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Chapter 5

Network Representations of
City-Block Models !

Abstract

City-block models for similarity always allow network representations that
reproduce the same distances as the unique coordinate representation. A rule
to construct such networks is given, based on additivity of city-block distances
across sequences of intermediate points along monotonic trajectories in space.
The paper also defines the concept of internal node, which helps in reducing the
complexity of networks and in making them better interpretable. The general
graph construction rule and definition of internal nodes also apply to the distinc-
tive features model, the common features model (additive clustering), as well
as to hierarchical trees, additive trees, and extended trees. Additivity is the key
property that makes the city-block metric so versatile and causes a basic unity of
dimensional, hierarchical and featural representations of similarity.

5.1 Network representations of city-block models

The city-block distance rule has been under consideration in psychology as a plausi-
ble model for similarity and difference for a long time (Arabie, 1991; Attneave, 1950;
MacKay, 2001; Micko & Fischer, 1970; Nosofsky, 1984; Shepard, 1964). It has been
used not only for human perception (Borg & Leutner, 1983; Garner, 1974; Shepard,
1987), but also for category learning (Kruschke, 1992; Zaki, Nosofsky, Stanton, &
Cohen, 2003), color vision and pattern recognition in honeybees (Backhaus, Menzel,
& Kreifdl, 1987; Ronacher, 1992), as well as for perception of electric properties of ob-
jects by weakly electric fish (Emde & Ronacher, 1994). The model has caused a flux
of technical papers concerned with the computational complications that arise when
trying to fit city-block distances to error-contaminated (dis)similarity data (Brusco,
2001, 2002; Eisler, 1973; Eisler & Roskam, 1977; Groenen & Heiser, 1996; Groenen,

IThis chapter has been submitted for publication as: Heiser, W. ]. & Frank, L. E. (2005). Network
representations of city-block models. Submitted manuscript.
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116 CHAPTER 5. NETWORK REPRESENTATIONS OF CITY-BLOCK MODELS

Heiser, & Meulman, 1998, 1999; Heiser, 1989, 1991, Hubert & Arabie, 1988; Hu-
bert, Arabie, & Hesson-Mcinnis, 1992; Okada & Imaizumi, 1980). There are other
unsolved technical problems; for example, degeneracies in nonmetric multidimen-
sional scaling with all distances tied into only two values are more prevalent in the
city-block metric (and in the dominance metric) than in other Minkowski metrics
(Shepard, 1974). In this paper, we leave these technical issues aside, and focus pri-
marily on some theoretical properties that lead to equivalent representations of the
city-block model.

Substantively, the city-block model has played a major role in the classic distinc-
tion between integral and separable stimulus dimensions, which is an essential con-
sideration in most current experimental and theoretical analyses of category learn-
ing (Ashby & Maddox, 1990; Goldstone, 1994; Kruschke, 1992; Melara, Marks, &
Lesko, 1992; Nosofsky, 1992). Shepard (1964) reported two experiments specifically
designed to test if the metric of psychological space depends on the perceptual an-
alyzability of the stimuli, and found that for objects differing in size and angle of
orientation the city-block distance gave a better account of subjective judgments of
similarity and objective measures of generalization than the Euclidean distance. To-
gether with results on category learning (Shepard & Chang, 1963; Shepard, Hovland,
& Jenkins, 1961), these findings also demonstrated a fundamental role of selective at-
tention for analyzable stimuli (Shepard, 1991). This line of research culminated in the
generalized context model for category learning and attention allocation (Nosofsky,
1984, 1986, 1987, 1992; Nosofsky & Zaki, 2002; Zaki et al., 2003).

Closely connected to the integrality-separability distinction is the uniqueness of
the coordinate system. In the words of Attneave,

”One possible hypothesis would be that the psychological dimensions
are related like physical dimensions in Euclidean space. Another would
be that differences along different dimensions combine additively, in which
case composite judgments would be predicted by a multiple linear re-
gression equation. Perhaps the most significant psychological difference
between these two hypotheses is that the former assumes one frame of
reference to be as good as any other, whereas the latter implies a unique
set of psychological axes.” (Attneave, 1950, p. 555).

One way to distinguish between integral and separable dimensions is to establish
whether a stimulus is more readily associated with another stimulus that is close to it
in the Euclidean metric or with one that may be farther away but matches it on some
pre-determined dimension. Various other converging operations have been used to
distinguish between these two types of dimensions (Garner, 1974). The unique co-
ordinate system of the city-block metric has also motivated other utilizations. Buja
and Swayne (2002) used dimensional uniqueness to identify an orientation of Eu-
clidean solutions, which are rotationally invariant. Heiser (1989) used dimensional
uniqueness as an argument to develop an individual differences city-block model
with dimension weighting.

Nevertheless, uniqueness and additivity of city-block dimensions do not tell us
what structural relations are valid in the whole space. For example, uniqueness and
additivity do not tell us if the stimuli are clustered or not, whether two stimuli are
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close neighbors or not, and whether three stimuli have the same order on all di-
mensions or not. It is remarkable that in applications of the city-block model, there
has not been much attention for actual representations. Some authors do not even
show or list the coordinates; they only report tests of inter-dimensional additivity, or
the relative goodness-of-fit (Melara et al., 1992; Ronacher, 1992; Emde & Ronacher,
1994). One reason for this lack of attention for coordinates might be that the psycho-
logical dimensions are supposed to be monotonic with physical dimensions present
in the stimuli, so that the order of the coordinates is known by design. However,
inter-dimensional additivity does not preclude the possibility that stimulus differ-
ences along one dimension change for different levels of the other dimension, i.e.,
that they show non-linear structural relations (as will become clear in an example of
similarity between rectangles that is discussed in the following).

The present study was triggered by the notion that a simple and direct way to
describe structural relations between objects is to draw a network, with nodes (or
vertices) for the stimuli and with lines (or edges) indicating local connections be-
tween neighbors. Distance in a network is the length of the (shortest) path traveled.
If the stimuli are clustered, we expect to find fully connected subsets, or cliques. If
three stimuli have the same order on all dimensions, we expect to find segmented
pathways without sharp turns. If there is interaction between dimensions, we expect
a nonlinearly distorted grid, and so on. Would it be possible to use the rectangular
grid that is so characteristic for the city-block metric and just connect all pairs of
points on the grid whenever there is no other point lying between them, and finish
by dropping the rest of the grid? Would it still be possible to reconstruct the distance
correctly if we replaced all city-block corners by direct straight lines?

It turns out that it is indeed possible to develop a universal network representa-
tion of city-block models that applies regardless of the dimensionality of the coordi-
nate space. This paper first describes the key elements of the network construction
method, which are the concepts of betweenness, metric segment, and metric-segmental
additivity. Since a network is just a collection of nodes and lines, one needs some
embedding to be able to draw it, but the details of this embedding are of secondary
importance. While the network is the model, an embedding is one of several possi-
ble maps of it. The paper also introduces the possibility of including an additional
set of points corresponding to hypothetical stimulus objects, called internal nodes. An
example of the perception of rectangles will demonstrate their use. It is shown that
networks throw new light on a puzzling characteristic of the city-block model, the
occurrence of partial isometries. Next, the same theory is applied to the Goodman-
Restle symmetric set difference, a special case of the city-block metric, with binary
dimensions called distinctive features. This framework contains a rather large class
of discrete models for similarity data, including additive similarity trees (Buneman,
1971; Sattath & Tversky, 1977), extended similarity trees (Corter & Tversky, 1986),
the additive clustering or common features model (Carroll & Arabie, 1983; Shepard
& Arabie, 1979), and a new set-partitioning model with unicities called the double
star tree. It is shown that the same network construction rule recovers the familiar
additive tree graph, and yields new graphical representations for the other mod-
els. These are illustrated with several examples of similarity data known from the
literature.
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5.2 General theory

The discussion starts with the fundamental notion of betweenness in continuous
spatial models, and demonstrates how it leads to additivity of distance. Between-
ness in more dimensions requires the concept of a metric segment, which is the area
between a pair of points that contains all intermediate points for which distance
is additive. Then a network representation is formed from a complete network by
elimination of lines when additivity applies. Some properties of this representation
are discussed with an example of similarity between rectangles. Next, the concept
of an internal node is introduced as a supplementary point located in the metric
segment of any two objects, or in the intersection of several metric segments. This
section concludes with a general characterization of partial isometry, a problematic
phenomenon that is specific for the continuous city-block model.

Betweenness of points and additivity of distances

Geometric models like the city-block model consist of points arranged in some con-
tinuous space, among which we define distances according to a certain rule (or met-
ric) to account for empirical relations between the experimental objects. An ele-
mentary structural property of spatial arrangements is the betweenness relation. In
some situations, betweenness implies additivity of distance. Taking the simplest
case, when we have three ordered points A, B, and C in one dimension, where B is
between A and C, the distance between the outer points A and C is the sum of the
distances from A to B and from B to C. In other words, when B is between A and C
on a line, a condition called intra-dimensional betweenness, we have intra-dimensional
additivity. It is easy to see that more generally, the distance between any two points
on a line is equal to the sum of the lengths of the segments that one crosses when
going from one to the other through a series of intermediate points.

In more than one dimension, the situation changes because it is a common char-
acteristic of all metrics that distances satisfy the triangle inequality. Denoting the
distance between two points A and B by d(A, B), the triangle inequality states that
d(A,C) < d(A, B) +d(B,C). Therefore, going through a third point can only add to
the distance. Even if an intermediate point B is between two others on all dimen-
sions, in going from A to C the direct route is generally shorter than going via B.
In Euclidean space, the only exception is when three points are located exactly in a
one-dimensional subspace, in which special case the triangle inequality reduces to
an equality (Torgerson, 1952). By contrast, in city-block space, the triangle equality is
much more common, because betweenness in all city-block dimensions (a condition
that we will call metric-segmental betweenness) always leads to additivity of distance.

We now demonstrate the particular result that under the city-block metric the
triangle inequality reduces to an equality for any three points A, B, and C whenever
B is between A and C on all dimensions (Busemann, 1955, p. 28). Let A have coor-
dinate values z4;, fort = 1,--- , T where T denotes the number of dimensions. The
city-block distance between A and B is defined as the function

d(A,B) = ) |zar—zmil. (5.1)
r



5.2. GENERAL THEORY 119

The fact that d(A, B) is built up as a sum of dimension-wise differences is called
inter-dimensional additivity (Suppes, Krantz, Luce, & Tversky, 1989, section 14.4.3).
For metric-segmental additivity to hold, the coordinates have to satisfy, for each
dimension t, either z4; < zpy < zct Or Zar > zpr = z¢p (monotonicity: all choices of
zp within the constrained area lead to monotonically increasing or monotonically
decreasing sets of coordinate values). Under monotonicity we must have, for any ¢,

(zct —zar) = (zct —zBt) + (2Bt — ZAt), (5.2)
|zar —zctl = |zar —zBe| + |2Bt — 2ctl, (5.3)

where the three terms in Equation 5.2 are either all positive or all negative, so that
we can take absolute values and freely reverse the order of the arguments in Equa-
tion 5.3, which expresses intra-dimensional additivity for any dimension. Summing
Equation 5.3 over t and using Equation 5.1 we obtain

Y lzar—zell = Y lzar—zel + ) |zt — zcil,s
t t t
d(A,C) = d(A,B)+d(B,C), (5.4)

that is, metric-segmental additivity of distance when we go from A to C via B. This
result forms the basis of the network representations that we develop in this paper.
Joly and Le Calvé (1994) have defined the general concept of a metric segment as the
set of points [AB]yet = {M: d(A,B) = d(A, M) + d(B, M)}. The metric segment is a
generalization of the line segment to multidimensional spaces. In Euclidean space,
metric segments are still segments of lines, but in two-dimensional city-block space,
they are rectangles with sides parallel to the axes. In three-dimensional city-block
space, metric segments are cuboids (parallelepipeds with rectangular faces), and in
more than three dimensions, hypercuboids. When dimension-wise differences are all
equal, these structures reduce to squares, cubes and hypercubes.

The prevalence of metric-segmental additivity in city-block space simply expres-
ses the fact that in this type of space, there is a multitude of paths through interme-
diate points covering exactly the same distance. As every passenger knows, there is
a unique shortest route by air from city to city, but within any city where buildings
are arranged in rectangular blocks one can reach distant destinations along several
different routes that are equally long.

Network representation of city-block configurations

The surprising consequence of metric-segmental additivity is that it allows us to
construct a model representation of city-block configurations that does not involve
coordinate values. This coordinate-free representation consists of a set of nodes or
vertices V = {v1,- -+ ,v;,- -+ ,Um }, representing the objects, and a set of line segments
oredges T = {ty,---,7, - ,Tr}, where L < %m(m — 1), connecting pairs of nodes.
Each edge 7; has a length g;, collected in the set @ = {q1,---,q;,- -+ ,qr}, which
indicates the distance between the corresponding pair of nodes. Thus, the triad
N = {V,7,Q} forms a valued graph or network. In a full, or complete network,

we have L = %m(m —1), thatis, al n = %m(m — 1) pairs of nodes are connected
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by an edge. Of course, in applications, we would like simplicity to prevail by aim-
ing at an incomplete network with L as small as possible (Klauer & Carroll, 1989). If
L < (m —1)T, the network is a more parsimonious parametrization than the coor-
dinate space. Moreover, as we shall see shortly, there are other considerations that
also can make a graphical representation attractive.

The construction of the network goes as follows. Given a city-block configuration
M = {Z,D}, where Z is a m x T matrix of coordinates z;;, with T the number of
dimensions, and D a matrix of distances d(Z;, Z]-) between pairs of points Z; and Z;,
the set V is formed by just allocating a separate node v; to each distinct Z;. The set
7 is then formed by elimination. We start with a full list of edges, with the distances
listed in some fixed order in Q. For all triads of points Z;, Z, and Zj, we determine

the quantity Wz]k = d(Zi, Zj) +d(Zj, Zy) — d(Z;, Zx). Then Z; belongs to the metric

segment [X; Xy mer if Wi]k = 0. When there is at least one Z for which Wi]k =0, we can
drop the direct edge from v; to vy from the list 7, while keeping the direct edges from
v; to v; and from v; to vk. In that case, we also omit the corresponding distance from
the list Q. Dropping the direct edge is possible since metric-segmental additivity
transfers to additivity along the shortest path in the graph. Thus, we are able to use
an interesting parallel between the coordinate space and the graphical space. While
the city-block distance between a pair of points is equal to a sum of distances through
a series of intermediate points in their metric segment, the graphical distance is equal

to the sum of edge lengths in a shortest path that connects two nodes. When Wi]k #0
for all i, j, k, no edges are dropped and the complete network N trivially represents
M.

There is a caveat for the particular case in which two distinct objects, i and j, have

the same location, Z; = Z;. Then d(Z;, Z;) = 0 and d(Z;, Zy) = d(Z;, Zy), from which

it follows that Wi]k = 0, so that the direct edge between v; and vy is dropped. The
same equalities also give W;k = 0, with the effect that the direct edge between v; and
vy is dropped. Consequently, two objects with the same location would become two
nodes that are disconnected from all other nodes in the graph (isolates). By merging
such objects into one node, which has the same distances to the other points, and
again determining the relevant metric segments, the graph will generally become
connected.

The graph N by itself is the desired network representation. However, to visu-
alize or interpret N, we must embed it again in some coordinate space. Note that
we now have more freedom in choice of embedding, since the primary elements of
interpretation are the connectivity and structural order relations between the nodes,
while the exact length of the edges is secondary. The embedding may be in the origi-
nal city-block space if it is two-dimensional, or in some other space with two dimen-
sions. We could use a Euclidean embedding of the graph, obtained, for instance,
by a nonmetric MDS method (cf. (Buja & Swayne, 2002)), or by a metric MDS with
weights to down-weight the large graphical distances (Kamada & Kawai, 1989). Of
course, we can reconstruct the original city-block distances D only if the edges in-
cluded in the plot of the embedding are precisely those from the list 7, labeled with
the edge lengths Q. If we would use any other common procedure to draw lines
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W3Hg

WaHg

Figure 5.1: City-block solution in two dimensions for the rectangle data. The labels Wy — Wy
indicate the width levels, and H; — Hy the height levels of the stimulus rectangles.

between pairs of objects in an embedding, for example, by determining a threshold
graph or a K-nearest neighbor graph (cf. Jain & Dubes, 1988, p. 60), reconstruction
of the original distances by their counterparts in the graph is generally inaccurate.
To illustrate the graphical representation of a city-block configuration, we look
at some data collected and analyzed by Borg and Leutner (1983). The stimuli used
were 16 rectangles of varying width and height, where the two variables each had
four levels increasing in equal steps. All 120 possible pairs of stimuli were presented
twice, in random order, to 21 subjects, who had to rate each pair on a 10-point scale
of dissimilarity. Reliability, calculated per subject as the product-moment correla-
tion over the ratings of stimulus pairs in the two different orders, was 0.75 on av-
erage. The data, averaged over all subjects and replications, were analyzed in two
dimensions? with the smoothing method for city-block multidimensional scaling de-
scribed in Groenen et al. (1998). This method was specifically designed to avoid be-
ing trapped in local minima of the least squares MDS criterion. Figure 5.1 gives two
versions of the two-dimensional solution. In both versions, the points are labeled
with their width level and their height level. Thus, W;H; (top-left) is the smallest
rectangle, and Wy H, (bottom-right) the largest. In Figure 5.1A, we have connected
the points with their direct neighbors by design; that is, lines connect rectangles dif-
fering one level on only one variable (as in Borg & Leutner, 1983, their Figure 3).
It shows that the horizontal dimension roughly corresponds to width, the vertical
dimension to height, and that the intervals tend to become smaller as the size of the
rectangles increases, in both dimensions. Borg and Leutner predicted this nonlinear
effect on psychophysical grounds; it was also present in their solution. However,
contrary to their solution, the current solution also exhibits interaction: successive
width intervals tend to become larger as height levels increase, although not uni-

2The fitting criterion used was least squares and metric, since Borg and Leutner (1983) reported that
non-metric fitting showed a linear relationship between dissimilarity and distance.
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formly.

Figure 5.1B gives the network representation, using the same coordinates. Here,
two points are connected if there are no other points between them, that is, if their
metric segment is empty. Recall that in a two-dimensional city-block solution, a met-
ric segment has a rectangular shape, with orientation parallel to the horizontal and
vertical axes. The two points spanning the metric segment are on a main diago-
nal of that rectangular area. This main diagonal is shown as a line in Figure 5.1B if
the metric segment contains none of the other points. For example, a line connects
W1 Hy and W, Hj3, since they span an empty metric segment. One could also say that
the two candidates in the design for being inside their metric segment, Wy H3 and
W>Hy, are actually located outside of it. Thus, while Figure 5.1A emphasizes con-
formities of the solution with the design, Figure 5.1B highlights violations as well.
Also, note that even though a path like Wi Hy — Wi Hy, — Wi H3 — Wi Hy is in con-
formity with the design, the tilting to the right contradicts that these stimuli are of
equal width. However, this contradiction shows up as a property of the spatial city-
block solution with the horizontal dimension identified as width, not as a property
of the network, which could have been plotted differently. Furthermore, a path like
Wi1Hy — WoHy — W3H, — WyHy is correctly monotonic in the horizontal direction;
yet it has two subadditivities giving direct lines from Wj Hy to W3 Hy and Wy Hy. The
total number of lines in Figure 5.1B is 56, while the spatial solution has 30 indepen-
dent coordinates. Therefore, the network representation is not parsimonious, but it
does enable a detailed analysis of structural relations in the data.

It might appear that the network representation is unduly complex, compared
to the simplicity of the spatial representation, in which we just plot the coordinates.
More specifically, the network seems to have the following unfavorable properties:

1. Some relatively long lines appear in Figure 5.1B, e.g. between Wy H; and Wy Hy
or between W; H3 and W, H3. By contrast, the attraction of other network mod-
els often is that they have global properties resulting from the action of local
connections (short lines). Here, the long lines simply reflect that objects can be
opposites on one dimension and direct neighbors on the other dimension.

2. Many nodes have high degree (number of lines that are incident with it, or
number of nodes adjacent to it); for example, 11 lines emanate in Figure 5.1B
from node W, Hjy, and 10 lines from W, H3, while the lowest degree still is 5 (for
W1 H3, WiHy, and Wy Hy). As can be seen from Figure 5.1A, the current design
predicts nodes with degree 2, 3, or 4.

3. Many crossings of lines occur at locations where there is no intermediate node.
For example, the line between W, H; and W, Hy in Figure 5.1B crosses 15 other
lines without meeting any other node. In the design of Figure 5.1A, these
rectangles are connected via the much simpler three-segment path WoH; —
WoHp — WoHz — WhHy.

4. The total number of lines is large, 56. If we would consider each line length as
a separate parameter, the network model absorbs many parameters, compared
to the number of independent data values (120). However, it should be noted
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that we actually fitted only 2 x (m — 1) = 30 coordinate values, so the line
lengths cannot be considered as independent quantities. In the design, we
have only 24 lines, and under a model of no interaction, these line lengths
would be further constrained to six independent parameters (3 width intervals
and 3 height intervals).

Since these properties are also prevalent in other examples that we have analyzed
but do not report in detail here, they seem to be a recurring and genuine character-
istic of the present network representation. However, as shall become clear in the
next section, there is a way to alleviate points 1-3, and to some extent point 4 as well,
by introducing an additional set of points, called internal nodes, which also play an
important role in special cases of the model.

It is of special interest to look at the one-dimensional case. If D; is a distance
matrix of points along a line, then any point lies between two others except for the
endpoints, from which it follows immediately that the graph N has exactly m — 1
edges. Assuming the rows and columns of D; are ordered in the same way as the
order of the points along the line, the edges of the graph correspond to the elements
on the subdiagonal of Dj. We find segmental additivity for all pairs of points (i, )
that are not consecutive. Specifically, any other element in the upper-right triangle of
the distance matrix D1 is the sum of consecutive elements in the subdiagonal, start-
ing with the subdiagonal element in the same row, and ending with the subdiagonal
element in the same column. Hence, in this case the graph is a chain, which has
graphical distances with exactly the same additivity structure as a set of points on a
line. The chain can be displayed in many ways (for instance, as a curved, connected
sequence of nodes in the plane), all of which give an equivalent reconstruction of the
one-dimensional distances, as long as their edge lengths are equal to the subdiagonal
elements of D;.

Internal nodes

It can be useful to add nodes to the network that do not correspond to the original
set of points in the city-block configuration M. These additional nodes are called
internal nodes, and can be chosen in a number of ways. In general, adding one point
to a network of m nodes leads to m additional edges in the network. Therefore, the
introduction of the internal node should entail the possibility of dropping a number
of edges, too. By placing the new point in a metric segment of a pair of existing
points, the total number of edges reduces by one. Thus, the internal point could be
chosen so that it is in the intersection of as many of the n metric segments as possible.

The case for which the greatest simplification occurs is an equal-distance config-
uration Zj, for four points defined as:

1 0
0 1

Zo=| | (5.5)
0 -1

It is not hard to verify that the city-block distances between all six pairs of points
in Zy are equal to 2, and that no point is in the metric segment of any other two
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Figure 5.2: Equal city-block distances among four points. Tetrahedron with equal edge
lengths (left panel) and star graph with equal spokes, which generates the same distances

(right panel).

points®. Hence, the network for Z; is a complete graph with equal edge lengths, a
structure called a simplex. Now, note that the intersection of all metric segments in
Z,) contains exactly one point, the origin [0 0)". Introducing the origin as an internal
node, four edges are added to the network, all with edge length 1, which brings the
total number of edges up to 10. However, since the origin is in all of the six metric
segments, the six original edges can all be dropped, bringing the total number of
edges down to four. Figure 5.2 shows the simplex and the reduced network. In
general, in the equal-distance case the number of edges can always be reduced from
%m(m — 1) to m by the introduction of one internal node. The resulting graph is a
special case of a star graph (Carroll, 1976) and the resulting metric is called a “center
distance” (Le Calvé, 1985).

Let us describe the star graph and the center distance in general terms, as they
are a special city-block structure of independent interest; we will encounter this case
again later. First, a special four-dimensional configuration yields the same city-block
distances as Zy in Equation 5.5. It is just the uniform diagonal matrix Y defined as

Yy =

0
0
. (5.6)
0

SO O
[ NeN o}
- o O O

The uniform diagonal configuration Yy in Equation 5.6 can be generalized to arbi-
trary m and unequal distances, whereas Zj in Equation 5.5 cannot. In particular,
collecting a set of object-specific, non-negative weights A = {a1,---,a;} as diag-
onal entries in the m x m diagonal matrix Y, we calculate the city-block distance

3Note that a diagonal matrix with all diagonal elements equal to 2 generates the same set of distances.



5.2. GENERAL THEORY 125

between any two rows of Y, denoted by A; and A]-, as
d(A;, Aj) = Xt]%t —yjtl = yii —0[ + 10 —yjj| = a; +aj, (5.7)

where the simplification follows from the fact that y;; = 0 if i # j. Thus, diagonality
of a city-block configuration leads to an additively decomposable metric. Although
the distance function has additive form, note that for i = j we have d(A;, A;) = 0,
and not 2u;. Therefore, the distance matrix D is not additive. We can choose between
two geometrical representations of Equation 5.7: either as a polytope with m vertices
in m — 1 dimensions, which follows from the geometry of the rows of Y, or as a star
graph with m external nodes or leaves, one internal node or hub (corresponding to
the m-vector of zeros), and m edges or spokes. The spokes have the special property
that they all coincide in the hub, and are of length «;. The regular simplex shown in
the left panel of Figure 5.2 is a four-point polytope with edges of equal length, while
the reduced network in the right panel of Figure 5.2 is a star graph with four leaves,
one hub, and four spokes of equal length.

We now return to the general case to demonstrate the use of internal nodes.
The two-dimensional city-block solution for the rectangle data of Borg and Leut-

W1H3

0.30

W1Hg

Figure 5.3: Network representation of the two-dimensional city-block solution for the rect-
angle data, including fifteen internal nodes. The labels W; — W indicate the width levels, and
Hj — Hj the height levels of the stimulus rectangles.
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ner (1983), discussed earlier in connection with Figure 5.1, is plotted as a network
with internal nodes in Figure 5.3. The internal nodes are indicated with open dots,
and labeled according to the order in which they were created, while the external
nodes (or leaves) are indicated with solid dots and labeled with their width and
height level. The introduction of internal nodes 1 and 2 eliminated all long lines in
Figure 5.1B between W3H; and W;H; on the one hand, and W3H; and W;Hy on the
other hand. Similarly, the introduction of internal node 3 eliminated the long lines
between W, H1, WoHy, Wy Hs and W, Hy, all rectangles of width 2. This strategy was
continued for all rectangles of height 3 and other subsets until, starting with internal
node 7, new nodes were introduced with the additional objective of reducing the de-
gree of the external nodes and the number of crossings. The result in Figure 5.3 more
clearly shows the city-block character of the solution than Figure 5.1B, while still ac-
counting for the same distances. It may be verified that if the shortest path between
two points includes one or more internal nodes, their direct distance in Figure 5.1B
equals the sum of the path lengths in Figure 5.3 (up to rounding error).

After adding 15 new nodes, the total number of lines has a small increase from
56 to 61, of which 20 are among internal nodes only, 28 are between internal and
external nodes, and 13 are among external nodes only. The longest lines have been
eliminated, and all nodes have lower degree. For example, node W, Hy now has de-
gree 6, while it had degree 11 before, and node W, H3; now has degree 3, while it had
degree 10 before. In addition, the number of crossings at locations without inter-
mediate node has decreased considerably. Thus, internal nodes can indeed simplify
several aspects of the network representation, and can make it readily interpretable.

Figure 5.4: Partial isometry: two different configurations with the same city-block distances.
Left panel: Network representation of A, B, C and the points P1—-P5. Right panel: Network
representation of A, B, C and the points PI—P5. The two networks share the internal point H,
the hub.
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Partial isometries

The network representation helps to explain a puzzling phenomenon that can occur
in city-block models. Bortz (1974) has noted that under certain conditions the model
coordinates are not unique over and above the usual indeterminacies in distance
models, such as invariance of distances under translation (or choice of origin) and
reflection of dimensions. Figure 5.4 shows an example (adopted from Bortz, his
figure 3), in which two city-block solutions M and M’ are superimposed: they have
the points A, B, and C in common, but M consists in addition of the points P;- Ps,
while M’ has the points P; - P5. Although these two configurations appear to be
quite different, their city-block distances are equal. This effect is high-lighted by
including the lines of the network representation of M (left panel) and M’ (right
panel), and an internal node H that lies in the metric segment of all pairs of points
for which the first is selected from the set {4, B, C}, and the second from either P;-
Ps or P; — Ps. It is clear that the only difference between the left panel and the right
panel of Figure 5.4 is that they are different embeddings of the same network. Only
the part above and to the left of H, the internal node called the hub, shows a reflection
along the 45° direction, while the part below and to the right of the hub is the same.

A general formulation of this phenomenon is as follows. Partial isometries oc-
cur in city-block spaces whenever the set of objects can be partitioned into subsets
{F1,E, F;,--- } in such a way that the coordinates of objects from different subsets
are either monotonically ascending (z4; < zp; < z¢r < ---) or monotonically de-
scending (z4; = zpt = zc = ---) forany t, with A € Fj, B € F, and C € F;. This
condition implies that we can define a hub in the intersection of all metric segments
of points selected from any pair of consecutive subsets. In the network representa-
tion, all between-subset distances are thus channeled through (one or more) hub(s).
In the embedding of the network in city-block coordinates, we can apply reflections
within subsets without altering either the within-subset distances (since reflections
do not change distance) or the between-subset distances (since distances to the hub
remain unaltered). Summarizing, while the coordinate space is not unique under
the monotone subset condition, there is only one network, which merely has differ-
ent embeddings. Both representations allow an interpretation only in terms of the
several within-subset constellations and the global order of the subsets.

5.3 Discrete models that are special cases of the city-block model

Some discrete models of similarity are special cases of the city-block model, and
therefore we can make network representations by the same token. One may define
these discrete models as structures on subsets of objects, but also as city-block mod-
els with binary coordinates. We will first discuss a fundamental property of all dis-
crete models in terms of a condition on subsets, called lattice betweenness, and show
that lattice betweenness is a special case of metric-segmental betweenness when all
coordinates are binary. The most general of all discrete models considered is the dis-
tinctive features model, a distance model based on the symmetric set difference, well
known to be equivalent to the city-block model on binary coordinates. We then dis-
cuss the common features (or additive clustering) model, and show how to obtain
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a network representation for this model, too. After a discussion of the conditions
for obtaining a perfect solution, for both the common and the distinctive features
model, we turn to two special cases, the partitioning model with main effects, and
finally the additive tree model.

Lattice betweenness of feature sets

Restle (1959) tried to justify a metric analysis of psychological similarity from set-
theoretic considerations, by using the concept of betweenness of sets of qualitative
elements and the symmetric set difference as a distance measure?. We first discuss
the nature of betweenness in this context, returning to the set-theoretic distance in
the next section. The common definition in logic for betweenness of sets is to say
thatif S = {Sy,---,S;,-+-,Sm} is a family of subsets of some set of arbitrary or
qualitative elements, S; is between S; and Sy if the following condition holds:

(Si1M1SK) €5 C (S;US) (5:8)

Thus, to be between S; and S, subset S; has to share at least all elements common to
them, while it cannot have elements not present in either of them. The set of all sub-
sets ordered by the inclusion operator C is a complete lattice (cf. Davey & Priestley,
2002). Therefore, we refer to Equation 5.8 as lattice betweenness. To clarify the relation
of lattice betweenness and metric-segmental betweenness, we have to make explicit
the reliance of the subsets in S on the base set of qualitative elements. Let this base
setbe F = {F,--- ,F,---,Fr}, where the T elements are called features®. We define
the feature matrix E = {e;;} as an m x T binary incidence matrix, where e;; = 1 if S;
has feature F;, and ej;= 0 if not. Thus, the rows of E characterize an object in terms
of a subset of features, while the columns of E characterize a feature in terms of a
subset of objects.

We now show that lattice betweenness is a special case of metric-segmental be-
tweenness. For metric-segmental betweenness between A, B, and C to hold, the co-
ordinates of a city-block configuration have to be either monotonically ascending
(zar < zpt < z¢y) or monotonically descending (za; = zpt > zcy) for all ¢ (if B is
between A and C). Transferring this condition to the binary coordinates in E, we
must have either e;; < ej; < ey orej; > ejy > ey for all t (if S; between S; and Sy). To
get from here to Equation 5.8, consider all eight possible (0, 1)-patterns of ¢;;, ej;, and
ext- One may easily verify that six of them satisfy monotonicity, while two of them
indicate violation of monotonicity. In particular, violation occurs if

(I—ei)ejs(1—e) =1 or ep(l—ej)e =1 (5.9)

for any ¢. Interpreting Equation 5.9 in terms of features, we see that metric-segmental
betweenness implies that the center subset S; cannot possess any feature F; that the

“The logician Nelson Goodman already studied the order and topology of qualities in his 1951 book
The Structure of Appearance, a revised version of his 1940 doctoral thesis A Study of Qualities (Harvard
University). Galanter (1956) introduced Goodmans ideas in psychology and put them to work with some
preliminary experimental findings on color vision.

5The index t and parameter T were used earlier for the dimensions of the city-block space, but there
is no danger of confusion, as it will turn out that features have exactly the same role as dimensions.
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two outer subsets S; and Sy fail to have, and that S; also cannot lack any feature
F; that the two outer subsets S; and Sy both possess. Thus, Equation 5.9 is equiv-
alent to S;(1S;NSx = @ and S;S; Sk = @ holding at the same time (this is
the formulation in Definition 2 used by Restle, 1959), which is in turn equivalent
to Equation 5.8. Therefore, a single notion of betweenness for a finite set of points
applies equally well in continuous space as in feature space.

Distinctive features model

What metric can we use in a representation of objects as subsets of features? Nat-
ural candidates for a distance between subsets are functions of the symmetric set
difference,

d(S;,S)) = [(SiUS)) = (SinS)] = u [(Si =S U (S; - Si)], (5.10)

where p[-] is some measure function, usually just a count of the features in the sub-
set®. The first part of Equation 5.10 expresses the symmetric set difference in terms
of the subset of relevant features (i.e., features in the union) that is not common to
the two objects (i.e., features in the intersection). The second part of Equation 5.10
expresses the same notion in terms of the total number of features that belong to S;
but not to S; (distinctive features for S; with respect to S;) and those that belong to
S; but not to S; (distinctive features for S; with respect to S;). Because of the latter
formulation, Tversky (1977) has called a model based on equation Equation 5.10 a
distinctive features model. Note that we do not interpret the term “distinctive” as a
qualification of the features (as do Navarro and Lee (2004) in their Modified Contrast
Model), but as a qualification of what contributes to the similarity or difference in
pairs of objects.

One of Restle’s (1959) results was that lattice betweenness is equivalent to ad-
ditivity of the distinctive feature distance, i.e., d(S;, Sx) = d(S;,Sj) +d(S;j, Sy). Al-
though in the present context this result readily follows from the equivalence of
lattice betweenness and metric-segmental betweenness, it is instructive to derive it
explicitly here (via the feature coordinates in E). Suppose u[-] is a weighted count
measure with weight 7; for feature F;. As a preliminary step, note that introduction
of the feature coordinates allows us to write Equation 5.10 as

d(S;, S;) Eﬂt teir + (1 —eireje] , (5.11)

from which it follows that

(S, Sj) =Y _nilei —ejr Z|zlt (5.12)
t

with z;; = 5ej;. Due to the binary nature of ¢;;, we can replace the squares in Equa-
tion 5.12 with absolute values. Thus, the distinctive feature distance is a city-block

6Restle (1959) mentions that Hays (1958) used the same distance concept, calling it the “implicational
difference”, and that he used multidimensional scaling to embed feature distances in Euclidean space
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distance, where the points are constrained to lie on the corners of a rectangular
(hyper-) block, and where the coordinates on any dimension are limited to two val-
ues, zero or 1;. Each feature splits the objects into two classes, and 7; measures how
far these classes are apart; for this reason, Heiser (1998) called the feature weight #;
a discriminability parameter.

Next, consider three points S;, S s and S, and assume betweenness in that order;
then we may rewrite the distance between S; and S; in Equation 5.11 as

d(Si,S;) = Y e [eir(1—eje) (1 — ) + (1 — eir)ejeens] (5.13)
t

since if S; has F; and S]- has not, then S; cannot have that feature either, so that
eit(1 —ejt) = eir(1 —ej)(1 — ex) , while if S; does not have F; but S; does, then S
must have it too, so that (1 —e;)ejr = (1 — ej)ejre; - In other words, Equation 5.13
follows from Equation 5.9. With an analogous expression for d(S;, Sx), we find

d(S;, ;) +d(S;,S) = Y _mi[ei(1—ej)(1—ex) + (1 —eir)ejeens]
7

+ Yo [eirejr(1 —exr) + (1 —eir) (1 — e )ex]
t

= Y i lein(1—ee) + (1 — eir)exe] = d(S;, Sg).
t

This equality establishes the result. The implication is that we have metric segments
in feature space that are paths along the corners of a (hyper-) block, or equivalently
(Flament, 1963, p. 17) as paths in the lattice spanned by the feature sets. Hence,
the distinctive features model can be represented as a weighted graph or network,
using the same graph construction strategy as the one used for the general city-block
model; for discrete models, Heiser (1998) called these representations feature graphs.
We can also construct internal nodes in the same way. Recall that internal nodes
correspond to additional points that are located in one or more metric segments
generated by the original (external) points. From condition Equation 5.8, it follows
that this rule is equivalent to choosing internal nodes as intersections of feature sets.

Corter and Tversky (1986) provided the first method to fit the distinctive features
model, by constructing a so-called extended similarity tree. They used a three-stage
procedure: in the first stage, their procedure fits the best additive tree to the data,
which limits the features to be either nested or disjoint; in the second stage, it se-
lects additional features to be included in the model, and the third stage the feature
weights are estimated for the total set of features. Heiser (1998) used a two-stage
alternating least squares method, which just cycles between improvement of the
feature structure and improvement of the weight estimates, without the backbone
of the additive tree. A third method was recently proposed by Navarro and Lee
(2004) as a special case of a more general approach, in which they used maximum
likelihood estimation assuming that the similarities are normally distributed with
common variance, and employing a greedy heuristic to find the feature sets. These
methods were all developed independently, and what their relative merits are, is
an open question. There are only a few applications without a priori known fea-
ture structure. Parault and Schwanenflugel (2000) used extended similarity trees
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Figure 5.5: Network representation of distinctive features model for the number data, with-
out internal nodes. Nodes labeled by stimulus value.

to study the development of childrens categorical knowledge of attention. Heiser
and Meulman (1997) used the distinctive features model to cluster profiles of binary
multivariate data.

We now demonstrate the construction of a feature network with an example of
data collected by Shepard, Kilpatric, and Cunningham (1975), who obtained ratings
of similarity between all pairs of integers from zero to nine, considered as abstract
concepts. For ease of comparison, we use the same twelve features as Corter and
Tversky (1986) found with their EXTREE method. Features in models like these are
undefined qualitative elements, but are interpretable by listing the stimuli that have
them. The first three form exclusive subsets: the additive and multiplicative iden-
tities F; = {0, 1}, powers of two F, = {2,4,8}, and a heterogeneous subset of re-
maining integers F3 = {3,5,6,7,9}. Next, we have the nested features primes larger
than three Fy = {5,7}, multiples of three F5 = {3,6,9}, powers of three F; = {3,9},
and the first two powers of two F; = {2,4}. There are five more features that form
overlapping subsets: sets of consecutive integers Fs = {0,1,2,3}, Fp = {7,8,9},
Fo = {0,1,2,3,4}, and Fj; = {4,5}, and the multiples of two, or even numbers
Fi; ={2,4,6,8}. Finally, we included two unique features Fj3 = {0} and Fj4 = {1},
since otherwise zero and one would have identical feature sets, so that they would
not be distinguished in the model, obtaining mutual distance of zero, and would
become disconnected from the network.
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After estimating the weights using nonnegative least squares (Frank & Heiser, in
press a; Heiser, 1998), and applying our basic edge deletion method of dropping the
direct edge between two points whenever an intermediate point exist in their met-
ric segment, one gets the network displayed in Figure 5.5. This solution accounts
for 98.36% of the dispersion (raw sum of squares) of the data, using 29 edges and
14 parameters. The network itself is a discrete structure in fourteen-dimensional
space, but it was embedded in the Euclidean plane by multidimensional scaling of
the estimated city-block (feature) distances with the program PROXSCAL (Heiser &
Busing, 2004), using a simplex start and allowing a ratio transformation. All edge
lengths are included in Figure 5.5 since the Euclidean distances in the plot only ap-
proximate them. In the embedded network, the three major features F, F,, and F3
differentiate well, as do the nested features F, Fs5, Fs, and F;. With his large number
of connections, stimulus 6 clearly exhibits its overlapping position as a member of
the even numbers on the bottom-left and the multiples of three in the center. At the
(bottom-)right side of the plot, we have the overlapping features Fg and Fjp, and on
the top the primes F; and top-left the large numbers Fy. Therefore, it appears that the
embedded network successfully displays the major characteristics of the distinctive
features model in an accessible way.

Nevertheless, the introduction of internal nodes can make the structure even
more transparent. The natural choice of internal nodes in the distinctive features
model is to identify a cluster in the high-dimensional feature space with a new point
that is located in the intersection of the features shared by the objects in that clus-
ter. For example, the internal node corresponding to the cluster C; = {0, 1} has the
features F, Fg, and Fy, since zero and one share exactly these features. This way
of defining internal nodes ensures that the distance between the two members S;
and S; of cluster C; splits: d(S;,S;) = d(S;,Cy) +d(Cy, S;), because for an additive
measure p we have d(S;,S;) = u(S; — S;) + u(S; = Si) = u(Si — Co) + u(S; — Cr)
when C;, = §;NS;, and d(S;, Cy) = pu(S; — Cy) since u(Cy — S;) = 0. Similarly,
we have d(S;, Cy) = d(S;, Cx) + d(Cy, Cy) for members of two nested clusters with
S; C Cy C Cy. These additivities lead to better interpretable paths in the network and
a low degree for the external nodes, especially if the features are nested or disjoint.
Nested features lead to nested clusters, represented as a chain of internal nodes. Let
us see how this representation works for the digit data.

The introduction of internal nodes for all clusters corresponding to the 12 fea-
tures, as well as five extra internal nodes associated to the objects 2, 5,7, 8, and 9, for
which we fitted additional unique features, lead to a network of 27 nodes in 19 bi-
nary dimensions in city-block space. Including unique features for the other objects
did not improve the fit. We obtained a PROXSCAL embedding with the same options
as before; Figure 5.6 displays the result. The seventeen internal nodes are plotted as
open dots, while the ten object nodes (external nodes or leaves) are plotted as solid
dots. Every object node with a unique feature is connected to the rest of the network
via an (unlabeled) internal node with a spike of length equal to the unique feature
weight. Note that all paths from 0 and 1 go through {0, 1} and then through {0, 1, 2,
3}, all paths from 2 go through {2, 4} and {0, 1, 2, 3}, all paths from 3 go through {3,
9} and {0, 1, 2, 3}, all paths from 4 go through {2, 4} and {4, 5}, and so on. In other
words, in this example all objects have only two direct neighbors, which are always
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internal nodes (clusters), except for 0 and 1, which have only one direct neighbor
because they differ only in their unique features, and 7 and 9, which have a mutual
link in addition to their two cluster connections.

Figure 5.6 also shows how nesting of features leads to nested clusters in a chain
of internal nodes. The most important chains are: the small numbers {(0, 1), (0, 1,
2,3),(0,1, 2,3, 4)}, the even numbers {(2, 4), (2, 4, 8), (2, 4, 6, 8)}, and the prime
numbers plus powers and multiples of three {(3, 9), (3, 6, 9), (3, 5, 6, 7, 9)}. The
three chains are connected in a triangle in the center of the display, which forms a
complete sub-network of internal nodes together with the medium-sized numbers
(4, 5) and the large numbers (7, 8, 9). All object nodes are connected via one or two
paths to this basic complete sub-network. The path can be linked either directly, like
from 6 to (2, 4, 6, 8) and from 8 to (7, 8, 9), or go through the closest node in one of the
chains, like from 2 to (2, 4) in the chain of even numbers, or from 2 to (0, 1, 2, 3) in the
chain of small numbers. The global structure of the embedding appears to consist of
a basic plane with the powers of two (2, 4, 8) on one side and the powers of three (3
and 9) on the other side, with small numbers at the right and large numbers at the
left. It appears that objects 5, 6, and 7 do not fit well into this plane, either because
they have a large unicity (5, 7) or because they share only partly features from both
sides (6 is a multiple of both two and three, but not a power of them). The identities
0 and 1 have an eccentric position with large unicity, but as a cluster, they are close
to the small numbers.

Additive clustering or the common features model

Shepard and Arabie (1979) proposed an additive clustering model, which builds up
the similarity s(S;, S;) between S; and S; from unrestricted binary features, according
to the rule

sij =5(5;,5) = u [SiNS;] = ) Oreireyy, (5.14)
t

where the 6; are again nonnegative weight parameters. This model thus uses a
weighted count of the features in the intersection of the feature sets of each object in
a pair. Since the model only takes features into account that the pair of objects have
in common, Tversky (1977) has called it a common features model. Mirkin (1987) de-
veloped the model independently under the name qualitative factor analysis, around
the same time as Shepard and Arabie, and adjusted it to the analysis of contingency
tables (the two-mode case) in Mirkin (1996). Arabie and Carroll (1980) and Carroll
and Arabie (1983) developed algorithms for finding the feature sets and the feature
parameters of the additive clustering model and its three-way generalization. Soli,
Arabie, and Carroll (1986) reported an application of the three-way additive clus-
tering model. More recent algorithmic strategies are given in Mirkin (1990, 1998),
Chaturvedi and Carroll (1994), and Ten Berge and Kiers (2005), among others.

In the additive clustering model, each feature defines a cluster of objects. The
unrestricted nature of the features implies that the clusters need not be exclusive
and may overlap. As noted by Carroll and Corter (1995), graphical representa-
tions of non-nested overlapping clustering are usually complex and difficult to in-
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Figure 5.6: Network representation of distinctive features model for the number data, with
internal nodes. Solid dots are stimuli labeled by stimulus value, open dots are internal nodes
labeled by subset.

terpret. Shepard and Arabie (1979) used a two-dimensional projection of a three-
dimensional city-block embedding of the original data, and then added contour lines
around sets of points that correspond to clusters in the additive clustering solution.
Carroll and Pruzansky (1980) proposed representing non-nested clustering by mul-
tiple trees, and (Corter & Tversky, 1986) by extended trees. What we want to show
now is that the clusters derived from the additive clustering model have a natu-
ral representation as a feature network. To demonstrate this possibility, we express
the common features model as a special case of the distinctive features model. This
relationship was first established by Sattath and Tversky (1987).

Suppose that we have a feature set F, coded in a feature matrix E, and weight
parameters (él, e, By, e ,éT), that approximate some similarity Gij according to
the common features model (Equation 5.14), where we denote the approximation
by 8 = ¥ éteijejt. We want to demonstrate that it is possible to form a specific

linear transformation dAi]' = 2K — 2§;; that follows exactly a distinctive features model,
where K is some constant that we will specify later. We can use the same feature set
F,but we have to append to it a set of m unique features. A unique feature is a feature
with only one object associated to it, with non-negative weight. To distinguish the
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features in E from the unique features, we call the former shared features, since there
are always two or more objects sharing a non-unique feature. The feature matrix of
a set of unique features is diagonal, so that by themselves they form an additively
decomposable metric associated with a star graph, as we saw in the discussion of
Figure 5.2. We will use the notation e; for the unique features, with t* =1,--. ,m,
and with the understanding that e~ = 1if i = t* and e;+ = 0 otherwise. Without
danger of confusion, we use a; = Y« apeej+ for the unique weight of object i.

To let the switch from common features model to distinctive features model
work, it suffices to take identical weights for the shared features, while the weights
for the unique features are a simple function of the shared feature weights, specified
as follows:

- 6
& = K=Y 0wy (5.15)
t

The constant K can be chosen freely as long as it does not make the weights a; neg-
ative, i.e., as long as it satisfies K > max; ) ; fjre;;. From Equations 5.15 we have
K = &; + Y ; fje;, so that we may write

~

dj = 2K—28;=K+K-2Y beye
t

&; + ;ﬁteit + 56]' + ;ﬁtejt -2 ;ﬁteitejt

Y e+ Y A —2) freieji | + (& + &)
. 7 G
=) iirleir — el + Y &eleip — ejye. (5.16)
G r

Note that whenever we have the approximation cfij ,
%dAi]«. Also, note that (171, - -+, ¢, ---, 1) and (a1, - -+, &g, - -+ , &) should not be
seen as a set of T + m independent parameters, because both are functions of the T
parameters (64, ---,0;,--- ,07). Clearly, Lfij in Equation 5.16 has the desired form of a
distinctive feature distance, since the sum of two feature distances is again a feature
distance with dimensionality equal to the sum of the two original dimensionalities.
Therefore, we can check all triads of points for lattice betweenness to see which
edges of the network we can delete, as usual.

It is often useful in this approach to the graphical representation of the common
features model to define m internal nodes, one for each object, with shared features
that are the same, but without unique features. The effect will be that the feature
graph displays the structure of the shared features in its internal nodes, each of
which corresponds to (and can be labeled with) exactly one object. In addition, each
internal node has one unique edge (a spoke toward one external node) attached to
it, the length of which indicates the relative distance of an object towards all others.
This spoke (and its length) is analogous to a unique factor (and its variance) in fac-
tor analysis. Hence, Mirkin (1987) name qualitative factor analysis for the common
features model is well chosen.

we also recover §;; = K —



136 CHAPTER 5. NETWORK REPRESENTATIONS OF CITY-BLOCK MODELS

In factor analysis, the diagonal of the correlation matrix to which we fit the model
is constant, and the unique factors are necessary to account for the variance left
unexplained by the common factors. In the common features model, the shared
features produce diagonal terms equal to 8;; = ) ; fe;; , the sum of the weights that
an object possesses, and these will generally not be constant either. Hence, if one
would like to account for the diagonal elements of the similarity matrix, one would
need to append a set of m unique features to the common features model as well,
that is, write the model as

$(Si,Sj) = Y _Oreneir + Y Preeir-ejpr,
t t*

with e;+ denoting the unique feature of object i and B4+ = B; > 0 its non-negative
weight. The diagonal elements are equal to the sum of all weights relevant for object
i:

(i, Si) =Y Oweir + ) Brei = Y_Oreir + Bi,
t t* t

while the off-diagonal elements remain the same as before, since } 4 fi-ej-eji+ = 0if
i # j. Therefore, if we want diagonal elements equal to some constant value, that is,
5(5i,Si) = K, the unique weights for the extended common features model should
be chosen as

léi = Kizéteih
t

that is, identical to the unique weights under the extended distinctive features model
in Equation 5.15, because 7j; = 6;. Since in practice one usually does not model the
diagonal elements of the similarity matrix, the issue never seems to arise. However,
to make the model complete, the common features model needs the same unique
features as the distinctive features model.

In the distinctive features model, the effect of the unique features with weights
&; defined in Equation 5.15 also is to make the sum of the weights for each object
constant. This property can be expressed geometrically by calculating the feature
distance of object S; with respect to the origin O (internal node with all-zero profile),
and inserting Equation 5.15:

d(S;,0) =Y e +&; = Y fiei + K=Y freyy = K.
t t t

Hence, the common features model for similarity matrices with equal self-simila-
rities is a special case of the distinctive features model: if the unique feature weights
satisfy Equation 5.15, then reversing the argument in Equation 5.16 shows that the
distances satisfy a common features model. In practical terms, for any fitted com-
mon features model we can find an equally well fitting distinctive features model,
with object nodes at constant distance from the origin, with the same shared features
and feature weights, and with the same number of independent parameters.

As an example of the network representation of the common features model,
consider the body parts data collected by Miller (1969), which was reanalyzed by
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Figure 5.7: Network representation of common features model for body-parts data, with in-
ternal nodes.

Carroll and Chang (1973), and Shepard and Arabie (1979). Miller’s data on the per-
ceived similarity of 20 body parts are counts of the number of times in which 50
subjects, in a free sorting task, put a pair of stimuli into the same group. As noted
by Shepard and Arabie, the body parts had been chosen based on a rather clear
hierarchy of anatomical inclusion, but with some ambiguities. We have used the
same 10 common features and weights found by their ADCLUS procedure, which ac-
counted for 95.6% of the variance in the similarities. Using Equation 5.15 to calculate
weights for the shared and unique features under the distinctive features model and
applying the general graph construction rule we obtain the network representation
in Figure 5.7. In this representation, eleven internal nodes have been included to
reduce the degree of some of the nodes. One of them is labeled by O, and can be
interpreted as the root or the origin of the network, since it is defined by a profile
of zeros on all features. The other internal nodes are labeled by the subsets found
by Shepard and Arabie. They are defined by the intersection of the features of the
objects in the subset that they represent. The network clearly shows that there are
four major clusters: a trunk cluster (consisting of body, chest, lung, neck, trunk, and
waist), a leg cluster (knee, leg, thigh, toe), arm cluster (arm, elbow, hand, palm), and
a head cluster (ear, cheek, face, head, lip, mouth), which is consonant with previous
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analyses. In this solution, we do not find evidence that trunk, leg, arm, and head are
especially close to their closest cluster point, to warrant the higher-order status that
they had in the Carroll and Chang (1973) solution.

A strong point of the current representation is that violations of hierarchical
structure are recognizable as cycles in the network. One major cycle is between the
origin, the trunk cluster and the head cluster (via head, neck), and another one is
between the origin, the arm cluster, and the leg cluster (via elbow, knee). These cy-
cles arise from the presence of feature 5, which connects two physically neighboring
parts, head and neck, and feature 10, which connects two functionally analogous
parts, elbow and knee. Thus, in addition to its simple portrayal of the additive
clustering solution, in which the clusters themselves can be included in a natural
way, the network representation of a common features model allows an immediate
diagnosis of departures from purely hierarchical structure. Note the following reg-
ularities in Figure 5.7. The sum of the line lengths from each leave node (solid dot)
to the origin is constant and equal to 1.07 (up to rounding error). One can read off
the dissimilarity between two leaves as the length of their shortest connecting path.
At the same time, one can read off their similarity as the sum of the line lengths of a
path from the origin to the smallest cluster that they share.

Exact fit of feature models

Is there a feature set that always yields an exact fit to an arbitrary (dis)similarity
matrix under these feature models? There is no exact answer in the literature to this
question, but the previous section shows how to obtain one. It is clear that under
the common features model a basis consisting of all size-two clusters corresponding
to all pairs of objects would be sufficient to fit any similarity matrix exactly. Let us
denote the features of this basis by e;( ;), where k, [ varies over all ordered pairs, and
we have the property e;;) = 1if i = kori = [, and ¢;;;) = 0 otherwise. Since
ei(k,1)ej(k) = 0 forallk, I exceptifi = kand j = I, there is exactly one feature for each
similarity, so that we can choose é(k,l) = gy, obtaining an exact fit ¢;; = §;;.

Under the distinctive features model, we can use the same basis of all size-two
clusters, but we need again to include unique features to reproduce any dissimi-
larity matrix up to a known additive constant. It is not hard to show that in this
feature structure no object is between any other object, so that the feature network is
a complete graph’. The specification of the parameters is

. 1
Ty = L—§5kz,

. 1
& o= 5 Y 6ij—(m—2)L, (5.17)
j#i

7For three objects A, B and C, the relevant features are AB, AC, and BC. Thus, it suffices to consider
A = {AB,AC},B = {AB,BC}, and C = {AC,BC}. Whatever object is chosen as the middle one, it
violates the requirement defined in Equation 5.9 that it should not lack any feature that the two outer
objects possess. For instance, A and C share AC, but B lacks it.
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where L is some positive constant. With these weights, the feature distance becomes

d(Si,S;) = Y Awnleiwn — iyl + & +&;
kol
1 1
= 2(m—-1)L - 52517' - 5251‘1‘*‘51‘1‘ —2L
J#i i#]
1 1
+5 20+ 5 ) 0 2(m = 2)L
J#i i#]

= 0jj. (5.18)

Thus, for any choice of L in Equation 5.17, we have perfect reconstruction of the dis-
similarities. It turns out that adding a constant to the weights of the shared features
can be compensated by subtracting (another) constant from the unique features. This
indeterminacy is caused by the fact that all pairs of objects differ on the same num-
ber of shared features (m — 1), and on the same number of unique features (two). We
can identify a solution by selecting L so that the smallest unicity becomes zero, for
example. However, there is another consideration. When choosing L too small we
obtain one or more negative weights 7y ;) for the shared features, and when choos-
ing L too large we obtain one or more negative weights &; for the unique features,
both of which are violations of the model assumptions. Requiring nonnegativity of
the two sets of weights in Equation 5.17 gives the following bounds for L:

1
maxd;; < L < min Oii. 5.19
Gj) iom—2 ]; g (5.19)

Therefore, we can identify a solution whenever the dissimilarities allow finding an
L in the interval Equation 5.19. If no such L exists, we can add the smallest positive
constant to the dissimilarities ensuring that Equation 5.19 becomes satisfied. Find-
ing such an additive constant is possible, because the lower bound involves only
one dissimilarity, while the upper bound involves the sum of m — 1 dissimilarities
divided by m — 2, so that the upper bound grows faster than the lower bound. In
conclusion, a feature network based on size-two clusters and singletons can always
reproduce an arbitrary dissimilarity matrix.

Even though perfect reproduction involves as many as %m(m + 1) features, while

there are merely %m(m — 1) independent data values, it should be noted that each
a-weight can be written as a linear function of the data values, so that we actually
do rely on exactly %m(m — 1) independent quantities. A calculation similar to Equa-
tion 5.18 shows that the feature distance of any object to the origin is constant; in
particular, we have d(S;,O) = L. Since the square root of the feature distance is
Euclidean (see Equation 5.12), it follows that the vertices of the complete graph that
perfectly reproduces an arbitrary dissimilarity matrix are located on a hypersphere

of dimension %m(m + 1) with radius v/L .
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Partitioning in clusters with unicities: the double star tree

Consider the situation in which the model consists of a set of unique features and a
set of shared features, where the latter has the special property of forming a partition
of the set of objects. Thus, each shared feature is disjoint from (or non-overlapping
with) any other shared feature, and no object lacks a shared feature (in addition
to its unique feature). Without the presence of unique features, this case would be a
standard clustering task for which several methods have been developed (cf. Hubert,
Arabie, & Meulman, 2001). As we saw earlier, unique features can be represented
as a star graph. A partitioning in T subsets can be represented as a star graph, too,
in which each subset is a vertex and the center of the star is again the origin (an
internal node with zero on all features). Fitting a model that is the sum of two star
graphs is a simple special case of Carrolls (1976) multiple tree structure approach,
but surprisingly no one has considered it in any detail®.

The graphical representation obtained for the sum of the distances in the star
graph of the unique features and the distances in the star graph of the partitioning
has a particularly simple form. We need one internal node for the origin, and T
other internal nodes (where T is the number of clusters), each having a single non-
zero value for one of the features defining the partitioning. With our usual graph
construction procedure of eliminating direct lines when two nodes are reachable
through another node in their metric segment, we obtain a graph in which each in-
ternal cluster node connects only with the origin and with the leaves that constitute
the cluster. Thus, the origin node has degree T, the cluster nodes have degree n; + 1,
where #; is the number of objects in cluster f, and the object nodes are leaves with
degree one. Any distance between two objects in different clusters equals the sum of
four line lengths along the unique path connecting them. Starting with S;, we have
the line from the leave of S; to the node of the cluster where S; belongs to, the line
from that cluster node to the origin, the line from the origin to the cluster node of S i
and finally the line from the cluster node of S; to the leave of S;. The distance be-
tween two objects in the same cluster is just the sum of two line lengths. The graph
of the double star tree is simple because it contains no cycles and has only T + m
lines. There is also a one-to-one relation between line lengths and feature weights.

For the Shepard et al. (1975) number data, analyzed earlier with the general dis-
tinctive features model and displayed in Figures 5.5 and 5.6, Hubert et al. (2001)
repeatedly found the optimal partition {(0, 1), (2, 4, 8), (3, 6, 9), (5, 7)}, with differ-
ent clustering criteria. Therefore, we adopted this partitioning and estimated weight
parameters for the shared and unique features with nonnegative least squares. Fig-
ure 5.8 displays the resulting network. We see that the graph has all the properties
described in the previous paragraph. It has no cycles, and since m = 10 and T = 4
in this case, it contains 4 + 10 = 14 lines. The origin only connects with the four
cluster nodes, and each object only with the cluster node of its own cluster. The dis-
tance between 1 and 5, which belong to different clusters, is the sum of the four line

8The closest example of a partitioning model with unicities that we could find in the literature is
one of the hierarchical tree structure models proposed by Carroll and Chang (1973), which they call the
"branches only” model. The partitioning occurs incidentally in their example of the body-parts data,
because the fitted tree is not fully resolved
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Figure 5.8: Network representation of double star tree for the number data.

lengths along the path (1) — (0,1) — (O) — (5,7) — (5), amounting to 0.12 + 0.20 +
0.10 + 0.18 = 0.60 (compared to 0.61 in Figure 5.5). The distance between 2 and 8,
which belong to the same cluster, is the sum of the two line lengths along the path
(2) — (2,4,8) — (8), amounting to 0.09 + 0.16 = 0.25 (compared to 0.32 in Figure 5.5).
The double star tree accounts for 94.84% of the dispersion (compared to 98.36% for
the more general model), so it still has a good fit. It is easy to check that none of the
within-cluster distances is larger than any between-cluster distance, which is a sign
of the quality of the partitioning; for example, compare the largest distance of 0.42
within cluster (0, 1) with a smallest distance of 0.44 between 4 and 6 in the powers of
two and the multiples of three clusters. It is a strong point of the double star tree that
it models within-cluster distances in addition to between-cluster distances. In con-
trast, other partitioning methods usually assume that the within-cluster distances
are random or zero.

Additive tree model

Consider building up a model with one feature defining a partitioning in two clus-
ters and a full set of unicities, and introduce an extension with features that are
limited to be proper subsets of previous clusters (excluding singletons, since there is
no need to duplicate the unicities). This construction leads to at most m — 3 shared
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features that are either nested or disjoint. In terms of feature sets, the implication
is that any three objects can be labeled so that 5;NS; = 5;NS; C §;N §. Now
the feature distance satisfies a special property that is characteristic for an additive
or weighted tree, called the additive inequality or the four-point condition (Buneman,
1971; 1974). A tree is a connected graph without cycles, and the qualifier additive
underlines the property that the distance between any two nodes in a weighted tree
is the sum of the weights (line lengths) along the shortest path connecting the nodes.
Tversky (1977) was the first to give an interpretation of an additive tree in terms of
the distinctive features model, and advocated its use as a practical simplification of
his more general Contrast Model. Colonius and Schulze (1981) gave a measurement-
theoretical characterization of the tree structure in terms of topological relations be-
tween pairs of objects and described corresponding sorting tasks for data collection.

Cunningham (1974, 1978), Carroll (1976) and Sattath and Tversky (1977) moti-
vated their work on the additive tree by pointing out limitations of the more com-
mon hierarchical tree and multidimensional scaling representations as models for
similarity data. Given two disjoint clusters in a hierarchical tree, for example, all
within-cluster distances are smaller than all between-cluster distances, which are all
equal. Such severe constraints do not necessarily hold in an additive tree. Pruzan-
sky, Tversky, and Carroll (1982) offered guidelines for deciding between spatial
and tree representations on the basis of data properties such as skewness of the
(dis)similarity distribution (under an additive tree model the distance distribution
is skewed to the left, and under a spatial model distances are skewed to the right).
Carroll, Clark, and DeSarbo (1984) proposed extensions of additive tree model to
three-way data. Despite its elegance and flexibility, applications of additive trees in
psychology are sparse, except perhaps in categorization research. An example is the
study of contrast categories in predicting typicality ratings by Verbeemen, Vanover-
berghe, Storms, and Ruts (2001).

Several algorithms are available for fitting an additive tree (see Barthélemy &
Guénoche, 1991). The major ones are ADDTREE (Sattath & Tversky, 1977),
ADDTREE/P (Corter, 1982), an improved implementation of the ADDTREE algorithm
because it allows for using metric information, the closely related and widely used
neighbor-joining (N]J) method (Saitou & Nei, 1987), and a least squares method due
to De Soete (1983). GTREE (Corter, 1998) uses only metric information to select the
nearest neighbor for each object and therefore represents an entirely distinct algo-
rithm from ADDTREE and ADDTREE/P. Viewed as a distinctive features model, the
tree is characterized by at most m — 3 shared features that are either nested or dis-
joint, and m unique features. Given the tree structure, we can find anyone of the
features by cutting any branch of the tree, causing the objects to fall apart in two
exclusive subsets. Repeated cutting of all 2m — 3 branches gives the complete set
of features. Given the feature structure, the tree can be found by the present graph
construction method, where each of the m — 3 shared features is included as an addi-
tional internal node (defined as the intersection of the profiles of the objects sharing
the feature). The origin should be included as well; this internal node corresponds
to the complement of the subset defined by the first feature. There is a one-to-one re-
lation between line lengths and feature weights. An interesting special case arises if
we constrain each internal node to be equal to one of the objects (the “branches only”
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model of Carroll & Chang, 1973), which amounts to setting the weight of some of the
unique features equal to zero. This constrained model has only m — 1 parameters.

Corter and Tversky (1986) found an additive tree for the Shepard et al. (1975)
number data with ADDTREE. Using the procedure just outlined, we recovered seven
shared features. The weight parameters for the shared and unique features have
been re-estimated with nonnegative least squares. Our usual graph construction
method yielded the network displayed in Figure 5.9, which is comparable with our
earlier results for the more general distinctive features model in Figure 5.6 and the
more restricted double star tree model in Figure 5.8. The %DAF of this solution of
95.37 is between those of the other two. There are clear common elements between
the three solutions, in particular the fact that they share the clusters (0, 1), (5, 7), (2,
4, 8), and (3, 6, 9). The additive tree refines (2, 4, 8) into (2, 4) versus (8), and (3, 6,
9) into (3, 9) versus (6), while it introduces the super-ordinate class (3, 5, 6, 7, 9) by
joining (3, 6, 9) and (5, 7). Remarkable differences between the three solutions are
the following. In the general distinctive features model, 9 is close to 7, but not in the
two other models; this is due to the cluster of large numbers (7, 8, 9), which joins
elements from three of the four major clusters apparent in the other two models.
Similarly, the cluster of small numbers (0, 1, 2, 3 ,4) in the general feature model
forms a major violation of the hierarchical structure, since it also combines elements
from three of the four main clusters in the other two models. Both the tree and the
general model join (5, 7) with (3, 6, 9) to form (3, 5, 6, 7, 9), but this cluster does not
occur in the partitioning model. In the tree, (2, 4) joins with 8 into (2, 4, 8), but does
not continue with (2, 4, 6, 8) like in the general model, since 6 is located in another
branch of the tree. All differences are understandable from the structural properties
of the three models.

5.4 Discussion

Additivity across dimensions and uniqueness of coordinate system have always
been the two most appealing properties of the city-block distance, ever since Lan-
dahl (1945) started thinking of models for similarity and difference, and Attneave
(1950) started experimenting with them (Arabie, 1991). Undoubtedly, the simplest
rule for the combination of psychological differences on different dimensions is to
add them up with equal weights (Cross, 1965). This paper has shown that the city-
block distance is not only additive across its component dimensions, but also across
sequences of intermediate points along certain trajectories in space. As an unex-
pected consequence, the extra additivity of distance allows dropping the whole co-
ordinate system. If we can embed dissimilarities in a city-block coordinate system,
we can equally well embed them in a network.

Our construction of the network representation rested upon the notion of the
metric segment between any pair of points in space. A metric segment is the area of
all intermediary points for which additivity of distance applies. City-block space has
metric segments that are rectangles in two dimensions, cuboids in three dimensions,
or hyper-cuboids in more than three dimensions. Since these areas are large enough
to accommodate a considerable number of intermediate points in any finite set of
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Figure 5.9: Network representation of additive tree for the number data.

objects, the possibility of network construction is realistic for city-block models. By
contrast, in Euclidean space metric segments are always line segments, and chances
of finding intermediate points on line segments are negligible with fallible data on
a finite set of objects. We also introduced the general concept of an internal node,
which is a supplementary point in the intersection of several metric segments. Inter-
nal nodes can be helpful in reducing the complexity of the network, and in making
the representation more transparent and better susceptible for interpretation.

A network is coordinate-free, that is, it is entirely determined by the presence
or absence of edges between the nodes, and the lengths of these edges; in other
words, it exists independently from an embedding in some coordinate system. In
some applications, such as the example of the Borg and Leutner (1983) data, one
could consider that property undesirable, since coordinates of objects are essential:
they are the psychological part of the psychophysical function. Nevertheless, when
fitting the city-block model without restrictions enforcing that the dimensions are
indeed simple functions of the independent variables, a procedure often used, there
is no guarantee whatsoever that the coordinates satisfy the expectations. Indeed,
they often do not correspond exactly with the predicted dimensions, as was also
clearly the case in our analysis of the Borg and Leutner data in Figure 5.1. In those
situations, the coordinate-free representation with internal nodes can be useful in
that it offers suggestions of the type of violations that occurred, as we have seen
in the discussion of Figure 5.3. For a real test of inter-dimensional additivity, it
might still be the best to follow simply Attneave (1950), who predicted observed
differences between stimuli varying on two dimensions from observed differences
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between stimuli varying only within dimensions and fitted a regression equation.

Coordinate-free models rely merely on distance and local relations. One may
argue that these two elements are enough to navigate mentally through cognitive
space. There is growing evidence that human navigation in physical space has two
distinct means of keeping track of position and orientation during travel: landmark-
based navigation and path integration (Klatzky, Beall, Loomis, Golledge, & Philbeck,
1999). While landmark-based navigation depends on some coordinate system - be
it Cartesian or with polar coordinates - path integration is a mechanism that builds
up a mental image of the trajectory traversed by encoding distances and turns, on
the basis of sensed self-velocity, self-acceleration, and self-rotation. Thus, in some
circumstances a network representation might have more psychological reality than
a coordinate representation, which also often assumes more continuity in psycho-
logical space than is warranted by the data.

An important difference between networks for continuous city-block models
(most often of low dimensionality) and networks for discrete city-block models (most
often of high dimensionality) is the type of embedding needed to achieve an inter-
pretable display. In the first case, the coordinates of the continuous solution of-
ten suffice, and no extra embedding is necessary (except for high-dimensional so-
lutions). In the second case, we do need a form of multidimensional scaling for
visualizing the nodes and the edges, which adds some arbitrariness to the final dis-
play, since several variations in analysis options are possible (type of fit function
used, type of possible distance transformation specified, type of start configuration
used, and so on). Nevertheless, the linking structure and the edge lengths are in-
variant. Therefore, when reporting a network, either the edge lengths or the feature
parameters themselves should always be included. In addition, the goodness-of-fit
between data and reconstructed network distance (network fit) is a more important
consideration than the goodness-of-fit between reconstructed network distance and
the distances in the visual display (embedding fit).

Network representation of feature structures offers a fruitful framework for the-
oretical comparison and practical use of a whole range of scaling and clustering
methods. For example, our derivation of the common features model as a special
case of the distinctive features model is a new result, owing to a more transparant
notation than the one used in Sattath and Tversky (1987) and Carroll and Corter
(1995). Since our network construction rule applies to continuous and discrete mod-
els alike, it turns out to be a unifying factor for understanding the relations between
them. Figure 10 gives an overview of these relations. From top to bottom, Figure
10 has six levels, each adding some extra restriction to the model. One-step down
from the most general continuous case, the distinctive features model arises from
the restriction that coordinate values be binary (where the distance between the two
values is not necessarily equal for all dimensions). At the same level of generality,
we have Corter and Tversky (1986) extended similarity tree, which is an equivalent
form, provided that we allow the tree being unresolved (for instance, if all features
overlap without nesting, we can only have an extended similarity tree representa-
tion by reducing the tree to a bipartition). Continuing further down in Figure 10, we
have:
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o Third level (common features model, additive tree). The additive tree arises from the
distinctive features model by the restriction that all features are either nested
or disjoint and from the extended similarity tree by the exclusion of marked
segments. As shown in this paper, the common features model arises from a
restriction on the weights of the unique features, so that the total sum of all
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Figure 5.10: Relationships between city-block models.
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feature weights is constant. Although Sattath and Tversky (1987) have stated
that the distinctive features model and the common features model have the
same level of generality, we believe that their argument runs into a contradic-
tion with respect to the diagonal entries of the similarity matrix (see Heiser
and Frank (2005), for a more detailed argumentation).

o Fourth level (ultrametric tree, double star tree, linear tree). The ultrametric tree
arises from the additive tree by the restriction that all nodes are equidistant
from the root (Carroll, 1976), but it is also a special case of the common fea-
tures model in which all features are restricted to be either disjoint of nested
(Carroll & Corter, 1995). If all features are completely nested and unique fea-
ture weights are zero except for one, we have a chain or linear tree (Sattath &
Tversky, 1977), which is equivalent to a one-dimensional continuous distance
model. As shown in this paper, if all shared features are disjoint, we have a
double star tree.

o Fifth level (singular tree, reduced star tree). If all unique features in the dou-
ble star tree are restricted to have zero weights, we obtain a reduced star tree,
or simply a partitioning. If all shared features in the double star tree are re-
stricted to have zero weights, we obtain a star graph (Carroll, 1976), also called
a singular tree (Sattath & Tversky, 1977).

o Last level (simplex tree). If the leaves of a star graph are equidistant to the root,
that is, if all unique feature weights are equal, we obtain the equidistant star
graph, or simplex tree. Equal distances also arise if an ultrametric tree is com-
pletely unresolved (that is, the weights of all shared features reduce to zero).

It appears that all known discrete models of similarity fit well into this scheme. They
are all special cases of the distinctive features model, and the general rule proposed
in this paper produces their usual graphical representations, thanks to the introduc-
tion of internal nodes.

One model not mentioned in Figure 5.10, Tversky’s (1977) Contrast Model, is de-
composable into a symmetric and a skew-symmetric component, which are uncor-
related; the skew-symmetric component is linear and depends only on the sum of
the feature weights (Zielman & Heiser, 1996),. As already noted by Tversky (1977),
the symmetric version of the Contrast Model is equivalent to a distinctive features
model. Therefore, the symmetric component of the Contrast Model fits in the scheme
of Figure 5.10, and has a network representation. The model recently proposed by
Navarro and Lee (2004), like the Contrast Model, is a linear combination of common
and distinctive features, with the specification that each feature enters either into a
common features combination rule or into a distinctive features combination rule.
Converting the common component into a distinctive component with the speci-
fications in Equation 5.15 in this paper, we have an additive combination of two
distinctive features models, which again is a distinctive features model in the total
feature space. In fact, this hybrid type of model is an example of Carroll’s (1976) gen-
eral strategy of decomposing a (dis)similarity matrix into the sum of multiple trees
or other graphical structures. Although the sum of two additive trees is not a tree, it
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still is a distinctive features model (albeit perhaps not a parsimonious one). Finally,
it is of interest to mention the possibility to combine these discrete structures with
generalized context models and geometric prototype models (M. D. Lee & Navarro,
2002; Nosofsky & Zaki, 2002; Verbeemen, Storms, & Verguts, 2004; Zaki et al., 2003).

Several aspects of network representations allow statistical refinement. Given
the feature structure, estimation of the feature weights is a rather standard statistical
problem. Frank and Heiser (in press a) have shown how to determine standard
errors and confidence intervals for the feature weights in the distinctive features
model. When the data can be split up in a training and a testing sample, it is also
possible to calculate statistical accuracy of parameter estimates, do model tests and
find a well-balanced compromise between model fit and model complexity when
the features are unknown (Frank & Heiser, in press b). Similar work has been done
by M. D. Lee (2001) for additive clustering, Navarro and Lee (2001) for the Contrast
Model, and Frank and Heiser (2005) for additive trees. The emergence of a full-
fledged methodology for city-block models owes much to their additivity, the very
same property that makes them such attractive models for psychological similarity
and difference.



