (table 2) were d ned via Primer Express 1.7 software w h

manu urer's default settings (Appli stems) and were validated f ation

efficiency. The absence of genomic DNA contamination in the RNA preparations was

d in a separate PCR reaction on total confirm A samples that were not reverse 

Since H RT did not respond to the n treatment, it was used as th d

ping gene. The differences in rehous ene expression numbers was calc by

(Ct(H Ct(target gene)). The date was ve y use of another independent ho p

gene, lophilline.

Statistic l analysis 

between the experimental groups we

values less than 0.05 were considered significant. 
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Targeting Ad to vascular cells 

Abstract
Vascular smooth muscle (VSMC) and endothelial cells (EC) are particularly resistant 

 infection by type 5 adenovirus (Ad) vectors. To overcome this limitation and target Ad 

ectors to ubiquitously expressed V 3/5 integrins, we have generated a linker protein 

f the extra cellular domain of the coxsacky adenovirus receptor (CAR) connected 

in to a biotinylated cyclic (c) RGD peptide. After optimization CAR to cRGD and to 

d coupling, infection of mouse heart endothelial cells (H5V) could be augmented 

gnificantly, as demonstrated by 600-fold increased transgene expression levels. In EOMAs, 

 hemangioendothelioma-derived cell line, the fraction of infected cells was enhanced 4-6 

ld. Furthermore, the fraction of infected primary mouse VSMC was increased from virtually 

 to 25%. Finally, in human umbilical vein endothelial cells (HUVECs), the number of GFP 

e cells was enhanced from 2% to 75%. In conclusion, CAR-cRGD is a versatile and 

rget Ad vectors to both transformed and primary VSMC and 

C.

ntroduction
Recombinant type 5 adenovirus (Ad) vectors are extensively used to modulate gene 

xpression in a wide variety of cells and organs, both in vitro and in vivo. Part of this 

opularity can be ascribed to their relatively straightforward generation and amplification to 

1]. Ad entry and infection of cells requires at least two distinct interactions. First, 

ent of the virus particle occurs via interaction of its fiber knob with the coxsacky 

denovirus receptor (CAR) present on the cell surface [2-5]. Second, the Arg-Gly-Asp (RGD) 

otifs present in the viral penton base will bind to V 3 and V 5 integrins on the target cell 

rface and trigger internalization via receptor-mediated endocytosis [6-8]. In addition, recent 

ata have shown the involvement of heparan sulfate glycosaminoglycans (HSGs) in 

denoviral entry in vivo [9] 

Recombinant Ad vectors encoding numerous wild type and mutant genes, as well as 

short hairpin RNA molecules have been generated. However, the application of Ad vectors in 

AR negative cell lines, such as vascular smooth muscle cells (VSMC) and endothelial cells 

C) [10-12], is hampered by low infection efficiencies at low multiplicity of infection (MOI) 

nd Ad associated cytotoxicity at high MOI.

To expand the applicability of Ad-mediated gene transfer, various strategies to modify 

d tropism have been undertaken. In the genetic modification approach, peptide ligands have 

to
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been incorporated into the HI-loop of the Ad fiber knob [13-16], added to the C-terminus of 

oping a bi-functional linker protein that exploited the avidin-biotin concept (Gras, 

ersonal communication). This linker protein consists of the extra cellular domain of the CAR 

avidin, which functions as a universal docking site for biotinylated ligands. It 

was dem

on of the adenovirus targeting construct 

olar ratio of CAR-Avidin to bio-RGD ranging 

from 1

the fiber knob [17] or inserted into the hexon protein [18]. However, it is not possible to 

predict which peptide or protein ligands will be tolerated and do not disturb fiber trimerization 

and/or capsid function. In addition, for each specific targeting application, rederivatization of 

the original recombinant Ad vectors is obligatory. Alternatively, bifunctional targeting 

proteins have been generated consisting of an Ad-binding domain coupled to a peptide or 

protein that confers a novel specificity [19]. This strategy enables the utilization of existing 

recombinant Ad vectors, but the generation of the bifunctional targeting protein may require 

chemical linkage and subsequent purification steps. In addition, Parrot and co-workers have 

introduced a novel approach to target viral vectors. They launched the concept of 

metabolically biotinylated vectors [20,21] and demonstrated the utility of the avidin-biotin 

based system for vector targeting.

Recently we have combined the advantages of the latter two targeting strategies, by 

devel

p

fused to chicken 

onstrated that a biotinylated dA6G10 oligonucleotide coupled to the CAR-Avidin 

linker confers macrophage specificity (Gras, personal communication). In this study, the 

CAR-Avidin linker protein is coupled to a biotinylated cyclic RGD peptide (bio-cRGD) to 

increase infection efficiency of EC and VSMC. This cRGD peptide has a high affinity for 

 and V 3 V 5 integrins [22], which are expressed ubiquitously on transformed cell lines and 

most primary cells. It is demonstrated that linking of Ad to the CAR-cRGD targeting 

construct resulted in a highly significant improvement of infection efficiencies of transformed 

and primary VSMC and EC at all MOI used.  

Results
Generation and optimizati

To target Ad to V 3/5 integrins, the bi-functional linker protein CAR-Avidin was 

equipped with the targeting peptide bio-cRGD to yield CAR-cRGD. The optimal ratio of 

CAR-Avidin to bio-cRGD, resulting in a complete occupation of all available biotin binding 

sites was determined by a 3H-biotin binding assay. Figure 1A shows the amount of 3H-biotin

that is still able to bind to CAR-Avidin at a m

:0.001 to 1:3. At a molar ratio of more than 1:0.3, no residual 3H-biotin binding 

capacity could be detected, indicating that at this ratio all biotin-binding sites of CAR-Avidin 
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were occupied. In all following experiments, a slight excess of CAR-Avidin to bio-cRGD was 

used (ratio 1:1) to generate the CAR-cRGD targeting construct. 

To determine the optimal ratio of Ad to CAR-cRGD targeting construct, a fixed 

amount of Ad.LacZ was incubated with various concentrations of CAR-cRGD and added to 

V 3/5-positive mouse heart endothelial cells (H5V) [23]. Two days after infection, the cells 

were fixed and stained for -galactosidase activity. The number of lacZ positive cells was 

enhanced in a CAR-cRGD concentration dependent manner (Fig. 1B) ranging from 1-270 

positive cells per microscope field. The increase in infection efficiency leveled off at a 

concentration of 1.2 M CAR-cRGD. Therefore in the subsequent experiments, a 

concentration of 1.2 M CAR-cRGD was used. 

Figure 1. Optimization of Ad : CAR-Avidin / cRGD ratio 
(A) CAR-Avidin (30 nM) preincubated with different molar ratios of biotin-cRGD was incubated with an
of

 excess 
ivity was counted. (B) Ad.LacZ was preincubated with either 

ing construct, CAR-cRGD (cRGD-Ad) and subsequently added 
at a titer of MOI 1000 to mouse endothelial cells for 1 hr. Forty hrs post infection, cells were fixed and stained 

-galactosidase activity for 4 hrs. Multiple microscope fields were counted for positive cells. Values 
esent mean ± SD of three samples.                                                                               

3H-biotin. CAR-biotin (-3H or -cRGD) radioact
BSA (Ad) or with different amounts of the target

for 
repr

cRGD mediated adenoviral gene transfer in CAR deficient and v 3/5 positive cells 

 The ability of the CAR-cRGD targeting construct to achieve CAR-independent gene 

transfer was determined in the CAR-negative, but V 3/5 positive cell line CHO [24]. Near 

confluent CHO cells were infected with untargeted Ad versus targeted Ad-vectors expressing 

luciferase (cRGD-Ad.Luc) (MOI 100-2500). 40 hrs after infection, cell lysates were evaluated 
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for luciferase expression (Fig 2A). As expected, Ad.Luc was incapable of infecting CHO cells 

even at an MOI of up to 500. In contrast, already at MOI 100, the cRGD-Ad.Luc vector 

resulted in a 3 to 4 log-fold enhancement of luciferase expression, demonstrating that the 

cRGD- equipped Ad.Luc achieves gene transfer through a CAR-independent cell entry 

pathway.

ranging from 100 to 2500. After 24 hrs, the cells were monitored for GFP expression by 

Figure 2. Analysis of V 3-/ V 5-integrin and CAR dependent gene transfer of cRGD equipped 
Ad
(A) CAR-negative CHO cells were exposed for 1 hr to Ad.luc, preincubated with BSA (Ad) or 1200 
nM CAR-cRGD (1:1M) (cRGD-Ad) at different MOI. Forty hrs after infection luciferase expression 
was measured and corrected for protein levels. Values represent mean ± SD of three samples. (B) 
Ramos and (C) K-562 cells were infected with an increasing titer of unmodified Ad (Ad.GFP) or cRGD 
equipped Ad-vector (cRGD-Ad.GFP). CAR-Avidin was prebound to cyclic RGD at a 1:1 molar ratio 
and 1200 nM of the complex was incubated with Ad. 24 hrs after infection FACs analysis was 
performed.  Values represent the mean ± SD of three samples  

The specificity of targeting Ad to V 3/5 integrins was investigated by comparing gene 

transfer of Ad versus cRGD-equipped Ad in human leukemia cell lines, Ramos and K-562. In 

both cell lines moderate levels of CAR are present, however only K-562 cells express V 3

and V  integrins [25]. Ad.GFP plus or minus cRGD was applied to both cell lines at an MOI 5
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FACS analysis (Fig 2B and 2C). In both the V 3/5 integrin negative as well as positive cell 

line, gene transfer mediated by unmodified Ad.GFP was low but dose-dependently increased. 

In Ramos cells, which do not express V 3/5 integrins, cRGD-mediated gene transfer did not 

increase infection efficiency at MOI 500, as compared to unmodified Ad. Moreover, at MOI 

2500 cRGD-mediated gene transfer remained low, resulting in a significantly lower 

ercentage of GFP positive cells as compared to unmodified Ad.GFP. In contrast, in the 

V 3/5 integrin positive K-562 cell line, cRGD-mediated gene transfer resulted in an 

approximately 10-fold increase in the number of GFP positive cells as compared to those 

infected with untargeted Ad.GFP at all MOIs used. Thus, cRGD-Ad markedly enhanced gene 

transfer only in the V 3/5 integrin positive K-562 cell line, suggesting that the V 3/5 integrins 

are involved in the uptake of cRGD equipped Ad vectors.  

p

Quant

he optimized targeting conditions were used to determine the efficiency of Ad-

mediated gene delivery to m

Figure 3. Ad mediated gene transfer of cRGD 
equipped vectors to mouse EC 
(A) Ad.Luc was pre-incubated with either BSA 
(Ad.Luc) or 1200 nM of CAR-cRGD (1:1) (cRGD-
Ad.Luc) and the complex was exposed to H5V cells at 
different MOI. Luciferase expression was measured 
40 hrs post infection. Results were normalized for 
prot
to d ent titers of Ad.GFP or cRGD equipped 
Ad.G
mol
was
SD

ein concentration. (B) EOMA cells were exposed 
iffer
FP. cRGD was bound to CAR-Avidin at a 1:1 

ar ratio and 1200 nM of the CAR-cRGD conjugate 
 incubated with Ad.GFP. Values represent mean ± 
of three samples   

ification of targeting efficiency in transformed vascular cell lines 

T

urine vascular cell lines. Mouse heart endothelial (H5V) cells 

[26] were incubated with increasing concentrations of Ad.Luc or cRGD-Ad.Luc. Luciferase 

expression levels showed a titer-dependent increase. As compared to gene delivery with 

untargeted Ad.Luc, cRGD-Ad.Luc showed a 59-fold increased luciferase expression at MOI 
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250 and a 650-fold increased luciferase expression at MOI 2500 (Fig. 3A). To verify these 

results, the experiment was reproduced in a second mouse cell line, the hemangioma-derived  

Figure 4. Ad mediated gene transfer of cRGD equipped vectors to primary cells 
(A) Mouse vascular smooth muscle cells and (B) HUVECs were exposed for 1 hr to different MOI of 
Ad.GFP or to cRGD-Ad.GFP. CAR-Avidin was bound to cyclic RGD at a 1:1 molar ratio and 1200 nM 
of this complex was incubated with Ad.GFP. Forty hrs after infection FACs analysis was performed.  
Values represent mean ± SD of three samples

antification of targeting efficiency in primar

Next, cRGD-mediated Ad targeting to prim

use VSMC isolated from aorta and HUVECs we

ipped with the CAR-cRGD construct. Two 

formed to determine GFP expression levels. Pr

Qu y Mouse VSMs and Human EC 

ary vascular cells was examined. Primary 

mo re infected with either Ad.GFP or Ad.GFP

qu days after infection, FACS analysis was 

er imary VSMC were highly resistant to  

fection, as only 0.02% of the cells were infected with untargeted Ad.GFP (MOI 500) and 

sfer resulted in a 

titer-de

e

p

in

13% at high MOI (2500). In contrast, cRGD-Ad.GFP mediated gene tran

pendent increase in GFP positive cells up to 46.5% at MOI 2500 (Fig 4A). At MOI 

500, this amounted to a 25-fold increased infection efficiency of primary VSMC using cRGD  

equipped Ad-vectors. Improvement of gene transfer was also tested in HUVECs. Gene 

transfer using untargeted Ad.GFP resulted in a very low percentage of GFP positive cells 
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(2%), while cRGD targeting of Ad led to a 36-fold increase (MOI 100) of infected HUVECs 

(Fig 4B).

Discussion
 In the present study, we show that coupling of recombinant Ad vectors to a CAR-

cRGD linker protein results in a significantly improved infection efficiency of both 

transformed and primary VSMC and EC. Conjugation of CAR-cRGD to Ad reporter vectors 

markedly enhanced gene transfer to the established endothelial cell lines H5V and EOMA (up 

to 59-fold), as well as to primary HUVEC (36-fold) and VSMC (25-fold). This was associated 

with a considerable increase in the percentage of infected cells. Thus, the CAR-cRGD 

targeting construct expands the utility of Ad vectors to CAR-negative cell types that do 

express V 3- and V 5 integrins.

 The biotin-avidin based coupling of a ligand to the CAR adaptor molecule is 

straightforward and highly efficient due to the femtomolar affinity of biotin for avidin 

[27,28]. As compared to chemical modifications, this obviates the use of complex reaction 

mixtures and purification steps and enables simple quantification of CAR adaptor 

concentrations and optimal CAR-Avidin / biotin-cRGD ratios by a 3H-biotin binding assay. 

More e

ligan

a bio al communication). 

 pplication of cRGD-Ad vectors expressing GFP increased the number of infected 

compar

over, the CAR-Avidin adaptor may be coupled to a wide variety of biotinylatabl

ds and has recently been successfully applied to target Ad vectors to macrophages using

tinylated oligonucleotide (Gras, person

A

vascular cells rather than that it boosted gene expression in a limited cell population, as 

ed with untargeted Ad (Figs 3B, 4A and 4B). Thus, CAR-cRGD mediated targeting of 

recombinant Ad vectors allows the use of considerably reduced MOIs to obtain near-

quantitative gene transfer, thereby decreasing the vector related toxicity. This is particularly 

important for those cells that are sensitive to Ad-mediated toxicity. For example, only 2% of

HUVECs were infected with unmodified Ad.GFP at MOI 100, whereas the same titer of 

cRGD equipped Ad.GFP resulted in 75% infected cells (Fig. 4B). To obtain a similar level of 

infection with unmodified Ad.GFP, MOI’s >1000 would be required, which coincides with 

cytotoxicity (data not shown). In addition to a lower virus dose, the near quantitative infection 

of HUVECs enables the application of Ad vectors encoding inserts that require quantitative 

infection, such as short hairpin (sh)RNA constructs to knockdown gene function.
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- and V 3 V 5 integrins are known to be up-regulated on proliferating EC and 

subsequently have been exploited as targets to develop anticancer drugs. For this purpose, 

near- and cyclic RGD peptides have been developed and used as a targeting moiety to 

ver drugs to angiogenic blood vessels [29,30]. Pfaff et al. have shown that a 

ost completely resistant to infection by cRGD targeted Ad 

tant targets for gene therapy, 

target Ad-vectors with high efficiency to transformed endothelial cell lines as well as to 

primary endothelial and smooth muscle cells. It is conceivable that additional Ad resistant and 

li

selectively deli

cyclic RGD peptide displayed a higher affinity for - and V 3 V 5 integrins than the linear 

RGD peptide [22]. We have confirmed this observation, showing a 4-fold increased -

galactosidase activity utilizing cRGD-Ad vectors compared to linear RGD equipped Ad 

vectors (data not shown). The mechanism of cRGD-Ad mediated gene transfer was further 

characterized by infection of cell lines that differ in their expression levels of V 3/5 integrins 

and CAR. CHO and K-562 cells, which express V 3/5 integrins but not CAR, were 

efficiently transduced by cRGD-Ad vectors. On the other hand, Ramos cells, which do not 

express V 3/5 integrins, were alm

vectors. These results demonstrated that the entry route of our CAR-cRGD targeted Ad 

vectors is CAR independent and most likely mediated via V 3/5 integrins. Conversely, in all 

these three cell lines very low infection efficiencies were obtained for untargeted Ad vectors. 

At the high MOI of 2.500, only the integrin expressing cell lines, CHO and K-562 were 

infectable. Apparently, at this very high MOI, the local concentration of Ad particles was high 

enough to bind via their RGD motifs present in the viral penton base to the V 3/5 integrins 

and trigger internalization.  

  In several cell types and tissues which represent impor

like the vascular system, the expression level of the endogenous adenovirus receptor CAR is 

low [31-33]. On the other hand, v 3/5 integrins are abundantly expressed on activated and 

proliferating EC and VSMC, which are present during angiogenesis, neovascularization, and 

inflammation [34-36]. In vitro the majority of proliferating cells express v 3/5 integrins. 

Therefore, the bifunctional linker protein carrying specificity for Ad vectors on the one hand 

and for V 3/5 integrins on the other hand greatly expands the applicability of conventional 

Ad vectors. In addition to providing Ad vectors with a novel tropism, the CAR.cRGD 

construct likely prevents binding of the Ad vectors to CAR (data not shown) and thus ablates 

the intrinsic specificity. This may be useful in vivo, in applications where CAR mediated 

uptake is undesired. 

  In summary, we have demonstrated the feasibility of the CAR.cRGD construct to 
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V 3/5

d Ad-vectors expressing beta-galactosidase gene (Ad.LacZ) and 

firefly

 of the stocks varied from 1 x 10  to 1 x 10  pfu/ml.  

integrin expressing cell lines and tissues may become amenable to Ad infection via this 

strategy.

Methods
Cell Culture

Chinese Hamster Ovary (CHO) cells, H5V (mouse endothelial cell line derived from heart) 

and EOMA (mouse hemangioma-derived micro vascular cell line) were maintained in 

Dulbecco's modified Eagle's medium (DMEM) (Gibco BRL). Ramos cells (Burkitt lymphoma 

cells) and K-562 cells (chronic myelogenous leukemia cells from blast crisis) were cultured in 

RPMI 1640 medium. All media were supplemented with 10% fetal calf serum, 100 units/ml 

Penicillin, 100 g/ml Streptomycin and glutamax (Invitrogen). Human umbilical vein 

endothelial cells (HUVECs) were a generous gift from E Pieterman (TNO Prevention and 

Health, Leiden The Netherlands) and were isolated as previously described [37,38] and grown 

in Medium 199 with 10% human serum. Mouse VSMC were isolated from aorta from male 

C57Bl6 mice as previously described [39] and cultured in DMEM with 10% newborn calf 

serum (NCS). All cells were maintained at 37 °C in a humidified atmosphere of 5% CO2.

Production of recombinant Ad vectors

Recombinant E1, E3-delete

luciferase (Ad.Luc) under the control of the cytomegalovirus promoter (CMV) were 

kindly provided by respectively Dr. Willnow (Houston, USA) and Dr. Hoeben (LUMC, 

Leiden, The Netherlands). Recombinant adenovirus vector carrying the green fluorescent 

protein under control of CMV (Ad.GFP) was constructed using the Ad-Easy-1 system as 

previously described by [40].  Additionally, the virusses were propagated in PERC6 cells as 

described [41]. The purification process involved two rounds of CsCl ultra centrifugation and 

dialysis against dialysis buffer (25 mmol/l Tris, 137 mmol/l NaCl, 5 mmol/l KCl, 0.73 mmol/l 

NaH2PO4, 0.9 mmol/l CaCl2, and 0.5 mmol/l MgCl ,2 pH 7.45) followed by dialysis against the 

same buffer supplemented with sucrose (50 g/l). Plaque titration was performed on 911 cells 

according to standard techniques [42]. Aliquots of 50 μl virus were stored at -80°C. 

Generally, virus titers 10 11
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Generation CAR-Avidin linker protein 

The CAR-Avidin linker protein was generated by joining a series of PCR-generated 

agments. In short, the extracellular domain of the Coxsackie Adenovirus Receptor (CAR) 

d by PCR using the plasmid pCAR (kind gift of Prof. R. Hoeben, LUMC, Leiden) 

ligo's: 5'-GCG GCC GCG GGT ACC CAC GGC ACG GCA G-3' and 5'-CTA 

m), 

e supernatant, containing the linker proteins, was harvested. Linker proteins were purified 

metal affinity chromatography using Talon metal 

er protein elution 

action or an avidin calibration range of 0.3 - 10 pM avidin was incubated with 0.2 μl 3H-

Biotin (Du Pont NEN Research Products, Boston, MA, USA) for 1 hour. The total reaction 

mixture was applied on a Sephadex G-50 column to separate CAR-Avidin bound biotin from 

the free biotin. The elution fractions were counted for 3H-Biotin radioactivity using 5 ml of 

fr

was obtaine

as template (o

GCT AGC AGC TTT ATT TGA AGG AGG GAC-3'). The avidin fragment was obtained by 

RT-PCR on total RNA from chicken fibroblasts with random hexamer oligonucleotides and 

subsequent PCR using primers 5'-CGC GGA TCC GCC AGA AAG TGC TCG CTG -3' and 

5'- CCA TCG ATG GTC ACT CCT TCT GTG TGC G -3'. The CAR fragment was cloned 

into the pSG8 vector (generous gift of prof. Henk Stunnenberg, Nijmegen, the Netherlands), 

in front of the VSV and His6 tag. Avidin was cloned in frame into pSG8CAR behind the VSV 

and His6 tag. All constructs were sequence verified.

Production and purification CAR-Avidin linker protein

For production Cos-1 cells were transfected with pSG8CAR-Avidin using Fugene6 (Roche, 

Basel, Switzerland). Forty hours after transfection (serum-free, biotin-free culture mediu

th

from the supernatant by immobilized 

affinity resin (Clontech, Palo Alto, USA). Equilibrated culture supernatant (300 mM NaCl, 

pH = 7.0 and 20% glycerol) was incubated with Talon, 20 minutes at room temperature. After 

extensive rinsing (50 mM NaPO4, 300 mM NaCl, 20% glycerol, pH = 7.0), resin was pre-

eluted ( 4 volumes; 50 mM NaPO4, 300 mM NaCl, 2,5 mM imidazole, 20% glycerol) prior to 

its elution (10 volumes; 50 mM NaPO4, 300 mM NaCl, 150 mM imidazole, 20% glycerol). 

Presence of linker protein in the purified samples was detected by SDS-PAGE and western 

blotting analysis using Hybond ECL nitro cellulose membranes (Amersham Biosciences, 

Buckinghamshire, UK) and antibodies P5D4 ( -VSV) or -Avidin (Abcam, Cambridge, UK). 

Elution fractions 3 to 5 contained the linker protein and were dialyzed against PBS.

Quantification of CAR-Avidin linker protein 

The linker protein was quantified by a biotin binding assay. 10 μl of the link

fr
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Hionic fluor scintillation cocktail (Packard Instrument Co., Perkin Elmer, Boston, MA, USA) 

 on a Sephadex G-50 column. 3H-Biotin 

dioactivity in the elution fractions was measured after addition of 5 ml Hionic Fluor 

rd 1500 tricarb liquid scintillation 

pension)

ells were washed by centrifugation for 5 min at 1000 rpm in between the incubation steps.  

l reporter lysis buffer (Promega). Luc activity 

in a Packard 1500 TriCarb liquid scintillation analyzer. The summed radioactivity in peak 

fractions 3 to 5 correlated with the amount of avidin present in the sample (R2= 0.997). 

Elution fraction 3, which had the highest concentrations, was used for experiments and stored 

at –80°C. A yield in the order of 900-1000 μg was typical. 

Biotin binding assay 

CAR-Avidin (5 l of 30 nM) was incubated for 1hr at RT with bio-cRGD (cdFK( -C6-

biotin)RGD), from Asynth Service BV (Roosendaal, Netherlands) at molar ratios ranging 

from 1:0.001 to 1:3, after which 2 l of 3H-Biotin (NEN) was added and the mixture was 

incubated again for 1h. To separate the CAR-Avidin-( 3H- or cRGD-) biotin bounded 

fractions from free 3H-biotin the mixture was applied

ra

scintillation cocktail (Packard Instrument Co) in a Packa
3analyzer. The summed radioactivity in peak fractions 4 to 6 corresponded to the H-biotin

binding capacity of the CAR-Avidin. This value was plotted for each sample containing 

different molar ratios of CAR-Avidin to bio-cRGD (1:0.001 to 1:3).

Infection assay 

24 hours before infection, cells were seeded into 12 wells plates (Greiner). The CHO, H5V 

and HUVEC at 4.104, VSMC at 6.104, Ramos and K-562 at 1.105 and EOMA at 1,2.105 cells 

per well. At the day of infection, three wells were trypsed to calculate the number of cells. 

After that, CAR-Avidin was incubated for 1 hour at RT with bio-cRGD in a total volume of 

50 l PBS. Then, the CAR-cRGD targeting construct was added and incubated for 1 hr with 

different amounts of Ad.Luc, Ad.GFP or Ad.LacZ. Subsequently 300 l of cRGD-Ad diluted 

in PBS/2% horse serum was added to the cells. After 1 hr at 37°C, the media was changed and 

infection efficiency was determined 40 hrs after infection. Ramos and K-562 (sus

c

Ad.luc infected cells were lysed in 300 

(Promega) and protein content (BCA assay, Pierce) was measured according to the protocol 

supplied by the manufacturer.  

The Ad.LacZ infected cells were washed with PBS and fixed for 5 min at 4°C in 5.4% 

formaldehyde, 0.8% gluteraldehyde in PBS after which staining solution (5 mM potassium 
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ferricyanide, 5 mM potassium ferrocyanide, 0.2 mM MgCl2, 0.1% 5-bromo-4-chloro-3-

indolyl- -D-galactoside (X-Gal) in PBS) was added. After 4 hrs LacZ positive cells were 

visual and scored microscopically.  

Ad.GFP infected cells were trypsinized gently, homogenized in PBS supplemented 

with 2% fetal calf serum and kept on ice until further analysis by flow cytometry (Becton –

ickinson). GFP fluorescence was detected at 530/30 nm FACscan (FL1 channel) following 

on ion laser source at 488nm. The forward-scatter/side-scatter plot was 

his work was performed in the framework of the Leiden Center for Cardiovascular Research 

d supported by grants from the Dutch Organization for Scientific Research 

s

 3.  

 4.  

D

excitation with an arg

gated to exclude cellular debris from the analysis. The number of events/FL1 (which reflects 

the fluorescence intensity) was plotted against the total number of cells, and the percentage of 

GFP-positive cells was determined. For each sample, 10.000 events were collected.

Statistical analysis 
Results are presented as mean  SD values of three samples. The significance of differences 

between the experimental groups was calculated using a two-tailed Student's t test. The level 

of statistical significance of the difference was set at P < 0.05.
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Targeted Ad vectors in vivo 

Abstract
Systemic administration of adenovirus (Ad) vectors results in gene delivery to the 

ver. To modify Ad vector tropism, we have generated a linker protein consisting of the virus 

inding domain of the coxsacky adenovirus receptor (CAR) genetically fused to avidin. In 

ssociation with a biotinylated ligand, this CAR-Avidin linker protein can successfully 

target Ad vectors in vitro. Here, we set out to apply this targeting strategy in vivo. Two 

iotinylated peptide ligands were used to, respectively, target integrin V 3/5 expressing cells 

nd lung endothelium. Systemic administration of both types of targeted Ad vectors resulted 

 an up to 85-fold reduced hepatic transgene expression. However, neither of the targeted Ad 

ectors resulted in increased transgene expression in the intended target tissue. Moreover, a 

ubstantial portion of the targeted Ad could not be recovered from any of the organs, 

dicative of efficient Ad neutralization. Indeed we observed that the maximum half-life of 

d in the circulation after systemic lactoferin treatment, which completely blocks hepatic Ad 

ptake was 8’ as compared to 6’ for untargeted Ad suggesting the presence of efficient 

xtrahepatic elimination pathways. Apparently, rapid neutralization of targeted Ad in the 

irculation efficiently prevents uptake by target organs other than the liver. 

ntroduction
Adenovirus (Ad) mediated gene transfer is widely used as a powerful method to 

odulate gene expression in vitro and in vivo (reviewed by [1]) The vast majority of Ad used 

 date involves serotype 5 (Ad5). Application of Ad5 vectors is dependent on the expression 

f the cognate receptor, the Coxsackie Adenovirus Receptor (CAR) by the target cell [2,3]. 

fection of CAR deficient cells, such as many tumours, endothelial and hematopoietic cells, 

ith Ad vectors is very ineffective and can be achieved only at high multiplicities of 

fection. Thus efficient infection of these cells requires modulation of Ad tropism.  

In vitro, several targeting approaches have been proven successful. In one of the 

trategies the capsid protein is genetic modified by inserting peptide ligands [4-22]. Another 

pproach for targeting Ad vectors is based on conjugates. Here, the vector is equipped with a 

ifunctional adapter molecule able to bind the virus on the one hand and a marker protein on 

e target cell on the other hand [23]; (reviewed by [24]) [25-28]; (reviewed in [29]) The 

dapter can either associate with the native virus or with chemically or genetically modified 

apsid proteins. This targeting approach is more versatile than the genetic modification based 
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Figure 1
(A) Fem

it results in a flexible targeting system able to confer/ accommodate infection of a 

variety

transfer and reduce the liver uptake normally seen after systemic application of Ad, either 

strategy, as 

 of cell types via the addition of different ligands. 

Recently, we described the generation and in vitro characterization of linker protein 

CAR-Avidin for the targeting of Ad5 to alternative cell types. This linker protein consists of 

the virus-binding moiety of the endogenous receptor CAR, genetically fused to the biotin-

binding moiety of avidin. Equipping CAR-Avidin with the oligodeoxy nucleotide ligand 

dA dG6 10 or the cyclic peptide ligand GRGDSP (cRGD) resulted in efficient targeting in vitro

of both transformed and primary macrophages [30] and to both transformed and primary 

vascular smooth muscle and endothelial cells [31], respectively. The aim of the current study 

was to determine whether in vivo targeting of Ad vectors to extrahepatic tissue such as carotid 

artery or alveolar cells, can be effected via the CAR-Avidin linker protein.  

Results

. Effect of cRGD mediated targeting of adenovirus on luciferase expression in the liver. 
ale C57Bl/6 mice received 2x109 pfu Ad.Luc (i.p.). After 96 hours luciferin (150 mg/kg) was 

administered by i.p. injection and bioluminescent signals were recorded under full anesthesia for 1 
minute. Data are presented as cumulated photon counts. (B) Liver lysates were prepared by 
homogenisation and subsequent freeze-thawing. Supernatants were used for determining luciferase 
activity using. Luciferase activity was corrected for protein concentration using BSA as standard. 
P<0.05 is indicated by an asterix.  

Systemic administration of cRGD equiped Ad into mice.

To examine the capability of integrin targeted Ad vectors to mediate extrahepatic gene 
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untargeted Ad expressing luciferase (Ad.Luc) or Ad.Luc equipped with CAR-Avidin-cRGD 

(cRGD-Ad.Luc) was injected intravenously into mice. Two and four days after injection, in

 vivo g

was caused by a 

duction in the percentage of infected cells and not only by a reduction of virus particles 

 cell, untargeted Ad expressing -galactosidase (Ad.lacZ) or targeted Ad.LacZ 

(cRGD-Ad.LacZ) was injected systemically. Four days after intravenous adm -

stained positive for -

ene transfer was monitored in situ via a high resolution CCD camera. Luciferase 

expression accumulated in time and was solely observed in the liver and not in other organs of 

both the Ad.Luc as well as cRGD-Ad.Luc treated mice. Compared to Ad.Luc treated mice, 

luciferase expression was decreased 3-fold in mice that had received cRGD-Ad.Luc (Fig. 1A).  

Because layers of tissue may limit photon emission from inner organs, luciferase activity was 

also measured in liver lysates. These data confirmed that the liver had indeed been infected 

and that transgene expression by liver was considerably reduced after cRGD targeting (11.5 

fold; P<0.01) (Fig 1B). 

To determine whether the decreased luc activity after targeting 

re

entering a

inistration, 

galactosidase staining of the livers of mice that had received cRGD-Ad.LacZ revealed only

1% LacZ+ cells. In comparison, approximately 80% of hepatic cells 

galactosidase Fig. 2). In addition, with cRGD targeted Ad the cellular staining intensity 

seemed to be quenched as compared to untargeted Ad (Fig. 2).  

Figure 2. Effect of cRGD mediated targeting 
of adenovirus on ß-galactosidase e ssion 
in the liver. Female C57Bl/6 mice received 
cRGD-Ad.LacZ or untargeted Ad.LacZ (1x109

pfu; i.v. injection). Five days after nfection 
mice were sacrificed, livers were ex and 
cryosections were made and staine  for ß-

xpre

 i
cised
d

galactosidase or with hematoxylin/ eosin. 

Administration of cRGD equipped Ad to mice with carotid artery injury.

To determine whether the endothelium constituted a barrier to infection, a c

artery segment was injured by guide wiring prior to systemic virus administration. The

wire injury will result in acti

a tid 

 g ide 

vation of flanking endothelial cells and medial vascular sm oth 

muscle cells (VSMC) and subsequently in an increase in V 3/5 integrin expression. Systemic 

ion of the internal carotid artery 

did no

ro

u

o

administration of cRGD-Ad.LacZ 1 or 5 hours after denudat

t result in an increased amount of LacZ+ cells in the vessel wall (data not shown). 

Because the anatomical position of the carotid artery could be incompatible with the 
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dynamics of Ad infection, we also administrated Ad focally by instillation in an uninjured or a 

denuded carotid artery segment. Similar to above, cRGD equipped Ad vectors did not

ligand for a more accessible 

 peptide 1 hour after systemic 

injection. Biotin was included as a negative control. As expected and

enhance transgene expression in intact endothelium nor in denudated vessels (Fig 3). 

Lung specific targeting of Ad 

vectors.

To determine whether 

Ad retargeting would be 

successful with an alternative 

organ, we have explored the 

potential of a lung specific 

peptide, GFE1 [32], in CAR-

Avidin aided gene transfer in 

vivo. First, biodistribution to the 

lung of this peptide was 

confirmed by systemic administration of biotinylated GFE1 coupled to 

Figure 3. Effect of cRGD mediated targeting of adenovirus on 
LacZ ex
of ApoE-/

pression in the vessel wall. The right common carotid artery 
- mice was denuded by 3 rotational passes of a 0.36 mm 

guide wire. Subsequently, Ad (1.5 × 109 pfu) was instilled into the 
denuded common carotid artery segment via the external carotid 
artery after prior ligation of the common carotid artery proximal and 
distal to the bifurcation point. The Ad was left in situ for 15’ and 
removed. Five days after infection mice were sacrificed, tissues were 
isolated and cryosections of the common carotid arteries were stained 
for ß-galactosidase or with hematoxylin/ eosin. 

125I labelled avidin. 

Figure 4 shows the specific organ uptake of the avidin125-I bound

Figure 4. Biodistribution of 
after 

on into 
iotin or 
olar ratio 

49 dpm, in 100 
was injected 

intravenously into female 
C57Bl/6 mice. Tissue 
distribution was determined 

r injection. Tissue 

er 
as
ity
e-

125I-Avidin-GFE1 
intravenous injecti
mice. 125I-avidin-b
125I-avidin-GFE1 (m
of 1: 1; 1567

l PBS) 

1h afte
accumulation is expressed as 
% of the injected dose p
gram wet tissue and w
corrected for radioactiv
associated with tissu
entrapped plasma.  
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Figure 5. Effect of GFE1 mediated targeting of adenovirus on biodistribution
(A) untargeted Ad.Luc, biotin-Ad.Luc or GFE1-Ad.Luc were systemically a
C57Bl/6. Liver lysates were prepared 120 hours after infection by homogenisation
thawing. Supernatants were used for determining luciferase activity. (B) The orga
luciferase expression 120h after i.v. administration of GFE1-Ad.Luc, biotin-Ad.Lu
buffer (uninfected) to female C57Bl/6 mice is plotted. Mind the logarithmic X-axis

Ad.Luc) for in vivo application. Biotin saturated CAR-Avidin

e

determined in different organs. In comparison to Ad.Luc admi with

biotin-Ad.Luc and GFE1-Ad.Luc displayed an 85- and 19- fold reduction in hepatic luciferase 

activity, respectively (Fig. 5A). Figure 5B shows the ove

luciferase expression after administration of GFE1-Ad.Luc, biotin-Ad.Luc or Ad.Luc. In most 

tissues, including lung, luciferase expression was found to be lower in

already reported by Trepel et al., avidin bound GFE1 showed a much higher lung uptake than 

the biotin control (7-fold increase). Second, Ad.Luc was equipped with GFE1 (GFE1-

 (biotin-Ad.Luc) and untargeted 

ction, luciferase activity was 

nistration, the mice treated 

Ad.Luc served as control. Five days after systemic inj

rall organ distribution of the 

 the GFE1-Ad.Luc than 

when in Ad.Luc treated mice. Thus, similar to the results obtained with the cRGD ligand, the 

GFE1 peptide did not enhance specific organ uptake. 

 luciferase expression. 
dministered to female
 and subsequent freeze-
n distribution profile of 
c, untargeted Ad.Luc or 
.

Determining Ad stability in vivo.

As the previous experiments made clear, a substantial portion of Ad could not be 

recovered from any of the organs, therefore in vivo kinetics studies were performed. 
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Untargeted Ad.Luc had a half-life of approximately 6 minutes in vivo (fig. 6A) and was 

efficiently cleared by the liver resulting in efficient infection. When animals were pre-treated 

systemically with lactoferrin, hepatic uptake of Ad virus particles was nearly completely 

blocked (fig. 6B). Under these conditions however, half-life of untargeted virus was only 

increased to 8 minutes (fig. 6A). This relatively minor increase in half-life indicates that 

neutralization of virus in the systemic circulation is extremely fast.  

Discussion
In this paper we report our efforts to target adenovirus vectors to alternative cell types 

in vivo. Ad linked to either the integrin binding peptide cRGD [33,34] or the lung specific 

peptide GFE1 [32] via CAR-Avidin was able to reduce liver uptake after systemic 

adm

vas er

cR e 

in vivo. In addition we demonstrate that the half-life of adenovirus in blood is rather short 

ake by lactoferrin suggesting that other elimination pathways 

te to the apparent failure of 

efficient target organ uptake in vivo.

Figure 6. Effect of systemic lactoferrin treatment on Ad half-life after i.v. administration. (A) Mice 
received bovine lactoferin (i.v., 70mg/kg) (grey line, triangles) or PBS (black line, squares) 2 minutes before 
Ad.Luc (1,5.109 pfu) administration. Presence of circulating infectious particles was determined by blood 
sampling and subsequent incubation of the samples on AT3 cells. Luciferase activity in AT3 cells is 
corrected for protein concentration and plotted against the time of blood sampling. (B) Luciferase activity in 
livers of mice determined 5 days after lactoferrin and Ad.Luc administration. Luciferase activity was 
determined as previously mentioned.

inistration. While cRGD-Ad has already been shown to be effective in delivering genes to

cular cells in vitro [14,35] and GFE1 was demonstrated to be lung specific in vivo, neith

GD-Ad nor GFE1-Ad was able to increase transgene expression by respective target tissu

even after ablation of liver upt

are functional in the clearance of adenovirus. This could contribu
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Because of the clinical relevance, efficient in vivo targeting – in other words enhanced 

target organ uptake and quenching of the intrinsic tropism - of Ad vectors is highly desired. 

Though attempted extensively, successful targeting of Ad in vivo is limited to local [36-38] or 

intra-organ injections [39] of the virus. To our knowledge, increased target organ uptake of 

Ad after systemic injection has only been shown by Izumi and colleagues [40], who 

administered engineered Ad.luc containing CD40 on their fiber proteins in transgenic mice 

with lung vasculature specific CD40 expression. The detour Izumi took to accomplish 

retargeting demonstrates the difficulty in retargeting Ad in vivo. 

In the current paper we succeeded in efficiently reducing liver uptake by applying the 

CAR-Avidin linker protein equipped with ligands for alternative receptors to Ad. Apparently, 

the CAR-Avidin linker protein is capabable of blocking the interaction of Ad fiber knob with 

its natural receptor, CAR. As both untargeted Ad and cRGD-Ad were from the same batch,

we can exclude that batch-related factors are underlying the observed phenomena. Parallel in 

vitro studies confirmed that the cRGD Ad complexes were still functional, as they 

significantly enhanced gene transfer to vascular cells in vitro. Moreover, electron microscopy 

studies revealed that cRGD equipped Ad did not form large aggregates >100-150 nm, that are 

unable to penetrate the fenestrae in the liver (data not shown). Thus, a major requirement for 

successful retargeting of Ad vectors to specific cell and tissue targets has been achieved.

To redirect Ad vectors we have linked cRGD to Ad vectors via the CAR-Avidin linker 

rotein

ctivat

trateg

RGD

nfort ately, cRGD-Ad failed to infect both quiescent endothelial cells as well as activated 

ndothelial cells flanking the site of injury after systemic administration in vivo. Furthermore, 

expression on endothelial and vascular smooth muscle cells after injury [43-45]. However, 

p . This peptide was shown to display a high affinity for V 3/5 integrins expressed on 

ed (angiogenic) endothelial cells and has been widely exploited in for targeting 

ies of Ad [33,34] and other drug carriers i.e. liposomes [41]. In the current study, 

equipped Ad vectors have been used to target mechanically injured carotid arteries. 

a

s

c

U un

e

medial vascular smooth muscle cells at the site of injury were not infected as well. Since 

erythrocytes ubiquitously express integrins V  and 3 V 5 it is conceivable that the cRGD 

ligand is an inappropriate targeting molecule for systemic application, and this could explain 

our negative results. This is in line with findings of Haubner and colleagues [42], who have 

investigated several RGD based compounds. Interestingly, we were unable to detect any 

infection of vascular cells by cRGD-Ad even after local incubation in the absence of 

erythrocytes, suggesting that erythrocyte scavenging cannot be held accountable for the lack 

of vascular targeting by Ad in vivo. Several studies have demonstrated enhanced V 3/5
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V 3/5 mediated uptake is relatively slow and we cannot exclude the possibility that the time 

frame of upregulation of V 3/5 expression is incompatible with the currently applied infection 

protoco

cles by the target cells. 

not

accomp

l.

To avoid the possibility of erythrocyte mediated sequestration of cRGD-Ad or poor 

transendothelial permeation, a lung specific targeting moiety was used. The lung is a 

relatively large organ with high blood flow and thus easily accessible. Our targeting moiety 

was proven to be effective, since iodinated avidin-bioGFE1 was specifically taken up by lung. 

Nevertheless, the GFE1-Ad did not enhance transgene expression in the lung. It is possible 

that the in vivo stability of the ad vector and/or the local lung-specific blood flow conditions 

are incompatible with the attachment and uptake of the virus parti

Completely blocking liver uptake with lactoferin had no dramatic effect on the half-

life of the untargeted virus (only a 33% increase). Due to the high blood flow through the 

liver (24% of the cardiac output) the slightly prolonged retention in the blood is probably not 

sufficient for the aimed target organs to take up the virus. Upon inhibition of liver uptake, Ad 

is rapidly neutralized by erythrocytes through binding of RGD motives to v 3/ v 5. This 

compromises virus stability after intravenous administration. So any retargeting approach will 

have to compete with systemic neutralization, and apparently the two ligands we have 

selected are not capable of doing this.

In conclusion CAR-Avidin has shown to efficiently detarget Ad from the liver upon 

equipping the Ad with novel ligands. This decrease in liver tropism however, was 

anied by an increased transgene expression in novel target cells.

Methods

Cells

Cos-1, H5V and EOMA cells were cultured in DMEM (Invitrogen, Carlsbad, CA, USA) 

supplemented with 10% FCS (Invitrogen), 100 units/ ml Penicillin (Invitrogen), 100 μg/ml 

Streptomycin (Invitrogen) and glutamax (Invitrogen). Mouse VSMC were isolated from aorta 

from male C57Bl6 mice as previously described [46] and cultured in DMEM with 10% 

newborn calf serum (NCS). One day prior to transfection Cos-1 cells were detached from 

plastic with 1% Trypsine/ 10 mM EDTA in PBS and seeded to 50% confluency. Cells were 

cultured in a humidified atmosphere of 5% CO2
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Production of recombinant Ad vectors 

Recombinant E1, E3-deleted Ad-vectors expressing beta-galactosidase gene (Ad.LacZ) and 

firefly luciferase (Ad.Luc) under the control of the cytomegalovirus promoter (CMV) were 

kindly provided by respectively Dr. Willnow (Houston, USA) and Dr. Hoeben (LUMC, 

Leiden, The Netherlands). Additionally, the Ad vectors were propagated in PERC6 cells as 

describ

A). Culture supernatant was equilibrated (addition of 

5M Na

with buffer (50 mM 

aPO4, 300 mM NaCl, 20% glycerol, pH = 7.0), washing with 4 volumes pre-elution buffer 

aH2PO4, 300 mM NaCl, 2,5 mM imidazole, 20% glycerol) the resin was eluted 

 volumes elution buffer (50 mM NaH2PO4, 300 mM NaCl, 150 mM imidazole, 20% 

ed [47]. The purification process involved two rounds of CsCl ultra centrifugation and 

dialysis against dialysis buffer (25 mmol/l Tris, 137 mmol/l NaCl, 5 mmol/l KCl, 0.73 mmol/l 

NaH2PO4, 0.9 mmol/l CaCl2, and 0.5 mmol/l MgCl ,2 pH 7.45) followed by dialysis against the 

same buffer supplemented with sucrose (50 g/l). Plaque titration was performed on 911 cells 

according to standard techniques [48]. Aliquots of 50 μl virus were stored at -80°C. 

Generally, virus titers of the stocks varied from 1 x 1010 to 1 x 1011 plaque forming units per 

ml (pfu/ml). 

Production, purification and characterization of the linker protein 

The CAR-Avidin linker protein was produced, purified and characterized as previously 

described [30]. In short: CAR-Avidin was produced by transient transfection of Cos-1 cells 

with pSG8CAR-Avidin using Fugene6 (Roche, Basel, Switzerland) under serum free 

conditions. Thirty two hours after transfection the linker protein was harvested and purified 

from the supernatant by immobilized metal affinity chromatography using Talon metal 

affinity resin (Clontech, Palo Alto, US

Cl to an end concentration of 300 mM NaCl, pH was adjusted to 7.00 using 50% HCl 

in PBS, 100% glycerol was added to an end concentration of and 20% glycerol) and incubated 

for 20 minutes at room temperature with Talon. After extensive rinsing 

N

(50 mM N

with 10

glycerol). SDS-PAGE and western blotting analysis of all purification steps and elution 

fractions showed that the linker protein was only present in elution fractions 3 to 5 that were 

subsequently extensively dialyzed against PBS and used in all experiments. The concentration 

of the active component was determined in the biotin binding assay as previously described 

using avidin (Sigma Aldrich, St Louis, MO, USA) as standard.

Ligands
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The lung specific GFE1 peptide (CGFECVRQCPERC;[32]) was synthesized as N-terminally 

ioluminescent reporter imaging 

etherlands), fed standard 

f centrifugation at maximum 

peed. Supernatants were used for determining protein-normalized luciferase activity by 

0 μl luciferyl-CoA (Promega) to 20 μl of liver extract in a monolight luminometer 

biotinylated peptide by standard Fmoc based solid-phase chemistry and provided by J.W. 

Drijfhout (LUMC, Leiden, The Netherlands). The quality was checked by high resolution LC-

MS mass spectroscopy. The bio-cRGD (cdFK(e-C6-biotin)RGD) was obtained from Asynth 

Service BV (Roosendaal, Netherlands), 

Targeting conditions

CAR-Avidin and peptide ligands were incubated at a 1: 1 molar ratio for 1 hour at room 

temperature, as was determined in previous experiments [30,31]). Complex formation of 

adenovirus and CAR-Avidin-ligand was facilitated by incubating CAR-Avidin-ligand at a 

concentration of 50 nM with the appropriate amount of virus for 1 hour at room temperature. 

B

12 wks old female C57Bl/6JIco mice (Charles river, The N

chow diet (Hope Farms, Woerden, NL) ad libitum, were injected with Ad.Luc (2x109 pfu). 

Bioluminescent signals were determined 4 days after Ad injections using the Xenogen IVIS 

imaging system (IVIS 100). Approximately 5 minutes before imaging the living mice were 

injected luciferin, (150 mg/kg) intraperitoneally (ip). The mice were anaesthetized with 

isofluorane/oxygen and placed on the imaging stage. Total photon emission of each animal 

was acquired for 1 minute. Captured images were quantified using the Living Image software 

(Xenogen Corp, Almeda, CA) and the IGOR software (WaveMetrics Corp, Lake Oswego, 

OR). Bioluminiscence from the region of interest was expressed via a pseudo color scale (Red 

most intense and Blue least intense luminescence) and data were presented as the cumulative 

photon counts collected within each region of interest. Because layers of tissue may limit 

photon emission from inner organs, 4 days after Ad injection the livers of mice were dissected 

to verify the results from the bioluminescent reporter imaging experiment by determination of 

the luciferase activity in liver lysates 

Luciferase enzymatic assay 

The liver extracts were prepared by homogenisation with the minibead beater in reporter lysis 

buffer (Promega), two cycles of freeze-thawing and 2 min. o

s

adding 10
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(BD Biosciences). Protein content was measured in a 96-well microtiter plate using the BCA 

protein assay kit (Pierce). Absorbance at 562 nm was determined in a microplate reader.  

Local gene transfer

9-10 weeks old ApoE-/- mice, fed regular chow diet ad libitum, were used for the local gene 

ansfer studies. Local gene transfer was ensured using a procedure developed by Von der 

ith use of a midline neck incision, the left external carotid artery was 

arteriot y of the external carotid artery, and endothelial denudation of the common carotid 

passes. In one experiment, the animals were inoculated i.v. 

with 1,

olyl- -D-galactoside (X-Gal) in PBS) at 37°C O/N. 

ections were stained immuno histochemically with antibodies against -SM-actin (clone 

and CD31(rat anti-mouse, BD pharmingen; diluted 1:200). To 

tr

Thüsen [49] In short: w

looped proximally and tied off distally with 6-0 silk suture (Ethicon). Additional 6-0 silk ties 

were looped round the common and internal carotid arteries for temporary vascular control

during the procedure. A transverse arteriotomy was made in the left external carotid artery, 

and a 0.36-mm flexible angioplasty guidewire was advanced by 1 cm via a transverse

om

artery was achieved by 3 rotational 

5 ×109 pfu of Ad.LacZ or cRGD-Ad.lacZ in 200 μl of phosphate buffered saline one 

and five hours after denudation. In a second experiment, immediately after angioplasty, 10 μl 

of adenoviral suspension (1.5×109 pfu/ml) was instilled into the right common carotid artery 

via the external carotid. The suspension was left in situ for 10 min and was subsequently 

drawn off before ligation of the external carotid and closure of the skin wound with silk 

sutures.

Tissue harvesting and histological analysis

Five days after Ad incubations, carotid artery specimens were obtained and transverse 5 μm 

cryosections prepared after in situ perfusion fixation with formalin as described [50]. 

Cryosections were routinely stained with hematoxylin (Sigma Diagnostics) and eosin (Merck 

Diagnostica, Darmstadt, Germany). ß-Galactosidase was demonstrated by incubation with 

staining solution (5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 0.2 mM 

MgCl2, 0.1% 5-bromo-4-chloro-3-ind

S

1A4; diluted 1:500; Sigma) 

detect specific Ab binding goat anti-mouse IgG peroxidase conjugate (dilution 1:100; Nordic, 

Tilburg, the Netherlands) was used as secondary antibodies, with 3,3'-diamino-benzidine, 

nitro blue tetrazolium as enzyme substrates (all Sigma) and for CD31 the ABC-AP kit and 

Vector-Red Substrate was used (Vector laboratories). 
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Biodistribution of GFE1

Recombinant avidin (SIGMA, St. Louis, USA) was radioiodinated at pH 10.0 with carrier

ee 125I according to a modification [51] of the ICI method [52]. Free 125I was removed by 

ltration. GFE1 was incubated with 125I- Avidin at a molar ratio of 1: 1. 

Proteins were isolated after homogenisation of organ samples and subsequent 

olubilization in 1* reporter lysis buffer (Promega, Madison, WI, USA). Luciferase activity 

lied by the manufacturer.

o 20 μl of AT3 extract in a monolight 

minometer (BD Biosciences). Protein content was measured in a 96-well microtiter plate 

fr

Sephadex G-25 gel fi

For the in vivo bio-distribution experiments, 10-12-wk-old female C57Bl/6 mice of weight 

22-24 g from Broekman Instituut BV (Someren, The Netherlands) were used and fed ad

libitum with regular chow diet. Mice were anaesthetized by subcutaneous injection of 

ketamine (75 mg/kg, Eurovet), droperidol (1 mg/kg), fluanisone (0.75 mg/kg), and fentanyl 

(0.04 mg/kg) (all from Janssen-Cilag, Beerse Belgium). Mice were injected with indicated 

ligand via the tail vein. One hour after injection the experiment was terminated, organs were 

removed and the organ bound radioactivity determined. 

Bio-distribution of targeted Ad

For the in vivo virus bio-distribution experiments, 10-12-wk-old female C57Bl/6 mice of 

weight 22-24 g from Broekman Instituut BV (Someren, The Netherlands) were used and fed 

ad libitum with regular chow diet. On day 0, mice were injected with 1*109 pfu of the 

appropriately targeted Ad.Luc or 100 l PBS in case of the uninfected control. Five days after 

injection, the experiment was terminated, the organs were removed and snap frozen in liquid 

nitrogen.

s

was determined according to the protocol supp

Decay study using lactoferrin

16-17 weeks old C57Bl/6JIco mice (Charles river, The Netherlands) were injected 

intravenously either with dissolvent or bovine lactoferrine (Serva, Brunschwig Chemie), 

70mg/kg at t = -2 min. At t = 0 min, both groups of mice received 1,5.109 pfu/mice Ad.Luc 

intravenously. Blood samples were taken by tail bleeding at 5 min, 60 min, 6 hours and 24 

hours. At day 5 liver, heart, spleen and lung were isolated. To assess the presence of 

circulating infectious particles, AT3 cells were incubated for 1 hour with the blood samples. 

After 24 hours, protein extracts were prepared by addition of reporter lyses buffer (Promega) 

to the AT3 cells and two cycles of freeze-thawing followed by 2 min. of centrifugation at 

maximum speed. Supernatants were used for determining protein-normalized luciferase 

activity by adding 100 μl luciferyl-CoA (Promega) t

lu
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using the BCA protein assay kit (Pierce). Absorbance at 562 nm was determined in a 

n Center for Cardiovascular Research 

UMC-TNO and supported by grants from the Dutch Organization for Scientific Research 

t Foundation (NHS 2001-141, NHS 2003T201 and NHS 99-

, D, E, and F. J Virol
1998, 72: 7909-7915. 

feld DA, Kovesdi I, Wickham TJ: Identification of a conserved 
 the fiber proteins of CAR-recognizing adenoviridae. Science

microplate reader. T½ were calculated from the luciferase activity at different timepoints using 

Graphpad Prism, software and a one-phase exponential decay model. 

Statistics

Experiments were performed in triplicate and presented as mean ± standard deviation (s.d.). 

P-values were calculated by a two-tailed unpaired student’s T-test. Data were considered to be 

significantly different when P< 0.05, indicated with an asterix (*) in the figures. 

Acknowledgements 
This work was performed in the framework of the Leide

L

(NWO 902-26-220), Dutch Hear

194) and the Center of Medical Systems Biology (CMSB) established by the Netherlands 

Genomics Initiative/Netherlands Organization for Scientific Research (NGI/NWO).  

References 
 1.  van Dijk KW, Kypreos KE, d'Oliveira C, Fallaux FJ: Adenovirus-mediated gene transfer.

Methods Mol Biol 2003, 209: 231-247. 

 2.  Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, 
Wickham TJ: The coxsackievirus-adenovirus receptor protein can function as a cellular 
attachment protein for adenovirus serotypes from subgroups A, C

 3.  Roelvink PW, Mi LG, Ein
receptor-binding site on
1999, 286: 1568-1571. 

 4.  Havenga MJ, Lemckert AA, Grimbergen JM, Vogels R, Huisman LG, Valerio D, Bout A, 
Quax PH: Improved adenovirus vectors for infection of cardiovascular tissues. J Virol
2001, 75: 3335-3342. 

 5.  Knaan-Shanzer S, van dV, I, Havenga MJ, Lemckert AA, De Vries AA, Valerio D: Highly
efficient targeted transduction of undifferentiated human hematopoietic cells by 
adenoviral vectors displaying fiber knobs of subgroup B. Hum Gene Ther 2001, 12: 1989-
2005. 

 6.  Rea D, Havenga MJ, van Den AM, Sutmuller RP, Lemckert A, Hoeben RC, Bout A, Melief 
CJ, Offringa R: Highly efficient transduction of human monocyte-derived dendritic cells 
with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen 
presentation to cytotoxic T cells. J Immunol 2001, 166: 5236-5244. 

125



Chapter 6 

 7.  Ophorst OJ, Kostense S, Goudsmit J, De Swart RL, Verhaagh S, Zakhartchouk A, Van Meijer 
M, Sprangers M, Van Amerongen G, Yuksel S, Osterhaus AD, Havenga MJ: An adenoviral 
type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross 
neutralization, and immunogenicity. Vaccine 2004, 22: 3035-3044.

8.  Schoggins JW, Gall JG, Falck-Pedersen E: Subgroup B and F fiber chimeras eliminate 
mal adenovirus type 5 vector transduction in vitro and in vivo. J Virol 2003, 77: 1039-
8. 

ependent cell 

10.  Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT: Characterization 
ector containing a heterologous peptide epitope in the HI loop of the 

fiber knob. J Virol 1998, 72: 1844-1852. 

Von Seggern DJ, Work LM, Pek DC, Dominiczak AF, Nemerow GR, Baker AH: 
g adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP 

 14.  Wickham TJ, Tzeng E, Shears LL, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A, 

 15.  Leopold PL, Bergelson JM, Hackett NR, Finberg RW, Wickham TJ, 
Kovesdi I, Roelvink P, Crystal RG: CAR-dependent and CAR-independent pathways of 

 16.  van Deutekom JC, Cao B, Pruchnic R, Wickham TJ, Kovesdi I, Huard J: Extended tropism 

 17.  Bouri K, Feero WG, Myerburg MM, Wickham TJ, Kovesdi I, Hoffman EP, Clemens PR: 

 18.  ez R, Vereecque R, Wickham TJ, Facon T, Hetuin D, Kovesdi I, Bauters F, Fenaux P, 
Quesnel B: Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus 

 19.  I, Bauters F, Fenaux P, 
Quesnel B: Increased gene transfer in acute myeloid leukemic cells by an adenovirus 
vector containing a modified fiber protein. Gene Ther 1999, 6: 314-320. 

nor
104

 9.  Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, 
Curiel DT: An adenovirus vector with genetically modified fibers demonstrates expanded 
tropism via utilization of a coxsackievirus and adenovirus receptor-ind
entry mechanism. J Virol 1998, 72: 9706-9713. 

of an adenovirus v

 11.  Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V: Modulation of adenovirus 
vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol
2002, 76: 8621-8631. 

 12.  Wu H, Seki T, Dmitriev I, Uil T, Kashentseva E, Han T, Curiel DT: Double modification of 
adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus 
receptor-independent gene transfer efficiency. Hum Gene Ther 2002, 13: 1647-1653. 

 13.  Nicklin SA, 
Ablatin
peptide generate an endothelial cell-selective adenovirus. Mol Ther 2001, 4: 534-542. 

Kovesdi I: Increased in vitro and in vivo gene transfer by adenovirus vectors containing 
chimeric fiber proteins. J Virol 1997, 71: 8221-8229. 

Hidaka C, Milano E, 

adenovirus vector-mediated gene transfer and expression in human fibroblasts. J Clin 
Invest 1999, 103: 579-587. 

of an adenoviral vector does not circumvent the maturation-dependent transducibility of 
mouse skeletal muscle. J Gene Med 1999, 1: 393-399. 

Polylysine modification of adenoviral fiber protein enhances muscle cell transduction.
Hum Gene Ther 1999, 10: 1633-1640. 

Gonzal

demonstrates preferential gene transfer in myeloma cells. Hum Gene Ther 1999, 10: 2709-
2717. 

Gonzalez R, Vereecque R, Wickham TJ, Vanrumbeke M, Kovesdi 

126



Targeted Ad vectors in vivo 

 0.  Yoshida Y, Sadata A, Zhang W, Saito K, Shinoura N, Hamada H: Generation of fiber-
mutant recombinant adenoviruses for gene therapy of malignant glioma. Hum Gene Ther
1998, 9: 2503-2515. 

2

 21.  Parrott MB, Adams KE, Mercier GT, Mok H, Campos SK, Barry MA: Metabolically

 22.  Perlman H, Liu H, Georganas C, Woods JM, Amin MA, Koch AE, Wickham T, Kovesdi I, 

 23.  Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT: Targeted gene 

 24.  l vectors for targeted delivery. Ann N Y Acad Sci
1999, 886: 158-171. 

 25.  
us for cell targeting, ligand screening, and vector purification. Mol 

Ther 2003, 8: 688-700. 

 26.  
viral 

vectors coated with a novel adapter molecule. Mol Ther 2004, 9: 712-720. 

 27.  

, 96: 8855-8860. 

 30.  Emile Gras JC, Verkuijlen P, Frants RR, Havekes LM, van Berkel TJ, Biessen EA, van Dijk 

678. 

hem Biophys Res Commun 2005, 338: 847-854. 

 33.  am TJ, Mathias P, Cheresh DA, Nemerow GR: Integrins alpha v beta 3 and alpha v 
beta 5 promote adenovirus internalization but not virus attachment. Cell 1993, 73: 309-

biotinylated adenovirus for cell targeting, ligand screening, and vector purification. Mol 
Ther 2003, 8: 688-700. 

Mano T, Walsh K, Pope RM: Modifications in adenoviral coat fiber proteins and 
transcriptional regulatory sequences enhance transgene expression. J Rheumatol 2002, 
29: 1593-1600. 

delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996, 14: 1574-1578. 

Curiel DT: Strategies to adapt adenovira

Parrott MB, Adams KE, Mercier GT, Mok H, Campos SK, Barry MA: Metabolically
biotinylated adenovir

Pereboev AV, Nagle JM, Shakhmatov MA, Triozzi PL, Matthews QL, Kawakami Y, Curiel 
DT, Blackwell JL: Enhanced gene transfer to mouse dendritic cells using adeno

Rogers BE, Douglas JT, Ahlem C, Buchsbaum DJ, Frincke J, Curiel DT: Use of a novel 
cross-linking method to modify adenovirus tropism. Gene Ther 1997, 4: 1387-1392. 

 28.  Smith JS, Keller JR, Lohrey NC, McCauslin CS, Ortiz M, Cowan K, Spence SE: Redirected 
infection of directly biotinylated recombinant adenovirus vectors through cell surface 
receptors and antigens. Proc Natl Acad Sci U S A 1999

 29.  Krasnykh V, J.T.Douglas: Targeted adenoviral vectors I: transductional targeting. In 
Adenoviral vectors for gene therapy. Edited by D.T.Curiel, J.T.Douglas. San Diego: 
Academic Press, Inc; 2002:205-245. 

KW: Specific and efficient targeting of adenovirus vectors to macrophages: application 
of a fusion protein between an adenovirus-binding fragment and avidin, linked to a 
biotinylated oligonucleotide. J Gene Med 2006, 8: 668-

 31.  Krom YD, Gras JC, Frants RR, Havekes LM, van Berkel TJ, Biessen EA, van Dijk KW: 
Efficient targeting of adenoviral vectors to integrin positive vascular cells utilizing a 
CAR-cyclic RGD linker protein. Bioc

 32.  Trepel M, Grifman M, Weitzman MD, Pasqualini R: Molecular adaptors for vascular-
targeted adenoviral gene delivery. Hum Gene Ther 2000, 11: 1971-1981. 

Wickh

319.

127



Chapter 6 

 34.  Wickham TJ, Carrion ME, Kovesdi I: Targeting of adenovirus penton base to new 
receptors through replacement of its RGD motif with other receptor-specific peptide 
motifs. Gene Ther 1995, 2: 750-756. 

 1999, 73: 5156-5161. 

ied 
adenoviruses. Int J Cancer 2004, 111: 698-704. 

 38.  sechem VW, Molenaar B, Bras H, Schaap GR, Alemany R, Curiel DT, 
Pinedo HM, Wuisman PI, Gerritsen WR: Conditionally replicative adenovirus with 

 39.  Oberholzer C, Tschoeke SK, Bahjat K, LaFace D, Hutchins B, Clare-Salzler MJ, Moldawer 

 40.  Izumi M, Kawakami Y, Glasgow JN, Belousova N, Everts M, Kim-Park S, Yamamoto S, 

del. J
Gene Med 2005, 7: 1517-1525. 

 41.  
al vasculature. J

Liposome Res 2002, 12: 129-135. 

 42.  
: 189-199. 

 44.  Kappert K, Blaschke F, Meehan WP, Kawano H, Grill M, Fleck E, Hsueh WA, Law RE, Graf 

 45.  Li JM, Fan LM, Shah A, Brooks G: Targeting alphavbeta3 and alpha5beta1 for gene 

and in vivo. Biochim Biophys Acta 2002, 1591: 87-97. 

 47.  Fallaux FJ, Bout A, van dV, I, van den Wollenberg DJ, Hehir KM, Keegan J, Auger C, 
Cramer SJ, van Ormondt H, van der Eb AJ, Valerio D, Hoeben RC: New helper cells and 

 35.  Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P: RGD inclusion in the hexon 
monomer provides adenovirus type 5-based vectors with a fiber knob-independent 
pathway for infection. J Virol

 36.  Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, Ito Y, Kobune M, Miyagishi M, Taira K, 
Tahara H, Hamada H: Adenovirus-mediated transfer of siRNA against survivin induced 
apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 2004, 10: 162-
171.

 37.  Rein DT, Breidenbach M, Wu H, Han T, Haviv YS, Wang M, Kirby TO, Kawakami Y, Dall 
P, Alvarez RD, Curiel DT: Gene transfer to cervical cancer with fiber-modif

Witlox AM, van Beu

tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in 
vivo. Clin Cancer Res 2004, 10: 61-67. 

LL, Oberholzer A: In vivo transduction of thymic dendritic cells with adenovirus and its 
potential use in acute inflammatory diseases. Scand J Immunol 2005, 61: 309-315. 

Wang M, Le LP, Reynolds PN, Curiel DT: In vivo analysis of a genetically modified 
adenoviral vector targeted to human CD40 using a novel transient transgenic mo

Schiffelers RM, Molema G, ten Hagen TL, Janssen AP, Schraa AJ, Kok RJ, Koning GA, 
Storm G: Ligand-targeted liposomes directed against pathologic

Haubner RH, Wester HJ, Weber WA, Schwaiger M: Radiotracer-based strategies to image 
angiogenesis. Q J Nucl Med 2003, 47

 43.  Dufourcq P, Couffinhal T, Alzieu P, Daret D, Moreau C, Duplaa C, Bonnet J: Vitronectin is 
up-regulated after vascular injury and vitronectin blockade prevents neointima 
formation. Cardiovasc Res 2002, 53: 952-962. 

K: Integrins alphavbeta3 and alphavbeta5 mediate VSMC migration and are elevated 
during neointima formation in the rat aorta. Basic Res Cardiol 2001, 96: 42-49. 

delivery to proliferating VSMCs: synergistic effect of TGF-beta1. Am J Physiol Heart 
Circ Physiol 2003, 285: H1123-H1131. 

 46.  Michon IN, Hauer AD, der Thusen JH, Molenaar TJ, van Berkel TJ, Biessen EA, Kuiper J: 
Targeting of peptides to restenotic vascular smooth muscle cells using phage display in 
vitro

128



Targeted Ad vectors in vivo 

matched early region 1-deleted adenovirus vectors prevent generation of replication-
competent adenoviruses. Hum Gene Ther 1998, 9: 1909-1917. 

 48.  Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, van Ormondt H, Hoeben RC, van der Eb 

 49.  de Nooijer R, Verkleij CJ, der Thusen JH, Jukema JW, van der Wall EE, van Berkel TJ, Baker 

 50.  der Thusen JH, van Berkel TJ, Biessen EA: Induction of rapid atherogenesis by 

 51.  van Tol A, Van Gent T, 't Hooft FM, Vlaspolder F: High density lipoprotein catabolism 

 52.  

AJ: Characterization of 911: a new helper cell line for the titration and propagation of 
early region 1-deleted adenoviral vectors. Hum Gene Ther 1996, 7: 215-222. 

AH, Biessen EA: Lesional overexpression of matrix metalloproteinase-9 promotes 
intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis.
Arterioscler Thromb Vasc Biol 2006, 26: 340-346. 

perivascular carotid collar placement in apolipoprotein E-deficient and low-density 
lipoprotein receptor-deficient mice. Circulation 2001, 103: 1164-1170. 

before and after partial hepatectomy. Atherosclerosis 1978, 29: 439-448. 

McFarlane AS: Efficient trace-labelling of proteins with iodine. Nature 1958, 182: 53. 

129



Chapter 6 

130



77..
Reduced estrogen receptor alpha levels do not limit the anti-inflammatory 

ffects of 17-beta-estradiol in endothelial cells

rom Y.D1,*, Carlotti F2, Hoeben R.C2, Frants R.R1, Havekes L.M3,4,5 and Willems van Dijk K1,3

artment of Human Genetics, Leiden University Medical Center, The Netherlands 

rtment of Molecular Cell Biology, Leiden University Medical Center, The Netherlands.  

epartment of Endocrinology and Metabolic Diseases, Leiden University Medical Center, The Netherlands 

artment of Cardiology, Leiden University Medical Center, Leiden, The Netherlands 

ality of Life, Gaubius Laboratory, Leiden, The Netherlands 

e

K

1Dep
2Depa
3D
4Dep
5TNO-Qu



Chapter 7 

132



ER  levels and anti-inflammatory effect in EC 

Abstract
bjective: In the present study, the role of estrogen receptor alpha (ER ) in the anti-

flammatory effect of 17- -estradiol (E2) has been examined. Method: Endothelial cell lines 

ith reduced ER  levels were generated by transduction with lentiviral vectors expressing 

ort hairpin (sh)RNA constructs against ER  (shER ). Real time PCR was performed to 

uantify the expression levels of inflammatory cell adhesion molecules in stably transduced 

Results: Expression levels of the adhesion molecules, E-selectin and 

tercellular adhesion molecule-1 (ICAM-1) were significantly induced by TNF  treatment, 

nd were significantly inhibited by pre-treatment with E2. Surprisingly, the shER  expressing 

ndothelial cells, which displayed 50% reduced ER  mRNA levels and activity, responded in 

n identical manner to TNF  plus and minus E2 pre-treatment. Complete abrogation of ER

ctivity, by supplementation of the antagonist ICI, however, did block the E2 effect. 

onclusion: ER  activity is required for the anti-inflammatory effect of E2 but not in a “rate-

miting mode”  

idered to be a chronic inflammatory process. One of the initial events 

volves the recruitment of inflammatory cells from the circulation into the developing lesion. 

his process is dependent on the expression of adhesion molecules such as E-selectin, 

ascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 

CAM-1). Expression of adhesion molecules is increased in atherosclerotic lesions [1-5], 

hereas deficiency of these molecules has resulted in a reduction of atherosclerostic lesion 

ze and number [6-9]. 

Atheroprotective properties of E2 have been demonstrated in several animal models 

0-12], however, the underlying mechanisms remain obscure. Adhesion molecules constitute 

 possible target for E2, even though experimental and epidemiological studies have reported 

onflicting results. Some have reported that hormone replacement therapy in post-menopausal 

omen with coronary artery disease results in a reduction of soluble adhesion molecules [13-

5], while other studies did not report significant changes [16-18]. Also, in vitro studies, 

hich measured the effect of E2 on endothelial expression of adhesion molecules have 

23] expression level of adhesion molecules. 

The actions of E2 are mainly exerted via estrogen receptors (ERs), which classically 

rve as ligand-activated transcription factors. To date two ERs, ER  and ER  have been 
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identified [24-26]. Both ER  and ER  are present in vascular endothelium [27], but their 

, 50% reduction in ER  activity did not affect the E2 signaling cascade 

garding down-regulation of TNF -induced expression of adhesion molecules. Thus, in the 

 found that ER  is required but their levels are not rate-limiting in the anti-

ble, ICAM-1 and E-selectin levels were expressed under basal 

conditi

physiological roles are incompletely understood. In vitro studies indicate that both ER  and 

ER  can mediate the anti-inflammatory effect of E2 with respect to the expression of adhesion 

molecules [28,29]. Interestingly, ER  levels in atherosclerotic vessels have been documented 

to be lower as compared to their levels in normal vessels and vessels with a mild degree of 

atherosclerosis [30-32]. Whether the reduced level of functional ER  in endothelial cells 

results in a reduced response to E2 and thus aggravates the atherosclerotic process is not 

known.

In the present study, we have evaluated the effect of E2 on TNF -induced expression 

of adhesion molecules in a mouse endothelial cell line. To gain insight into the biological role 

of ER  and the importance of ER  level in endothelial function, lentiviral vectors expressing 

short hairpin (sh)RNA targeted to ER  (shER ) were designed. Silencing of ER  gene 

expression as well as ER  functioning was established. However, in contrast to total ablation 

of ER  activity

re

current study we

inflammatory response of E2.

Results
Expression levels of adhesion molecules in mouse endothelial cells 

Expression levels of several adhesion molecules were determined in a mouse endothelial cell 

line (H5V), both under basal as well as under stimulatory conditions. Whereas VCAM-1 

levels were undetecta

ons, with E-selectin showing the most abundant levels. TNF  treatment dose 

dependently induced the expression of ICAM-1, which leveled off at a dose of 100 units 

TNF  per well (Figure 1A).
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E sion of adhesion molecules 

s depicted in figure 1B, pretreatment of H5V cells with E2 (10-8M, 24 hours) significantly 

 the TNF -mediated increase in both ICAM-1 and E-selectin levels. ICAM-1 

vels from 650  270% 

erated by selecting for GFP positive cells. RNA was isolated 

om Lenti-Empty (control) and Lenti-shER  cells 24 hours after E2 (10-8M) treatment to 

Fig 2A, real-time PCR analysis demonstrated up 

 RNA levels in the shER  expressing H5V cells. In control as well as 

 expressing endothelial cells, ER  RNA levels were not modified upon E2 and ICI 

treatment (data not shown)  

Figure 1. Expression of adhesion molecules in endothelial cells 
(A) Endothelial cells were incubated with the indicated doses range of TNF . Five hours after treatment 
RNA was extracted and subjected to taqman analysis to measure ICAM-1 levels. (B) The effect of E2 on
ICAM-1 and E-selectin expression in TNF  stimulated endothelial cells was assessed by taqman analysis
Dissolvent or 10

.
t-6M E2 was added 19 hours prior to TNF  (100 Units) treatmen . The ratio of ICAM-1 / 

HPRT and E-selectin / HPRT of untreated cells was arbitrarily set as 100 for control. Data represented as 
mean ± SD. 

 and TNF  induced expres2

A

diminished

levels were reduced from 774  248% to 246  61% and E-selectin le

to 153  24% (P<0.05). In a another endothelial cell line, hemangioendothelioma-derived 

cells (EOMAs), we were able to reproduce the repressive effect of E2 (data not shown).

ER  levels and activity in shER  expressing endothelial cells  

To knockdown the endogenously expressed ER , a near 100% stable shER  expressing 

endothelial cell line was gen

fr

evaluate the silencing effect. As depicted in 

to 50% reduced ER

shER
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S

hand, 

oduction of shER  led to a significant repression of ER  activity, as reflected by a 64% 

treated cells. Thus, shER

ces the expression of E-selectin and ICAM-1 levels. Though, 

reduced ER  levels, E2 was able to significantly reduce the TNF  induced effect. On the 

Figure 2. Mouse ER  mRNA and activity in stable shER  expressing endothelial cells 
(A) RNA was extracted from H5V cells infected either with Lenti_Empty or Lenti_shER
constructs. ER  levels were assessed by taqman analysis. HPRT was used as internal standard. 
Data represented as mean ± SD. (B) Both Lenti_Empty and Lenti_shER  transduced H5V cells 
were co-transfected with pERE-Luc and pCMV-LacZ. The cells were stimulated with 10-8M E2 or 
10-8M E p2 lus 10-6M ICI for 24 hours. Luciferase activity was measured 48 hours after transfection. 
Data represented as mean ± SD. E2 induced luciferase activity in Lenti_Empty cells was arbitrarily 
set as 100%. 

Subsequently, the effect of reduced ER  levels on ER  mediated transcription was 

evaluated. To this end, cells were transfected with a reporter plasmid carrying the estrogen 

response element upstream of the luciferase gene (pERE-Luc) and were treated with either 

dissolvent, E or E2 2 + ICI. As a result, control H5V cells showed enhanced ER  activity upon 

E  treatment, which was totally abolish by ICI treatment (Fig 2B). On the other 2

intr

reduction under basal conditions and 46% reduction in the E2

expressing lentiviral vectors significantly reduced ER  RNA levels and suppressed ER

mediated transcription.  

ER  Knockdown in H5V cells and response to TNF  and E2

The ER  knockdown H5V cells were used to explore the role of ER  in the E2-induced

repression of E-selectin and ICAM-1 expression. As shown in Fig 3, also in the ER  knock-

down cell line, TNF  indu
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other hand, the antagonist ICI, which has been shown to silence ER  activity completely (Fig 

2B), did abrogate the E2 effect on the expression of adhesion molecules (Fig 3). Thus, while 

complete abolishment of ER  activity did abort the repressive effect of E2 on adhesion 

molecule, reduced ER  activity did not. 

Figure 3. Expression of adhesion 
molecules in shER  expressing 
endothelial cells 
Either dissolvent, 10-6M E2 or 10-6M E2
plus 10-6M ICI was added 19 hours prior 
to TNF  (100 Units) treatment in 
Lenti_shER  transduced endothelial 
cells. Five hours after treatment RNA 
was extracted and subjected to taqman 
analysis to measure ICAM-1 levels and 
E-selectin levels. The ratio of ICAM-1 /
HPRT and E-selectin / HPRT of 

et as 100 untreated cells was arbitrarily s
for control. Data represented as mean ±
SD.

onDiscuss
ur results demonstrate that E2 inhibits TNF -induced expression of ICAM-1 and E-

selectin

The observation that pre-treatment with E2 significantly reduces the cytokine-induced 

ICAM-1, implicates that E2

i
O

 levels in endothelial cells. To determine the role of ER  activity in this process, a 

stable shER  expressing endothelial cell line was generated. This shER  expressing cell line 

contained 50% reduced ER  mRNA levels resulting in 50% decreased ER  activity. 

Repression of endogenously expressed ER , however, did not affect the E2 inhibitory effect 

on expression of endothelial adhesion molecules. In contrast, complete silencing of ER

activity by use of the antagonist ICI did efficiently reverse the E2 effect. Apparently, ER

activity is required for the anti-inflammatory response of E2 with regard to inhibition of 

adhesion molecules, but the number of ER  molecules and level of ER  activity does not 

limit this response.  

expression of the endothelial adhesion molecules E-selectin and 

makes the endothelium less responsive to the inflammatory microenvironment. In vitro 

studies with opposite results have also been published [19,20]. In those studies, E2 was added 

simultaneously with the cytokine instead of before treatment as applied here, which could 

explain the discrepancy. Remarkably, in animal models beneficial effects were only observed 
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if E2 was administrated prior to the development of atherosclerosis and not when arterial 

damage was present prior to hormone treatment [33-36]. From these studies we hypothesize 

that E  prevents atherosclerosis by interfering either prior to injury or very early post-injury.  

RT-PCR analysis revealed that 

2

the TNF -induced mRNA expression levels of E-

electin and ICAM-1 are reduced by E2, indicating that the down regulation occurs at the 

transcriptional level. Since the ER antagonist ICI blocks 

endothelial cells used in the current paper express only ER e

involved. ERs are classically identified as ligand dep

5’regulatory regions of E-selectin and ICAM-1 do not c

element (ERE) sites. Therefore it seems likely that gene t

talk” of ER  with other transcription factors, such as Nf

mediated gene activation and which acts upon a specific

both E-selectin and ICAM-1. Previous studies have repo

translocation and DNA binding of NF-  [23] and that ER  could reduce the expression of 

-driven reporter plasmid [28]. In addition, a human E-selectin promoter study has 

he NF-  site is required for the repressive effect of E2 [29]. Thus, ER  is 

d via a non-classical transcription pathway in the E2 mediated inhibition of 

TNF -

 activity is sufficient to inhibit expression of adhesion 

molecu

s

the inhibitory effect of E2 and the 

 and not ER , ER  seems to b  

endent transcription factors. The 

ontain classical estrogen response 

ranscription is affected by “cross-

-kB, which is required for TNF -

site in the 5’regulatory regions of 

rted that E  could inhibit nuclear 2

an NF-

revealed that t

likely involve

induced E-selectin and ICAM-1 expression.

To address the question whether the level of ER  is limiting the effect of E2 in 

modulating the TNF  response, we decreased endogenously expressed ER  RNA levels in 

endothelial cells by lentiviral-mediated expression of shER . Due to integration of the 

transgene into the genome, silencing was maintained during at least 18 weeks of continuous 

culturing (data not shown). The 50% knockdown of ER  RNA levels, which coincided with 

~50% repression of E  induced reporter gene expression did not change the E2 2 mediated 

response towards the expression of adhesion factors. Since ICI blocks the E2 effect, it is not 

likely that the E2 mediated reduction is obtained through an ER -independent pathway. 

Probably, the remaining 50% ER

les. Thus, apparently fluctuating ER  levels in endothelial cells do not modulate the 

responsiveness with regard to E2 mediated regulation of adhesion molecules. It will be of 

interest to address the role of ER  in this process.

In summary, our findings suggest that E2 has anti-inflammatory properties, as it could 

down-regulate E-selectin and ICAM-1 expression in endothelial cells. We found that ER  is 

required, but absolute ER  levels do not determine this anti-inflammatory effect.
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Methods

Cell Cu

F  (GF027, Chemicon) was added (0-

1.000 U

ene is under the control 

of an internal prom NA transcribed. 

(here named pLenti-Empty), pRRL-H1 promoter-shER _1395-cPPT-CMV-GFP-PRE-SIN 

lture 

H5V (a murine endothelial cell line derived from heart) and EOMA (murine hemangioma-

derived micro vascular cell line) were maintained in Dulbecco's modified Eagle's medium 

(DMEM) (Gibco BRL) supplemented with 10% fetal calf serum (FCS), 100 units/ml 

Penicillin, 100 g/ml Streptomycin and glutamax (Invitrogen) (Complete DMEM). Cells were 

maintained at 37 °C in a humidified atmosphere of 5% CO2. In experimental setting to reduce 

basal E2 effects, H5V cells were switched to DMEM without phenol red (Gibco BRL) 

supplemented with 10% charcoal treated FCS (charcoal (Merck) 5gr/ 50ml FCS, mix 

overnight 4 degrees, centrifuge and filter-sterilize), 100 units/ml Penicillin, 100 g/ml 

Streptomycin and glutamax (Invitrogen). 

Adhesion experiment 

24 hours before treatment, 1,5.105 cells were seeded in triplicate in 12-wells plate. Either 

dissolvant, 10-8M E2 or 10-8M E  + 10-6
2 M ICI was added for an additional 24 hours. 5 hours 

prior to RNA isolation, the indicated amount of TN

nits). RNA was extracted by 250 l/well Trizol.

Production of recombinant lentiviruses

The vectors used in our study are so-called SIN vectors, which lose the activity of the 

promoter located in the 5VLTR upon replication and integration into the genome of the host 

cells. The Rev-responsive element sequence is recognized by the viral Rev protein and is 

essential to regulate the production of viral mRNA [37]. The central polypurine tract (cPPT), 

which is located in the pol region of HIV-1, is retained in the vector as it has been reported to 

increase nuclear transport of the virus preintegration complex and hence increase transduction 

efficiency [38,39]. The PRE (posttranscriptional regulatory element) from the human hepatitis 

B virus (HBV) is a cis-acting sequence that increases expression of transgenes probably by 

stimulating nuclear export of the mRNA [40]. Expression of the transg

oter: this will be the only mR The vector plasmids were all 

derivatives of the pRRL-cPPT-X-PRE-SIN [40]. Plasmids pRRL-cPPT-CMV-GFP-PRE-SIN 
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(here named pLenti-shER ) and pRRL-H1 promoter-shER _1103-cPPT-CMV-GFP-PRE-

amed pLenti-shER _1103) (Figure 3) were constructed with a cytomegalovirus 

romoter driving the green fluorescent protein. The vectors were produced as described 

]. Briefly, the lentiviral backbone containing the gene of interest and the three 

Viral supernatants were added to fresh medium 

upplemented with 8 μg/ml Polybrene (Sigma), and the cells were incubated overnight. The 

as replaced with fresh medium. Transduction efficiency was analyzed 

or FACS analyses, H5V and EOMA cells were trypsinized gently, the volume was increased 

ere kept on ice. The samples were analyzed with a 

SIN (here n

p

previously [41

‘‘helper’’ plasmids (encoding HIV-1 gag – pol, HIV-1 rev, and VSV-G envelope) were

cotransfected overnight using the calcium phosphate method into 293T cells. The medium 

was refreshed and viruses were harvested after 48 and 72 h, passed through 0.45-Am filters, 

and stored at  -80ºC. Virus was quantitated by antigen capture ELISA measuring HIV p24 

levels (ZeptoMetrix Corp., New York, NY, USA) as described [42]. 

Lentivirus transduction

24 hours before infection, cells were seeded into 96 wells plates (Greiner). H5V at 1,5.103

cells/well and EOMA 4.103 cells/well. 

s

next day, the medium w

3 to 6 days post transduction by FACs analysis. HIV-1 reverse transcriptase inhibitor AZT 

(GlaxoWellcome) was added to transduced cells at a final concentration of 20 μg/ml. 

FACS analysis 

F

by adding PBS/1% FCS, and the cells w

FACScan flow cytometer (Becton – Dick-inson). GFP fluorescence was detected using a 

530/30 nm bandpass filter (FL1 channel) following excitation with an argon ion laser source 

at 488 nm. Using a forward-scatter/side-scatter representation of events, a region was defined 

to exclude cellular debris from the analysis. A number of events/FL1 (which reflects the 

fluorescence intensity) histogram was then established according to this region, and 

percentages of GFP-positive cells were determined in comparison to the negative control 

(untreated cells). Data analysis was performed using CellQuest 3.1 software (Becton – Dick-

inson). For each sample, 10.000 events were collected.  

Select GFP positive cells to obtain 100% GFP expressing cell population

EOMA and H5V cells were exposed to shER  expressing lentiviral vectors at MOI 20 and 

tracking of GFP positive cells monitored the efficiency of gene transfer. Three days post-
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infection, a maximum of 50% GFP positive cells was detected. As higher MOI appeared to be 

toxic, GFP positive cells of the Lenti-Empty, Lenti-shER  transduced population were 

diluted over 96-wells plate. FACS analysis was performed to select for and pool the cell 

populations containing near 100% GFP positive cells that consist of the same transgen. 

Gene Forward primer Reverse prim

Real time quantitative PCR analysis  

extracted from cells using TRIzol reagent (Life technologies). Purified RNA 

sured by real time quantitative PCR 

as calculated using a Mann-Whitney U test. Probability values less than 0.05 were 

er

Total RNA was 

was treated with RQ1 RNase-free DNase (Promega, 1 units/ 2 μg of total RNA) and reverse 

transcribed with SuperScript II Reverse Transcriptase (Invitrogen) according to the 

manufacturer’s protocol. Quantitative gene expression analysis was performed on an ABI 

prism7700 Sequence Detection System (Applied Biosystems) using SYBR Green as described 

earlier [43]. PCR primer sets (TABLE I) were designed via Primer Express 1.7 software with 

the manufacturer's default settings (Applied Biosystems) and were validated for amplification 

efficiency. The absence of genomic DNA contamination in the RNA preparations was

confirmed in a separate PCR reaction on total RNA samples that were not reverse transcribed. 

HPRT was used as the standard housekeeping gene. The significance of differences in relative 

gene expression numbers Ct (Ct(HPRT)–Ct(target gene))  mea

w

considered significant. 

mER 5’-CTAGCAGATA

5’- TCCTGATGCTTCTTmER

E-selectin

ICAM-1

VCAM-1

5’- CCCTGCCCACGGTATCAG 

5’- GGACCACGGAGCCAATTTC 

5’- ACAAAACGATCGCTCAAATCG

5’-CCCTTCCACACAGTCAAACGT 

5’-CTCGGAGACATTAGAGAACAATGC

5’-CGCGTTTAGTGGGCTGTCTATC

GGGAGCTGGTTCA 

TCTCATGTCA 

5’-GGAGATTCAAGTCCCCAAAGC 

5’-CACTTCATGCTGAGCAGATGTTC 

Table 1. Primer sequences of genes used for mRNA quantification 
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Luciferase reporter assay 

Transient transfections were performed in triplicate in 12-wells plates (1,5.105 cells per well) 

using Lipofectamine (Invitrogen). The effect of lenti-shER  on ER  mediated transcription 

regulation was determined by co-transfecting the cells with 150ng of reporter construct

RE)3TATA-LUC and 300 ng pCMV-LacZ. After 24 hours, the cells were stimulated with 

com -8 -8 -6M ICI for an additional 24 hours. 

The cells were lysed with reporter lyses buffer (Promega) and after centrifugation of 2 min, 

upernatant was used for determining -galactosidase normalized luciferase activity by adding 

 luci ega) to 20 μl of cell extr ht luminometer (BD 

iosciences  -galactosidase was measured in a 96-well microtiter plate using the -

idas es buffer (P

Luciferase activ

ion e activity

s  estro f

endogenous ER  was verified by real time PCR.
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Vascular ER  and ER  inhibit neointima formation 

ABSTRACT 

bjective: Neointima formation is the underlying mechanism of (in-stent) restenosis. 17 -

stradiol (E2) is known to inhibit injury-induced neointima formation and post-angioplasty 

stenosis. Estrogen receptor alpha (ER ) has been demonstrated to mediate E2 anti-restenotic 

roperties. However, the role of estrogen receptor beta (ER ) is not fully elucidated. In the 

resent study, the specific role of vascular ER  and ER  in neointima formation was 

ssessed.

ethods and results: Neointima formation was induced by placement of a perivascular cuff 

round the femoral artery of male C57BL/6 mice. E2 drug-eluting cuff significantly inhibited 

uff-induced neointima formation. To address the specific roles of vascular ER  and ER  on 

eointima formation, the ER - and ER -selective agonists 4,4’,4’’-(4-propyl-(1H)-pyrazole-

,3,5-triyl)trisphenol (PPT) and 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN) were applied 

ia a drug-eluting cuff. The ER -specific agonist, PPT, inhibited neointima formation at low 

ut not at high concentrations. Conversely, the ER -specific ligand DPN inhibited cuff-

duced neointima formation dose-dependently.

onclusions: Our data demonstrate that, in addition to ER , specific ER  activation inhibits 

eointima formation in a mouse model of restenosis. These data reveal a yet unidentified 

rotective role of ER  in injury-induced neointima formation. 

NTRODUCTION

17 -estradiol (E2) has been shown to have anti-restenotic properties [1-4]. 

evertheless, the anti-restenotic mechanism of action of E2 is not fully understood and 

ontroversial results regarding its effects on vascular remodelling have been reported [5-8].

his phenomenon may be attributed to the presence of two distinct estrogen receptors (ERs) 

 the vasculature, ER  and ER . ERs are ligand-activated transcription factors [9] and 

 and ER  are highly homologous, activation of either one of them may lead to 

activities [10-13]. So far, studies in ER knockout mice 

ent of ER  in the protective effect of E2 on 

theless, the role of ER  in mediating the anti-restenotic properties of 

2 has not been fully elucidated. 

Recently, ER - and ER -specific agonists have been developed allowing the 

valuation of the specific function of each receptor. The novel ER -specific ligand 4,4’,4’’-

-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) is 410-fold more potent in binding to 
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ER  than to ER  [18], whereas the 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN) binds to 

at the non-constrictive perivascular cuff to induce neointima formation can be 

 injury-induced neointima formation.

.1. Local delivery of E2 using E2-eluting cuffs

3.1.1. E

ER  with an 72-fold higher affinity compared to ER  [19]. Therefore, these compounds 

provide an attractive pharmacological approach to elucidate the biological role of ER  on 

neointima formation.  

A well-defined mouse model of neointima formation consists of placement of a non-

constrictive perivascular cuff around the mouse femoral artery [20,21]. Previously, we 

showed th

constructed from a polymeric formulation suitable for controlled drug delivery. This novel 

drug-eluting cuff simultaneously induces reproducible neointima formation and allows locally 

confined delivery of drugs to the cuffed vessel segment [22-25].  

 In the present study, we assessed the respective role of vascular ER  and ER  in the 

anti-restenotic properties of E2 in a mouse model of restenosis. By local delivery of PPT, an 

ER -selective agonist, and DPN, a selective ER  agonist, we demonstrated that in addition to 

ER , ER  activation leads to neointima formation inhibition in a murine model. These data 

reveal a yet unidentified protective role of ER  in

RESULTS

3

2 in vitro release profiles  

 In vitro release profiles of drug-eluting cuffs loaded with 1% and 5% (w/w) E2 was 

determined for a three weeks period. E2 was released in a dose-dependent manner over the 21-

day period for both concentrations used (1%: 30.9±14 μg; 5%: 211±14 μg). 

3.1.2. Effect of perivascular delivery of E2 on neointima formation  
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Vascular ER  and ER  inhibit neointima formation 

To assess the effect of local perivascular E2 delivery on cuff-induced neointima formation, 

drug-eluting cuffs were loaded with 1% and 5% E2 and placed around the femoral artery of 

male C57BL/6 mice for a 21-day period. Microscopic analysis of the cuffed femoral artery 

Figure 1.  
A: Representative cross-sections of 
cuffed murine femoral arteries
treated with inc easing r
concentrations of E2 21 days after 

s

each cuffed artery and expressed in 
m2 (mean SEM, n=6). NS, P>0.05

2 2

cuffed 
segments. Sirius red stain for 
collagen; comparable collagen-
positive area is present in both 
treated and untreated cuffed vessel 
segments. Magnification 400x 
(arrow indicates internal elastic 
lamina). D: Percentage of medial 
SMC- (close bars) and collagen-
positive area (open bars) of cuffed 
femoral arteries treated with 
increasing concentrations of E2 at 21 

s
 image analysis using 
in each cuffed artery 

and expressed in m2. Mean  SEM, 
n=6. NS, P>0.05 (NS, not 

ificant). 

cuff placement. HPS staining, 
magnification 400x (arrow indicate
the internal elastic lamina; 
arrowhead indicates the external 
elastic lamina). B: Total intimal area 
of cuffed murine femoral arteries 21 
days after E2-eluting cuff placement.
Total intimal area was quantified by
image analysis using ten sections in

(NS, not significant); *P<0.05. C:
Representative micrographs of
cuffed femoral arteries 21 days after
placement of either a control empty
cuff (Control cuff) or a 5% (w/w)
E -eluting cuff (5% E ). Alpha-SMC
actin staining for SMC; similar -
SMC content is observed in both 
control- and E2-treated

days after drug-eluting cuff
placement. Medial SMC- and 
collagen-positive area wa
quantified by
six sections 

sign
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segments revealed that, after three weeks, a concentric neointima had been formed in mice 

receiving a control drug-eluting cuff. Animals receiving a 1% an luting cuff showed 

a strongly reduced cuff-induced neointima formation developm

analysis revealed a significant inhibition of cuff-induced neoint

receiving a control drug-eluting cuff and animals receiving a

Likewise, E2 perivascular treatment resulted in a significant de

for both E2 loading dosages (Control: 0.43±0.07; 1%: 0.17±0.0

P=0.003) as compared to control drug-eluting cuff. In additio

perivascular delivery of increasing E2 concentrations on vasc

determined by quantification of medial SMC and collagen conten

3.2. ER  and ER  expression in cuffed femoral arteries  

E2 may exert its inhibiting effects on neointima formatio

ER . As depicted in Fig. 2A, both ERs mRNA levels were u

after the induction of the stenotic process. ERs mRNA levels 

days after cuff placement (59.5±3.9-fold increase for ER  vs. 11

both P<0.05) compared with control sham-operated arteries (T=0

declined. In addition, immunohistochemical analyses showed 

present in murine femoral arteries (ER : 19.2±0.5%; ER : 4

Moreover, during the cuff-induced neointima formation proc

expressed both ER  and ER  also in intimal tissue (Fig. 2B and 

abundantly present in vascular tissue as shown by immunohisto

hand, upregulation of ER  expression is more prominent upon

ER  and ER  are present and have the potential to contribute to

of E2.

d 5% E -e2

ent (Fig. 1A). Morphometric 

ima formation between mice 

n E2-eluting cuff (Fig. 1B). 

crease in intima/media ratios 

4, P=0.005; 5%: 0.18±0.02, 

n, no toxic effects of local 

ular integrity were found as 

t (Fig. 1C and 1D).

n via both vascular ER  and 

pregulated time-dependently 

showed a peak expression 7 

.4±4.2-fold increase for ER ,

 days), after which the signal 

that, both ER subtypes are 

8.4±6.8%, Fig. 2B and 2C). 

ess, cuffed femoral arteries 

2C). Altogether, ER  is more 

chemistry analysis. On other 

 vascular injury. Thus, both 

 the anti-restenotic properties 
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Figure 2. A: Fold induction of ER  and ER  mRNA in cuff-induced neointima formation in time 
(mean SEM, n=4; *P<0.05 as compared to T=0 days). B: ER  and ER  localization in cuffed murine 
femoral artery on diverse timepoints. Both ER  and ER  were present on medial tissue and endothelial cell 
monolayer in intact arteries (0 days). During the process of neointima formation development (1, 7, and 21 
days) ERs expression was also present in intimal tissue. Magnification 400x. Arrowhead indicates internal 
elastic lamina; arrow indicates ERs positive cells. C: Percentage of total ER - and ER -positive cells of 
cuffed femoral arteries after cuff placement. ER - and ER -labeled cells were counted in six equally spaced 
cross-sections from each cuffed artery and expressed as a percentage of the total number of cells 
(mean SEM, n=6; *P<0.05 as compared to T=0 days).  

3.3. Local specific activation of ER  and ER  in femoral arteries  

3.3.1. PPT and DPN in vitro release profiles 

 To examine whether PPT and DPN were suitably loaded and released from our drug 

delivery device, the in vitro release profiles of 0.5%, 1%, 2.5% and 5% PPT- and 1% and 5% 

DPN-eluting cuffs were assessed. PPT showed a sustained and dose-dependent release for the 

21-day period (0.5%: 16±0.4 μg; 1%: 36±2 μg; 2.5%: 68±1 μg; 5%: 160±6 μg). DPN was 
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also released from the drug-eluting cuffs in a dose-dependent manner over time. In total, 33±1 

μg was released from the 1% and 83±3 μg from the 5% DPN-eluting cuffs, respectively.  

3.3.2. Effect of PPT- and DPN-selective ER subtypes activation on neointima formation

To assess the role of ER  in the E2-mediated inhibition of cuff-induced neointima 

formation, drug-eluting cuffs were loaded with 0.5%, 1%, 2.5%, and 5% PPT, a highly 

specific ER  ligand, and placed around the femoral artery of mice for three weeks. It should 

be noted that a broader concentration range of PPT was used as compared to E2 and DPN. 

This was due to the seemingly contrasting data observed with the 1% and 5% PPT-eluting 

cuffs on neointima formation, as discussed below. 

 In animals receiving a control drug-eluting cuff a neointima had been formed. 

Remarkably, morphometric quantification revealed only a significant inhibition of cuff-

induced neointima formation in the cuffed segments treated with the lowest PPT 

concentrations. Cuffed arteries locally treated with higher PPT concentrations (2.5 and 5%) 

did not show an inhibitory effect on neointima formation as compared with control cuffed 

arteries (Fig. 3A and 3C). Likewise, only intima/media ratios of the PPT-treated arteries with 

the lowest concentrations were significantly decreased (Control: 0.42±0.07; 0.5%: 0.13±0.01, 

P<0.001; 1%: 0.20±0.03, P=0.008; 2.5%: 0.34±0.05, P=0.5; 5%: 0.56±0.05, P=0.2) as 

.

t

.

ed groups were also significantly decreased 

ontrol: 0.42±0.07; 1%: 0.22±0.05, P=0.02; 5%: 0.15±0.03, P=0.001) as compared to 

compared to controls. 

By placing a 1% and 5% (w/w) DPN-eluting cuff around the femoral artery of male

57BL/6 mice for 21 days, the role of ER  on neointima formation was assessed

orphometric analysis of the cuffed arteries of both DPN-treated groups showed a significan

hibition of neointima formation as compared to control cuffed segments (Fig. 3B and 3D)

oreover, intima/media ratios of the DPN-treat

C

M

in

M

(C

controls.
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Figure 3. Representative cross-sections of cuffed murine femoral arteries treated with increasing (A) PPT and (B) DPN 
concentrations 21 days after cuff placement. HPS staining, magnification 400x (arrow indicates the internal elastic 
lamina; arrowhead indicates the external elastic lamina). Total intimal area of cuffed femoral arteries 21 days after (C) 
PPT- or (D) DPN-eluting cuff placement. Total intimal area was quantified by image analysis using ten sections in each 
cuffed artery and expressed in m2 (mean SEM, n=6). NS, P>0.05 (NS, not significant); *P<0.05; **P<0.01. E: 
Percentage of BrdU-positive cells in cuffed femoral arteries treated with increasing concentrations of PPT (0.5 and 
2.5%) and DPN (1 and 5%) 21 days after drug-eluting cuff placement. BrdU-labeled nuclei were counted in six equally 
spaced cross-sections from each cuffed artery and expressed as a percentage of the total number of nuclei. Mean SEM, 
n=6. NS, P>0.05 (NS, not significant); *P<0.05. 
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To further investigate the apparent discrepancy on cuff-induced neointima formation 

between animals perivascularly treated with either an ER  or an ER  specific agonist, DNA 

synthesis was evaluated. Cellular proliferation was assessed by examining incorporation of 5-

bromo-2’-deoxyuridine (BrdU) into DNA at 21 days after cuff placement in mice receiving 

either a control drug-eluting cuff, a PPT- (0.5% and 5%) or a DPN-eluting cuff (1% and 5%). 

As depicted in Fig. 3E, a profound incorporation of BrdU was observed 21 days after surgery 

in cuffed vessel segments receiving a control drug-eluting cuff (3.45±0.25%). In line with the 

morphometric analysis, only the 0.5% PPT-eluting cuff showed a decreased cellular 

proliferation but not the higher PPT dosage (0.5%: 1.62±0.43%, P=0.02; 2.5%: 2.95±1.01%, 

P=0.18). Conversely, cuffed artery segments of mice receiving either a 1% or a 5% DPN-

eluting cuff showed a significantly decreased cellular proliferation as compared to control 

cuffed arteries (1%: 1.71±0.50%, P=0.016; 5%: 1.27±0.43%, P=0.016).

DISCUSSION 

 The present study evaluates the respective roles of vascular ER  and ER  on 

neointima formation. Here we show, for the first time, the effects of specific ER subtype 

ligands on cuff-induced neointima formation in the mouse femoral artery. Local E2 treatment 

resulted in a substantial and significant inhibition of cuff-induced neointima formation (Fig. 

1). Surprisingly, mice receiving the PPT-eluting cuffs displayed a significant reduction on 

neointima formation only for the lower PPT concentrations (0.5%: 78 3%; 1%: 56 8%) but 

not for the 2.5% and 5% PPT-eluting cuffs. Conversely, perivascular delivery of DPN 

displayed an inhibitory effect on cuff-induced neointima formation at both low and high 

concentrations (1%: 50 10%; 5%: 67 7%) (Fig. 3).  

E2 has been shown to have vasoprotective properties. In rats, systemic E2 therapy 

resulted in reduced vascular SMC proliferation and migration, which are fundamental steps in 

restenosis development [5]. In porcine coronary arteries, it has been shown that local delivery 

of E2 decreases post-angioplasty restenosis due to endothelial function improvement [26-28].

resent study we demonstrate that both ER subtypes are expressed in cuffed femoral arteries 

Furthermore, the first short-term human pilot study using E2-eluting stents showed low rates 

f restenosis [29].

E

o

2 mediates its effects primarily via interaction with its receptors ER  and/or ER .

ecently, we have generated a drug-eluting polymer cuff which enables local delivery of 

ompounds to the vasculature in an established mouse model of restenosis [22-25]. In the 

R

c

p
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during

R  (Kd for ER =0.2

M and for ER =0.5 nM). 

t the contribution of ER  and ER  in preventing neointima formation the 

- a

ke a specific ER  agonist. For example, 

system

ng finding that PPT does not seem to have a protective effect on cuff-

induced

the process of neointima formation (Fig 2). Therefore, both ER subtypes may be 

accountable for the inhibitory effect of E2 on cuff-induced neointima formation.  

Thus far, the specific role of vascular ER subtypes in the vascular wall is not fully 

elucidated. The current knowledge of the respective role of vascular ER subtypes derives 

almost exclusively from ER - and ER -null mouse models [14-17]. Although ER-null mice 

provide interesting clues, they imply several shortcomings. Due to whole body ER deficiency, 

direct vascular effects of E2 cannot be discriminated from systemic effects. In addition, 

potential compensatory mechanisms may have occurred during development. In the past, Pare 

and colleagues [17] have demonstrated very elegantly that in ER -null mice E2 does not have 

a protective effect on injury-induced vascular remodelling. However, although the 

concentration of E2 used in these studies are optimal for activating ER  (mean circulating 

levels of 0.33 to 0.43 nmol/L) it might be suboptimal on activating the E

n

To dissec

ER nd ER -selective agonists, PPT and DPN, were used. The selectivity of PPT and DPN 

for both receptor subtypes enables detailed analysis of the contribution of both ERs to the 

protective effects on neointima formation in the current experiments. PPT induces exclusively 

ER  mediated transcription and not ER  (Kd for ER =0.4 nM and for ER =417 nM) [18]. 

Thus, PPT can be stated as a highly selective ER  agonist. In vivo, we demonstrated that 

local release of PPT led to either anti-restenotic effects or no effect on restenosis, as low 

dosages inhibited neointima formation whereas high concentrations did not.

On the other hand, DPN displays ER  specificity (Kd for ER =80 nM and for 

ER =2.8 nM) [19]. Also in vivo DPN seems to act li

ic administration of the relatively high dose of 1 mg/kg/day DPN to rats does not alter 

uterine weight, which is regarded as a true ER  target tissue [30]. In the present study, both 

low and high concentrations of DPN led to an inhibition of neointima formation. Therefore 

we can state that, in this model, activation of ER  seems to have a protective effect on injury-

induced neointima formation.  

The surprisi

 neointima formation at higher dosages suggests a so called bell-shaped response 

curve, often seen when nuclear receptors are activated, might occur also in case of PPT-

mediated activation of ER . However, since E2 activation does not show this response curve 

in our present studies and the Kd for the ER  for E  and PPT are similar (0.2 and 0.4 nM, 2
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respectively) we do not believe this is the explanation for the observed phenomenon. 

Currently, the reason for the observed response curve for PPT is not fully understood.

son Ltd. (Bristol, UK). Poly( -caprolactone)-based drug delivery 

cuffs w

described elsewhere [22]. Calibration graphs of the different compounds were established by 

measuring the absorbance of a set of standards of each compound in the 0-50 μg/ml 

ritoneal injection of 5 mg/kg Dormicum (Roche, Basel, 

Switze

In conclusion, while literature proposes ER  as the major receptor involved in the 

anti-restenotic and anti-atherosclerotic effects of E2. Our data provide evidence for a yet 

unidentified protective role of ER  in injury-induced neointima formation as well. 

Nevertheless, there seem to be complex and dose-dependent opposite roles for ER  and ER

in vascular tissue.  

METHODS

2.1. Drug-eluting cuffs and in vitro release profiles 

 E2 was purchased from Sigma Diagnostics (St Louis, USA). PPT and DPN were 

obtained from Tocris Cook

ere manufactured as previously described [22]. Drug-loaded cuffs were made from the 

different blended molten drug-polymer mixtures and designed to fit around the femoral artery 

of mice. Drug-eluting cuffs had the shape of a longitudinal cut cylinder with an internal 

diameter of 0.5 mm, an external diameter of 1.0 mm, a length of 2.0 mm and a weight of 

approximately 5.0 mg. 

 Drug-eluting cuffs were loaded with 1% and 5% (w/w) E2, with 1% and 5% (w/w) 

DPN and with 0.5%, 1%, 2.5%, and 5% (w/w) PPT. In vitro release profiles (n=5/group) were 

performed by UV-VIS absorbance methods (225nm, 235nm and 257nm, respectively) as 

concentration range.

2.2. Femoral artery cuff mouse model 

For experiments, 10-12 weeks old male C57BL/6 mice were used. Animals were fed a 

standard chow diet (R/M-H, Ssniff, Soest, Germany). At the time of surgery, mice were 

anaesthetized with an intrape

rland), 0.5 mg/kg Dormitor (Orion, Helsinki, Finland) and 0.05 mg/kg Fentanyl 

(Janssen, Geel, Belgium). The femoral artery was dissected from its surroundings and loosely 

sheathed with a non-constrictive cuff [21,22]. Either a control empty cuff, an E2-eluting cuff 

(1% and 5% w/w), a PPT-eluting cuff (0.5%, 1%, 2.5%, and 5% w/w), or a DPN-eluting cuff 

(1% and 5% w/w) was used (n=6/group). 
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All animal work was approved by TNO institutional regulatory authority and carried 

out in compliance with guidelines issued by the Dutch government. The investigation

conform

re sacrificed 21 days after cuff placement. Histological analyses were 

erformed as described previously [21-23]. All samples were routinely stained with 

hloxine-saffron (HPS). Weigert´s elastin staining was used to visualize elastic 

minae.  

d with -SMC actin staining (1:800, 

ed i.p. with 25 mg/kg BrdU (Sigma Diagnostics) three times at 72, 48, 

.4. Estrogen Receptors in femoral arteries 

 in cuffed vessel segments was visualized by 

immun

entage of the total number of cells. 

s with the Guide for the Care and Use of Laboratory Animals published by the US 

National Institutes of Health (NIH Publication No. 85-23, revised 1996). 

2.3. Quantification and histological assessment of intimal lesions in cuffed femoral arteries 

Animals we

p

hematoxylin-p

la

Smooth muscle cells (SMC) were visualize

Roche). Collagen content was determined using Sirius red stained sections. The amount of 

medial SMC and collagen content was determined by morphometry (Leica Qwin, Wetzlar, 

Germany) and expressed as the percentage of total medial area consisting of SMC actin- or 

Sirius red-positive area in six equally spaced serial cross-sections in all animals [23].

Incorporation of 5-bromo-2´-deoxyuridine (BrdU) into DNA as a marker of DNA 

synthesis was used to determine the rate of cell proliferation in cuffed vessel segments. Mice 

(n=6/group) were inject

and 24 hours prior to sacrifice. Sections were incubated with a mouse monoclonal anti-BrdU 

antibody (1:50; DakoCytomation, Glostrup, Denmark). Specimens incubated with a mouse 

isotype-matched IgG diluted to the same concentration as the primary antibody were use as 

control. The number of BrdU-labeled nuclei per cuffed artery were counted in six equally 

spaced cross-sections and expressed as a percentage of the total number of nuclei. 

2

The presence of ER  and ER

ohistochemistry using a rabbit and goat primary polyclonal antibody (Santa Cruz 

Biotechnology Inc., Santa Cruz, USA) against the mouse ER  (1:600) and ER  (1:100), 

respectively, according to the manufacturer’s instructions. 

Immunohistochemical analysis were performed in paraffin-embedded femoral artery 

segments at 0, 1, 7, and 21 days after cuff placement (n=6/timepoint). Specimens incubated 

with a mouse isotype-matched IgG diluted to the same concentration as the primary antibody 

was used as control. ER - and ER -positive cells were counted in six equally spaced cross-

sections in all mice and expressed as a perc
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 timepoint. Femoral 

rteries were isolated, harvested and snap frozen. Total RNA was isolated using the RNeasy 

protoco

 Assays (Applied Biosystems, Foster City, USA). HPRT (hypoxanthine 

phosph

lculated

as 2- C

ar Research 

UMC-TNO. Y.D. Krom is supported by grants from the Dutch Organization for Scientific 

is supported by a Netherlands Heart Foundation 

grant, 2

art Foundation, 2001-D0-32.

2.5. Real time RT-PCR mRNA analysis 

 Mice underwent femoral artery cuff placement as described. Animals were sacrificed 

at different timepoints after surgery (0, 1, 7, and 21 days), 4 mice for each

a

Fibrous Tissue Mini-Kit (Qiagen, Venlo, The Netherlands) according to manufacturer’s 

l. Of all RNA samples cDNA was made using Ready-To-Go RT-PCR beads 

(Amersham Biosciences, Uppsala, Sweden). 

 Intron-spanning primers and TaqMan® probe were purchased from TaqMan® Gene 

Expression

oribosyltransferase) was used as a housekeeping gene. For each timepoint RT-PCR 

was performed in duplicate. Per timepoint the signals were averaged and the average signal of 

the housekeeping gene HPRT was subtracted ( Ct). Ct was determined as the difference 

between Ct values of the control sham-operated arteries (0 days) and the cuffed femoral 

arteries. Data are presented as fold induction (normalized to T=0 days), which was ca
t [25].

2.6. Statistical analysis 

 Results are expressed as mean SEM. Data were analyzed using the Mann-Whitney U

test (SPSS 11.5). A value of P<0.05 was considered statistically significant. 
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Summary, Discussion & Perspectives 

Summary
A protective function of E2 in vascular health has been established [1-3]. Clinical and 

xperimental studies, however, have demonstrated that estrogens are not a magic bullet, but 

ave both beneficial and detrimental effects on different organ systems. Therefore, more 

sight into the mechanistic actions of estrogens and the respective role of ER  and ER  in 

dividual cell types is required. To address some of these issues, we set out to modulate ER

nd ER  signaling tissue-specifically.  

epatic E2 signaling

Elevated plasma lipid levels are strongly associated with an increased likelihood to 

evelop atherosclerosis. Studies in both humans and animal models indicate that long–term E2

eatment reduces hyperlipidemia. Post-menopausal hormone replacement therapy (HRT) 

hanges the lipid profile in a potentially anti-atherogenic direction by reducing LDL-

holesterol and triglyceride levels and increasing HDL-cholesterol levels [4]. Mouse models 

 which E2 signaling is disrupted, e.g. ovariectomy, ArKO and ER -/- mice, develop 

ypercholesterolemia upon aging [5-7].  

The liver plays a pivotal role in lipid homeostasis. We hypothesized that the effects of 

2 on lipid metabolism are predominantly regulated by hepatic ER . ER mediated signaling is 

nown to be complex and controlled via tightly regulated pathways. Therefore, to assess the 

ecific role of hepatic ER  mediated action, subtle modulation is required. In chapter 2 we

pproached this by making use of RNA interference (RNAi). Thus far a relatively limited 

umber of studies have described the successful application of RNAi technology in vivo. We 

btained efficient intracellular delivery of short hairpin (sh)RNA’s that were targeted against 

ouse ER  (shER ) specifically in liver of adult mice by utilizing Ad vectors. E2 mediated 

epatic ER  activity was reduced 60% by Ad.shER  for at least five days. This was 

emonstrated by an in vivo reporter mouse model that expresses luciferase driven by a 

romotor that contains estrogen response elements. Binding of the liganded ER  thus results 

 luciferase expression that can be detected in vivo using an ultra-sensitive CCD camera. 

hus, Ad vectors were demonstrated to be an effective strategy to deliver shRNA molecules 

 the liver of mice to reduce gene expression. Subsequently, Ad.shER  vectors were applied 

 further investigate the function of hepatic ER .

The role of hepatic ER  in lipid metabolism was explored in APOE3-Leiden female 

ice by applying Ad.shER  (chapter 3). While hepatic ER  RNA and protein levels were 
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reduced by 60%, hepatic and serum TG and Chol levels, as well as the VLDL-TG production 

rate we

E2 has also been implicated in the regulation of glucose homeostasis and insulin 

, the risk factors hyperlipidemia and insulin resistance both increase 

post-m

y in an insulin resistant mice model, six hours after 

E2 trea

re not affected. In contrast, expression of some lipid related genes, like Cyp7a, PPAR

and SHP gene were changed. Apparently, the changes in the expression of these lipid related 

genes is compensated for by alternative transcriptional or post-transcriptional mechanisms 

and does not affect plasma lipid levels. Thus, since reduced hepatic ER  levels did not result 

in a clear lipid phenotype, our data imply that hepatic ER  is not a limiting factor in hepatic 

lipid metabolism.  

sensitivity. Interestingly

enopausally. HRT has been associated with a reduction in the incidence of diabetes 

[8,9]. Insulin sensitivity was improved by several weeks of E2 treatment in mice deficient for 

E  [10]. However, the beneficial effects on insulin sensitivity obtained by long-term E2 2

treatment could very well be an indirect consequence of the E2 induced changes in for 

example adipose tissue. To gain insight in the direct and liver-specific effects of E2, we 

determined the acute effects of E2 on insulin sensitivity. In chapter 4, we performed a 

hyperinsulinemic/euglycemic clamp stud

tment. In this short time span, hepatic glucose production was improved, while as 

expected total bodyweight and hepatic lipid content, known contributors of hepatic insulin 

sensitivity, were unchanged. Apparently, E2 influences glucose homeostasis directly, resulting 

in an improvement of hepatic insulin sensitivity. Since ER  mediated transcription is mainly 

induced in liver and transcription levels of genes involved in hepatic glucose production were 

repressed six hours after E  treatment, we assume that hepatic E2 2 signaling is responsible for 

these effects. Thus, our data imply a relatively major role for E2 in regulating hepatic glucose 

production.

E2 signaling in the vasculature

Beyond the effects on metabolic parameters that could account for the beneficial effect 

of E  on vascular diseases, several observations suggest a direct effect of E2 2 on the vessel 

wall. To obtain a better insight in the direct effects of E2 on the vessel wall and the relative 

importance of ER  and ER , we set out to achieve local and time-controlled modulation of 

ER signaling within the vascular tissue. 
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Vascular gene transfer 
Studying of the ER subtype specific signaling in vascular cells is challenging. Firstly, 

in culture most vascular cells lose their ERs. Secondly, gene transfer to introduce exogenous 

ERs is cumbersome. Vascular cells are notoriously resistant to both non-viral as well as viral 

gene transfer. In chapter 5, the transduction efficiency of vascular cells in vitro has been 

improved by targeting Ad vectors using a linker protein. This linker construct consisted of the 

extra cellular domain of the coxsackie virus Ad receptor (CAR) genetically fused to avidin. 

Via its avidin m

e

Ad

rgeting

scular

iant)

the 

 enhanced gene transfer. Thus, in principle enhancement of 

vascular gene transfer should be achievable (chapter 5). However unknown parameters have 

e of ER , we repressed ER  in endothelial cell lines 

y lentiviral mediated expression of shER . A significant reduction of ER  mRNA levels 

(60%) with an equivalent reduction in its activity was observed in the sub-cloned cell lines 

oiety, a biotinylated cyclic RGD peptide was bound. This resulted in a 

targeting construct that binds to the Ad vector with one side and to v 3/5 integrins with th

other side. This targeting strategy is relatively fast and does not require rederivation of the 

vectors (as is required for genetically retargeted Ad). The redirection of Ad specificity from

cellular CAR to integrins resulted in a significantly enhanced gene transfer to both 

transformed as well as primary vascular cells in vitro (chapter 5). Thus, our reta

strategy renders Ad vectors exquisitely applicable for the analysis of gene function in va

cells in vitro.

Next, an extensive effort was made to apply the cRGD-equipped Ad vectors in vivo

(chapter 6). Normally, after systemic application, Ad5 (the most commonly used Ad var

vectors sequesters in the liver, hampering delivery to alternative target tissues. By using 

previously described targeting construct we were able to overcome this barrier, as de-targeting 

of the liver was consistently found. However, gene delivery to normal and injured carotid 

arteries was never observed after systemic administration of targeted Ad vectors. This is

likely due to rapid clearance of Ad from the bloodstream and the anatomical position of the

carotid artery. However, local incubation of cRGD-Ad in both normal and injured carotid 

artery also did not resulted in

thus far prevented in vivo vascular gene transfer.

Role ER in the vascular wall 
An important role in the anti-atherogenic effect of E2 seems to be fulfilled by the 

endothelium [11]. In chapter 7, we demonstrated the repressive effect of E2 on cytokine-

mediated induction of adhesion molecules like E-selectin and ICAM-1 in two independent 

vascular cell lines. To determine the rol

b
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that contain near 100% transduced cells. Using these cell lines, we demonstrated that the level 

of ER

 Our results demonstrate distinct, and partly opposite responses of ER  and 

ER  on

s that counterbalance the ER deficiency 

ight be induced. With the development of conditional knock-out technology, these problems 

er, this technology requires considerable effort and time. As an 

alterna

 does not limit the repressive effect of E2 on expression of adhesion molecules.  

In vivo, both ER  and ER  are expressed in the vessel wall. It has been demonstrated 

that although ER  and ER  share homologous domains, they can exert distinct and 

sometimes opposite biological action. Therefore, we postulated that the biological effects of

E2 on vascular remodelling are the result of the expression levels and balance between ER

and ER  levels in vascular tissue. In chapter 8, we addressed the role of both endogenously 

expressed ERs in vivo on neointima formation by drug-releasing non-constrictive polymeric 

cuffs. Using these devices, a restenosis-like lesion is induced and ER subtype specific 

agonists are released. Interestingly, local release of the dual agonist, E2 and the ER  selective 

ligand, DPN both significantly reduced neointima formation. On the other hand, inhibition of 

intimal hyperplasia when solely ER  was activated was only observed after release of low 

concentrations.

 neointima formation. In contrast to the ER  and ER  knockout studies, which 

propose that ER  is the receptor responsible for the anti-restenotic and anti-atherosclerotic 

effects of E2 [12-15], our data provide evidence for an important, thus far unnoticed role of 

vascular ER  in the prevention of restenosis.

Discussion & Perspectives  
ER mediated cellular processes are very complex. To unravel the role of either ER  or 

ER , whole body ER deficient mice have been generated. However, information obtained 

from whole body ER deficient mice needs to be interpreted with caution. The complex 

phenotype of knock-out mice could obscure the role of ER at later stages of development or in 

specific tissues. In addition, back-up mechanism

m

can be addressed [16]. Howev

tive method for inhibiting target gene expression, we have generated shER  constructs 

that are described in this thesis. These shER  constructs can be applied at a specific time 

point during development. By using a suitable vector, tissue specificity can be achieved. 

However, for all RNAi based approaches, the percentage and type of cells that can be 

transduced with a specific vector and the knock-down efficiency are variables that need to be 

taken into account when interpreting the results. In this respect, adenovirus vectors are highly 
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suitable for both dividing and non-dividing cells and in general are capable of inducing high 

levels of transgene expression. 

The vessel wall seems to be an important target tissue for E2. However, low efficiency

of available gene-transfer systems, limits the applicability to dissect the role o

vascular cells. Generally, viral vectors are more successful as compared to non-viral vector

in transducing vascular cells. In Chapter 5, it has been demonstrated that by re-targeting A

vectors to integrins, gene transfer to primary vascular cells could be enhanced considerably

However, although, efficient gene transfer was accomplished in primary VSMC and ECs

gene transfer was not enhanced in the vessel wall in vivo. Even after local incubatio

injured artery, enhanced gene transfer was not observed (chapter 6). It is possible that the

physical size of the targeted Ad vector, in combination with the dynamics of integrin

expression in injured vessels is incompatible with the incubation time of Ad (10 minutes

vascular cells in vivo, thus far has resulted in very few successful applications. Therefore, we 

believe that essential knowledge regarding the fate and mechanism involved in the uptake of

Ad in tissues other than liver in vivo is missing. This hampers the construction of an efficie

specific and non-toxic delivery device. Thus, basal research on Ad vectors should continue. 

f ERs in 

s

d

.

,

n in an 

). 

However, it should also be noted that approaches to enhance Ad mediated gene transfer to 

nt,

The understanding of E2 action is incomplete and much remains to be discovered with 

hanges in E  concentrations and ER levels in development 

and aging. Thus far, the effect of different ER  levels on metabolic parameters and in 

vascular tissue is unknown. In this thesis, the role of ER  levels has been addressed by use of 

respect to the effects of the large c 2

a shER  construct (chapter 2). This shER  construct allowed studying the response of E  in 

specific target tissues in the presence of altered ER levels. It revealed that hepatic ER  levels 

are not rate-limiting in determining plasma and liver lipid parameters (chapter 3) and that 

vascular ER  levels do not limit the repressive effect of E  on adhesion molecule expression 

(chapter 7). In human vascular tissues, it has been reported that the expression of ER changes 

with pathological conditions such as atherosclerosis [17,18]. Although ER knock-out mouse 

models have shown that ER deficiency leads to abnormal vascular function [19], it is not 

known whether reduced ER  levels cause a predisposition towards vascular dysfunction. The 

results obtained from our in vitro experiments, imply that reduced ER  levels are not a 

causative factor. However, more research is required to verify this hypothesis. As a follow-up 

2

2
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study, it would be interesting to screen for genes whose expression levels are more 

susceptible to ER  quantities. These genes can be identified by performing micro-array 

nalysis using the shER  expressing endothelial cell lines. Furthermore, the effect of reduced 

ER  le

2 e

moment, techniques to apply drugs or RNAi locally are available. In rat models it has been 

shown that RNAi can be applied 

2

a

vels on expression of adhesion molecules and its effect on the development of the 

atherosclerotic process remain to be addressed in an in vivo model. 

Our observation that lipid parameters were not changed upon shER  treatment, is in 

line with the fact that the changes with respect to lipid metabolism have not been reported in 

ER  heterozygous knockout mice. In homozygous ER  knockout mice the effects are only 

apparent under stressed conditions and/or upon aging [5,7]. Our data imply that the absence of 

a lipid phenotype in young mice is not due to compensatory changes, like for instance up-

regulation of ER  as a result of the ER  deletion, but truly indicate that hepatic ER  levels 

are not limiting. In addition, changes in lipid parameters induced by systemic E2

administration or after ovariectomy are only apparent after a time lag of at least two weeks 

(personal communication, d’Olivera, Hoekstra). Therefore, it seems likely that the changed 

plasma lipid levels induced by prolonged E2 administration are initiated by a cascade of 

events, in which non-hepatic tissues, like brain and adipose tissue play an important role. To 

address these issues, E  signaling should be modulated in a tissue specific manner. At th

into certain regions of the brain [20]. In adipose tissue, E2

signalling could be modulated by transplantation of fat from either ER -/- or ER -/- mice.  

The observed changes in lipid metabolism induced by long-term modulation of E

signaling could also be an indirect consequence of the short-term and perhaps prolonged 

changes in hepatic insulin sensitivity (chapter 4). The dissection of these cause and effect 

relations would require a substantial effort. As an initial study, the hepatic glucose pathway 

that is targeted by E2 should be mapped using both transcriptomic (gene expression levels) as 

well as proteomic approaches (protein levels and modifications). By blocking parts of 

pathways that are thus revealed, the effect of prolonged E2 administration on hepatic glucose 

production and subsequent changes in lipid parameters could be assessed.   

The doses of E2 that have been applied in reported experimental as well as in clinical 

studies are highly variable. However, the effect of these different E2 levels in vascular tissue 

is unclear. In chapter 8, different concentrations of ER subtype selective ligands were 
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released to locally activate either ER  or ER . These data revealed that both a low and high 

dose of the dual agonist E2 and the ER  selective agonist, DPN, inhibited neointima 

proliferation (chapter 8). Thus for these two ligands, a dose-dependent effect was not 

observed. However, an inverse dose-dependent effect was observed when the ER  specific 

agonist, PPT was applied. PPT significantly inhibited neointima proliferation at low dose but 

ot at high dose. Inverse dose-dependent effects could be explained by a dose-dependent shift 

in ER

ibited neointima 

proliferation. When the drug release profiles are taken into account, both E2 and DPN are only 

release

n

:ER  activity. This seems unlikely, since a dose dependent effect was only observed 

with the ER  specific agonist, PPT and not with the dual agonist E2. An alternative exlanation 

for the inverse dose-dependent effect of PPT could be PPT mediated down-regulation of ER

expression. A high dose of PPT would result in very low ER  expression levels and thus a 

decrease in ER -mediated effects.  

The dose-dependent effects of PPT can also be explained by ER subtype specific 

biological effects. ER  might play an important role in the balance between pro- and anti-

restenotic pathways. At low ER  activity, the anti-restenotic effects could be dominant, but 

also maximally induced. Increasing ER  activity by applying a high dose of PPT will then 

only enhance pro-restenotic effects and not the anti-restenotic effects.  

It is obvious that there is a complex interplay between pathways induced by either ER 

subtype. Most likely, the interplay between the ER induced pathways in the vasculature is 

also affected by devevelopmental stage, aging and pathology such as restenosis and 

atherosclerosis. In conclusion, this study indicates that the dosing of ER ligands may be 

critical in determining the magnitude and direction of the biological effects.

The results obtained from chapter 7 & 8 imply that E2 prevents atherosclerosis by 

interfering either prior to injury or very early post-injury. In chapter 7 we observed that pre-

treatment with E2 significantly reduces the cytokine-induced expression of the endothelial 

adhesion molecules E-selectin and ICAM-1. Suggesting that due to E2, the endothelial cells 

are less responsive to inflammatory signals. Opposite results have also been published 

[21,22]. However, in those studies, E2 was added simultaneously with the cytokine instead of 

before treatment. In chapter 8, E  and DPN both significantly inh2

d in the first week. In addition, the half-life of both compounds is less than a day 

[23,24]. Thus, from these studies it seems likely that the anti-inflammatory and anti-restenotic 

effects are exerted pre-injury. Our data do confirm earlier studies in primates, rats and rabbits, 
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which have demonstrated that the protective effects of E  are only apparent if E2 2 was 

administered prior to the development of atherosclerosis and not when arterial damage was 

present prior to hormone treatment [25-29]. For future study, it would be interesting to 

address this point in more detail. Because of the applicability of local drug treatment, our 

mouse model would offer the opportunity to perform such a time range. In addition to 

releasing ER subtype specific ligands simultaneously with the induction of restenosis 

(chapter 8), restenosis can first be induced by applying an empty cuff, which is then followed 

by a drug-releasing cuff. To address the local and time dependent effect of E2 on 

atherosclerosis, these cuffs should be used in an atherosclerotic mice model, such as ApoE

and ApoE3Leiden mice. 

-/-

Clinical perspectives 

2

clinical manifestation. 

Therefo

f for example a 

enetic predisposition to hyperlipidemia, drug therapy becomes the primary approach. 

Although caution should be taken when extrapolating results obtained by in vitro, ex 

vivo or animal models to humans, findings obtained by numerous experimental studies clearly 

indicate the importance of E  status on vascular endothelial function.
Atherosclerosis is multi-factorial by nature, caused by a wide variety of genetic as well 

as environmental factors, and develops decades earlier than its 

re, drug therapy alone to treat the atherosclerotic vessel wall is not likely to be 

sufficient. Management of risk factors, like obesity, hyperlipidimea, hypertension and insulin 

resistance should be the primary approach to decrease the development of atherosclerosis. 

This can be achieved by lifestyle modifications (ie, weight control, change in diet, regular 

exercise and smoking cessation). Whenever this is not feasible, because o

g

E2 has been suggested as a possible drug to prevent vascular diseases by reducing 

metabolic risk factors. However, from the clinic there is a justifiable question; should 

hormone therapy be continued beyond management of menopausal symptoms? With the 

current knowledge the answer is no, because the beneficial effects do not outweigh the 

adverse side effects. Side effects however could be minimized by local treatment. In this 

thesis we tested whether changes in lipid and glucose metabolism are induced by a direct 

effect of E2 on liver. This seems to be true for regulation of glucose- but not for lipid 

metabolism (chapter 3 & 4). In agreement with the fact that the effect on lipid metabolism 

takes a significant time to develop, it suggests an indirect effect of E2 on lipid metabolism. 

Therefore, it seems unlikely that E2 will become serious competition for the commonly 

available and effective lipid-lowering drugs. Alternatively, the beneficial effect of E  on 2
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hepatic insulin sensitivity obtained within six hours after treatment is interesting and deserves 

further study. Moreover, the simultaneously induced peripheral insulin resistance implies the 

importance of tissue specific modulation.  

Locally in the vessel wall, our data indicate that E2 and ER subtype specific ligands 

form an attractive drug to prevent in-stent restenosis after PTCA. In the clinic, introduction of 

drug eluting stents has led to a tremendous reduction of in-stent restenosis. E2 has been shown 

to prevent restenosis (chapter 8) and in comparison to alternative drugs which solely reduce 

VSMC proliferation, E2 has also been shown to promote re-endothelialization [30]. However, 

we have not addressed this issue in our model and this requires further study. For the 

improv ent of therapeuty, a thorough understanding of the effects of E2 and the interplay 

 in the vasculature is required. By use of ER subtype specific ligands, 

we hav ts

f the restenotic process 

as wel

, 74:

em

between ER  and ER

e demonstrated that both ER  and ER  are involved in the vascular protective effec

of E2. A future challenge will be to determine to what degree the ER  versus ER  are 

involved during the different stages of injury during the development o

l as during the development of atherosclerosis. Thus, selective pharmacological 

targeting of ER subtypes may represent a novel and promising approach in the treatment of 

in-stent restenosis. 
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Hart- en vaatziekten vormen de belangrijkste doodsoorzaak in de westerse wereld. 

oor een groot deel is dit het gevolg van een sterke vernauwing van de bloedvaten 

derverkalking), bekend onder de term “atherosclerose”. Bij deze aandoening vormen zich 

ogenaamde plaques (opeenhopingen van cholesterol en cel materiaal) onder de 

eschermende laag van endotheelcellen aan de binnenkant van bloedvaten. De voornaamste 

ctoren die de kans op het ontstaan van atherosclerose verhogen zijn weinig beweging, hoge 

loeddruk, een hoge bloedsuiker spiegel en een hoog cholesterol gehalte.

Atherosclerose blijkt veel minder voor te komen in vrouwen voor de menopauze, in 

ergelijking met mannen van dezelfde leeftijd. Opmerkelijk is dat na de menopauze de 

cidentie van atherosclerose in vrouwen sterk stijgt. Deze stijging loopt parallel met 

etabole veranderingen, zoals gewichtsstijging, een verandering van de vetstofwisseling en 

erhoogde bloedsuikerspiegels. Kortom, na de menopauze ontstaat er een ongunstig 

sicofactor profiel. Deze observaties hebben tot de suggestie geleid dat oestradiol, het 

rouwelijke sekshormoon, bescherming kan bieden tegen het ontstaan van atherosclerose.

Dierstudies hebben een direct bewijs geleverd voor de beschermende rol van 

estradiol in het ontstaan van atherosclerose. In atherosclerose gevoelige muismodellen leidt 

ediening van oestradiol tot minder grote plaques [1-4]. Ondanks deze klaarblijkelijke 

ositieve effecten moet men voorzichtig zijn met het gebruik van oestradiol als preventief 

eneesmiddel. Oestradiol kan namelijk ook nadelige processen activeren. Zo verhoogt het de 

ans op borstkanker, baarmoederkanker en galstenen. Bovendien leveren humane studies met 

etrekking tot het effect van toediening van extra oestradiol na de menopauze tegenstrijdige 

sultaten op [5-8]. Kortom, de uiteindelijke effecten van oestradiol op de vaatwand is 

omplex en nog niet helemaal helder.  

Om de nadelige effecten te vermijden en de voordelige effecten van oestradiol uit te 

uiten, is het van belang om precies te weten wat oestradiol wel en niet doet én in welk 

eefsel. De organen die in dit proefschrift de aandacht hebben gekregen, zijn vaatwand en 

ver. De vaatwand; door zijn directe betrokkenheid bij de ontwikkeling van atherosclerose. 

e lever; omdat dit orgaan een centrale rol speelt bij het op peil houden van de 

loedsuikerspiegel en vet stofwisseling. En zoals hierboven beschreven, wanneer de 

loedsuikerspiegel en vet stofwisseling verstoord zijn vormt dit een risico voor het ontstaan 

an atherosclerose. Beide organen, lever en vaatwand zijn ook potentiële doelwit organen van 
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oestradiol. Zij kunnen namelijk het in het bloed circulerende oestradiol herkennen doordat zij 

en specifieke receptor, de oestradiol receptor (ER) bevatten. De ER is een receptor die 

aanwez

 oestradiol niveaus 

verand

As

gemaak

Maar, omdat de voordelige effecten van oestradiol op insuline gevoeligheid gepaard gaan met 

e

ig is in de cel, welke na binding van oestradiol geactiveerd wordt. Een geactiveerde 

ER kan vele processen in de cel beïnvloeden. Tot dusver zijn er twee verschillende ER types 

bekend, ER  en ER . Dit maakt de beoogde effecten van oestradiol complex. ER  en ER

kunnen namelijk verschillende processen activeren, soms zelfs leidend tot tegenovergestelde 

effecten. Daarom is het van belang om de ER  en ER  routes van elkaar te kunnen 

onderscheiden. Zeker in het geval wanneer beide receptoren aanwezig zijn, zal het specifiek 

moduleren van ofwel ER  ofwel ER  meer inzicht geven dan wanneer je

ert en dus beide aanzet.

In hoofdstuk 2 t/m 4 van dit proefschrift werd onderzocht of de lever een belangrijke 

rol speelt bij de effecten van oestradiol op de lipiden en glucose huishouding. Allereerst, is er 

in hoofdstuk 2 een nieuwe techniek opgezet, genaamd ‘RNA interference’ (RNAi) om de 

ER  signaleringsroute uit te zetten. Deze techniek berust op het feit dat kleine, sequentie 

specifieke moleculen, short hairpin (sh)RNAs genaamd, binden aan een homologe sequentie 

om deze vervolgens af te breken. In verschillende cellijnen tonen we aan dat onze shRN

t tegen de muis ER  (shER ) werkzaam zijn, ze verminderen de ER  activiteit met 

80%. Vervolgens is dit shER  construct in een adenovirale (Ad) vector gezet. Deze Ad vector 

dient louter als transport vehikel om in de cel zijn bagage (lees shER  moleculen) af te 

leveren. Een bijkomend voordeel is dat Ad vectoren in de muis erg efficiënt en exclusief lever 

cellen infecteren, een van onze doelwit organen. Na injectie van Ad.shER , laten we zien dat 

ER  niveaus en activiteit in de lever significant lager zijn. Kortom we laten zien dat Ad 

vectoren effectief zijn om shER  moleculen naar de lever te brengen, om daar het ER  gen af 

te breken.

De studie beschreven in hoofdstuk 3 had ten doel om de functie van ER  in lever te 

bestuderen wat betreft het reguleren van lipid parameters. Met behulp van Ad.shER  was 

60% van de ER  transcripten in de lever afgebroken. Desondanks waren de lipid parameters 

in bloed en lever en ook de glucose waardes niet veranderd. Deze resultaten laten zien dat 

ER  niveaus in de lever niet bepalend zijn om lipid parameters te reguleren. 

Oestradiol lijkt ook betrokken te zijn bij glucose metabolisme en insuline 

gevoeligheid. Na de menopauze zijn er meer vrouwen die ongevoelig zijn voor insuline. 

Toevoeging van oestradiol lijkt geassocieerd met het verbeteren van insuline gevoeligheid. 
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een verandering in lichaamsgewicht, is de rol van oestradiol op het reguleren van de glucose 

huishouding onduidelijk. Om meer inzicht te krijgen in de directe capaciteiten van oestradiol 

in glucose metabolisme ten behoeve van insuline gevoeligheid, hebben wij in Hoofdstuk 4 de

onmiddellijke effecten van oestradiol op de lever insuline gevoeligheid bepaald. Muizen die 

ongevoelig zijn voor insuline zijn behandeld met oestradiol. Vervolgens is zes uur na 

oestradiol toediening de insuline gevoeligheid bepaald met behulp van een gevoelige 

techniek. Onze data laten zien dat in de muizen die met oestradiol waren behandeld de 

glucose productie sterk geremd wordt gedurende de hoog insuline conditie. Deze data 

impliceren een belangrijke rol voor oestradiol in het verbeteren van de insuline gevoeligheid 

van de lever.

Naast de voordelige effecten die oestradiol blijkt te hebben op het metabolisme, zijn er 

elijkheden over de effecten van oestradiol op de vaatwand. Oorzaak hiervoor is 

het feit

constructen gem

Kort samengevat, deze studies waarin de oestradiol signalering route kort wordt veranderd, 

laten zien dat de lever een belangrijke rol speelt in het glucose metabolisme, maar niet in het 

lipid metabolisme. De voordelige effecten, zoals verminderde zwaarlijvigheid (obesitas) en 

ophoping van lipiden in lever en in het plasma die gevonden zijn na een langdurende 

oestradiol behandeling [9-12], zullen hoogst waarschijnlijk geïnduceerd zijn door effecten in 

andere organen en weefsels. Het zou ook goed mogelijk kunnen zijn dat de veranderingen in 

de lipid waarden een indirect gevolg zijn van de al snel door oestradiol geïnduceerde 

veranderingen op insuline gevoeligheid. Het is immers bekend dat regulatie van vet en 

glucose metabolisme met elkaar geassocieerd zijn. 

ook aanwijzingen die suggereren dat oestradiol een positieve rol speelt in de vaatwand. Zowel 

ER  als ER  zijn aanwezig in de cellen die de vaatwand bekleedt [13-18]. Maar er zijn nog 

veel onduid

 dat de effecten complexer zijn dan in de lever. Je hebt in de vaatwand namelijk te 

maken met verschillende cel types die zowel ER  als ER  heeft, terwijl de lever alleen ER

bevat. Bovendien zijn er geen in vivo (muis) modellen beschikbaar waarin lokaal ER  en 

ER  gemoduleerd zijn. Met de studies uitgevoerd in hoofdstukken t5 /m 8, wilden we meer 

inzicht krijgen in de rol van ER  en ER  in de vaatwand. Om dit doel te bereiken hebben we

aakt waarmee de ER specifiek en op een fysiologische manier in de vaatwand 

kan worden veranderd.
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Studies op geïsoleerde cellen (zogenaamde in vitro studies), zijn de makkelijkste 

manier om weefsel specifieke effecten te bestuderen. Het introduceren van genetisch 

materiaal zoals shER  of de ER zelf, is de manier om specifiek de functie van dit gen te 

onderzoeken. Helaas zijn de meeste vasculaire cellen moeilijk te transfecteren en infecteren. 

In hoofdstuk 5 hebben we dit probleem aangepakt door de natuurlijke voorkeur van Ad 

vectoren te veranderen. Normaal gesproken komen Ad vectoren efficiënt de cel in doordat zij 

de coxsackie virus Ad receptor (CAR) herkennen die op het oppervlak van de desbetreffende 

cel zit. Helaas hebben vasculaire cellen vrijwel geen CAR op hun oppervlak. Daardoor zijn zij 

dus moeilijk te transfecteren. Om Ad toch als transport vehikel te kunnen gebruiken hebben 

we een ‘dubbelzijdig plakband’ construct gemaakt. Dit construct bestaat uit het Ad bindende 

omein van CAR aan de ene kant, en aan de andere kant een RGD peptide. Dit resulteert in 

angen. Met ons construct hebben we deze 

erste barrière overwonnen. Ad vectoren die gebonden waren aan CAR-cRGD werden niet 

opgeno

at we veel van Ad vectoren weten, er toch nog essentiële kennis mist 

etreffende de regulatie van Ad opname in vivo. 

d

een targeting construct wat de Ad vector bindt en affiniteit heeft voor integrines. We laten 

zien dat dit “targeting” construct in staat is om transfectie efficiëntie naar zowel endotheel als  

vasculaire spier cellen aanzienlijk te verhogen. Omdat dit targeting construct efficiënt werkt 

en te gebruiken is voor vrijwel elke willekeurige Ad vector, is dit systeem bijzonder geschikt 

om de functie van een gen in vasculaire cellen in vitro te onderzoeken. 

Vervolgens hebben we bepaald of ons getarget virus ook toepasbaar is in een in vivo 

situatie. Ons doelwit orgaan was de halsslagader (carotis arterie) van de muis (hoofdstuk 6). 

Dit is een stuk moeilijker. Allereerst wordt transport naar de vaatwand belemmerd doordat Ad 

vectoren normaliter door de lever worden weg gev

e

men door de lever. Ondanks deze lever “de-targeting”, zagen we geen opname in de 

normale of zelfs beschadigde vaatwand. Dit kan verklaard kunnen worden doordat de Ad 

vector erg snel uit de bloedbaan was opgeruimd. Bovendien ligt de halsslagader niet op de 

meest toegankelijke positie en vormt het onbeschadigde niet-delende endotheel wellicht een 

ontoegankelijke barrière. Om deze barrières te omzeilen hebben we de Ad vector +/- cRGD, 

voor 10 minuten lokaal in de beschadigde halsslagader gebracht. Maar zelfs onder deze 

condities was het niet mogelijk om de genen de vaatwand in te transporteren. Mogelijkerwijs 

is het partikel te groot, en/of komt de dynamiek van integrine expressie niet overeen met de 

korte tijdsduur dat het virus aanwezig is. Deze studie samen met een aantal andere studies 

waarin het niet gelukt is om Ad vectoren naar vaatcellen in het levende dier te sturen, geeft 

aan dat ondanks het feit d

b
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Hoofdstuk 5 & 6 samenvattend, laten we zien dat gen overdracht naar vaatcellen via 

Ad vectoren in vitro goed mogelijk is. Alleen zijn er nog onbekende factoren in de in vivo 

situatie die gen overdracht voorkomen.  

In hoofdstuk 7, hebben we het effect van oestradiol op de expressie van adhesie 

moleculen in endotheel cellen geanalyseerd. Een verhoogde aanwezigheid van leukocyt 

adhesie moleculen op het endotheel is een van de eerste reacties van het vat op schade. Deze 

adhesie moleculen zorgen ervoor dat ontstekingscellen naar het beschadigde gebied komen. 

Uit onze studie blijkt dat wanneer je oestradiol toedient voordat de expressie van adhesie 

factoren wordt geïnduceerd, deze expressie significant geremd wordt. Dus, oestradiol lijkt de 

ontstekingsreactie tegen te gaan. Verder hebben we onderzocht wat de rol van ER  niveaus is 

op dit oestradiol geïnduceerde effect. Het rationele voor deze studie is het feit dat ER  minder 

aanwezig is in een plaque in vergelijking tot ‘normale’ vaten en vaten waarin aderverkalking 

nog in een vroege fase is [16,19,20]. De vraag is of de actie van oestradiol verminderd is 

doordat er minder ER  aanwezig is. In de endotheel cellen hebben we de ER  niveaus en 

activiteit met 60% verminderd. Maar dit leidde niet tot een verandering in de respons op 

oestrad

manier kun je testen of de geneesmiddelen 

iol. Oestradiol zorgde nog steeds voor een verminderde expressie van adhesie 

moleculen. Echter, wanneer we de ER  activiteit geheel uitschakelden, werd het effect van 

oestradiol wel geheel geblokkeerd. Deze data laten zien dat ER  noodzakelijk is voor het 

ontstekingsremmende effect van oestradiol, maar dat de hoeveelheid van de ER  niveaus 

geen bepalende factor is.

In vivo zijn zowel ER  als ER  aanwezig in de vaatwand. Omdat deze verschillende 

effecten kunnen induceren, zouden de uiteenopende resultaten na oestradiol behandeling 

verklaard kunnen worden door een verschil in hoeveelheid en balans tussen ER  en ER . In 

hoofdstuk 8, hebben we de rol van beide receptoren in de vaatwand bestudeerd. Het proces 

waar we ons op hebben gericht heet neointima vorming. Neointima vorming wordt 

gekarakteriseerd door een continue deling van vasculaire gladde spiercellen die een 

vernauwing van het bloedvat tot gevolg heeft. In hoofdstuk 8, hebben we neointima 

geïnduceerd door om het bloedvat in het been van de muis (femoral arterie) een kleine 

cilindervormige plastic buis (cuff) te plaatsen. Daarbij is de cuff zo ontwikkeld dat je het kan 

vullen met geneesmiddelen die vervolgens ter plekke en gelijktijdig met het induceren van de 

neointima in de vaatwand vrijkomen. Op deze 
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lokaal

ien dat ER  en ER  andere, maar niet per se totaal 

genovergestelde routes induceren. De meest interessante bevinding is dat ER  aanwezig in 

de vaa

ensen P, Stender S, Christiansen C: Estrogen monotherapy and 
ombined estrogen-progestogen replacement therapy attenuate aortic accumulation of 

de groei van gladde spiercellen kan remmen. Om specifiek de rol van ER  en ER  op 

neointima vorming te onderzoeken hebben we de cuffs geladen met oestradiol of ER  en ER

specifieke activatoren. Onze data laten z

te

twand een beschermende rol kan bieden tegen het ontstaan van neointima. Deze 

beschermende rol van ER  was dusver onbekend. Dit bevestigt dat onderzoek naar weefsel en 

ER  en ER  specifieke effecten van belang is.

Samengevat, kunnen we concluderen dat het nuttig is om modellen en constructen te creëren 

die het mogelijk maken om weefsel en ER specifieke effecten te bestuderen. Tot dusver 

hebben wij aangetoond dat ER  in de lever geen sterke rol speelt in het reguleren van lipid 

parameters, maar wel in het reguleren van glucose productie. In de vaatwand lijkt het erop dat 

naast ER  ook ER  neointima vorming tegen kan gaan.  
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Abbreviations

 Adeno-Associated Viruses   HGP Hepatic Glucose Production 

 Acetyl CoA Carboxylase

AAV   

ACC     HL Hepatic lipase 

Ad  

Ad-shER virus mediated expression of  HSP90 Heat shock protein 90 

AF  

ApoE   E    Ip Intraperitoneal 

BGU  

Bio-cRGD 

rd

CAR  

CCD   Charged coupled device   M Mouse 

Chol  

CMV    Cytomegalovirus    NO  Nitric Oxide  

CYP7A1 cholesterol 7 -hydroxylase   PEPCK Phospho Enol Pyruvate Carboxy Kinase  

Y

DBD  iferators-Activated  

E2

EC    angioplasty 

eNOS   

EPCs   terference  

R

EREs   

ER -/-  shRNA specific for mouse ER

R

ER / -/-

FAS     Protein-1c 

GFP  

G6P  lucose-6-Phosphatase   WHI  Women’s Health Initiative  

GP   Glycogen Phosphorylase   Wt Wild type

ACO   Acetyl CoA Oxidase   HPS Hematoxylin-phloxine-saffron 

 Adenoviruses     HRT Hormone Replacement Therapy  

 Adeno

   shRNA against mouse ER    HUVEC Human umbilical vein endothelial cells 

 Activation function   iNOS  Inducible nitric oxide synthase 

 Apolipoprotein 

ArKO   Aromatase deficient mice   LacZ -Galactosidase 

 Body Glucose Uptake   LBD  Ligand-Binding Domain 

Biotinylated cyclic RGD peptide  LDL  Low-density lipoprotein

B U   5-bromo-2’-deoxyuridine   Ldlr  Low-density lipoprotein receptor 

 Coxsackie adenovirus receptor  Luc Luciferase 

CHO   Chinese Hamster Ovary   MOI Multiplicity of Infection 

 Cholesterol    NERKI  Non-classical ER Knock-In  

cRGD-Ad cRGD targeted Ad-vector   ovx  ovariectomy 

C P8B1 sterol 12 - hydroxylase   Pfu Plaque Forming Unit 

 DNA Binding Domain   PGC-1  Peroxisomal Prol

DMEM  Dulbecco's modified Eagle's medium  Receptor-  coactivator 1

17- -estradiol    PTCA Percutaneous transluminal coronary  

 Endothelial cells     

ECM   Extracellular matrix   S.c Subcutaneous 

 endothelial Nitric-Oxide Synthase   RISC  RNA-induced silencing complex  

 Endothelial progenitor cells   RNAi  RNA in

E     Estrogen Receptor   SHP  short heterodimer partner  

 Estrogen Response Elements   shRNA  short hairpin ds RNA  

ER  knockout    shER

E -/-    ER  knockout     siRNA small interfering RNA 

  Double ER knockout mice   SREBP1cSterol Regulatory Element-Binding  

 Fatty Acid Synthase 

FFA    Free Fatty Acid     TG  triglyceride  

FGF   Fibroblast growth factor   VEGF Vascular endothelial growth factor 

 Green Fluorescent Protein   VSMC Vascular smooth muscle cells 

 G
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