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Chapter 3

Standard Errors, Prediction Error and
Model Tests in Additive Trees 1

Abstract

Theoretical standard errors and confidence intervals are given for the esti-
mates of branch lengths in psychometric additive trees for a priori known tree
topologies as well as for estimated tree topologies. A model test and an estimate
of prediction error to compare different tree topologies are also given. The sta-
tistical inference theory proposed here differs from existing approaches due to
the combination of the use of features with the multiple regression framework.
Additive trees can be considered as a special case of Feature Network Models,
where the objects are described by features, which are binary variables that indi-
cate whether a particular characteristic is present or absent. Considering features
as predictor variables leads in a natural way to the univariate multiple regression
model.

3.1 Introduction

In general, there are two types of graphical representations of proximity data: spatial
models and network models. The spatial models - such as multidimensional scaling
- represent each object as a point in a coordinate space (usually Euclidean space) in
such a way that the metric distances between the points approximate the observed
proximities between the objects as closely as possible. In network models, the objects
are represented as nodes in a connected graph, so that the spatial distances between
the nodes in the graph approximate the observed proximities among the objects. In
MDS, the primary objective is to find optimal coordinate values that lead to distances
that approximate the observed proximities between the objects, whereas in network
models, the primary objective is to find the correct set of relations between the objects
that describe the observed proximities.

1This chapter has been submitted for publication as: Frank, L. E. & Heiser, W. J. (2005). Standard
errors, prediction error and model tests in additive trees. Submitted manuscript. With an exception for the
notes in this chapter, which are reactions to remarks made by the members of the promotion committee.
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52 CHAPTER 3. STATISTICAL INFERENCE IN ADDITIVE TREES

Feature Network Models or FNM (Heiser, 1998) represent proximity data in a
discrete space, usually by a network representation. The relations between the ob-
jects are characterized by the kind of features they possess and by the combination
of these features. Features are binary variables indicating for each object whether a
particular characteristic is present or absent. The relations between the features, or
the feature structure, determine the shape of the graphical representation, which is
either a network or a tree. Therefore, FNM can be viewed as a general framework
for graph representations, where the network is the general case and trees are special
cases.

In FNM, the relation between any two objects i and j is represented by the sym-
metric set difference (= the difference between the union and the intersection of two
sets) of the set of features that describes the two objects. The symmetric set differ-
ence expresses the number of features that object i possesses that are not shared by
object j and vice versa, which amounts to the number of non-common elements of
the objects. Applying the symmetric set difference on binary features in a binary co-
ordinate space, corresponds to the Hamming distance, or the city-block distance. The
relation between the objects can be expressed in terms of city-block distances, which
is useful for graphical display purposes. Besides the graphical representation, the
features in their own right are highly informative about the relations between the
objects. In the final solution, each feature has a parameter value that indicates its
relative importance: the feature discriminability value.

Since the introduction by Tversky (1977) of the Contrast Model, where objects are
represented by subsets of discrete features, several different tree models have been
developed in the psychological literature that are based on features (see Carroll &
Corter, 1995, and Corter, 1996 for an overview). These models neither provide ways
to estimate the standard errors of the parameter values, nor provide confidence in-
tervals to assess the stability of the solution. In some psychometric applications (e.g.
De Soete, 1983; Corter, 1996) least squares minimization is used to obtain the solu-
tion, treating the problem as a multiple regression model. Nevertheless, in the psy-
chological literature, the statistical inference aspects of the multiple regression model
have not been fully exploited for additive trees. The statistical inference theory pro-
posed in this paper derives from the multiple regression framework because the use
of features, when considered as predictor variables, leads in a natural way to the
univariate multiple regression model. However, the standard multiple regression
statistical inference theory cannot be applied because the network or additive tree
representation imposes constraints on the model parameters. Negative edge lengths
have no meaning in a network or an additive tree. In the context of FNM the im-
plication is that the feature discriminability parameters associated with the features
(the predictor variables) are constrained to be positive. These positivity constraints
are even more relevant for additive tree representations because each branch in the
tree is represented by a single feature, as will become clearer in this paper.

In contrast to the psychological tree domain, the phylogenetic tree domain does
have a strong tradition of statistical inference. Important contributions in the field
of statistical inference in phylogenies were made by Felsenstein (1985 and, for an
overview, 2004, Chapters 19 - 21) and by Nei, Stephens, and Saitou (1985). Felsen-
stein (1983) evaluated the stability of a tree topology using the bootstrap to calculate
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the proportion of bootstrap trees that agree with the original tree in terms of topolo-
gy and not directly in terms of branch lengths. In addition, the phylogenetic litera-
ture offers many examples of the estimation of the standard errors of branch lengths.
The branch lengths are usually estimated with ordinary least squares, and the vari-
ances of the branch lengths are calculated by taking into account the method used
to compute the evolutionary distances (Li, 1989; Nei et al., 1985; Rzhetsky & Nei,
1992; Tajima, 1992). Bulmer (1991) estimated the branch lengths and their standard
errors with generalized least squares, which allows for correcting the correlation of
distances between species that share one or more common paths. Despite the abun-
dance of methods to compute standard errors for the branches of the phylogenetic
trees, none of these methods take into account that when estimating the standard er-
rors of the branch length estimates, one should correct for the fact that the estimates
of the branch lengths have been constrained to be positive. The problem of biased
estimates of the branch lengths has been diagnosed by Gascuel and Levy (1996),
who correctly remark that the right way to estimate the edge lengths in phyloge-
nies is to use linear regression under positivity constraints, and by Ota, Waddell,
Hasegawa, Shimodaira, and Kishino (2000), who use a mixture of χ2 distributions
to construct appropriate likelihood ratio tests for nested evolutionary tree models.
The mixture of χ2 distributions is based on earlier results obtained by Self and Liang
(1987) and Stram and Lee (1994) who derived limiting distributions of the likelihood
ratio statistic when varying numbers of parameters are on the boundary. However,
in the additive tree framework, Ota et al. (2000) have not made adjustments for the
estimation of the standard errors of the branch lengths.

Recently, Frank & Heiser (in press a) showed how to compute standard errors
and confidence intervals for the inequality constrained feature discriminability pa-
rameters in FNM. In this paper, we will show that the same statistical inference
theory that has been proven to be useful for networks also applies to the family
of tree representations. We propose a way to compute standard errors and confi-
dence intervals for branch lengths of additive trees, and especially for tree topolo-
gies that include star shaped components, which means that one or more branches
have edge lengths equal to zero (resulting from the correction of negative values).
The multiple regression framework can be used to impose inequality constraints on
the parameters and at the same time to compute theoretical standard errors for the
inequality constrained least squares parameters that represent the edge lengths of
the branches in an additive tree. These standard errors were introduced by Liew
(1976) and take into account the fact that the parameter estimates are bounded be-
low by zero. Whereas the results presented by Frank & Heiser (in press a) were
limited to the situation of an a priori known feature structure (or tree topology), the
present study shows that the same theory can be applied for the situation where
the tree topology is not known in advance if the sample can be divided in a test
set and a training set. Resulting from the same inequality constrained least squares
framework, the paper shows an application of the Kuhn-Tucker test that is used to
test whether the constrained solution is in accordance with the data. In addition, an
easy way to estimate the prediction error of the model is provided, which allows for
comparison of different tree topologies.

The remainder of this paper is organized as follows. It starts with a description of
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the Feature Network Models with an application on sample data, followed by an ex-
planation of additive trees as special cases of FNM. Next, the statistical inference the-
ory for inequality constrained least squares is introduced and evaluated with Monte
Carlo simulation techniques. The first simulation study shows how to obtain the
empirical p-value for the Kuhn-Tucker test. The second simulation study assesses
the performance of the theoretical standard errors in comparison to bootstrap stan-
dard errors for the case where the tree topology is known in advance. It will become
clear that the theoretical standard errors are much closer to the true values than the
bootstrap standard errors and that the confidence intervals based on theoretical stan-
dard errors have better coverage performance than the bootstrap confidence inter-
vals. The third simulation study shows that the same statistical inference theory can
be applied in the situations where the tree topology is not known in advance and es-
timated with the neighbor-joining (NJ) method (Saitou & Nei, 1987). The NJ method
is a widely used tree finding algorithm, especially in the phylogenetic domain, that
is related to the ADDTREE algorithm by Sattath and Tversky (1977), which was de-
veloped in the mathematical psychology domain. Saitou and Nei (1987) and Gascuel
(1994) have demonstrated that the NJ and the ADDTREE algorithms are strongly re-
lated and usually provide identical or very similar trees. A comparison between
the statistical inference theory proposed for FNM in this paper and the statistical
inference practice in the phylogenetic tree domain is provided in the discussion.

3.2 Feature Network Models

Since the general framework of this paper is the network representation, this section
starts with a description of the Feature Network Models. FNM represent proxim-
ity data in a discrete space usually by a network representation. The properties of
the models will be illustrated using a data set, the kinship data of Rosenberg and
Kim (1975). A number of 165 female students and 165 male students were asked to
group fifteen kinship terms on the basis of their similarities in minimally two and
maximally fifteen categories. Half of the students were allowed to do the sorting
task more than one time. Dissimilarity measures were derived for each pair of kin-
ship terms by counting the number of subjects who placed the two terms in different
categories. The data that were used in this study are the dissimilarity values of the
female students (n = 165). Analyzing the dissimilarity matrix for the female stu-
dents with the cluster differences scaling algorithm2 of FNM (Heiser, 1998) yielded
a solution with 5 features, displayed in Table 3.1. The features represent criteria most
likely used by the female students to categorize the kinship terms.

Features are binary variables indicating for each object whether a particular char-
acteristic is present or absent. Some set theoretic properties of the binary feature ma-
trix lead to the estimation of a distance measure that approximates the observed dis-
similarities. The difference between the union and intersection (= the symmetric set

2The first application of FNM used a cluster differences scaling algorithm (Heiser, 1998) with num-
ber of clusters equal to two, which constitutes a one-dimensional MDS problem with the coordinates
restricted to form a bipartition. Because it is still a hard combinatorial problem, the implementation uses
a nesting of several random starts together with K-means type of reallocations.
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Table 3.1: The 5 binary features describing the kinship terms

Kinship terms Gender Nuclear family Collaterals Generation(1, 2) Parent/child

aunt 0 0 1 1 0
brother 1 1 1 0 0
cousin 1 0 0 0 0
daughter 0 1 1 0 1
father 1 1 1 1 1
granddaughter 0 1 0 1 1
grandfather 1 1 0 1 0
grandmother 0 1 0 1 0
grandson 1 1 0 1 1
mother 0 1 1 1 1
nephew 1 0 0 0 1
niece 0 0 0 0 1
sister 0 1 1 0 0
son 1 1 1 0 1
uncle 1 0 1 1 0

difference) expresses the number of non-common features possessed by the objects
i and j. For example, the symmetric set difference for the two kinship terms aunt
and cousin is the set {Gender, Collaterals, Generation}. Following Goodman (1951,
1977) and Restle (1959, 1961), a distance measure that satisfies the metric axioms
can be expressed as a simple count µ of the elements of the symmetric set differ-
ence between the stimuli Oi and Oj and becomes the feature distance: d(Oi, Oj) =
µ[(Oi ∪ Oj) − (Oi ∩ Oj)].

If E is a binary matrix of order m × T that indicates which features t describe
the m objects, as in Table 3.1, the re-expression of the feature distance in terms of
coordinates is as follows (Heiser, 1998):

d(Oi, Oj) = µ[(Oi ∪ Oj) − (Oi ∩ Oj)]

= ∑
t

|eit − ejt|, (3.1)

where eit = 1 if feature t applies to object i, and eit = 0 otherwise. This re-expression
of the feature distance in terms of binary coordinates is also known as the Hamming
distance. The feature distance used in FNM is a weighted version of the distance in
Equation 3.1:

d(Oi, Oj) = ∑
t

ηt|eit − ejt|, (3.2)

where the weights ηt express the relative contribution of each feature. Each feature
splits the objects into two classes, and ηt measures how far these classes are apart.
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Table 3.2: Feature parameters (η̂), standard errors and 95% t-confidence intervals for Feature

Network Model on kinship data with R2 = .95.

Features η̂ σ̂η 95% CI

Gender 27.54 0.63 26.31 28.77
Nuclear family 25.22 0.66 23.93 26.51
Collaterals 21.71 0.64 20.46 22.96
Generation (1,2) 18.58 0.64 17.33 19.83
Parent/child 15.06 0.64 13.81 16.31

For this reason, Heiser (1998) called the feature weight a discriminability parameter.
The feature discriminability parameters are estimated by minimizing the following
least squares loss function:

min
η̂ηη

= ‖Xη̂ηη − δδδ‖2, (3.3)

where X is of size n × T and δδδ is a n × 1 vector of dissimilarities, with n equal to all
possible pairs of m objects: m(m − 1)/2. The problem in Equation 3.3 is expressed
in a more convenient multiple linear regression problem, where the matrix X is ob-
tained by applying the following transformation on the rows of matrix E for each
pair of objects, where the elements of X are defined by:

elt = |eit − ejt|, (3.4)

where the index l = 1, · · · , n varies over all pairs (i, j). The result is the binary (0, 1)
matrix X, where each row (x′) represents the distinctive features for some pair of ob-
jects, with 1 meaning that the feature is distinctive for a pair of objects. The weighted
sum of these distinctive features is the fitted distance for each pair of objects and is
equal to d = Xηηη. Corter (1996, Appendix C, p. 57) uses a similar matrix X in the
linear regression context to obtain the lengths of the branches in an additive tree.

Table 3.2 shows the feature discriminability parameters η̂t obtained by PROX-
GRAPH, the program developed in Matlab to fit the FNM. The five features solution
explains 95.35% of the variance in the data, and the values of the feature parameters
lead to the conclusion that the most important categorizing criteria were: Gender,
Nuclear family, and Collaterals. All five features played a more or less important role
in categorizing the kinship terms as follows from the 95% t-confidence intervals that
show that all feature parameters differ significantly from zero (Table 3.2).

Figure 3.1 shows the Feature Network representation that results from the fitted
distances on the kinship data. The kinship terms are the vertices in the network and

the feature distances (d̂ = Xη̂ηη) are represented as the sum of the edge lengths along
the shortest path in the graph, where the edge lengths are the feature parameters
η̂ηη. How the network is obtained will be explained in the following section. The
five-dimensional feature network has been embedded in 3-dimensional Euclidean
space using PROXSCAL3, a multidimensional scaling program distributed as part of

3with the interval transformation option and initialized with the simplex solution
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Figure 3.1: Feature Network representation for the kinship data with the three most impor-

tant features (Gender, Nuclear family and, Collaterals) represented as vectors. The plus and

minus signs designate the projection onto the vector of the centroids of the objects that posses

the feature (+) and the objects that do not have that feature (-).

the Categories package by SPSS (Meulman & Heiser, 1999). The solution of the
common space was restricted by a linear combination of the feature variables that
are represented as vectors in Figure 3.1, leading from the origin through the point
with coordinates equal to the correlations of each feature with each of the three di-
mensions. The network clearly shows the distinction between the female kinship
terms and the male kinship terms produced by the most important feature Gender.
This feature as well as the second and third most important features Nuclear family
and Collaterals are represented by vectors in the network. The plus and minus signs
on each vector designate the projection onto the vector of the centroids of the kin-
ship terms that posses the feature (+) and the kinship terms that do not possess that
feature (−).

3.3 Feature Network Models: network and additive tree
representations

The relations between the features in FNM determine the shape of the network. A set
of overlapping features will result in a network graph, which is a connected graph
with cycles. When the set of features has a nested structure, i.e., all pairs of features
are either nested or disjoint, the network will have the shape of an unrooted additive
tree, a graph without cycles (Buneman, 1971). If the unrooted additive tree is a
bifurcating tree, there are fixed numbers of edges (branches), internal and external
nodes, given a number of objects m (cf. Felsenstein, 2004, Chapter 3). Bifurcating
trees have interior nodes of degree 3, meaning that each internal node connects to
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F1 F2 F3 F4 F5 F6 F7 F8 F9

Objects
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d 1 0 1 0 0 0 1 0 0

e 0 0 0 0 0 0 0 1 0

f 0 0 0 0 0 0 0 0 1

Internal nodes

(e,f) 0 0 0 0 0 0 0 0 0

(a,b,c,d) 1 0 0 0 0 0 0 0 0

(a,b) 1 1 0 0 0 0 0 0 0

(c,d) 1 0 1 0 0 0 0 0 0

Figure 3.2: Nested and disjoint feature structure and corresponding additive tree represen-

tation. Each edge in the tree is represented by a feature and the associated feature discrim-

inability parameter ηt.

three other nodes (internal or external) and every external node (or leaf node) is of
degree 1, which means that only one branch leads to an external node. Given these
specifications, the bifurcating unrooted additive tree for m objects has a number of
2m − 3 edges because for each new object added to an existing tree an internal node
and two new edges must be added (cf. Felsenstein, 2004, Chapter 3). Following this
reasoning, the number of internal nodes is fixed to (2m − 3 − 1)/2. In contrast to
the bifurcating trees, the multifurcating trees do not have a fixed number of edges
and nodes for a given number of objects. Since the degree of each internal node
in multifurcating trees is not necessarily equal to 3, there exists a range of possible
numbers of internal nodes and numbers of edges that depend on the number of
internal nodes.

In terms of features, the bifurcating unrooted additive tree has a set of T = 2m− 3
nested features and the internal nodes are represented by (T − 1)/2 supplementary
objects added to the original set of objects in the feature matrix. Figure 3.2 shows the
feature matrix and the corresponding tree graph for an example of 6 objects. There
are T = 2m − 3 = 9 nested features, m = 6 leaf nodes and, no = (T − 1)/2 = 4
internal nodes. The nested structure of the features becomes apparent: the features
either exclude each other or one is a subset of the other. Each cluster in the tree, for
example the bipartition of the objects a and b against the other objects, is represented
by a cluster feature, that is, a feature which describes more than one object, in this
example feature F2. The internal nodes are defined as supplementary objects with a
feature pattern that is the intersection of the feature patterns of a subset of the objects.
Therefore, they can be labeled by listing the objects in the subset. The leaf nodes of
the tree represent the 6 objects and the associated edges correspond to unique features,
which are features that belong to one object exclusively. In the example in Figure 3.2
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Figure 3.3: Betweenness holds when J = I ∩ K, where I, J, and K are sets of features describ-

ing the corresponding objects i, j, and k.

the unique features are the set {F4, F5, F6, F7, F8, F9}. Note that these unique features
are also either nested or disjoint with respect to the cluster features.

Additive tree representation and feature distance

The feature distance parallels the path-length distance in a valued graph when one
of the metric axioms, the triangle inequality, is reaching its limiting additive form
dik = dij + djk (Flament, 1963; Goodman, 1951, 1977; Heiser, 1998). In a network
graph, each time that the distance dik is exactly equal to the sum dij + djk the edge
between the objects i and k can be excluded, resulting in a parsimonious subgraph
of the complete graph.

In terms of features the condition dik = dij + djk is reached when object j is be-
tween objects i and k. The objects can be viewed as sets of features: Si, Sj, and Sk.
Betweenness of Sj depends on the following conditions (Restle, 1959):

1. Si and Sk have no common members which are not also in Sj;

2. Sj has no unique members which are in neither Si nor Sk.

Figure 3.3 clearly shows that betweenness holds when the set Sj is exactly equal to
the intersection of the sets Si and Sk - in that case Sj has no unique features (Tversky
& Gati, 1982) -, or when the set Sj consists of a subset of the intersection of the sets Si

and Sk. In both situations dik = dij + djk. In the following, it will become clear that
an additive tree structure results from a special feature structure where there always
is an internal node Sj between any two leaf nodes Si and Sk.

An additive tree is a special subgraph of the complete graph, where each edge
is represented by a separate feature. The edges leading directly to leaf nodes corre-
spond to unique features, the set of features that describe only one object (see Fig-
ure 3.2). A nested set of features is not sufficient to produce a tree graph with FNM. A
set of internal nodes has to be added to the set of objects (the external nodes). These
internal nodes play the role of the set Sj in the betweenness condition by forcing the
betweenness to hold exactly for any pair of objects i and k that have an associated
nested set of features, leaving only paths between objects that are in an hierarchical
relation to each other. Each edge between two internal nodes corresponds exactly to
one cluster feature, and the edge length to its weight (see Figure 3.2).
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It should be noted that the estimated distances between the internal nodes in the
tree cannot be compared to dissimilarities because these quantities are not observed.
To calculate all distances simultaneously requires a modification of the original fea-
ture matrix E (Equation 3.1). The feature matrix E is augmented with a supplemen-
tary set of objects equal to the number of internal nodes.

The augmented ET matrix is as follows:

ET =

[

EC EU

EN E0

]

, (3.5)

where EC is a m × TC matrix, representing the set of cluster features and EU is a
m × TU matrix representing the set of unique features. Both parts describe the set of
observed objects. The remaining two parts are related to the set of internal nodes
(no): EN is of size no × TC and E0 contains zeros only and has size no × TU. Each row
of EN and E0 represents the feature pattern of each node. This nodal feature pattern
is equal to the intersection of the feature patterns belonging to the objects (the rows
of EC and EU) that are represented by each particular node. The intersection of the
feature patterns related to the unique features is always zero and, consequently, E0

contains zeros only. Figure 3.2 shows the four parts of the augmented ET matrix.
The objects (a, b, c, d, e, f ) are described with cluster features and with unique fea-
tures: the part with the cluster features, EC, is formed by the set features {F1, F2, F3},
the part of the unique features, EU , is formed by {F4, F5, F6, F7, F8, F9}. The feature
patterns of the internal nodes are represented by the parts EN and E0. The E0 part is
related to the unique features and contains zero’s only. The EN relates to the cluster
features and the feature pattern of each internal node is formed by taking the inter-
section of the feature pattern belonging to the corresponding objects. For example,
the feature pattern for internal node (a, b) is formed by taking the intersection of the
feature pattern for object a = {110} and object b = {110}, resulting in the feature
pattern {110}.

Dissimilarities are only available for the objects and not for the internal nodes.
Therefore, the feature discriminability parameters ηηη are estimated using only the
parts EC and EU . After applying the featurewise distance transformation in Equa-
tion 3.4 to the matrix [EC EU ], the resulting matrix X is used to obtain the estimates
of the feature discriminability parameters (η̂ηη) by minimizing the loss function in
Equation 3.3. To obtain the estimated distances for the edges that are linked to in-
ternal nodes, the featurewise distance transformation (Equation 3.4) is applied to
the augmented matrix ET , yielding the matrix XT . The estimated feature distances

for the complete tree are equal to d̂T = XTη̂ηη. Given this description, it is easy to
understand that every tree topology, known by theory or resulting from any tree
constructing algorithm, can be transformed into an augmented feature matrix ET ,
such that, when analyzed as FNM with PROXGRAPH, it will lead to a tree represen-
tation of the data.

Example of additive tree obtained with feature structure

An example of a multifurcating additive tree is the solution obtained by De Soete
and Carroll (1996) on the kinship data. The augmented ET based on this given tree
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Figure 3.4: Unresolved additive tree representation of the kinship data based on the solution

obtained by De Soete & Carroll (1996).

topology is displayed in the first part of Figure 3.5 and yields the additive tree repre-
sentation in Figure 3.4. The 2-dimensional embedding of the tree has been obtained
by submitting Euclidean distances calculated on the augmented ET to the MDS pro-
gram PROXSCAL4, a multidimensional scaling program distributed as part of the
Categories package by SPSS (Meulman & Heiser, 1999). The associated feature pa-
rameters and 95% t-confidence intervals are given in Figure 3.6. The construction
of the confidence intervals will be explained in the next section. Some of the fea-
ture parameters have zero values (F2, F3, F4, F21, F23) leading to the unresolved tree
representation of Figure 3.4. The expected number of nodes is 12 + 1 = 13 with 15
objects, but only 6 internal nodes remain in the final solution due to activation of the
positivity constraints. The feature structure (ET) can therefore be simplified to the
matrix shown in the second part of Figure 3.5.

4allowing a ratio scale transformation with a simplex start.
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Feature structure resolved tree

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

aunt        0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
brother     1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cousin      0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

daughter    1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
father      1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

granddaughter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
grandfather 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

grandmother 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0

grandson    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
mother      1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

nephew      0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
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Figure 3.5: Feature structure for the resolved additive tree representation (top) of the kinship

data and simplified feature structure for the unresolved additive tree representation (bottom)

of Figure 3.4.
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Figure 3.6: Feature parameters (η̂ICLS) and 95% t-confidence intervals for additive tree solu-

tion on kinship data with R2 = .96.

3.4 Statistical inference in additive trees

This section shows how the multiple linear regression framework can be used to
obtain several statistical inference measures for additive trees. The features of an
additive tree can be considered as predictor variables and the feature discriminabil-
ity parameters are estimated like regression coefficients, with the major difference
that positivity constraints are imposed on the feature discriminability parameters,
because they represent edge lengths in the tree representation. This section shows
how to obtain standard errors for the inequality constrained least squares estimators
that can be used to construct 95% t-confidence intervals for the feature discriminabil-
ity parameters. The statistical inference theory is intended for the case where the tree
topology is known in advance, but can also be applied when the tree topology is un-
known, as will be shown in the following. This section also provides an application
of the Kuhn-Tucker test that is used to test whether the constrained solution is in ac-
cordance with the data and results from the same theory used to obtain the standard
errors. The last topic of this section provides a way to estimate prediction error with
the generalized cross-validation (GCV) statistic. This estimate of prediction error com-
bines the the analytical approximation of leave-one-out cross-validation commonly
used in linear fitting methods with the inequality constrained least squares theory.

Obtaining standard errors for additive trees

An important difference of the current approach compared to what is usually done
in the phylogenetic domain is that phylogenetic trees do not use explanatory vari-
ables like the features. In the case that the feature structure is known, the distinctive-
feature additivity allows for considering the additive tree as a univariate multiple



64 CHAPTER 3. STATISTICAL INFERENCE IN ADDITIVE TREES

linear regression model:
δδδ = Xηηη + ǫǫǫ (3.6)

where δδδ is a n × 1 vector with dissimilarities, X is a known n × T binary (0, 1) matrix
of rank T and ηηη is a T × 1 vector. Each row of the matrix X results from the operation
xl = |eit − ejt| (Equation 3.4). For an additive tree representation, X contains the
featurewise distances that result from the matrix ET formed by the set of cluster
features and unique features, as explained in the previous section.

We assume, like Ramsay (1982), that ǫǫǫ in Equation 3.6 is a n × 1 random vec-
tor that follows a normal distribution with constant variance σ2 over replications of
judgments,

ǫǫǫ ∼ N (µ, σ2I), (3.7)

where I is an identity matrix of rank n, and where it is assumed that σ2 is small
enough to ensure the occurrence of negative dissimilarities to be negligible. The pa-
rameters of the vector ηηη are subject to positivity constraints because they represent
edge lengths of the tree. As explained in the beginning of this section, the phyloge-
netic domain does not apply positivity constraints when estimating branch lengths
and trees that yield negative branch length estimates are simply discarded. Hence,
the phylogenetic domain might benefit from the following theory on inequality con-
strained least squares estimation.

The inequality constrained least squares estimator η̂ICLS results from the quadratic
programming problem (cf. Björk, 1996):

min
ηηη

= (δδδ − Xηηη)′(δδδ − Xηηη)

subject to Aηηη ≥ r, (3.8)

where the matrix of constraints A is a C × T matrix of rank C, and r is a C × 1 null-
vector because all parameters are constrained to be greater than or equal to zero.

The duality theory of the quadratic programming problem of Equation 3.8 is the
basis for the estimation of the standard errors of the parameters (Liew, 1976) and
results in the following expression of the estimator η̂ICLS in terms of the dual solution:

η̂ηη
ICLS

= (X′X)−1X′δδδ + (X′X)−1A′ 1
2λλλKT, (3.9)

where λλλKT is the vector with Kuhn-Tucker multipliers that results from solving the
quadratic programming problem with Algorithm AS 225 (Wollan & Dykstra, 1987).
As shown by Liew (1976) the estimated standard errors for the ICLS estimator vector
are

σ̂ICLS =
√

σ̂2diag
[

M(X′X)−1M′
]

, (3.10)

where

σ̂2 =
[

(δδδ − Xη̂ηη
OLS

)′(δδδ − Xη̂ηη
OLS

)
]

/(n − T), (3.11)

and

M = I + diag[(X′X)−1A′ 1
2λλλKT][diag(η̂ηη

OLS
)]−1. (3.12)
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If the model is unconstrained, the estimated variance-covariance matrix reduces to
the variance-covariance matrix of the ordinary least squares (OLS) estimator. For
more details the reader is referred to Liew (1976), Wolak (1987), and Frank & Heiser
(in press a). The standard errors for the ICLS estimator can be used to construct 95%
t-confidence intervals in the usual way.

When the tree topology is not known yet and has to be estimated from the sample
data first, the theory described in the previous paragraph cannot be applied directly.
The standard errors cannot be estimated on the same data that were used to obtain
the tree topology. In practice, the problem can be circumvented by dividing the sam-
ple in a training set and a test set. The training set is used to derive the tree topology,
which is fitted on the test data to obtain the standard errors and the 95% t-confidence
intervals for the feature discriminability parameters. The rationale behind this ap-
proach is the following: assuming that the sample is an adequate representation of
the population, the training set will yield a tree topology that is close to the popu-
lation tree or feature set. The deviations from the true tree topology are assumed
to result from sampling error, and, therefore, will probably lead to near zero feature
discriminability values and confidence intervals that contain the value zero. These
assumptions have been verified by Monte Carlo simulation and the results are pro-
vided in the following.

Testing the appropriateness of imposing constraints

In the previous it has been assumed that there exists a representation of the data
in terms of (positive) distances between points in a network or a tree. The validity
of this assumption can be verified in a hypothesis-testing framework: we can test
whether the data is consistent with true values of the parameters satisfying the re-
strictions imposed on the estimated coefficients. The null hypothesis of the inequal-
ity constraints Aη̂ηη

ICLS
≥ r (the ICLS solution) can be tested against an unrestricted

alternative η̂ηη
OLS

∈ At (the OLS solution). These multivariate inequality constraints
lead to the following likelihood ratio test:

−2ln

(

LICLS

LOLS

)

= 2(lnLOLS − lnLICLS), (3.13)

where LICLS and LOLS are the maximum values of the likelihood function under the
null hypothesis Aηηη ≥ rrr and the alternative hypothesis ηηη ∈ At, repectively. If σ2 is
known the LR statistic takes the following form:

LR =
[

(δδδ − Xη̂ηη
ICLS

)′(δδδ − Xη̂ηη
ICLS

) − (δδδ − Xη̂ηη
OLS

)′(δδδ − Xη̂ηη
OLS

)
]

/σ2. (3.14)

According to Wolak (1987) the LR statistic is also the optimal value of the objective
function, or the primal function of the following quadratic programming problem:

min
ηηη

=
[

(δδδ − Xηηη)′(δδδ − Xηηη) − (δδδ − Xη̂ηη
OLS

)′(δδδ − Xη̂ηη
OLS

)
]

/σ2

subject to − Aηηη ≥ r. (3.15)

Wolak (1987) showed that the Kuhn-Tucker test statistic (KT) is equal to the LR test
statistic using the theory of quadratic programming, which states that the optimal
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value of the objective function of the primal equals that same value for the dual
problem under certain conditions. The necessary conditions are that X′X is non-
singular and A(X′X)−1A′ is positive definite. The Kuhn-Tucker test statistic is the
optimal value of the dual problem of the objective function of Equation 3.13, and can
be formulated as follows:

KT =
[

λλλ′
KTA(X′X)−1A′λλλKT

]

/4σ2 (3.16)

Wolak (1987) also showed that the KT and the LR statistics have the same distri-
butions and continue to possess the same distribution if the same estimate for σ2 is
used when σ2 is unknown and replaced by its estimated value σ̂2. The null distribu-
tion of both test statistics is a weighted sum of Snedecor’s F distributions, a property
that also holds for covariance matrices other than σ2I. For the hypothesis testing
problem H0 : λλλKT = 0 versus H1 : λλλKT ≥ 0 (which is equivalent to the testing prob-
lem H0 : Aηηη ≥ r versus H1 : ηηη ∈ AT), the null distribution of the KT statistic (and
the LR statistic) with σ2 replaced by σ̂2 (Equation 3.11), is equal to:

Pr0,4σ̂2ΛΛΛ [KT ≥ q] =
C

∑
c=1

Pr[Fc,n−T ≥
q
C ]w(C, c, 4ΛΛΛ)

Pr0,4σ2ΛΛΛ [KT = 0] = w(C, 0, 4ΛΛΛ), (3.17)

where ΛΛΛ = (A(X′X)−1A′)−1, and q is the value of the Kuhn-Tucker test statistic.
The weights w denote the proportion of times λλλKT (Equation 3.16) has exactly c el-
ements larger than zero and can be calculated in closed form for the cases in which
C ≤ 4 (see Wolak, 1987, Appendix). For the cases where the number of constraints
exceeds the number 4, Monte Carlo techniques can be used, as will be explained in
the Method section.

Estimating prediction error

In addition to the the Kuhn-Tucker test that requires one of the models to be nested
within the other (a constrained model versus an unconstrained model), there is an
easy way to evaluate the goodness-of-fit of models that are not necessarily nested
within each other. Likelihood ratio tests are not suited for testing nonnested models,
which have the same number of effective parmeters (Felsenstein, 2004, pp. 316-318;
Huelsenbeck & Rannala, 1997). Therefore, Felsenstein (1985, 2004) evaluates the
goodness of fit of the tree topology by constructing a consensus tree using a resam-
pling strategy (the nonparametric bootstrap). The AIC statistic (Akaike, 1974) can
be used for any pair of models whether nested or not, and has been used for that
purpose in phylogenetics (Kishino & Hasegawa, 1990), but also in several MDS ap-
plications (Takane, 1981, 1983; Takane & Carroll, 1981; Winsberg & Ramsay, 1981)
and is mainly suitable when a log-likelihood loss function is used. Here, we propose
a criterion closely related to AIC that is frequently used in the context of linear mod-
els: the generalized cross-validation (GCV). This statistic provides a convenient ap-
proximation to leave-one-out cross-validation for linear fitting under squared-error
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loss (Hastie, Tibshirani, & Friedman, 2001, p. 216). A linear fitting method is one for
which we can write:

ŷyy = Syyy. (3.18)

The hat matrix S from Equation 3.18 is equal to the combination of matrices that
transforms the observed data y into the predicted values ŷ.

Using the hat matrix, linear fitting methods can be written as follows,

1

N

N

∑
i=1

[yi − ŷi]
2 =

1

N

N

∑
i=1

[

yi − ŷi

1 − Sii

]2

, (3.19)

where Sii is the ith diagonal element of S. The GCV approximation is

GCV =
1

N

N

∑
i=1

[

yi − f̂ (xi)

1 − trace(S)/N

]2

, (3.20)

where the quantity trace(S) is the effective number of parameters. Applied to the ad-
ditive tree the generalized cross-validation statistic can be computed as follows. From
Liew (1976) we know that the following relation exists between the ICLS and the OLS

estimator, which leads to the matrices needed to construct the hat matrix:

η̂ηη
ICLS

= Mη̂ηη
OLS

= M(X′X)−1X′δδδ. (3.21)

From the relation expressed in Equation 3.21 it follows that the predicted distance
values can be obtained with:

d̂ = XM(X′X)−1X′δδδ, (3.22)

and, consequently, the hat matrix is equal to

S = XM(X′X)−1X′. (3.23)

The generalized cross-validation error for the additive tree can be estimated using the
trace of the hat matrix from Equation 3.23:

GCVFNM =
1

n

n

∑
l=1

[

δl − d̂

1 − trace(S)/n

]2

. (3.24)

3.5 Method Monte Carlo simulations

To evaluate the performance of the statistical inference theory described in the pre-
vious section, three Monte Carlo simulations were conducted using data structures
that approximate the practice of data analysis with additive tree models. The first
simulation shows how to obtain the empirical p-value for the Kuhn-Tucker test de-
scribed in Equations 3.16 and 3.17. The second simulation study evaluates the per-
formance of the nominal standard errors for known tree topologies compared to
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empirical (bootstrap) standard errors. The third simulation study assesses the per-
formance of the nominal standard errors when the tree topology is unknown. In
this study the performance of the GCVFNM statistic that serves as an approximation
for the prediction error is evaluated as well. All simulation procedures were pro-
grammed in Matlab and made use of its pseudo-random number generator, which
was set to 1.0 prior to the simulation process.

Empirical p-value Kuhn-Tucker test

The null distribution of the Kuhn-Tucker test was calculated by simulating many
data sets from a fixed population distribution. The model parameters were esti-
mated from the original data (the kinship data) under the null hypothesis, i.e. the
inequality constrained least squares model with associated feature parameters as
displayed in Table 3.2. A number of 1,000 multivariate normal samples of n = 105
dissimilarities were sampled using the binomial distribution to ensure positive dis-
similarity values that follow a normal distribution. The details of the method of
sampling from the binomial distribution are described in Frank & Heiser (in press
a). The Kuhn-Tucker test statistic (Equation 3.16) was calculated for each data set,
and the proportion of the replicates in which the value of the test statistic exceeded
the value obtained for the original data represents the significance level of the test.

Simulation for nominal standard errors with a priori tree topology

The purpose of this simulation study is to evaluate the performance of the nominal
standard errors of the ICLS estimator compared to empirical (bootstrap) standard er-
rors, for the situation where the tree topology is known in advance. In addition, the
performance of these nominal standard errors are evaluated by comparing the cov-
erage of the nominal confidence intervals with the coverage of bootstrap confidence
intervals . The coverage is equal to the proportion of times the true value is included
in the confidence interval.

In this simulation study the performance of the standard errors of the ICLS es-
timator was evaluated using positive true feature parameters, which represents a
situation where it is correct to apply constraints and consequently, the asymptotic
properties of the ICLS estimator are expected to hold. For the asymptotic proper-
ties to hold, normally distributed errors and homogeneous variances are required
as well. Given positive true feature parameters, true distances can be computed
that can be used as population values from which dissimilarities can be sampled by
adding some error to the true distances. True distances were computed with:

d = Xηηη, (3.25)

where the true parameters are equal to the ICLS estimates (η̂ICLS) in Table 3.2 and X
is obtained with the feature matrix of the kinship data (Figure 3.5). The true tree is
starlike because several branches have branch lengths equal to zero. A number of
S = 1, 000 samples of n = 105 dissimilarities each, was created by sampling from
the binomial distribution and with a homogeneous variance condition created with
error variance σ2 equal to 14.4, which corresponds to the observed residual error
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variance after fitting the FNM on the original kinship data (see for details on the
method of binomial sampling, Frank & Heiser, in press a). Each simulation sample
formed the starting point for a bootstrap of B = 10, 000 bootstrap samples, using
the method of multivariate sampling, which means that for each dissimilarity δl

(l = 1, · · · , n) sampled from the kinship data, the corresponding row of the original
X matrix with features was sampled as well. The simulation yielded 1,000 nominal
standard errors (σ̂ICLS) for the ICLS estimator. The 1,000 bootstraps (each based on
10,000 bootstrap samples) resulted in 1,000 bootstrap standard deviations (sdB) of
the ICLS estimator.

To evaluate the performance of the estimators, two commonly used measures,
the bias and the root mean squared error (rmse), were used. Estimates of bias were
calculated for the feature parameter estimates η̂ICLS, the nominal standard errors
σ̂ICLS, and the bootstrap standard deviations sdB. Bias is equal to the expected value
of a statistic, E(θ̂), minus the true value θ. For example, the bias of each nominal
standard error σ̂ICLS is determined in the simulation study by:

biasσ̂ICLS
=

[

1

S

S

∑
a=1

σ̂ICLS

]

− ση , (3.26)

where S indicates the number of simulation samples. The bias of σ̂ICLS is computed
with σICLS equal to Equation 3.10, using the true values σ2, X and M from Equa-
tion 3.12. The bias for the bootstrap standard errors is calculated in the same way,

with the exception that 1
S ∑

S
a=1 σ̂ICLS is replaced by the sum of the bootstrap standard

deviations sdB.
The rmse is equal to the square root of E[(θ̂ − θ)2] and takes into account both bias

and standard error of an estimate, as can be deduced from the following decompo-
sition (Efron & Tibshirani, 1998):

rmseθ =
√

sd2
θ̂
+ bias2

θ̂
. (3.27)

The nominal standard errors (σ̂ICLS) were used for the construction of nominal
95% confidence intervals , based on the t distribution (d f = n − T, with n equal to
the number of dissimilarities and T equal to the number of features). Empirical 95%
confidence intervals were obtained with the bootstrap-t interval, which is computed
in the same way as the nominal confidence interval with the only difference that the
bootstrap standard errors (sdB) are used instead of the estimated standard errors for
the sample. For both nominal and empirical confidence intervals , the coverage per-
centage is equal to the proportion of the simulated samples in which the confidence
interval includes the true parameter value.

In a previous study (Frank & Heiser, in press a) we also used the bias-corrected and
accelerated bootstrap interval, the BCa (Efron & Tibshirani, 1998) in addition to the
bootstrap-t interval. Due to the disappointing results obtained for the BCa intervals,
especially when larger numbers of constraints are activated, we restricted this study
to the bootstrap-t intervals, which performed better.
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Simulation for nominal standard errors with unknown tree topology

The data structure used for this simulation study is based on data from Tversky
and Hutchinson (1986, Table 1, p. 5). The data represent mean ratings of similarity
between 20 common fruits on a 5-point scale (range 0 - 4, with 4 meaning highly
related). For use with an additive tree model, the data were first transformed to dis-
similarity values by subtracting each original similarity value from 4. An additive
tree was inferred from these dissimilarities with the neighbor-joining (NJ) method
(Saitou & Nei, 1987) using the NJ algorithm programmed for Matlab by Strauss (see
http://www.biol.ttu.edu/Strauss /Matlab/Matlab.htm). Next, the feature structure
(features and internal nodes) was derived from the NJ tree topology by constructing
the feature matrix ET as in Equation 3.5. The feature matrix equal to the NJ tree topol-
ogy was submitted to the FNM program (PROXGRAPH) to obtain the ICLS estimates
(η̂ICLS) for the feature discriminability parameters and the estimated distances. Fig-
ure 3.7 shows the resulting tree, where three major clusters become apparent. There
is a large cluster with the following three subclusters tropical (exotic) fruit (coconut,
pineapple, pomegranate, banana), melons (honeydew, watermelon) and citrus fruit (lemon,
orange, grapefruit). This cluster also comprises the tomato that is in a sense exotic be-
cause it is not generally recognized as fruit. The second cluster (grapes, blueberry,

orange

apple

banana

peach

pear

apricot
plum

grapes

strawberry

grapefruit

pineapple

blueberry

watermelon

honeydew

pomegranate

date

coconut

tomato

olive

lemon

 

 
1.02

0.46

0.83

1.25

0.62

0.84

0.65

0.85

0.85

0.58

0.71

0.69

0.68

0.57

1.18

0.90

1.25

1.50

1.24

0.74

0.39

0.24

0.16
0.19

0.31

0.19
0.14

0.63

Figure 3.7: Additive tree representation of the fruit data obtained with PROXGRAPH based

on the tree topology resulting from the neighbor-joining algorithm.
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strawberry, date, olive) seems to be determined by the shape and the size of the fruits:
small and berry shaped. The third cluster (plum, apricot, pear, apple, peach) contains
two subfamilies from the rosaceae family, the pome fruits (pear, apple) and the stone
fruits (plum, apricot, peach). The feature structure and the feature discriminability
parameters of this tree serve as the true model for the simulation study and are dis-
played in Table 3.3.

A number of 100 simulation samples with dissimilarities were sampled from the
true distances using the aforementioned method of binomial sampling. Two levels
of error variance (σ2 = 0.5, σ2 = 1.0) were used. To obtain the nominal standard
errors when the tree topology is unknown, each sample was divided in a training
set and a test set such that the test set contained a proportion of 0.33 of the total sam-
ple size. Three levels of total sample size were used: 50, 100 and 300 observations.
A total sample size of 50 means that 50 subjects evaluated the relatedness of the 20
fruits on a 5-point scale. The test set contains 33% of the total sample size and the
training set the remaining observations. The data that were analyzed were the mean
values of the total dissimilarity values in the training set and in the test set. The
mean dissimilarity values of the training set of each simulation sample were sub-
mitted to the NJ algorithm to obtain an NJ tree topology. Next, the feature structure
(features and internal nodes) was derived from this tree topology by constructing
the feature matrix ET as in Equation 3.5. The feature parameters and associated
nominal standard errors were obtained by fitting the training tree topology on the
test set dissimilarities using PROXGRAPH. In addition, the prediction error of each
sample was estimated with the GCVFNM statistic (Equation 3.24), which was esti-
mated for each test sample using the tree topology obtained in the training sample.
The same GCVFNM statistic was also estimated with the training tree topologies and
the true distances instead of the test sample dissimilarities. With no sampling er-
ror present, the GCVFNM values give an unbiased estimate of the error due to model
misspecification. Both GCVFNM estimates were compared in all experimental condi-
tions. The performance of the GCVFNM statistic was further assessed by comparing
its distribution in the 6 experimental conditions to the distribution of the number of
true features that were recovered in the training tree topologies. Tree topologies that
recover a large number of true features should have lower estimates of prediction
error.

The performance of the nominal standard errors (σ̂ICLS) was evaluated by the cov-
erage proportions of t-confidence intervals constructed with estimates of the nom-
inal standard errors (σ̂ICLS). The coverage percentage is equal to the proportion of
the simulated samples in which the confidence interval includes the true feature dis-
criminability value, in the same way as for the simulation with fixed tree topology.
There is, however, an important difference, because, in this simulation study, an NJ

tree topology was estimated for each simulation sample. As a result, the training
sample of each simulation sample yielded a feature set that does not necessarily
contain all the features present in the true tree topology. Therefore, the proportion
of confidence intervals that include the true feature discriminability value can only
be obtained for feature discriminability parameters associated with features that are
part of the true tree topology. In practice, this means that each tree topology in-
ferred for the training samples, was compared to the true tree topology and only
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the nominal standard errors associated with features that belong to the true model
were used to obtain the coverage proportions of the t-confidence intervals . The fea-
ture discriminability parameters (η̂ICLS) belonging to features that are not included
in the true tree topology were also evaluated. To verify the assumption that features
that are not included in the true model will lead to small η̂ICLS values, t-confidence
intervals were constructed using the nominal standard errors (σ̂ICLS). The propor-
tion of the confidence intervals that contain the value zero provided evidence for the
tenability of the aforementioned assumption.

A few words have to be said about the method used to compare the features
resulting from the training sample tree topology with the features from the true
tree topology. In terms of a feature model, the tree topology consists of a set of
features that are binary (0, 1) variables. A binary vector is in fact the binary code
representation of an integer. In the same way, features can be considered as unique
representations of integers with the number of bits equal to the number of objects
(m). Although there are several binary coding systems available, the Gray code sys-
tem was used because in the context of FNM it proved to be an efficient method
to generate the complete set of distinctive features (Frank & Heiser, in press b). In
this simulation study, the Gray code system was used to derive the unique Gray
code rank number for the features in the true tree topology and for the features in
the training sample topologies. The Gray code rank numbers were derived using a
Matlab transcription by Burkardt (see http://www.csit.fsu.edu/ burkardt/) of the
original algorithms for generating Gray codes in Nijenhuis and Wilf (1978). Since
the binary feature vectors can be uniquely identified by a Gray code rank number,
the comparison between the features of the training tree topologies and the features
of the true tree topology amounts to a simple comparison of integers.
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Table 3.3: The 17 cluster features (F1 - F17) and 20 unique features (F18 - F37) with associated

feature discriminability parameters for the neighbor-joining tree on the fruit data.

Feature Objects η̂ICLS

F1 watermelon, honeydew 0.634

F2 strawberry, blueberry 0.309

F3 orange, lemon 0.116

F4 orange, grapefruit, lemon 0.386

F5 date, olive 0.300

F6 grapes, strawberry, blueberry 0.192

F7 pineapple, coconut 0.159

F8 apple, pear 0.102

F9 peach, apricot 0.245

F10 peach, apricot, plum 0.038

F11 grapes, strawberry, blueberry, date, olive 0.136

F12 orange, grapefruit, lemon, watermelon, honeydew 0.004

F13 F12 + pineapple, coconut 0.095

F14 F13 + pomegranate 0.063

F15 apple, peach, pear, apricot, plum 0.155

F16 F14 + tomato 0.019

F17 F16 + F11 0.009

F18 orange 0.461

F19 apple 0.832

F20 banana 1.253

F21 peach 0.615

F22 pear 0.838

F23 apricot 0.645

F24 plum 0.850

F25 grapes 0.846

F26 strawberry 0.576

F27 grapefruit 0.709

F28 pineapple 1.023

F29 blueberry 0.694

F30 watermelon 0.682

F31 honeydew 0.568

F32 pomegranate 1.179

F33 date 0.895

F34 coconut 1.247

F35 tomato 1.506

F36 olive 1.235

F37 lemon 0.739
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Figure 3.8: Histogram of Kuhn-Tucker test statistic obtained with parametric bootstrap

(1,000 samples) with ICLS as H0 model, based on kinship data. The empirical p-value is equal

to .74 and represents the proportion of samples with values on the Kuhn-Tucker statistic larger

than 0.89, the value of the statistic observed for the sample.

3.6 Results simulation

Results Kuhn-Tucker test and estimates of prediction error

Figure 3.8 shows the result of the simulation based on the additive tree model ob-
tained on the kinship data. The Kuhn-Tucker test statistic for the original sample is
equal to 0.89 and a proportion of 0.74 of the 1,000 simulated samples have values
equal or larger to the sample value of the statistic under the H0. Therefore, there
is no reason to reject the null hypothesis and consequently, it seems appropriate to
apply the positivity constraints on these data.

Concerning the estimates of prediction error, the resolved tree yields a GCVFNM

value equal to 278.37 and the unresolved tree has GCVFNM = 246.10. Only relative
magnitudes of this statistic are meaningful and the conclusion is that the unresolved
tree has less prediction error. In summary, the result of the Kuhn-Tucker test shows
that the inequality constraints reasonably fit the data, and the estimate of prediction
error shows that the unresolved tree has better prediction properties.

Performance of the nominal standard errors for known tree topology

Figure 3.9 shows the mean, the bias, and the rmse of the distribution of the 1,000
nominal standard errors as well as the distribution of the 1,000 bootstrap standard
errors plotted against the true variability values. Plotting against the true variability
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Figure 3.9: Mean (panel A), bias (panel B), and rmse (panel C) of the 1,000 simulated nominal

standard errors σ̂ICLS (•) and the 1,000 bootstrap standard deviations sdB (!) plotted against

the true nominal standard errors σICLS .

allows for comparing the results for the parameters with activated constraints (nom-
inal standard errors equal to zero) and the remaining parameters with no activated
constraints. The distribution of the bootstrap standard deviations and the nominal
standard errors show a different pattern depending whether constraints are acti-
vated or not. When constraints are activated, the pattern of the nominal standard
errors is almost equal to the pattern of the bootstrap standard deviations: the values
of the mean (panel A), the bias (panel B) and the rmse (panel C) are very related.
When constraints are not activated, the distribution of the bootstrap standard devi-
ations reveals a clearly different pattern compared to the nominal standard errors.
The mean of the bootstrap standard deviations (panel A) is evidently smaller than
the mean of the nominal standard errors, which are very close to the true variability
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Figure 3.10: Coverage proportions of the nominal t-CI and bootstrap t-CI for the true feature

discriminability values, based on the 1,000 simulated samples.

values, and, consequently, the bootstrap standard deviations are biased downwards
(panel B), showing an underestimation of the true variability, whereas the nominal
standard errors show almost no bias. The larger bias values for the bootstrap stan-
dard deviations, combined with larger variability (not shown) lead to larger values
for the rmse (panel C).

Figure 3.10 shows the coverage proportions of the nominal and the bootstrap
95% t-confidence intervals for the ICLS estimator. The coverage of the nominal confi-
dence intervals is closer to the nominal 95% level than the coverage of the bootstrap
confidence intervals that are mostly lower than the nominal values and achieve sev-
eral low coverage values around 40%. This finding corresponds with the patterns
observed in Figure 3.9, where the bootstrap standard deviations are clearly biased
downwards.

Performance of the nominal standard errors for unknown tree topology

The right panel of Figure 3.11 displays the distribution of the number of true cluster
features present in the NJ tree topologies inferred for the 100 training samples in
each experimental condition. Since the unique features are always the same for each
topology, only the cluster features are represented. There are 17 cluster features in
the true tree topology for the simulation study. The NJ tree topologies obtained in the
training samples consistently had 17 cluster features, with two exceptions only. In
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Figure 3.11: Left panel: Distribution of the GCVFNM statistic estimated on the test samples

based on the tree topology inferred for the training samples under all experimental conditions

for 100 simulation samples. The asterisk in each box represents the mean of the true GCVFNM

values. Right panel: Distribution of the number of cluster features equal to the true cluster

features (TC = 17) present in the tree topologies obtained for the training samples of the same

100 simulation samples in each experimental condition.

the low error condition with sample size 100 and with sample size 50, 1 sample out
of 100 yielded a NJ tree topology with 16 cluster features. The boxplots in the right
panel of Figure 3.11 show that the number of true features recovered in the training
sample decreases when the sample size decreases and when the error level is higher,
except for sample size 300. The distributions of the prediction error, estimated with
the GCVFNM statistic on each test sample (left panel of Figure 3.11), mirror these
effects: higher levels of GCVFNM correspond to less well recovered tree topologies.
To evaluate the performance of the GCVFNM, this statistic was also estimated with
the training tree topology fitted on the true distances. The mean of these GCVFNM

values in each of the experimental conditions is represented with an asterisk in the
left panel of Figure 3.11 and it is clear that the mean of the GCVFNM values in the
test samples is very close to the mean of the GCVFNM values obtained for the true
distances.
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Table 3.4: Proportion of 95% t-confidence intervals containing the value zero in the test

samples for the feature discriminability parameters associated with features not present in

the true tree topology

Error level 0.5 0.5 0.5 1.0 1.0 1.0
Sample size 300 100 50 300 100 50

Coverage
1.00 1.00 0.82 0.85 0.92 0.80 0.81
0.99 0.00 0.18 0.15 0.00 0.15 0.14
0.98 0.00 0.00 0.00 0.08 0.04 0.03
0.96 0.00 0.00 0.00 0.00 0.00 0.02

The feature discriminability values for the features in the training samples that
are not included in the true model were recorded for all experimental conditions.
Most of these feature discriminability values were equal to zero, but some reached
higher values, with a maximum value of 0.26. However, most of these values did
not significantly differ from zero, as can be deduced from the coverage proportion
of the t-intervals in Table 3.4. In general, at least 96% of the confidence intervals
contained the value zero. When error level was low and sample size was equal to
300, all confidence intervals contained the value zero. With increasing error level
and decreasing sample sizes, the proportion of confidence intervals spanning zero
gradually drops off to 0.96. These results lead to the conclusion that, in general,
the feature discriminability parameters associated with features that are not part of
the true tree topology, had values that do not significantly differ from zero. Even
in the worst case, only a very small proportion (4%) of the feature discriminability
parameters associated with features that are not part of the the true tree topology,
had values that differ significantly from zero.

Figure 3.12 gives insight in the performance of the nominal standard errors in
each experimental condition related to the proportion of correctly recovered features
in the training samples. The squares indicate the proportion of features in the NJ tree
topologies inferred for the training samples that correspond to the features in the
true tree topology. The set of unique features (corresponding to the numbers 18 to 37
in Figure 3.12) is by definition part of the tree topology and therefore, these features
have perfect recovery results in all experimental conditions. The recovery of the clus-
ter features is clearly affected by the experimental conditions. The set of features that
are less well recovered form the following subset {F3, F7, F8, F10, F12, F13, F14, F16, F17}.
When sample size decreases and error becomes higher, an increasing number of fea-
tures from this set are less well recovered. It is, however, not surprising that this
particular set of features is not well recovered because these features have the small-
est feature discriminability parameters in the total feature set (see, Table 3.3). From
the point of view of interpretation, these less well recovered cluster features form
subsets of fruits that are counterintuitive, like, for example, the combination of cit-
rus fruits and the two types of melons, represented by F12 (Table 3.3).
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The bullets in Figure 3.12 represent the proportion of nominal t-confidence in-
tervals in the test samples that cover the true feature discriminability parameter for
the features that are part of the true tree topology. The feature discriminability pa-
rameters that have lower coverage proportions are associated with the same subset
of features that are less well recovered. The coverage proportions of the nominal
t-confidence intervals are adequate (ranging from 0.95 to 1.0) for the features that
are well recovered, but become lower (sometimes reaching values lower than .40)
for the features that are less well recovered.

3.7 Discussion

This paper showed how to obtain theoretical standard errors and confidence inter-
vals for the estimates of branch lengths in psychometric additive trees for a priori
known tree topologies as well as for estimated tree topologies. The statistical infer-
ence theory proposed here derives from the multiple regression framework, which is
directly related to the feature representation of additive trees. Using features along
with the univariate multiple regression framework offers a different perspective on
statistical inference in psychometric additive trees and might be useful for the phy-
logenetic tree domain as well.

However, a comparison between evolutionary trees and psychometric trees is
not straightforward because different assumptions are made about the estimated
distances in the tree, and, consequently, the results might not be exchangeable be-
tween the two types of tree models. In phylogenetic trees, the distances in the tree
represent evolutionary distances, which in most cases are equal to the number of nu-
cleotide substitutions for all pairs of nucleotide sequences representing the species.
In psychometrics there is no generally accepted theory about the underlying distri-
bution of dissimilarities between objects. In multidimensional scaling theory, sev-
eral possible distributions have been proposed. Ramsay (1982) suggested the nor-
mal distribution, the log-normal distribution (because of the nonnegative nature of
dissimilarities) and a symmetric alternative, the inverse Gaussian (or Wald) distribu-
tion. Restle (1961) proposed the gamma distribution and Takane (1981) and Takane
and Carroll (1981) used various distributions that take into account the specific data
generation process that underlies each data collection method.

Despite these differences, both types of tree domains share the following impor-
tant property: from evolutionary perspective, but also in psychology, a tree with
negative branch lengths has no meaning and cannot be accurate by definition. Con-
sequently, all tree searching algorithms search for tree topologies with positive
branch lengths while discarding all tree topologies that yield negative estimates of
branch lengths. Searching for a tree with positive branch lengths implies that pos-
itivity constraints should be imposed on the estimates of the branch lengths. Im-
posing inequality constraints during estimation has consequences for the statistical
properties of the estimates: they become biased because their distribution is trun-
cated at zero. The presence of the inequality constraints cannot be ignored and
should be part of the tree searching algorithms, as already pointed out by Gascuel
and Levy (1996), but also when the variability of the branch lengths are estimated.
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This paper shows that the theoretical standard errors for inequality constrained
least squares estimates are useful in assessing the variability of the branch lengths
in psychometric additive trees. For a priori known tree topologies the theoretical
standard errors perform well. When the tree topology is not known in advance and
estimated with the NJ method, the performance of the confidence intervals based
on the theoretical standard errors is adequate, except for the features that have very
small feature discriminability values and, at the same time, are not well recovered
by the NJ method.

The results of this study are however limited to the normal distribution assump-
tion, necessary in the inequality constrained least squares framework. In addition,
the assumption of homogeneous variances (Equation 3.7) is arguable because the
dissimilarity values that share the same objects are likely to be correlated. In mul-
tidimensional scaling, solutions have been proposed by Ramsay (1982) who uses a
multiplicative variance components model instead of the additive model of Equa-
tion 3.7 and introduces MINQUE variance estimates for cases where the configura-
tion matrix is known. In the phylogenetic domain, Bulmer (1991) uses generalized
least squares to account for the heterogeneity. In theory, the combination of ICLS

estimates with generalized least squares, yielding inequality constrained general-
ized least squares estimates (ICGLS), could be a solution. In practice, the statistical
properties are barely known (Werner, 1990; Werner & Yapar, 1996) and since the gen-
eralized least squares estimates become a computational burden with large number
of objects (cf. Felsenstein, 2004), the ICGLS estimates are a difficult way to go.

The use of features as predictor variables in a multiple regression framework has
additional advantages. An important advantage is that measures of prediction er-
ror that are regularly used in this framework become easily available. In this paper
we showed how the statistical inference theory of the inequality constrained least
squares estimator can be incorporated in the general theory of linear fitting meth-
ods to obtain an estimate of prediction error, the generalized cross-validation statistic,
which is a convenient closed form formula that approximates leave-one-out cross-
validation. Besides the very low computational costs, another advantage of the gen-
eralized cross-validation statistic is that it can be used to compare different tree topolo-
gies with the same number of degrees of freedom, i.e. models that have the same
number of predictors or features. For the likelihood ratio test, a commonly used test
to compare phylogenies, the comparison of tree topologies with the same degrees of
freedom is a problem because the test is limited to the case of nested topologies (cf.
Felsenstein, 2004, Chapter 19).

Another advantage of considering the feature framework for additive trees, is
that a frequently used test in the phylogeny domain, testing speciation or popula-
tion splitting, can be done explicitly by adding cluster features to the model. In phy-
logenetic trees, internal nodes are usually called branching points and indicate that
an important event of speciation or population splitting occurred there (cf. Nei et
al., 1985). The internodal distances are not observed and therefore are inferred form
the other, non-internodal distances, as well as the associated standard errors. Sev-
eral tests for the branching points have been proposed (Bulmer, 1991; Li, 1989; Nei
et al., 1985; Tajima, 1992). An alternative for the interior-branch test is the bootstrap
method proposed by Felsenstein (1985), which calculates the proportion of bootstrap
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trees that agree with the original tree topology inferred for the sample. A popula-
tion splitting that occurs in a large proportion of bootstrap trees is considered to be
very plausible. Sitnikova, Rzhetsky, and Nei (1995) compared the interior-branch
test with the bootstrap test and concluded that the bootstrap test tends to yield con-
servative confidence values compared to the interior-branch test and that the dif-
ference between the two tests becomes more salient when the true tree is starlike,
which means that some branches have length zero resulting from the correction of
negative branch lengths.

Considering features in additive trees allows for a different way to test the branch-
ing points. In the phylogeny literature, the branching points result from a certain
topology that depends on the tree finding algorithm. FNM offers the possibility to
test explicitly for specific ancestral species just by adding cluster features to the fea-
ture matrix ET . The values of the feature discriminability parameters and the asso-
ciated confidence intervals indicate whether the ancestral species are plausible. The
simulation study in this paper for the case of unknown tree topologies, inferred for
each simulation sample with the NJ method, is in fact a parametric version of Felsen-
stein’s bootstrap method (1985) because it calculates the proportion of features from
the true topology that are recovered in the samples while assuming a model with
normally distributed error terms. The confidence intervals obtained with the the-
oretical standard errors for the feature discriminability parameters led to the same
conclusion about the most plausible features (including cluster features that indicate
speciation) in the model, but at much less computational cost.

Although strong assumptions have to be made (normally distributed errors and
homogeneous variances), we believe that the theoretical standard errors for the in-
equality constrained least squares estimates are useful for estimating the variability
of branch lengths of tree topologies obtained with algorithms like ADDTREE and NJ,
which use least squares estimates for the branch lengths. Using features along with
the multiple regression framework has many advantages, as has been demonstrated
in this paper. Nevertheless, the question remains whether these results are useful for
the phylogenetic trees. The answer relies on the challenge to combine the theoretical
standard errors for the inequality constrained least squares estimator with the many
methods proposed in the phylogenetic literature that take into account the way the
evolutionary distances were obtained.
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Figure 3.12: Coverage proportions in all experimental conditions for feature discriminabil-

ity parameters based on nominal t-CI (•) in the test samples and proportions recovered true

features in the training samples (!) for each of the 37 features forming the true tree topology.


