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Chapter 4

Feature Selection in Feature Network
Models: Finding Predictive Subsets of
Features with the Positive Lasso 1

Abstract

A set of features is the basis for the network representation of proximity data
achieved by Feature Network Models (FNM). Features are binary variables that
characterize the objects in an experiment, with some measure of proximity as
response variable. Sometimes features are provided by theory and play an im-
portant role in the construction of the experimental conditions. In some research
settings, the features are not known a priori. This paper shows how to gener-
ate features in this situation and how to select an adequate subset of features
that takes into account a good compromise between model fit and model com-
plexity, using a new version of Least Angle Regression that restricts coefficients
to be nonnegative, called the Positive Lasso. It will be shown that features can
be generated efficiently with Gray codes that are naturally linked to the FNM.
The model selection strategy makes use of the fact that FNM can be considered
as a univariate multiple regression model. A simulation study shows that the
proposed strategy leads to satisfactory results if the number of objects ! 22. If
the number of objects is larger than 22, the number of features selected by our
method exceeds the true number of features in some conditions.

4.1 Introduction

Feature Network Models or FNM (Heiser, 1998) are graphical models that represent
proximity data in a discrete space while using the same formalism that is the basis of
least squares methods used in multidimensional scaling. A typical application area
for FNM would be cognitive psychology where one studies how human cognition

1This chapter has been accepted for publication as: Frank, L. E. & Heiser, W. J. (in press). Feature se-
lection in Feature Network Models: finding predictive subsets of features with the Positive Lasso. British
Journal of Mathematical and Statistical Psychology. With an exception for the notes in this chapter and Fig-
ure 4.2, which are reactions to remarks made by the members of the promotion committee.

83



84 CHAPTER 4. FEATURE SELECTION IN FEATURE NETWORK MODELS

processes stimuli by analyzing the ratings of perceived (dis)similarity of these ob-
jects. If N respondents evaluate the dissimilarity of m objects and T binary features
characterize these objects, the number of features in which two objects are distinct
yields a dissimilarity coefficient that can be used as a structural model to be fitted
to the data. The additivity properties of networks make it possible to consider the
model as a univariate multiple linear regression problem with positivity restrictions
on the parameters. The positivity restrictions are necessary because the parameters
represent edge lengths in the network representation of the models.

Least squares and multiple linear regression estimates have been frequently ap-
plied in models that are related to FNM, like, for example, extended similarity trees
(Corter & Tversky, 1986) and additive clustering with ADCLUS (Shepard & Arabie,
1979) or with MAPCLUS (Arabie & Carroll, 1980). However, the possibilities offered
by multiple linear regression have not been fully explored in the context of these
models. For instance, statistical inference is not common practice for these cluster-
ing and tree models. Recently, theoretical standard errors were introduced and used
to construct confidence intervals for the parameters of the FNM (Frank & Heiser, in
press a) and related additive trees (Frank & Heiser, 2004) using the theory of nonneg-
ative least squares. In this article, we use the multiple linear regression framework
for the selection of a subset of features that constitutes a good compromise between
model fit and model complexity.

Before introducing the feature selection strategy proposed in this work, more
has to be said about the nature of the features and the feature sets that are used to
represent the proximities. The concept of a feature was introduced in psychology
by Tversky (1977) who proposed the Contrast Model (CM) to describe the similar-
ity between two objects in terms of a linear combination of the features they share
(common features) and the features that distinguish between them (distinctive fea-
tures). The Contrast Model in its most general form has been used in practice with a
priori features only (Gati & Tversky, 1984; Keren & Baggen, 1981), but many models
have been developed since, which search for either the common features part or the
distinctive features part of the model, or a combination of both. Models based on
common features are additive similarity trees (Sattath & Tversky, 1977) and addi-
tive clustering (ADCLUS, Shepard & Arabie, 1979; MAPCLUS, Arabie & Carroll, 1980;
CLUSTREES, Carroll & Corter, 1995). The distinctive features are used for the ex-
tended similarity trees (EXTREE) proposed by Corter and Tversky (1986). A model
that has the closest relation to the CM is the Modified Contrast Model (MCM) de-
veloped by Navarro and Lee (2004) that aims at finding a set of both common and
distinctive features that best describes the data. This model comprises an imple-
mentation of Tversky’s Contrast Model as well as the Common Features (CF) and
the Distinctive Features (DF) models, that are special cases of both CM and MCM.
FNM is based on the distinctive features only.

All aforementioned methods aim at finding a set of features that does not nec-
essarily have a nested structure as required in hierarchical trees and additive trees.
Rather, a less restricted structure of possibly overlapping clusters or features is
sought. The FNM is the only model that represents this overlapping feature struc-
ture by a network representation. To find such a feature structure, we propose a
strategy that is related to the predictor selection problem in the multiple regression
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framework. The basic idea is to generate a very large number of features (or if pos-
sible, the complete set of features) first, and then select the best set of features with a
subset selection algorithm. We used the Lasso option of the Least Angle Regression
(LARS) algorithm (Efron et al., 2004), a recently developed efficient model selection
algorithm that is less greedy than the traditional forward selection methods used
in the multiple linear regression context, in the sense that the traditional methods
have the tendency to eliminate useful predictors that happen to be correlated with
the predictor selected in the previous step. We modified the Lasso option of this
algorithm into a Positive Lasso to meet the positivity constraints of our model.

The large number of features presented to the subset selection algorithm is gener-
ated using the Gray code, a cyclic permuted version of the usual binary code, which
will be explained below. Gray codes have a natural link with the network represen-
tation of the feature profiles for the objects in the FNM. In addition, the symmetry
property of distinctive features leads to a very efficient use of the Gray codes because
only half of the total number of codes is sufficient to enumerate the set of all possi-
ble distinctive features. This property allows in practice for enumerating the total
number of features for numbers of objects m smaller or equal to 22. If m exceeds
22 and complete enumeration is no longer possible, we propose the use of a very
large sample of Gray codes combined with a filter technique to reduce the number
of features before using subset selection.

The strategy proposed here is different from the algorithms for the other meth-
ods because it approaches the problem of finding an adequate set of features from
a different angle: most methods search for sets of features while fixing the number
of features in advance. Typically, several solutions with different numbers of fea-
tures are generated, and the best set of features is selected based on criteria such
as goodness-of-fit and interpretability. The first application of FNM used a cluster
differences scaling algorithm (Heiser, 1998) with number of clusters equal to two,
which constitutes a one-dimensional MDS problem with the coordinates restricted
to form a bipartition. It is still a hard combinatorial problem, and, therefore the im-
plementation uses a nesting of several random starts together with K-means type
of reallocations. The strategy proposed in this paper incorporates model selection
criteria during the search process, leading to a set of features that is not necessarily
optimal in the current data, but that has predictive value with a balanced trade-off
between goodness-of-fit and prediction accuracy. Prediction accuracy or prediction
error, which can be assessed with closed form formulas or can be approximated
with cross-validation techniques, has not been used yet in this context, except for
the Modified Contrast Model (Navarro & Lee, 2004) that uses a forward feature se-
lection method and a model selection criterion related to the BIC criterion.

The remainder of the article is organized as follows. The second section presents
the theory of the Feature Network Models and the generation of binary features us-
ing Gray codes. The section ends with an application on a data set and a comparison
of features provided by theory and features selected by the strategy we propose. The
third section shows the results of a simulation study that evaluates the performance
of our strategy, and the last section provides concluding remarks.
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Table 4.1: Matrix of 16 English consonants, their pronunciation and phonetic features

Consonants F∗
1 F2 F3 F4 F5 F6 F7

p (pie) 0 0 0 0 0 1 0
t (tie) 0 0 0 0 1 0 0
k (kite) 0 0 0 0 0 0 1
f (fie) 0 0 1 0 0 1 0
θ (thigh) 0 0 1 0 1 0 0
s (sigh) 0 0 1 1 1 0 0

(shy) 0 0 1 1 0 0 1
b (buy) 1 0 0 0 0 1 0
d (die) 1 0 0 0 1 0 0
g (guy) 1 0 0 0 0 0 1
v (vie) 1 0 1 0 0 1 0
ð (thy) 1 0 1 0 1 0 0
z (Zion) 1 0 1 1 1 0 0

(vision) 1 0 1 1 0 0 1
m (my) 1 1 0 0 0 1 0
n (nigh) 1 1 0 0 1 0 0

*F1 = voicing; F2 = nasality; F3 = affrication; F4 = duration; F5 = place, middle;

F6 = place, front; F7 = place, back.

4.2 Theory

Feature Network Models

Feature Network Models (FNM) are graphical structures that represent proximity
data in a discrete space. The properties of these models will be explained using a
well known data set, the perceptual confusions among 16 English consonants col-
lected by Miller and Nicely (1955). These 16 phonemes can be described by 7 artic-
ulatory features2: voicing, nasality, affrication3, duration4 and three places of articula-
tion (see Table 4.1). The authors were particularly interested in which articulatory
features are important in distinguishing the consonants when affected by varying
signal to noise conditions. The original data consist of 17 matrices in which each
cell contains the frequencies of confusion between the spoken phoneme (the rows)
and the phoneme written down by the participants (the columns). Shepard (1972)
pooled the data from the first six original matrices (representing 6 different signal-

2It should be noted that the feature set consists of 7 features instead of the 6 features used for the
same data in Chapter 2. The articulatory feature place of articulation has three levels (front, middle, back)
and is represented in Table 4.1 by the three binary features F5, F6 and F7 as a result of dummy coding.
Representing the three levels by three variables leads to multicollinearity, and as a result, the third level
has been left out from the feature set in Chapter 2. In the present chapter, the technique of the (Positive)
Lasso is robust to multicollinearity and therefore, the complete feature set is used.

3At present, phonetic experts would call this feature friction.
4The feature duration is not a proper phonetic feature and has been adopted arbitrarily by Miller &

Nicely (1955) to distinguish the difference between {s, , z, } and the remaining consonants.
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to-noise conditions) collected by Miller and Nicely and coverted the pooled data to
a symmetric matrix of similarities with the transformation ςij = ( fij + f ji)/( fii + f jj),
where f denotes the frequencies of confusion. For our study, the similarities were
further transformed into dissimilarities δij by the transformation δij = − log(ςij),
assuming that the similarity measures decay exponentially with distance.

The data are illustrative for the use of features provided by theory, i.e., phonetic
theory describes the articulatory properties of the phonemes. In many situations,
no theory is available about the objects. Features are binary variables indicating for
each object whether a particular characteristic is present or absent. Features are not
always intrinsically binary: any ordinal or even interval variable if categorised can
be transformed into a set of binary features, using dummy coding. For example, the
place of articulation has three categories to indicate the place in the mouth where
the phonemes are pronounced: front, middle and back. Dummy coding produces
the three features place, front, place, middle, and place, back (Table 4.1).

Some set theoretic properties of the binary feature matrix lead to the estimation of
a distance measure that approximates the observed dissimilarities. For example, the
phoneme g has feature {voicing, place back} and phoneme v has the features {voicing,
affrication, place front}. The difference between the union and the intersection (=
the symmetric set difference) expresses which feature g has that v does not have
and vice versa: (g ∪ v) − (g ∩ v) = {affrication, place front, place back}. Following
Goodman (1951, 1977) and Restle (1959, 1961), a distance measure that satisfies the
metric axioms can be expressed as a simple count τ of the elements of the symmetric
set difference, a count of the non common elements, between the stimuli Oi and Oj

and becomes the feature distance: d(Oi, Oj) = τ[(Oi ∪ Oj) − (Oi ∩ Oj)].
If E is a binary matrix of order m × T that indicates which features t describe

the m objects, as in Table 4.1, the re-expression of the feature distance in terms of
coordinates is as follows (Heiser, 1998):

d(Oi, Oj) = τ[(Oi ∪ Oj) − (Oi ∩ Oj)] (4.1)

= ∑
t

|eit − ejt|,

This re-expression of the feature distance in terms of binary coordinates is also known
as the Hamming distance. The feature distance used in FNM is a weighted version of
the distance in Equation 4.1:

d(Oi, Oj) = ∑
t

ηt|eit − ejt|, (4.2)

where the weights ηt express the relative contribution of each feature.
If we string out the dissimilarities into a vector, we can use a univariate multiple

linear regression model for the dissimilarities:

δδδ = Xηηη + ǫǫǫ, (4.3)

where δδδ is a n × 1 vector with dissimilarities, X is a known n × T binary (0, 1) matrix

of rank T, with n equal to all possible pairs of m objects, i.e., 1
2 m(m − 1), ηηη is a T × 1
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vector with feature discriminability parameters, and ǫǫǫ is a T × 1 vector. We assume
that ǫǫǫ is a n × 1 random vector that follows a normal distribution,

ǫǫǫ ∼ N (µ, σ2I), (4.4)

where I is an identity matrix of rank n, and where it is assumed that σ2 is small
enough to ensure the occurrence of negative dissimilarities to be negligible. The
feature parameters are estimated by minimizing the following nonnegative least
squares loss function:

min
ηηη

= ‖δδδ − Xηηη‖2 subject to ηηη ≥ 0, (4.5)

where the feature parameters ηηη are constrained to be positive because they represent
edge lengths in the network representation of the network, as will be explained in
the next paragraph. To be able to express the loss function of the FNM in a more
convenient multiple regression problem as done in Equation 4.5, the original matrix
E must be transformed first. The matrix X is obtained by applying the following
transformation on the rows of matrix E for each pair l of the total of n pairs of objects,
where the elements of X are defined by:

xlt = |eit − ejt|, (4.6)

where the index l = 1, · · · , n varies over all pairs (i, j). The result is the binary (0, 1)
matrix X, where each row contains the featurewise distances for each pair of objects,
with 1 meaning that the feature is distinctive for a pair of objects. It is important to
notice that features become truly distinctive features only after this transformation,
while the features in the matrix E are not inherently common or distinctive. The
weighted sum of these featurewise distances is the fitted distance for each pair of

objects and is equal to d̂ = Xη̂ηη. Transforming the objects × feature matrix to the
object pairs × features matrix is necessary to apply the multiple regression approach
and, at the same time, provides a considerable reduction of the number of features
to be generated, as will become clear later.

The multiple regression approach has been used earlier in the context of the com-
mon features model (Arabie & Carroll, 1980), and for tree models (Corter, 1996).
However, the nonnegative least squares method has not been used by these au-
thors, although they were aware of the problem. Only Arabie and Carroll (1980)
address the problem by implementing a subroutine in the MAPCLUS algorithm that
encourages the weights to become positive. These authors explain that the use of
nonnegative least squares has been avoided explicitly because in the context of the
iterative algorithm that is the basis of the MAPCLUS algorithm, it would reduce the
number of clusters in the solution. We implemented the nonnegative least squares
option in PROXGRAPH (the program used to fit FNM), not during the feature selec-
tion procedure, but for the situation where the features are supplied by the user. In
that case, the use of nonnegative least squares has a considerable advantage because
it opens the way to statistical inference by providing theoretical standard errors for
the feature parameters (Frank & Heiser, in press a).
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Table 4.2: Feature parameters (η̂), standard errors, and 95% confidence intervals for Feature

Network Model on consonant data with R2 = 0.61

Features η̂ σ̂η 95% CI

Constant 2.11 0.13 1.85 2.37
Voicing 1.22 0.11 1.01 1.43
Nasality 0.81 0.13 0.56 1.06
Affrication 0.12 0.11 -0.11 0.34
Duration 0.32 0.12 0.10 0.55
Place, middle 0.00 0.00 0.00 0.00
Place, front 0.10 0.07 -0.04 0.24
Place, back 0.26 0.10 0.06 0.45

Table 4.2 shows the feature discriminability parameters that result from minimiz-
ing the loss function in Equation 4.5, as well as the corresponding standard errors
and 95% confidence intervals. The method to compute the standard errors and 95%
t-intervals for inequality constrained feature parameters in the context of Feature
Network Models has been described in (Frank & Heiser, in press a). The model with
seven features has an R2 = 0.61, and the values of the feature parameters lead to
the conclusion that the most important categorizing criteria used by the participants
were the following: voicing, nasality, duration, and place, back. The features affrication,
place, middle, and place, front do not play an important role as follows from the 95%
t-confidence intervals that show that the feature parameters of these features do not
significantly differ from zero (see Table 4.2).

The feature distance parallels the path-length distance in a valued graph if one
of the metric axioms, the triangle inequality, is reaching its limiting additive form
dij = dil + djl when l is on the shortest path from i to j (Flament, 1963; Heiser,
1998). Hence, sorting out the additivities in the fitted feature distances and exclud-
ing edges that are sums of other edges results in a parsimonious subgraph of the
complete graph. Figure 4.1 shows the Feature Network representation that results
from the fitted distances on the consonant data. The phonemes are the vertices in

the network and the estimated feature distances (d̂ = Xη̂ηη) are represented as ad-
ditive counts of edge lengths in the graph, where the edge lengths are the feature
parameters η̂ηη. For display purposes the 7-dimensional feature network has been
embedded in 3-dimensional Euclidean space using PROXSCAL5 (a multidimensional
scaling program distributed as part of the Categories package by SPSS, Meulman &
Heiser, 1999). The solution of the common space was restricted by a linear combi-
nation of the feature variables, to be able to represent the features as vectors in the
same space. The final network representation was obtained using the default options
for 3-D plotting in Matlab. The three most important features (voicing, nasality, and
duration) are represented as vectors in Figure 4.1, leading from the origin through
the point with coordinates equal to the correlations of each feature with each of the
three dimensions. The network clearly shows the importance of the voicing feature:

5with the interval transformation option and initialized with the simplex solution
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all voiced consonants are on the left part of the network and well separated from the
unvoiced consonants on the right part. The second important feature, nasality, sepa-
rates the consonants m and n from the other consonants. The consonants s, , z and
form a group with the shape of a rectangle and differ from the remaining 12 conso-
nants because of the length of their pronunciation, described by the feature duration.
The plus and minus signs on each vector designate the projection onto the vector of
the centroids of the consonants that possess the feature (+) and the consonants that
do not possess that feature (−).

Generating features with Gray codes

Given that features can be viewed as binary variables, a very straightforward way to
produce all possible binary (0,1) features for m objects is to generate the binary codes
for m bits of the integers 0 to 2m − 1, as illustrated in Table 4.3 for m = 4. Another,
more restrictive way to produce the binary features, is to use the Gray code (Gray,
1953). A Gray code represents each number in the sequence of integers {0 · · · 2m − 1}
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Figure 4.1: Feature Network representation for the consonant data with the three most im-
portant features (voicing, nasality, and duration) represented as vectors. The plus and minus
signs designate the projections onto the vector of the centroids of the objects that possess the
feature (+) and the objects that do not have that feature (-). (dh = ð; zh = ; th = θ; sh = ).
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Table 4.3: Binary code and Gray code for 4 bits

Integer Binary Gray

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

as a binary vector of length m in an order such that adjacent integers have Gray code
representations that differ only in one bit position, meaning that the transition from
one integer to the next in the order requires changing just one bit at a time, which is
called is called the adjacency property (cf. Gardner, 1972).

Table 4.3 shows the Gray coding corresponding to the integers based on 4 bits.
There is a specific relationship between the Gray code and the binary code: Gray
codes are binary codes arranged in a special order. Table 4.3 clearly shows the pat-
tern of the flipping of one bit at a time, compared to the binary codes, where the
transition from one integer to the next in the order is not restricted to the change of
one bit. There are many ways to produce a binary sequence that has the adjacency
property. The most common way to produce such a sequence is the so called binary
reflected Gray code that starts with all bits zero and successively flips the right-most
bit that produces a new string. Generating the binary reflected Gray codes works as
follows. For m bits the list Lm starts with L1 and produces the list 0, 1. For m > 1 bits,
Lm is formed by taking the first half of the list, Lm−1 prepending a 0 to every number,
then following that list by the reverse of Lm−1 with a 1 prepended to every number
(cf. Savage, 1997). For example, to obtain L2, the list L1 (0,1) is written forwards and
backwards, producing 0, 1, 1, 0, and, prepending 0’s to the first half and 1’s to the
second half, yields the L2 list 00, 01, 11, 10.

In contrast to the more arbitrary binary codes, the Gray codes are directly related
to the Feature Network Models. An m-bit Gray code is equal to a Hamiltonian cycle
on an m-dimensional hypercube (Gilbert, 1958; Savage, 1997). It represents all the
possible feature combinations for m objects. It is a cycle that visits each combination
only once. The feature distance is a city-block metric on the binary coordinates of
this same space. Since adjacent Gray codes differ by only one bit, feature distances
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of three consecutive Gray codes are additive. The binary coordinates represent the
feature pattern of each object. Based on their feature pattern, the objects have their
place in this m-dimensional hypercube.

The Gray code shares with the binary code the nice property that the second half
of the list of the codes is the complement of the first half. Table 4.3 shows this prop-
erty: the pattern of the Gray codes (and the binary code) representing the integers
8 to 15 is the negative of the pattern of the integers 0 to 7. The fact that the second
half of the Gray codes for m objects is the complement of the first half constitutes a
useful property in the context of the Feature Network Models. Since complementary
features yield the same X-matrix and consequently the same η̂ values as the original
features, only half of the number of 2m features needs to be generated. This property
holds for the distinctive features only, and not for the common features, where it
would be necessary to generate the complete Gray code. Further reductions can be
obtained by discarding the feature with zeros only, because it has no meaning in the
Feature Network Models. The feature with ones only (the universal feature) is al-
ways located in the second half of the Gray code and will therefore not be part of the
set of generated features. However, PROXGRAPH, the program used to fit FNM (pro-
grammed in Matlab), has the option of adding the universal feature to the model.
A remark has to be made about a special category of features, the unique features,
which describe only one object (having a 1 for that particular object and zero values
for the remaining objects). In the common features model the presence of one or
more unique features in the object × features matrix E leads to a zero feature prod-
uct in the predictor set and is one of the problems to be avoided in, for example, the
MAPCLUS algorithm (Arabie & Carroll, 1980). The FNM that use featurewise dis-
tances does not have this inconvenience and therefore all Gray codes representing
the unique features can be part of the complete feature set.

Summarizing, complete enumeration of the distinctive features for m objects

amounts to generating 1
2 (2m) − 1 Gray codes, using the integers {1 · · · 1

2 (2m) − 1},
and forming the complete set of featurewise distances D that contains a total num-

ber of TD = 1
2 (2m)− 1 predictors. Taking the set D as the starting point of the feature

subset selection process constitutes a considerably smaller problem than would be
the case for the generation of predictors in a univariate multiple regression problem
with arbitrary binary predictors. In that case the number of predictors to be enu-

merated amounts to 2n, where n is equal to 1
2 m(m − 1), which shows the proportion

of additional predictors that are needed. The possibility of using the transforma-
tion from the matrix E to the matrix X allows for this reduction of the number of
predictors to be generated.

However, there are limitations to the total number of distinctive features that
can be handled because the set TD of predictors grows considerably with increasing

number of objects m. For example, for m = 20 the set TD contains 1
2 (2m) − 1 =

1
2 (220) − 1 or about a half million distinctive features, growing to about 1 million
for m = 21, becoming more than 2 million for m = 22 and exceeding 4 million for

m = 23. A set of 1
2 (222) − 1 ( = about 2 million) predictors is the maximum number

that the current implementation of the predictor selection algorithm, the Positive
Lasso, can handle simultaneously.
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To generate the Gray codes within PROXGRAPH, we used a Matlab transcription
by Burkardt of the original algorithms for generating Gray codes in Nijenhuis and
Wilf (1978) (see http://www.csit.fsu.edu/ burkardt/, Fortran and C++ files of the
same algorithms are also available at this site). Both binary code and Gray code
have the convenient attribute that features can be (re)produced by a simple integer
or rank number. This property saves computer memory because it is not necessary

to save the entire sequence of 1
2 (2m) − 1 features, since the original feature set can

be retrieved by simply keeping track of the corresponding integer or rank number.
Another advantage of saving the integer or rank numbers is the possibility of getting
back the original features after transformations to featurewise distances have been
applied on those features. In the Feature Network Models one important transfor-
mation performed on the features is the transformation from the (m × T) matrix E
representing the T features that describe the m objects to the matrix X of size (n × T),

that contains the symmetric set difference for each of the n = 1
2 m(m − 1) object pairs

(Equation 4.6). This matrix X is also the format for the features when submitted to
the feature selection algorithm. The problem with this transformation is that it is not
reversible because the results are not unique. In the simple example of one feature
and two objects the result 0 can come from x12 = |1− 1|, where both objects have the
feature, or from x12 = |0 − 0|, where neither of the objects possesses the feature. The
result 1 is not unique either. It means that one of the two objects has the feature, but
it is not clear which object has the feature. Therefore, saving the rank numbers of the
features in the set before applying the transformation, makes it possible to reproduce
the original feature matrix at the end of the entire feature selection process.

Selecting a subset of features with the Positive Lasso

Above we have shown that the FNM can be considered as a univariate multiple
linear regression problem with positivity constraints on the feature discriminability
parameters (see Equations 4.3, 4.4, and 4.5). When the features are known in ad-
vance and their number is reasonably small, the feature discriminability parameters
can be obtained directly by minimizing the nonnegative least squares loss function
of Equation 4.5. However, in the case of unknown features, the Gray codes are used
to generate a very large number of features, and, as a result, the simple nonnega-
tive least squares loss function cannot be used. The large number of features calls
for a variable selection method. There are many methods available for variable se-
lection, see for example a recent review by Guyon and Elisseeff (2003). Given the
multiple regression context of the FNM, we have chosen the least absolute shrink-
age and selection operator (Lasso). The Lasso is a constrained version of ordinary
least squares (OLS) and minimizes the residual sum of squares subject to the sum
of the absolute value of the coefficients being less than a constant (Tibshirani, 1996).
Let x1, x2, · · · , xT be n-vectors representing the T featurewise distances with n equal
to the number of unique pairs of objects, and δδδ the n vector of dissimilarities. It is
assumed that the featurewise distances have been standardized to have mean 0 and
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unit length and that the response variable (δδδ) has mean 0:

n

∑
l=1

δl = 0,
n

∑
l=1

xnt = 0 and
n

∑
l=1

x2
lt = 1 for t = 1, 2, · · · , T. (4.7)

Applied to the context of the FNM, the Lasso loss function can be written in the
following way:

min
ηηηL

= ‖δδδ − XηηηL‖
2 subject to G(ηηηL) ! b, (4.8)

where the constraint G(ηηηL) = ∑
T
t=1|ηt| and b ≥ 0 is the tuning parameter that con-

trols the amount of shrinkage. If η̂ηη0 is the vector of ordinary least squares estimates

and b0 = ∑
T
t=1|η̂

0
t |, the Lasso estimates become the ordinary least squares estimates

for values of b > b0. On the other hand, values of b < b0 will cause shrinkage of
the solutions toward 0, and some of the coefficients will become exactly equal to 0.
This effect constitutes the parsimony property that characterizes the Lasso compared
to ridge regression, which is related to the Lasso and is probably more generally
known.

For any given constraint value b in the path of Lasso solutions6, only a subset
of the features has non-zero values of the regression coefficients η̂. While ridge re-
gression also shrinks coefficients, it does not, however, set any coefficients to 0 and,
as a result, does not lead to more simple models. The differences in the nature of
shrinkage between the Lasso and ridge regression result from the constraints used
in both methods. Both methods use the residual sum of squares loss function, but

where the Lasso uses the constraint ∑
T
t=1|ηt|, ridge regression uses ∑

T
t=1 η2

t instead
(see for more details: Hastie et al., 2001; Tibshirani, 1996). From the viewpoint of ge-
ometry, the Lasso constraint leads to a constraint region with corners and flat edges,
while ridge regression leads to round shaped constraint regions, see Figure 4.2. The
residual sum of squares function has elliptical contours and both methods find the
first point where these elliptical contours hit the constraint region. In the case of the
Lasso, when the elliptical contours hit a corner, some of the estimated parameters
become exactly 0, while in the case of ridge regression the estimated parameters will
never become 0 because the elliptical contours will never hit a corner.

In general, shrinkage improves prediction accuracy, trading off decreased vari-
ance for increased bias, Hastie et al. (2001). For the special case of the Lasso, shrink-
age leads to more parsimonous models because some coefficients become exactly
zero. Another advantage of the Lasso, especially useful for the FNM context, is that
it does not suffer from overfit or highly correlated settings because it avoids the ex-
plicit use of the OLS estimates. This means that the design matrix X need not be
of full rank, which is very convenient in a situation with a very large number of
featurewise distances.

6In contrast to ordinary least squares, the Lasso does not yield a single solution but a path of solutions
depending on the values of the tuning parameter b. Typically, Lasso solutions are computed for several
values of b, ranging from b = 0 to b = b0. An example of a path of Lasso solutions can be viewed in
Figure 4.3, starting with b = 0, which forces all coefficients to become zero, and ending with the value of
b = b0 equal to the sum of the coefficients of the ordinary least squares solution.
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Figure 4.2: Graphs of estimation for the Lasso (left) and ridge regression (right) with con-
tours of the least squares error functions (the ellipses) and the constraint regions, the diamond
for the Lasso and the disk for ridge regression. The corresponding constraint functions are
equal to |β1| + |β2| ! b for the Lasso and β2

1 + β2
2 ! b2 for ridge regression . It is clear that

only the constraint function of the Lasso can force the β̂-values to become exactly equal to 0.
(The graphs are adapted from Hastie et al. (2001), p. 71).

The computation of Lasso solutions is a quadratic programming problem, and
can be solved by numerical analysis algorithms, but the LARS or Least Angle Re-
gression (Efron et al., 2004) is a better approach. The LARS algorithm works as
follows. It starts with all feature parameters of the vector η̂ηη = (η̂1, η̂2, · · · , η̂T)′ equal
to 0. The next step is to find the predictor xt most correlated with response δδδ, which

is added into the model. The residuals r = d̂ − δδδ are calculated and the parameter
η̂t is increased in the direction of the sign of its correlation with δδδ until some other
feature xk has as much correlation with the current residual vector as does xt. The
feature parameters (η̂t, η̂k) are increased in their joint least squares direction, until
some other feature xq has as much correlation with the current residual. The just
described steps are repeated until all features have been entered in the model and
the process stops when corr(r, xt) = 0 ∀ t, which corresponds to the OLS solution. In
the situation where the number of predictors T exceeds the number of observations
n, the LARS algorithm terminates at the saturated least squares fit after n − 1 pre-
dictors have entered the active set (see, for more details, Efron et al., 2004, p. 444).
The number n − 1 follows from mean centering the columns of the matrix of predic-
tors X which results in a row-rank equal to n − 1. It should be noted however, that
although the model contains no more than n − 1 predictors, the number of different
predictors that have entered the model during the complete sequence of solutions is
typically greater than n − 1.

LARS provides an efficient way to compute the Lasso sequence of solutions si-
multaneously for all values of b, as b varies from 0 to infinity by applying the fol-
lowing modification: if a non-zero parameter becomes zero, it is removed from the
active set of features and the joint direction is recomputed. The implementation
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of LARS in R also allows for the transformation of the Lasso into a Positive Lasso
necessary for the FNM where all feature discriminability parameters should be pos-
itive. We applied the procedure described in Efron et al. (2004, section 3.4, p. 421)
to the LARS algorithm programmed in R. The result is the solution of the following
minimization function:

min
ηηηPL

= ‖δδδ − XηηηPL‖
2 subject to G(ηηηPL) ! b and all ηt " 0, (4.9)

where the constraint in Equation 4.8 is extended with a positivity constraint for the
feature discriminability parameters.

Selecting the number of features with an AIC criterion

The Lasso and the Positive Lasso do not yield a single solution η̂ηη, but a path of
possible solutions defined by the continuum depending on the values of the tuning
parameter b, which represents the amount of shrinkage. Choosing a value for b leads
automatically to the choice of the number of features in the model, i.e. the number
of features with nonzero η̂-values. The problem is to choose a good value for the
a priori unknown b, such that the corresponding model minimizes the prediction
error.

Efron et al. (2004) proved that for some LARS estimators, the best value for b can
be found with an adaptation of Mallows’ Cp statistic (Mallows, 1973, 1995), where
the step number of the LARS algorithm is used as an estimate for the degrees of free-
dom of the corresponding model. For the Lasso and the Positive Lasso estimators,
the step number of the LARS algorithm cannot be used as an estimate for the degrees
of freedom because the total number of steps can exceed the total number of predic-
tors in the full model. However, recently, Zou, Hastie, and Tibshirani (2006) showed
that the number of non-zero coefficients is an unbiased estimate for the degrees of
freedom for the Lasso, an informative measurement of model complexity, with no
special assumptions on the predictors. This estimate for the degrees of freedom in
the Lasso can be used to estimate the prediction error of each of the models along
the path of Lasso solutions by the following AIC criterion, derived especially for the
Lasso (Zou et al., 2006):

AICL =
‖δδδ − d̂‖2

n
+

2

n
d̂ f (d̂)σ2

L , (4.10)

where d̂ = Xη̂ηη
L
, and the error variance σ2

L , if unknown, is replaced with an estimate
based on the largest model. In the case where the number of predictors exceeds the
number of observations, the largest model in the total sequence of Lasso solutions
resulting from the LARS algorithm, involves at maximum n − 1 predictors. Since
the largest model is a (nearly) saturated model, the error variance is very close to
zero. Therefore, we estimated σ2

L in Equation 4.10 by taking the mean of the error
variances of all models in the sequence of Lasso solutions.

The AICL criterion, which approximates the Mallows’ Cp statistic (Mallows, 1973,
1995) closely, has been shown to offer substantially better accuracy than cross-vali-
dation and related nonparametric methods, if one is willing to assume the model
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is correct (Efron et al., 2004; Zou et al., 2006). We used the AICL criterion to select
the best model for the Positive Lasso solutions and to assess the prediction error,
assuming that the theory about the effective number of non-zero parameters applies
for the Positive Lasso as well. To our knowledge it is the best criterion available at
the moment.

Figure 4.3 shows the results of the modifications of the Lasso-LARS algorithm
into the Positive Lasso as in Equation 4.9 using the theoretical (phonetic) features
of the consonant data (Table 4.1). The left top panel shows the paths of the Lasso
estimates of the feature discriminability parameters against the degrees of freedom
expressing the effective number of nonzero parameters. Feature 5 (place, middle)
obtains negative feature discriminability parameters along the path. The right top
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Figure 4.3: Estimates of feature parameters for the consonant data. Top panels: trajectories of
the Lasso estimates η̂L (left panel) and the AICL values plotted against the effective number
of parameters (= d f ) of the Lasso algorithm (right panel). The model with lowest AICL value
(= 0.65) contains all 7 features. Lower panels: trajectories of the Positive Lasso estimates η̂PL

(left panel) and the adjusted AICL values plotted against the effective number of parameters
(= d f ) of the Positive Lasso algorithm (right panel). The model with lowest AICL value (=
0.71) has 5 features.
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Table 4.4: Estimates of feature discriminability parameters (η̂ICLS = ICLS, η̂L = Lasso, and

η̂PL = Positive Lasso) for the consonant data

Features η̂ICLS η̂L η̂PL

intercept 2.11 2.22 2.39
Voicing 1.22 1.20 1.07
Nasality 0.81 0.80 0.62
Affrication 0.12 0.11 0.00
Duration 0.32 0.31 0.22
Place, middle 0.00 -0.25 0.11
Place, front 0.10 0.15 0.00
Place, back 0.26 0.28 0.09

panel shows the AICL values at each step of the iterations, plotted against the esti-
mated degrees of freedom, represented by the effective number of non-zero param-
eters as in Equation 4.10. The AICL curve, which also represents the estimates of
prediction error, shows that the best model occurs at 7 d f , the model that contains
all features. The complete model corresponds to the ordinary least squares solution
because the Lasso always converges to it. The lower left panel shows the path of
the Positive Lasso estimates of the feature discriminability parameters and it is clear
that all trajectories stay in the positive part of the parameter space. The AICL curve
in the lower right panel indicates that the best model occurs at d f = 5 with only 5 of
the 7 features present in the model.

Table 4.4 displays the estimates of feature discriminability parameters according
to the best Lasso model and the best Positive Lasso model based on the AICL curves
compared to the inequality constrained least squares estimates obtained with Equa-
tion 4.5. In this case the Lasso estimates η̂L are equal to the ordinary least squares
estimates, without positivity constraints, and yield a negative coefficient value for
feature place, middle. The Positive Lasso estimates η̂PL show that the two features
affrication and place, front have coefficient values equal to zero as a result of activated
positivity constraints, and consequently, these two features are not part of the model.
This finding confirms the results of the 95% CI presented before (Table 4.2) showing
that the feature parameters (η̂ICLS) of these two features do not significantly differ
from zero7.

7It should be noted that from the perspective of phonetic theory, it is rather unusual that the feature
affrication disappears from the model and should probably be ascribed to the experimental conditions
used by Miller and Nicely (1955). The authors presented the consonants under 6 different signal-to-
noise conditions and, as a result, the non-fricative consonants become contaminated with noise and are
no longer distinguishable from the fricatives. The same experimental conditions could also explain the
fact that voicing has so much influence, while it is known as a phonetic feature that is easily lost during
perception.
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Generating features by taking a random sample combined with a filter

When the number of objects m exceeds 22, it is not possible to generate the complete
set of distinctive features. In that case, we propose to take a sample from the total
number of rank numbers representing the Gray codes associated with the number
of objects. This sample might still be too large to be submitted to the Positive Lasso
algorithm and necessitates some preselection strategy. Preselection is often used as
a preprocessing step before variable subset selection. A review on this topic has
been given by Guyon and Elisseeff (2003). A common preselection strategy is the
ranking method that performs this preprocessing step by selecting variables that
have high values on a scoring function, usually the coefficient of determination or
R2 (Guyon & Elisseeff, 2003). The variables are sorted in decreasing order based
on their values on the scoring function. To build a predictor, nested subsets are
constructed which incorporate progressively more variables of decreasing relevance.
Other scoring functions are the correlation, where positively correlated variables are
top ranked and negatively correlated variables bottom ranked. We propose the use
of the regression coefficient, or, in the context of FNM, discriminability parameter η̂,
which is a scaled version of the correlation coefficient as can be seen in the following
relation (cf. Draper & Smith, 1998, p. 42):

η̂ =
sδδδ

sx
rδδδx, (4.11)

where sδδδ and sx are the standard deviations of the dependent variable δδδ and the
predictor variable x, and rδδδx is the correlation between the dependent variable and
the predictor variable. It is clear that when both δδδ and x are standardized, as required
for the Positive Lasso, the regression coefficient is equal to the correlation.

Example of feature generation and selection on the consonant data

The previous section showed the results of the Positive Lasso on the a priori phonetic
features of the consonant data. In many data analytic situations, the features are not
given by theory. This section shows an example of feature generation using Gray
codes followed by feature selection with the Positive Lasso on the same consonant
data. First, all possible distinctive features were generated with the number of Gray

codes equal to 1
2 (216) − 1 = 32, 767 because there are 16 consonants, yielding a 16 ×

32, 767 matrix of objects by features. After transformation of this matrix into the
120 × 32, 767 matrix X using Equation 4.6, the complete set of featurewise distances
was analyzed with the Positive Lasso algorithm.

Figure 4.4 shows that the AICL curve attains its lowest value (= 0.51) at the
model with 7 features. Table 4.5 shows the values of the feature discriminability
parameters for the feature matrix obtained from phonetic theory and for the feature
matrix resulting from the Positive Lasso algorithm. The model resulting from the
Positive Lasso has higher fit (R2 = 0.70) and lower prediction error values compared
to the model based on phonetic theory.

Table 4.6 displays the features of the model selected by the Positive Lasso algo-
rithm juxtaposed to the 7 features based on phonetic theory. Comparing the features
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Figure 4.4: AICL-plot for the consonant data using all possible features generated with Gray
codes (T = 32, 767). The lowest AICL value (= 0.51) points to a model with 7 features.

from phonetic theory to the features resulting from the Positive Lasso, leads to the
conclusion that the two feature sets are very different from each other, except for
the first feature that represent the phonetic property voicing. The remaining features
selected by the Positive Lasso do not seem to be related to the theoretic phonetic
properties of the consonants. However, the network representation of the feature set
selected by the Positive Lasso displayed in Figure 4.5 does make sense in terms of
phonetics: there is a clear distinction between the voiced consonants (m, n, b, d, ð,
g, v, z, ) on the left part of the configuration and the unvoiced consonants on the
right part. The nasals (m, n) form a distinct cluster, showing the importance of the
phonetic property nasality. The cluster (s, θ) represents middle voiceless consonants
and the cluster (ð, b, v) front and middle voiced consonants. Another cluster that
can be distinguished comprise the voiceless plosives, (p, t, k) opposed to the three
voiced plosives (b, d, g)8. The clusters just described correspond to clusters found
with ADCLUS by Shepard and Arabie (1979) and with MAPCLUS by Arabie and Car-
roll (1980).

8From the perspective from phonetics, the same remarks that were made in footnote7 for the solution
of the set of 7 theoretic features in Figure 4.3 and Table 4.4 also apply to this solution.
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4.3 Simulation study

In this section we report a Monte Carlo experiment that evaluated the performance
of our method given that the true feature structure (the true model) is known in ad-
vance. The first question that will be addressed is the following: does the Positive
Lasso select the correct subset of features given that the true feature set is known, un-
der different data analytic conditions such as error, n/T ratio (number of object pairs
compared to the number of features), and the size of the feature discriminability pa-
rameters? The performance criterion of this study is the proportion of recovery of
the true features, measured by Gray code rank number. We verified the baseline con-
dition of the proportion of recovery on error-free data, which resulted in complete
recovery of the correct features for the experimental conditions. Another question
addressed by the simulation study is: how does the method of random sampling
from Gray codes combined with a filter perform compared to the complete enumer-
ation method? Proportion of recovery of true features is not a useful performance
criterion in this situation because random samples of features are taken and that
would merely result in testing the performance of the pseudo-random number gen-
erator, instead of testing the performance of the method. Instead, the following mea-
sures serve as outcome: the effective number of parameters (Df ) and the prediction
error (AICL).
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trix selected by the Positive Lasso displayed in Table 4.6. (dh = ð; zh = ; th = θ; sh = ).



102 CHAPTER 4. FEATURE SELECTION IN FEATURE NETWORK MODELS

Table 4.5: Positive Lasso estimates, R2, and prediction error (K-fold cross-validation) for
the features from phonetic theory (left) and for the features selected from the complete set of
distinctive features (right)

Features from phonetic theory Features selected from the complete set

Features η̂PL Features η̂PL

intercept 2.39 intercept 2.03
Voicing 1.07 F1 0.91
Nasality 0.62 F2 0.33
Affrication 0.00 F3 0.30
Duration 0.22 F4 0.35
Place, middle 0.24 F5 0.22
Place, front 0.00 F6 0.36
Place, back 0.09 F7 0.19

Model fit
R2 0.56 0.70

Prediction error (standard error) based on K-fold cross-validation
K=5 0.35 (0.08) 0.29 (0.04)
K=10 0.35 (0.07) 0.27 (0.05)

Method for simulation study

The experimental conditions of this simulation study result from the cross classifi-
cation of five experimental variables with two levels each. For each experimental
condition, a total of 50 simulation samples were generated. The first experimental
variable is the number of objects m = 12 or 24. The second experimental variable is
the ratio of the number of observations n and the number of features T and has two
levels: n/T = 16 and n/T = 8. Given the two levels of number of objects, the number

of observations n is equal to the number of object pairs n = 1
2 m(m − 1). For the 12

objects condition, which has n = 66, the number of features needed to obtain the two
n/T ratios is 4 and 8. For the 24 objects condition (with n equal to 276) the number
of features needed is equal to 17 and 35. The third experimental variable is the size
of the feature discriminability parameters with two levels: medium values (M) and a
combination of small and large values (S + L). Depending on the number of features
needed the following patterns of 4 feature discriminability parameters is repeated.
For the medium values conditions the pattern is {2.0, 2.5, 1.5, 3.0} and for the small +
large values the pattern is {6.0, 0.2, 0.5, 0.3}. The fourth experimental variable is the
amount of error added to the data, and comes in two levels: 0.05 (low) and 0.35 (high).
The fifth experimental variable is the feature generation strategy, which consists of ei-
ther generating the whole set of possible features using half of the complete Gray
code sequence, or a set of the 100 best features based on the filter criterion of largest
separate η̂ value selected from a large random sample (30%) of all possible features.
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Using the whole set of possible features is only feasible for the 12 objects condition.
As a result, the random sample strategy was applied to all 16 combinations of the
experimental variables (number of objects, n/T ratio, size of the feature discriminability
parameters, amount of error), and the complete set of features strategy was used for
the 12 objects condition only, leading to 6 experimental conditions obtained from
the combination of n/T ratio, size of the feature discriminability parameters and amount
of error. The 50 simulation samples in each experimental condition were submit-
ted to the Positive Lasso algorithm and the performance of the selected models was
evaluated by the following measures that serve as outcome variables: the effective
number of features (Df = the number of nonzero parameters) and the prediction
error AICL obtained with Equation 4.10.

Generating true configurations and sampling dissimilarities

The true configurations are defined by the three experimental variables number of
objects, n/T ratio, and size of the feature discriminability parameters. The combination
of the levels of these three experimental variables results into 8 experimental condi-
tions. For each of these conditions, a feature matrix was created by taking a random
sample from the total number of feature patterns for a given number of features (4,
8, 17, and 35). This method generates features for the number of bits equal to the

number of features and results in a matrix of size [ 1
2 (2T) − 1] × T that represents the

Table 4.6: Matrices of features based on phonetic theory (left) and of features selected by the
Positive Lasso (right)

Features from phonetic theory Features selected by Positive Lasso

Consonants F1 F2 F3 F4 F5 F6 F7 F1 F2 F3 F4 F5 F6 F7

p 0 0 0 0 0 1 0 1 1 1 0 0 1 0
t 0 0 0 0 1 0 0 1 1 1 0 0 1 0
k 0 0 0 0 0 0 1 1 1 1 0 0 1 0
f 0 0 1 0 0 1 0 1 1 1 0 1 1 0
θ 0 0 1 0 1 0 0 1 1 1 1 1 1 0
s 0 0 1 1 1 0 0 1 1 1 1 1 1 0

0 0 1 1 0 0 1 1 1 1 1 0 0 0
b 1 0 0 0 0 1 0 0 1 1 1 1 1 1
d 1 0 0 0 1 0 0 0 0 1 1 1 1 1
g 1 0 0 0 0 0 1 0 0 1 1 1 1 1
v 1 0 1 0 0 1 0 0 1 1 1 1 1 1
ð 1 0 1 0 1 0 0 0 1 1 1 1 1 1
z 1 0 1 1 1 0 0 0 0 1 1 1 1 1

1 0 1 1 0 0 1 0 0 0 1 1 1 1
m 1 1 0 0 0 1 0 0 0 0 0 0 0 0
n 1 1 0 0 1 0 0 0 0 0 0 0 0 0
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Table 4.7: Feature matrices for 12 objects and rank numbers used to construct the true con-

figurations for the simulation study

4 features condition 8 features condition

F1 F2 F3 F4 F1 F2 F3 F4 F5 F6 F7 F8

0 1 0 1 1 1 0 0 0 0 0 1
0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0 0 1
0 0 1 1 0 1 0 0 0 1 0 1
0 1 1 1 1 0 0 1 0 0 1 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0 0 1 0
0 1 1 0 1 1 0 1 1 1 1 1
1 0 1 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0

1161 322 688 86 691 415 1921 444 1533 1568 1729 495

complete lattice of possible feature patterns for the given number of features. Se-
lecting at random 12 or 24 (corresponding to the number of objects) feature patterns
yields a connected network. It should be noted that this method is slightly different
from the way the Gray codes are used to create the complete set of distinctive fea-
tures, where Gray codes are generated for the number of bits equal to the number
of objects instead of the number of features. Table 4.7 shows the resulting feature ma-
trices for 12 objects and 4 or 8 features with on the bottom row the corresponding
Gray code rank numbers. The distances of the true configurations were computed
using the levels of the experimental variable size of the feature discriminability param-
eters. The network representations for the 12 objects with 4 and 8 features and the
two different levels of the sizes of feature discriminability parameters are displayed
in Figure 4.6.

The true distances d for these configurations were obtained with d = Xηηη, where
ηηη represents the experimental values of the feature discriminability parameters, and
X results from the transformation from Equation 4.6 applied on the feature matrices
displayed in Table 4.7. The feature matrices and configurations for the 24 objects
condition were obtained in exactly the same way. For each of the experimental con-
ditions 50 samples of dissimilarities were obtained with the two levels of error using
the binomial distribution to ensure positive dissimilarity values that follow a normal
distribution. The details of the method of sampling from the binomial distribution
are described in Frank and Heiser (in press a).
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Figure 4.6: Feature network plots for the experimental conditions for 12 objects. A = 4 fea-

tures, medium ηηη; B = 4 features, small + large ηηη; C = 8 features, medium ηηη; D = 8 features,

small + large ηηη.

Results simulation study

Simulation results of the strategy using the complete set of Gray codes

This section answers the question whether the Positive Lasso selects the correct sub-
set of features given that the true feature set is known, under different data analytic
conditions. Table 4.8 shows the proportions of correctly recovered true feature rank
numbers for the 50 simulation samples under the experimental conditions defined
by combined levels of error, number of features and feature parameter size. In gen-
eral, the true features are better recovered in the medium feature parameter values
condition, compared to the combination of small and large feature parameter values.

When the feature parameter values all have medium size, the recovery is mainly
affected by the ratio of the number of features compared to the number of observa-
tions (n/T). When the true number of features is small (n/T=16), there is perfect
recovery of the features, regardless of the error level. In the condition of larger num-
ber of features compared to the number of observations (n/T=8) the true number
of features is less well recovered. In the low error condition the proportions range
from 0.86 to 1.00, with perfect recovery for the features with the highest true feature
parameter values. In the high error condition, the features with the highest true fea-
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ture parameter values are perfectly recovered, while the features with the lower true
feature parameter values are less well recovered with proportions ranging from 0.00
to 0.62. The condition of combined small and large feature parameter values shows
a different pattern: the features with large feature parameter values are perfectly
recovered in all conditions formed by the combination of error level and the ratio
of number of features compared to the number of observations. The features as-
sociated with small feature parameter values are recovered with small proportions
in the condition of small number of features compared to the number of observa-
tions (n/T=16), and are almost never recovered in the condition of larger number of
features compared to the number of observations (n/T=8).

Additional information on fit and effective number of features in the selected
models is displayed in Figure 4.7, which shows the distributions of 50 simulation
samples on 12 objects for all experimental conditions, using the complete set of dis-
tinctive features. The panels on the first row represent the effective number of fea-
tures (= Df ) selected by the Positive Lasso for each simulation sample and the true

Table 4.8: Proportion of correctly recovered features from the complete set of distinctive

features under combined levels of error (L = low; H = high), the ratio of the number of object

pairs and the number of features (= n/T ratio), and feature parameter (η) sizes, medium and

small + large.

n/T = 16 medium η values

2.0 2.5 1.5 3.0
Error
L 1.00 1.00 1.00 1.00
H 1.00 1.00 1.00 1.00

small + large η values

6.0 0.2 0.5 0.3
Error
L 1.00 0.02 1.00 0.36
H 1.00 0.00 0.22 0.00

n/T = 8 medium η values

2.0 2.5 1.5 3.0 2.0 2.5 1.5 3.0
Error
L 0.98 1.00 0.94 1.00 0.94 1.00 0.86 1.00
H 0.62 1.00 0.16 1.00 0.42 1.00 0.00 1.00

small + large η values

6.0 0.2 0.5 0.3 6.0 0.2 0.5 0.3
Error
L 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
H 1.00 0.00 0.00 0.00 1.00 0.02 0.00 0.00
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number of features is represented as a dashed line. The panels on the second row
show the associated AICL values, which are measures of prediction error for the se-
lected models. Each of the eight panels represents the two error levels, low (L) and
high (H). The four panels on the left correspond to the condition with medium η
values and the four panels on the right (first row and second row) correspond to the
condition with small + large η values.

Since the pattern of the outcomes differs in these two levels of η values, we de-
scribe the results separately, beginning with the medium condition. The panel on the
left of the first row shows the results for true number of features equal to 4. When
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Figure 4.7: Boxplots showing the distributions of 50 simulation samples on 12 objects using

the complete set of Gray codes. The experimental conditions are medium (left panels) and

small + large (right panels) η values, two error conditions, low (L) and high (H), and two

levels of true number of features (4 and 8) corresponding to two levels of n/T ratio equal to

16 and 8. The top panels show the effective number of features selected for each sample (=

Df ) with the true number of features represented as a dashed line. The lower panels show the

associated AICL values.
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error is low, the true number features are well recovered by the Positive Lasso, with
a little overfitting for a small proportion of samples. The high error condition clearly
shows some overfitting, because most of the models selected by the Positive Lasso
contain 6 features. The corresponding AICL values show that prediction error is
lower when error is low. The next panel shows the results for true number of fea-
tures equal to 8, meaning that there are more features compared to the number of
observations than in the previous condition of 4 features. In the low error condition,
there is a considerable amount of overfitting because most of the selected models
contain 14 features. The high error condition shows that most of the selected mod-
els contain the right number of 8 features. The associated AICL values show that the
prediction error is higher in the high error condition, and that, despite the overfitting
in the low error condition, the prediction error is still very acceptable.

The results for the small + large η values show a different pattern. In the model
with 4 features, most of the samples in the low error condition recover models with
4 features, but some overfitting is clearly present. Most of the models selected in the
high error condition, have fewer than 4 features. The prediction error is lower in the
low error condition than in the high error condition. In the model with 8 features,
the selected models all have 2 features, regardless of the error level. This substantial
amount of underfitting does not have an effect on the prediction error, which is very
low in both conditions. Combining these results with the findings in Table 4.8, we
know that, in almost all the samples, the two features with the highest η values are
selected.

Summarizing, the true number of features are best recovered in the 4 features
model, for both medium and small + large η values. The 8 features model, shows
some overfitting for the medium η values, and some underfitting for the small +
large η values. In all conditions, the prediction error is satisfactory.

Simulation results on random sample of Gray codes + Filter

The model based on 12 objects allows for comparing the strategy of taking a random
sample of features from all possible Gray codes combined with the use of a filter with
the strategy of using the whole set of possible distinctive features obtained with all
possible Gray codes. To assess the performance of the random sample strategy, the
same simulation samples for the 12 objects used with the complete set of distinctive
features, were analyzed again using the random sample strategy. The results of the
random sample strategy are displayed in Figure 4.8. Since the same samples are
used, Figure 4.8 can be compared directly with the results of Figure 4.7 that is based
on the complete set of distinctive features.

The results in Figure 4.8 show that in the majority of the experimental conditions,
the number of features selected by the Positive Lasso are equal to, or very close to the
number of features in the true model. The best results in terms of recovered number
of features are obtained when the true feature parameter values are a combination of
small and large values. The best prediction error values occur when the true model
has smaller number of features (the 4 features model) for both the medium and the
small + large η values. When the true number of features is not recovered, there is,
in general, a tendency towards overfitting. In particular, the condition with medium
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η values and 4 features as the true model, shows a considerable amount of overfit-
ting. However, the associated prediction error values are still the lowest of all the
experimental conditions. In conclusion, compared to the method using the complete
set of distinctive features, the random sample strategy has higher prediction error,
but, in general succeeds in finding subsets of features of (about) the same number as
the true models, besides a tendency to overfit in some conditions.

The simulation results for the model based on 24 objects provided additional
information on the random sample strategy. Figure 4.9 clearly shows that in this
case, the number of features selected by the Positive Lasso exceeded the true number
of features considerably, even more when the true number of features is equal to 35,
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Figure 4.8: Boxplots showing the distributions of 50 simulation samples on 12 objects us-

ing a large random sample of the complete set of Gray codes combined with a filter. The

experimental conditions are medium (left panels) and small + large (right panels) η values,

two error conditions, low (L) and high (H), and two levels of true number of features (4 and

8) corresponding to two levels of n/T ratio equal to 16 and 8. The top panels show the ef-

fective number of features selected for each sample (= Df ) with the true number of features

represented as a dashed line. The lower panels show the associated AICL values.
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Figure 4.9: Boxplots showing the distributions of 50 simulation samples on 24 objects using

a large random sample of the complete set of Gray codes. The experimental conditions are

medium (left panels) and small + large (right panels) η values, two error conditions, low (L)

and high (H), and two levels of true number of features (17 and 35) corresponding to two

levels of n/T ratio equal to 16 and 8. The top panels show the effective number of features

selected for each sample (= Df ) with the true number of features represented as a dashed line.

The lower panels show the associated AICL values.

the condition where the number of features is larger compared to the number of
observations (n/T = 8 condition). The prediction error is much lower for the 17
features model (the condition n/T = 8). It is clear that many more features are
needed to obtain models with acceptable levels of prediction error.
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4.4 Discussion

This paper introduces a method to generate and select a subset of features for the
Feature Network Models. It combines feature enumeration using Gray codes with
a predictor selection algorithm, the Positive Lasso. The fact that FNM can be con-
sidered as a univariate multiple regression problem allows for the use of this type
of predictor selection algorithm. The advantages of the multiple regression frame-
work had not been fully explored in earlier feature models related to the FNM. In
the following we discuss the two basic elements that constitute our method.

The first element is the enumeration of features with Gray codes. The enumera-
tion of all possible subsets makes use of the adjacency property of the Gray codes,
the property that successive numbers differ exactly in one bit. In our study, we did
not explicitly use the adjacency property in the feature selection strategy. Instead of
exploiting the adjacency property of the Gray codes, we used the codes to efficiently
list all possible features where each feature is generated exactly once. The gain of
using the Gray code results from its combination with the transformation from the
objects × features matrix E to the object pairs × featurewise distances matrix X. This
transformation limits the search for predictors to the set of truly distinctive features.
To our knowledge, the explicit search in the space of distinctive features has not been
used as a predictor generation and selection strategy before. The adjacency property
proved to be useful in the simulation study where we needed connected networks
to represent the true network configuration. The list of Gray codes for the number
of bits equal to the number of features (instead of equal to the number of objects)
results in a lattice, or the complete network of all possible feature patterns. Select-

ing m feature patterns from this matrix of size [ 1
2 (2T) − 1] × T ensures a connected

network representation for a given number of objects.
In this context, it should be noted that features can be generated using Gray codes

in two ways. The first method amounts to generating Gray codes for the number of
bits equal to the number of objects. This method is suitable in the situation where
there is no a priori knowledge about the possible number of features suitable for
the data at hand. Features generated in this way yield a feature matrix of size m ×

[ 1
2 (2m) − 1], which obviously leads to a feature selection problem because there are

far more features than observations. The second method is more appropriate for the
situation where there is some knowledge available on the number of features that
would be reasonable for the data. In that case, features could be generated for the
number of bits equal to the number of features instead of equal to the number of

objects, resulting in a matrix of size [ 1
2 (2T) − 1] × T. Again, the symmetric property

of the Gray code allows for discarding the second half of the code. It is no longer
a feature selection problem because the number of features is known in advance,
but rather a problem of finding the right feature pattern for each object, a problem
related to the travelling salesman problem. The set of all possible feature patterns
given a fixed number of features can be viewed as a lattice, or complete network of
all possible feature patterns. The best selection of feature patterns to describe a given
number of objects should correspond to one of the possible shortest path routes on
this lattice.
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For the situation where one searches for sets of fixed numbers, Gray codes have
been frequently used to list all p-element subsets of a q-element set in such a way
that consecutive sets differ by exactly only one element (cf. Nijenhuis & Wilf, 1978).
Applying this particular use of Gray codes to the FNM would lead to the complete
enumeration of all possible subsets of features. It is well known that the number of
subsets grows exponentially with the number of objects m and the number of fea-
tures, limiting the strategy to a very small number of objects and features (a small
explorative study showed that in the context of FNM complete enumeration of all
subsets is limited to number of objects ! 5 and number of features ! 9). Attack-
ing the problem of selecting a subset of features in this way would be an NP-hard
problem (NP = nondeterministic polynomial problem, a category of problems that
cannot be solved exactly in polynomial time, but for which the verification of the
solution can be accomplished in polynomial time). Even if optimal solutions could
be obtained, they would not necessarily yield a good compromise between model
complexity and prediction accuracy. Since our method attempts to achieve this com-
promise it is difficult to compare it to conceptually different techniques like the afore-
mentioned and the cluster differences scaling algorithm that has been used earlier
in FNM.

Using our method, the generation of all possible distinctive features with Gray
codes is feasible for m ! 22. Simple binary codes could have been used instead,
although, the generation of successive objects that differ in only one bit, might be
faster (cf. Savage, 1997). If the number of objects exceeds 22, features are gener-
ated by taking a very large sample from the whole set of Gray codes followed by
a filter technique that selects the features with the highest separate discriminability
parameters. The results of the simulation study show that in this case, the num-
ber of features selected by our method exceeds the true number of features in some
conditions. Therefore, feature generation for m > 22 must be further improved.

Given a very large set of features, obtained with the complete list of Gray codes or
a large sample of this list, the second element of our method consists of selecting the
best subset of features using the Positive Lasso, an adaptation of the Lasso algorithm
to meet the positivity constraints of FNM. The results obtained with the Positive
Lasso are in accordance with results obtained with the Lasso: the Lasso tends to
perform best with a combination of small and large parameter values (Friedman &
Popescu, 2006; Tibshirani, 1996). The results of our simulation study shows that the
best results are obtained in the condition formed by the combination of small and
large feature discriminability parameters. The Positive Lasso is also useful in the
situation of features given by theory or provided by the experimental conditions,
and helps to select the relevant features. We used the Positive Lasso as a tool, but it
certainly merits to be studied in its own right since all its properties are not exactly
known yet.

To select the amount of shrinkage, we used an AIC-like criterion adapted for
the Lasso context. It is well known that AIC, in contrast to BIC, has a tendency
towards overfitting (cf. Zou et al., 2006) and this property probably explains part
of the overfitting observed in our simulation study. However, it is also known that
AIC and BIC possess different asymptotic optimality (cf. Zou et al., 2006): if the
true regression function is not in the candidate models, the model selected by AIC
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asymptotically achieves the smallest average squared error among the candidates.
BIC on the other hand is known for its consistency in selecting the true model: if
the true model is among the candidate models, the probability of selecting the true
model with BIC approaches 1 as the sample size approaches infinity. Given our
setting, when the number of objects exceeds 22 and as a consequence we have to
take a large random sample from the total set of features, we know in advance that
the true model might not be present among the candidate models, which motivates
the choice for the AIC criterion. Yang (2005) recently explored the possibilities of
combining both strengths of BIC and AIC in the context of regression estimation
and concluded that there are some theoretical and empirical results in support of
adaptive model selection, but that it is still not clear whether it can really combine
the strength of AIC (= prediction optimality or minimax-rate optimality) with the
strength of BIC (consistency).

The combination of the two elements (the enumeration of features with Gray
codes and the selection of the best subset of features) leads to a method that aims
at selecting a subset of features that constitutes a good compromise between model
fit and model complexity. The Gray codes allow for defining a finite solution space,
which can be further reduced by restricting the search to the distinctive features only.
In fact, features are generated from a model instead of being the result of collecting
empirical data. Next, the Positive Lasso algorithm selects the best subset regardless
of the number of features in the set. Instead of searching for the optimal solution
in the distinctive features space, we prefer a suboptimal solution, selected with the
Positive Lasso, that has better generalizability properties.

The method described in this paper can be applied directly to the common fea-
tures model, with one restriction. Given that the total set of common features is
larger than the total set of distinctive features, the limits of complete enumeration of
the set of common features will be reached earlier than with 22 objects, the limit for
the distinctive features model.




