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Chapter 1

Introducing Feature Network Models

Feature Network Models (FNM) are graphical models that represent dissimilarity
data in a discrete space with the use of features. Features are used to construct a dis-
tance measure that approximates observed dissimilarity values as closely as possi-
ble. Figure 1.1 shows a feature network representation of all presidents of the United
States of America, based on 14 features, which are binary variables that indicate
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Figure 1.1: Feature network of all presidents of the USA based on 14 features from Schott

(2003, pp. 14-15). The presidents are represented as vertices (black dots) and labeled with

their names and chronological number. The features are represented as internal nodes (white

dots).
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2 CHAPTER 1. INTRODUCING FEATURE NETWORK MODELS

whether a president has the characteristic or not (the characteristics were adapted
from Schott, 2003, pp. 14-15). The features are: political party, whether the pres-
ident served more than 1 term, was assassinated or died in office, was taller than
6 ft, served as vice-president (V.P.), had facial hair, owned slaves, was born British,
appeared on a banknote, is represented at Mount Rushmore, went to Harvard and
is left handed.

In the network the presidents are represented as vertices (black dots) labeled
with their name and chronological number. The features are represented as internal
nodes (white dots). The general idea of a network representation is that an edge
between objects gives an indication of the relation between the objects. For exam-
ple, there is an edge present between president Kennedy and the feature assassinated,
which in turn has a direct link with the feature died in office. As a result of the embed-
ding of this 14-dimensional structure in 2-dimensional space, objects that are close
to each other in terms of distances are more related to each other than objects that
are further apart. The network representation has a rather complex structure with a
large number of edges and is not easily interpretable. One of the objectives of Fea-
ture Network Models is to obtain a parsimonious network graph that adequately
represents the data. The three components of FNM, the features, the network repre-
sentation and the model, will be explained successively in this introduction, using a
small data set with16 objects and 8 features, that can be adequately represented in 2
dimensions. While explaining the different components, the topics of the chapters
of this monograph will be introduced.

1.1 Features

A feature is, in a dictionary sense, a prominent characteristic of a person or an object.
In the context of FNM, a feature is a binary (0,1) vector that indicates for each object
or stimulus in an experimental design whether a particular characteristic is present
or absent. Features are not restricted to nominal variables, like eye color, or binary
variables as voiced versus unvoiced consonants. Ordinal and interval variables, if
categorized, can be transformed into a set of binary vectors (features) using dummy
coding. Table 1.1 shows an example of features deriving from an experimental de-
sign created by Tversky and Gati (1982). The stimuli are 16 types of plants that vary
depending on the combination of two qualitative variables, the form of the ceramic
pot (4 types) and the elongation of the leaves of the plants (4 types), see Figure 1.2.
The two variables can be represented as features using dummy coding for the levels
of each variable and Table 1.1 shows the resulting feature matrix. In the original ex-
periment, all possible pairs of stimuli were presented to 29 subjects who were asked
to rate the dissimilarity between each pair of stimuli on a 20-point scale. The data
used for the analyses are the average dissimilarity values over the 29 subjects as
presented in Gati and Tversky (1982, Table 1, p. 333).

In psychology, the concept of feature as basis for a model has been introduced
by Tversky (1977) who proposed the Contrast Model, which is a set-theoretical ap-
proach where objects are characterized by subsets of discrete features and similar-
ity between objects is described as a comparison of features. The Contrast Model
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Table 1.1: Feature matrix of 16 plants (Figure 1.2) varying in form of the pot (features: a, b,

c) and elongation of the leaves (features: p, q, r), see Tversky and Gati (1982).

Features

Plants a b c p q r

1 ap 1 0 0 1 0 0
2 aq 1 0 0 0 1 0
3 ar 1 0 0 0 0 1
4 as 1 0 0 0 0 0
5 bp 0 1 0 1 0 0
6 bq 0 1 0 0 1 0
7 br 0 1 0 0 0 1
8 bs 0 1 0 0 0 0
9 cp 0 0 1 1 0 0

10 cq 0 0 1 0 1 0
11 cr 0 0 1 0 0 1
12 cs 0 0 1 0 0 0
13 dp 0 0 0 1 0 0
14 dq 0 0 0 0 1 0
15 dr 0 0 0 0 0 1
16 ds 0 0 0 0 0 0

was intended as an alternative to the dimensional and metric methods like multidi-
mensional scaling, because Tversky questioned the assumptions that objects can be
adequately represented as points in some coordinate space and that dissimilarity be-
haves like a metric distance function. Believing that it is more appropriate to repre-
sent stimuli in terms of many qualitative features than in terms of a few quantitative
dimensions, Tverksy proposed a set-theoretical approach where objects are charac-
terized by subsets of discrete features and similarity between objects is described
as a comparison of features. According to Tversky, the representation of an object
as a collection of features parallels the mental process of participants faced with a
comparison task: participants extract and compile from their data base of features a
limited list of relevant features on the basis of which they perform the required task
by feature matching. This might lead to a psychologically more meaningful model
since it is testing some possible underlying processes of similarity judgments.

Distinctive features versus common features

The Contrast Model describes the similarity between two objects in terms of a linear
combination of the features they share (the common features) and the features that dis-
tinguish between them (distinctive features). The idea is that the similarity between
two objects increases with addition of common features and/or deletion of distinc-
tive features. In set-theoretical terms, a common feature is equal to the intersection of
the feature sets that belong to each pair of objects and a distinctive feature is equal to
the union minus the intersection of the feature sets (= the symmetric set difference).
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Figure 1.2: Experimental conditions plants data. The 16 plants vary in the form of the pot and

in elongation of the leaves. (Adapted with permission from: Tversky and Gati (1982), Simi-

larity, separability, and the triangle inequality. Psychological Review, 89, 123-154, published by

APA.)

For example plant 1 (Table 1.1) is characterized by the feature set S1 = {a, p} and
plant 2 is characterized by the feature set S2 = {a, q}. The plants 1 en 2 have one
common feature {a} and two distinctive features {p, q}. The mathematical represen-
tation of the similarity between the plants 1 and 2 following the Contrast Model is
equal to:

ς(S1,S2) = θ f (S1 ∩ S2) − α f (S1 − S2) − β f (S2 − S1), (1.1)

where the first part after the equal sign represents a function f of the common fea-
tures part with the corresponding weight θ and the remaining two parts express
functions of the distinctive features part with corresponding weights α and β, and
the total similarity value is expressed as a linear combination of the common fea-
tures part and the distinctive features part. Tversky (1977) and Gati and Tversky
(1984) observed that the relative weight of distinctive features and common features
varies with the nature of the task: in conceptual comparisons, the relative weight of
common to distinctive features was higher in judgments of similarity than in judg-
ments of dissimilarity. The relative weight of common to distinctive features also
changed depending on the task instructions: when subjects were instructed to rate
the amount in which to objects differ, the relative weight of the distinctive features
to common features increases.
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Table 1.2: Overview of graphical and non-graphical models based on common features (CF)

and distinctive features (DF)

Model Author(s) CF, DF Graphical
representation

Contrast Model (CM) Tversky (1977) CF + DF not available

Additive similarity trees Sattath and Tversky (1977) DF additive tree

ADCLUS Shepard and Arabie (1979) CF clusters with
contour lines

MAPCLUS Arabie and Carroll (1980) CF clusters with
contour lines

EXTREE Corter and Tversky (1986) DF additive tree +
marked segments

CLUSTREES Carroll and Corter (1995) CF trees like MAPCLUS

and EXTREE

Feature Network Models Heiser (1998) DF network (trees)
(FNM)

Modified Contrast Model Navarro and Lee (2004) CF + DF clusters
(MCM)

The Contrast Model in its most general form has been used in practice with a
priori features only (Gati & Tversky, 1984; Keren & Baggen, 1981; Takane & Sergent,
1983), but many models have been developed since, which search for either the com-
mon features part or the distinctive features part of the model, or a combination of
both. The models that are based uniquely on common features, the common features
models are several versions of additive clustering: ADCLUS (Shepard & Arabie, 1979),
MAPCLUS (Arabie & Carroll, 1980) and CLUSTREES (Carroll & Corter, 1995). It should
be noted that the CLUSTREES model differs from the other common features models
because it finds distinctive feature representations of common features models. The
additive similarity trees (Sattath & Tversky, 1977)) and the extended similarity trees
(EXTREE, Corter & Tversky, 1986) both use distinctive features and are distinctive
features models. A model that has the closest relation to the Contrast Model is the
Modified Contrast Model developed by Navarro and Lee (2004) that aims at finding
a set of both common and distinctive a priori unknown features that best describes
the data. Table 1.2 gives an overview of the models with the corresponding graphical
representation, which will be explained in Section 1.2.

Feature Network Models (FNM) use the set-theoretical approach proposed by
Tversky, but are restricted to distinctive features. The definition of distinctive fea-
tures used in FNM states that features are not inherently distinctive, but become
distinctive after application of the set-theoretic transformation, in this case, the sym-
metric set difference. This definition means that it is not possible to classify, for
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example, the features describing the plants in Table 1.1 as distinctive or common be-
cause the set-theoretic transformations have not taken place yet. Chapter 4 makes
the definition of distinctive feature more concrete by defining the complete set of
distinctive features and by showing how to generate the complete set in an efficient
way using a special binary code, the Gray code.

Although the two types of feature models, the common features model (CF) and
the distinctive features model (DF), are in a sense opposed to each other and can
function as separate models, there is a clear relation between the two. Sattath and
Tversky (1987), and later Carroll and Corter (1995), have demonstrated that the CF
model can be translated into the DF model and vice versa. However, these theo-
retical results have not been applied in the practice of data analysis, where one fits
either one of the two models, or the combination of both. Chapter 5 adds an impor-
tant result to the theoretical translation between the CF model and the DF model,
and shows the consequences for the practice of data analysis. It will become clear
that for any fitted CF model it is possible to find an equally well fitting DF model
with the same shared features (common features) and feature weights, and with the
same number of independent parameters. Following the same results, a model that
combines the CF and DF models can be expressed as a combination of two separate
DF models.

Where do features come from?

The features in Table 1.1 are a direct result of the experimental design and represent
the physical characteristics of the objects (the plants). Most of the feature meth-
ods mentioned in the previous sections use a priori features that derive from the
experimental design or a psychological theory. In the literature, examples where
features are estimated from the data are rare. There is, however, no necessary rela-
tion between the physical characteristics that are used to specify the objects and the
psychological attributes that subjects might use when they perceive the objects. It
is therefore useful to estimate the features from the data as well. An example of a
data analysis with theoretic features and with features estimated from the data will
be given for the plants data. Chapter 4 is entirely devoted to the subject of selecting
adequate subsets of features resulting from theory or estimated from the data.

It should be noted that a well known set of theoretic features plays an important
role in phonetics as part of the Distinctive Feature Theory. The distinctive features
form a binary system to uniquely classify the sounds of a language, the phonemes.
The term distinctive used here is not the set-theoretic term used for the distinctive
features of the FNM. Various sets of distinctive features have been proposed in pho-
netics and the first set consisting of 14 features has been proposed by Jakobson, Fant,
and Halle (1965): the distinctive features are the ultimate distinctive entities of lan-
guage since none of them can be broken down into smaller linguistic units (p. 3).
A subset of these distinctive features will be used to illustrate the Feature Network
Models in Chapter 2 and Chapter 4.
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Feature distance and feature discriminability

FNM aim at estimating distance measures that approximate observed dissimilarity
values as closely as possible. The symmetric set difference can be used as a dis-
tance measure between each pair of objects Oi and Oj that are characterized by the
corresponding feature sets Si and Sj. Following Goodman (1951, 1977) and Restle
(1959, 1961), a distance measure that satisfies the metric axioms can be expressed as
a simple count µ of the elements of the symmetric set difference, a count of the non
common elements between each pair of objects Oi and Oj and becomes the feature
distance:

d(Oi, Oj) = µ[(Si − Sj) + (Sj − Si)] = µ[(Si ∪ Sj) − (Si ∩ Sj)]. (1.2)

Heiser (1998) demonstrated that the feature distance in terms of set operations can
be re-expressed in terms of coordinates and as such, is equal to a city-block metric
on a space with binary coordinates, a metric also known as the Hamming distance. If
E is a binary matrix of order m × T that indicates which of the T features describe
the m objects, as in Table 1.1, the re-expression of the feature distance in terms of
coordinates is as follows:

d(Oi, Oj) = µ[(Si ∪ Sj) − (Si ∩ Sj)]

= ∑
t

|eit − ejt|, (1.3)

where eit = 1 if feature t applies to object i, and eit = 0 otherwise. In the example of
the plants 1 and 2 the feature distance is equal to the sum of the distinctive features
{p, q}, in this case 2. The properties of the feature distance and especially the relation
between the feature distance and the city-block metric are discussed in Chapter 5.

For fitting purposes, it is useful to generalize the distance in Equation 1.3 to a
weighted count, i.e., the weighted feature distance:

d(Oi, Oj) = ∑
t

ηt|eit − ejt|, (1.4)

where the weights ηt express the relative contribution of each feature. Each feature
splits the objects into two classes, and ηt measures how far these classes are apart.
For this reason, Heiser (1998) called the feature weight a discriminability parameter.
The feature discriminability parameters are estimated by minimizing the following
least squares loss function:

min
ηηη

= ‖Xηηη − δδδ‖2, (1.5)

where X is of size n × T and δδδ is a n × 1 vector of dissimilarities, with n equal to all

possible pairs of m objects: 1
2 m(m − 1). The problem in Equation 1.5 is expressed in a

more convenient multiple linear regression problem, where the matrix X is obtained
by applying the following transformation on the rows of matrix E for each pair of
objects, where the elements of X are defined by:

xlt = |eit − ejt|, (1.6)
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where the index l = 1, · · · , n varies over all pairs (i, j). The result is the binary (0, 1)
matrix X, where each row represents the distinctive features for each pair of objects,
with 1 meaning that the feature is distinctive for a pair of objects. It is important to
notice that features become truly distinctive features only after this transformation,
while the features in the matrix E are not inherently common or distinctive. The
weighted sum of these distinctive features is the feature distance for each pair of
objects and is equal to d = Xηηη. The feature distances serve as starting point for the
construction of the network, as will become clear in the next section.

1.2 Feature Network

In general, there are two types of graphical representations of proximity data: spa-
tial models and network models. The spatial models - multidimensional scaling -
represent each object as a point in a coordinate space (usually Euclidean space) in
such a way that the metric distances between the points approximate the observed
proximities between the objects as closely as possible. In network models, the ob-
jects are represented as vertices in a connected graph, so that the spatial distances
along the edges between the vertices in the graph approximate the observed proxim-
ities among the objects. In MDS, the primary objective is to find optimal coordinate
values that lead to distances that approximate the observed proximities between the
objects, whereas in network models, the primary objective is to find the correct set
of relations between the objects that describe the observed proximities.

Parsimonious feature graphs

The symmetric set difference, which is the basis of FNM, describes the relations be-
tween the object pairs in terms of distinctive features and permits a representation of
the stimuli as vertices in a network using the feature distance. In the network, called
a feature graph, the structural relations between the objects in terms of distinctive fea-
tures is expressed by edges connecting adjacent objects and the way in which the
objects are connected depends on the fitted feature distances. Distance in a network
is the path travelled along the edges; the distance that best approximates the dissim-
ilarity value between two objects is the shortest path between the two corresponding
vertices in the network.

The feature distance has some special properties resulting from its set-theoretical
basis that allows for a representation in terms of shortest paths, which also consid-
erably reduces the number of edges in the network. A complete network, i.e. a
network where all pairs of vertices (representing the m objects) are connected has

n = 1
2 m(m − 1) edges. Figure 1.3 shows a complete network of the plants data where

all pairs of plants are connected with an edge. Such a network is obviously not
adequate in explaining the relations between the objects, due to lack of parsimony.

The feature distance parallels the path-length distance in a valued graph when
one of the metric axioms, the triangle inequality, becomes an equality: dik = dij + djk

(Flament, 1963; Heiser, 1998). In a network graph, each time that the distance dik

is exactly equal to the sum dij + djk the edge between the objects i and k can be
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Figure 1.3: Complete network plants data.

excluded, resulting in a parsimonious subgraph of the complete graph. In terms of
features the condition dik = dij + djk is reached when object j is between objects i and
k. The objects can be viewed as sets of features: Si, Sj, and Sk. Betweenness of Sj

depends on the following conditions (Restle, 1959):

1. Si and Sk have no common members which are not also in Sj;

2. Sj has no unique members which are in neither Si nor Sk.

Apart from the experimental objects, we can also identify hypothetical objects
called internal nodes. These are new feature sets defined in terms of the intersec-
tion of available feature sets. As an example, Figure 1.4 shows two of the plants
(numbers 13 and 14, with feature sets {d, p} and {d, q}, respectively) and an internal
node defined by a feature set containing the single feature {d}. It is clear that be-
tweenness holds with respect to the internal node, because its feature set is exactly
equal to the intersection of the sets belonging to plants 13 and 14, as can be seen
in the right part of Figure 1.4. For the network representation in terms of edges,
the betweenness condition implies that the feature distances between the three ob-
jects reach the triangle equality condition. Calling the internal node ’dpot’, we have
d14,13 = d14,dpot + ddpot,13 = 1 + 1 = 2. For the ease of explanation the feature dis-
tances are represented as unweighted counts of the number of distinctive features.
Consequently, the edge between the plants 13 and 14 can be excluded (see the left
part of Figure 1.4).

Hence, sorting out the additivities in the fitted feature distances, with the possi-
ble inclusion on internal nodes, and excluding edges that are sums of other edges
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results in a parsimonious subgraph of the complete graph, expressed in a binary ad-
jacency matrix with ones indicating the presence of an edge. It should be noted that
the approach of sorting out the additivities is different from the network models of
Klauer (1989, 1994) and Klauer and Carroll (1989), who sort out the additivities on
the observed dissimilarities. Using the fitted distances instead leads to better net-
works because the distances are model quantities whereas dissimilarities are subject
to error. The network approach used in FNM is also different from the social net-
work models (cf. Wasserman & Faust, 1994) that use the adjacency matrix as the
starting point of the analyses, whereas for the FNM it is the endpoint.

Figure 1.5 shows the result of sorting out the triangle equalities on the fitted fea-
ture distances for the plants data, where features d and s have been omitted. Note
that each of the first four features a, b, c, and d is redundant, since it is a linear com-
bination of the other three. The same is true for p, q, r, and s. To avoid problems
with multicollinearity in the estimation, one feature in each set has to be dropped.
Hence from now on, we continue the example with a reduced set of 6 features. The
feature graph clearly has gained in parsimony compared to the complete network in
Figure 1.3. The network has been embedded in 2-dimensional Euclidean space, with
the help of PROXSCAL (a multidimensional scaling program distributed as part of
the Categories package by SPSS, Meulman & Heiser, 1999), allowing ratio proxim-
ity transformation. The edges in the network express the relations between pairs of
plants based on the weighted sum of their distinctive features. More details on the
interpretation of the network model will be given in section 1.3. Chapter 5 discusses
in detail the betweenness condition as well as the algorithm used for sorting out
the triangle equalities and also introduces the internal node as a way to simplify the
network representation.

Embedding in low-dimensional space

A network is by definition coordinate-free because it is entirely determined by the
presence or absence of edges between vertices and by the lengths of these edges. The
distances between the objects in a network do not serve the same interpretational
purpose as in multidimensional scaling, where distances are a direct expression of
the strength of the relation between the objects. In FNM the relation between the
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Figure 1.5: Feature graph of the plants data using the features resulting from the experimen-

tal design with varying elongation of leaves and form of the pot (with 6 of the 8 features).

objects is primarily expressed by the presence of edges between the vertices. The
embedding of the network in a lower dimensional space is therefore of secondary
importance. In this monograph, the embedding chosen for the feature graphs re-
sults from analysis with PROXSCAL (Meulman & Heiser, 1999) of the Euclidean dis-
tances computed on the weighted feature matrix. Most of the representations are in
2 dimensions, sometimes other options are chosen to obtain a representation that is
better in terms of visual interpretability.

The embedding discussed so far concerns the vertices of the network represent-
ing the objects, while the features themselves can also be visualized. There are sev-
eral possibilities to represent features graphically in the network plot. Most of the
network plots in this monograph show the features as vectors. This representation
is obtained using PROXSCAL (Meulman & Heiser, 1999) with the option of restricting
the solution of the common space by a linear combination of the feature variables.
Another version is to represent the features as internal nodes, as in the presidents
network (Figure 1.1). The representation of features as internal nodes which will be
discussed and illustrated in Chapter 5.
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Figure 1.6: Additive tree representation of the plants data.

Feature structure and related graphical representation

The feature structure typically represented by FNM is a non-nested structure, or in
terms of clusters, an overlapping cluster structure. In contrast, hierarchical trees and
additive trees require a strictly nested feature structure. The graphical representa-
tion of a non-nested structure is more complex than a tree (Carroll & Corter, 1995).
At least three solutions have been proposed in the literature (see the overview in Ta-
ble 1.2): ADCLUS starts with a cluster representation and adds contour lines around
the cluster to reveal the overlapping structure; two other representations start with a
basic tree and visualize the overlapping structure by multiple trees (Carroll & Corter,
1995; Carroll & Pruzansky, 1980) or by extended trees (Corter & Tversky, 1986). Ex-
tended trees represent non-nested feature structures graphically by a generalization
of the additive tree. The basic tree represents the nested structure and the non-nested
structure is represented by added marked segments that cut across the clusters of the
tree structure (Carroll & Corter, 1995, p. 288). The FNM is the only model that rep-
resents this overlapping feature structure by a network representation.

Imposing restrictions on the feature structure in FNM allows for other graphical
representations than a network. Chapter 3 shows that an additive tree is a special
subgraph of the complete feature graph, where each edge is represented by a sep-
arate feature. To obtain an additive tree representation as in Figure 1.6, the feature
matrix must satisfy certain conditions. To produce a tree graph with FNM a nested
set of features is not sufficient. A set of internal nodes (hypothetical stimulus ob-
jects) has to be added to the set of actual stimulus objects, or external nodes. As will
become clear in Chapter 3, if the internal nodes have the correct feature structure,
they will force the betweenness condition to hold in such a way that a tree graph
results.
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Figure 1.7: Feature network representing a 6-dimensional hypercube based on the un-

weighted, reduced set of features of the plants data. Embedding in 2-dimensional Euclidean

space was achieved with PROXSCAL allowing ordinal proximity transformation with ties un-

tied and the Torgerson start option.

Feature networks and the city-block model

The symmetric set difference is a special case of the city-block metric with binary
dimensions represented by the distinctive features. Therefore, the network repre-
sentation lives in city-block space. The dimensionality of this city-block space is de-
fined by the number of features T forming a T-dimensional rectangular hyperblock,
or hypercuboid with the points representing the objects located on the corners. In
the special case when the symmetric set difference is equal for adjacent objects in
the graph, the structure becomes a hypercube. The feature structure of the plants
data yields a hypercube structure when all feature discriminability parameters are
set equal to one. Figure 1.7 shows the resulting 6-dimensional network structure
using the theoretical features and after sorting out the triangle equalities. Using the
weighted feature distance transforms the lengths of the edges of the 6-dimensional
hypercube into a 6-dimensional hypercuboid as in Figure 1.5. (The visual compar-
ison between the network representations in the Figures 1.5 and 1.7 requires some
effort because due to the embedding in lower dimensional space, the emplacement
of the plants has changed.)

Chapter 5 demonstrates that there exists a universal network representation of
city-block models. The results rely on the additivity properties of the city-block
distances and the key elements of the network representation consisting of between-
ness, metric segment additivity and internal nodes. The universal network construc-
tion rule also applies to other models beside the distinctive features model, namely
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the common features model (additive clustering), hierarchical trees, additive trees
and extended trees.

1.3 Feature Network Models: estimation and inference

Figure 1.8 shows an overview of the steps necessary to fit a Feature Network Model
on data using the program PROXGRAPH that has been developed in Matlab. Start-
ing with observed dissimilarities and a set of features, the feature discriminability
parameters are estimated as well as the feature distances. The estimated feature
distances lead to an adjacency matrix after being processed by the triangle equality
algorithm and to coordinates obtained with PROXSCAL (Meulman & Heiser, 1999),
leading to the final result, a feature network. As explained so far, the network rep-
resentation of the dissimilarity data provides a convenient way to describe and dis-
play the relations between the objects. At the same time the network representation
suggests a psychological model that relates mental representation to perceived dis-
similarity. The psychological model is not testable with the graphical representation
only. In FNM the psychological model can be tested by assessing which feature(s)
contributed more than others to the approximation of the dissimilarity values. The
statistical inference theory proposed in this monograph derives from the multiple re-
gression framework, as will become clearer in the following. An important topic of
this monograph is the estimation of standard errors for the feature discriminability
parameters in order to construct 95% confidence intervals . Another way to decide
which features are important is to use model selection techniques to obtain a relevant
subset of features.

Statistical inference

The use of features, when considered as prediction variables, leads in a natural way
to the univariate multiple regression model, which forms the starting point for sta-
tistical inference. It is however not the standard regression model because positivity
restrictions have to be imposed on the parameters. The feature discriminability pa-
rameters represent edge lengths in a network or a tree and, by definition, networks
or trees with negative edge lengths have no meaning and cannot adequately rep-
resent a psychological theory. The problem becomes more prominent in additive
tree representations because each edge is represented by a separate feature. There-
fore, the feature discriminability parameters are estimated by adding the following
positivity constraint to Equation 1.5:

min
ηηη

= ‖δδδ − Xηηη‖2 subject to ηηη ≥ 0. (1.7)

The multiple regression approach has been used earlier in models related to
FNM. The Contrast Model (Takane & Sergent, 1983), the common features model
(Arabie & Carroll, 1980), and the tree models (Corter, 1996) use ordinary least squares
to estimate the parameters of the models. The use of nonnegative least squares is
sparse in the literature of tree models. Arabie and Carroll (1980) implemented a sub-
routine in the MAPCLUS algorithm that encourages the weights to become positive,



1.3. FEATURE NETWORK MODELS: ESTIMATION AND INFERENCE 15

Feature Network / Tree

Known

Adjacency matrix Coordinates

Feature parameters 
Feature distances d=X

NNLS    min ||  X ||

      Feature selection

Unknown

Features

Dissimilarities 

PROXGRAPH

Triangle equality algorithm PROXSCAL

Figure 1.8: An overview of the steps necessary to fit Feature Network Models with PROX-

GRAPH.

but claim to explicitly avoid the use of nonnegative least squares because in the con-
text of iterative algorithm it would reduce the numbers of clusters in the solution.
Hubert, Arabie and Meulman (2001) have successfully implemented nonnegative
least squares in their algorithm for the estimation of the edge lengths in additive
trees and ultrametric trees. In the domain of phylogenetic trees, nonnegative least
squares has been introduced by Gascuel and Levy (1996).

While nonnegative least squares has been used to estimate the parameters in
models related to FNM, there are no examples in the literature of the estimation of
theoretical standard errors, with or without nonnegativity constraints. The models
related to FNM, the extended tree models (Corter & Tversky, 1986), the CLUSTREE

models (Carroll & Corter, 1995) and, the Modified Contrast Model (Navarro and Lee,
2004) do not explicitly provide a way to test for significance of the features. It should
be noted, however, that Corter and Tversky (1986) use a descriptive version of the F-
test by permuting residuals to test the significance of the overlapping features added
to the additive tree solutions. The other network models (Klauer, 1989, 1994; Klauer
& Carroll, 1989) only give the best fitting network and yield no standard errors for
the parameter estimates. Krackhardt (1988) provided a way to test the significance of
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Table 1.3: Feature discriminability estimates, standard errors and 95% confidence intervals

for plants data using six features selected from the complete experimental design in Table 1.1

and associated with the network graph in Figure 1.5 (R2 = 0.60).

Features η̂ σ̂η̂ 95% t-CI

a 6.29 0.57 5.15 7.42
b 3.64 0.57 2.50 4.77
c 2.85 0.57 1.71 3.98
d 0.00∗ 0.00 0.00 0.00
p 6.86 0.57 5.73 8.00
q 3.95 0.57 2.82 5.08
r 3.09 0.57 1.96 4.22
s 0.00∗ 0.00 0.00 0.00

∗ To avoid multicollinearity, the fourth level of the

flowerpots (d) and the plants (s) has been omitted.

regression coefficients in networks for dyadic data that suffer from various degrees
of autocorrelation by using quadratic assignment procedures. Unfortunately, his
results do not apply to FNM because of the presence of constraints on the feature
parameters.

Statistical inference in inequality constrained least squares problems is far from
straightforward. A recent review by Sen and Silvapulle (2002) showed that topics
on statistical inference problems when the associated parameters are subject to pos-
sible inequality constraints abound in the literature, but solutions are sparse. In the
context of the inequality constrained least squares problem, only one author (Liew,
1976) has produced a way to compute theoretical standard errors for the parameter
estimates. Liew (1976), however, did not evaluate the sampling properties of the
theoretical standard errors. Chapters 2 of this monograph shows an application of
the theoretical standard errors and associated 95% confidence intervals for feature
networks with a priori known features. The performance of the theoretical standard
errors is compared to empirical standard errors using Monte Carlo simulation tech-
niques. Chapter 3 evaluates the performance of the theoretical standard errors for
features structures in additive trees and the results are extended to the case where
the feature structure (i.e., the tree topology) is not known in advance.

Table 1.3 shows the feature discriminability parameters and the associated theo-
retical standard errors and 95% t-confidence intervals for the theoretic features of the
plants data. To avoid multicollinearity, the feature discriminability parameters and
the associated standard errors have been estimated with a smaller feature set, than
the set of theoretical features presented in Table 1.1. Two features have been omitted,
namely the fourth level of the flowerpots (feature d) and the fourth level of plants
(feature s). As a result these two features have zero values in Table 1.3. The overall
fit of the model is reasonable with an R2 equal to 0.60. The estimates of the fea-
ture discriminability parameters indicate that the features a, representing the square
formed pot, and p, representing the round shaped leaves, are the most important in
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Table 1.4: Feature matrix resulting from feature subset selection with the Positive Lasso on

the plants data.

Features

Plants F1 F2 F3 F4 F5 F6

1 ap 1 1 0 1 1 1
2 aq 1 1 1 0 1 1
3 ar 1 1 1 0 0 1
4 as 1 1 1 0 0 0
5 bp 0 1 0 1 1 1
6 bq 0 1 1 0 1 1
7 br 0 1 1 0 0 1
8 bs 0 1 1 0 0 0
9 cp 0 0 0 1 1 1

10 cq 0 0 1 0 1 1
11 cr 0 0 1 0 0 1
12 cs 0 0 1 0 0 0
13 dp 0 0 0 1 1 1
14 dq 0 0 0 0 1 1
15 dr 0 0 0 0 0 1
16 ds 0 0 0 0 0 0

distinguishing the plants. The network representation in Figure 1.5 reflects the im-
portance of the features a and p by larger distances between plants that possess these
features and plants that do not possess these features. The edges in the network (Fig-
ure 1.5) are labeled with the feature distances, which can be reconstructed from the
feature discriminability parameters in Table 1.3. For example, the distance between
the plants 2 and 4 is equal to 3.95, which is the sum of the feature discriminability
parameters corresponding to their distinctive features: q(= 3.95) + s(= 0.00).

Finding predictive subsets of features

In many research settings the features are not known a priori and the main objec-
tive is to find a relevant set of features that explain the dissimilarities between the
objects as accurately as possible. Chapter 4 proposes a method to find adequate sets
of features that is closely related to the predictor selection problem in the multiple
regression framework. The basic idea is to generate a very large set of features (or,
if possible, the complete set of features) using Gray codes. Since features are binary
variables, they can efficiently be generated with binary coding. Next, a subset of
features is selected with the Lasso option of the Least Angle Regression (LARS) algo-
rithm (Efron, Hastie, Johnstone, & Tibshirani, 2004), a recently developed efficient
model selection algorithm that is less greedy than the traditional forward selection
methods used in the multiple linear regression context. To meet the positivity con-
straints necessary in FNM, the Lasso has been modified into a Positive Lasso. The
resulting strategy incorporates model selection criteria during the search process,
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leading to a set of features that is not necessarily optimal in the current data, but
that constitutes a good compromise between model fit and model complexity. This
approach of finding a balanced trade-off between goodness-of-fit and prediction ac-
curacy has not been used in the psychometric models related to FNM, except for the
independently developed Modified Contrast Model (Navarro & Lee, 2004) that uses
a forward feature selection method and a model selection criterion related to the BIC
criterion.

Table 1.4 displays the results of the Positive Lasso subset selection method on the
plants data. The 6 selected features differ in several aspects from the theoretical fea-
tures derived from the experimental design. Only the two most important features
from the experimental design, features a and p were selected by the Positive Lasso
(the features F1 and F4) in Table 1.4. Figure 1.9 represents the corresponding feature
graph, which is clearly different from the feature graph based on the theoretic fea-
tures (Figure 1.5): it is more parsimonious and has better overall fit (R2 = 0.81). The
plants have the same order in the network as in the experimental design and form
a grid where each edge represents exactly one feature. For example plant number 6
and plant number 2 are connected with an edge representing the square shaped pot.
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Figure 1.9: Feature graph for the plants data, resulting from the Positive Lasso feature subset

selection algorithm on the complete set of distinctive features. The original experimental

design is the cross classification of the form of the pot (a,b,c,d) and the elongation of the

leaves (p,q,r,s). Embedding in 2-dimensional space was done with PROXSCAL using ratio

transformation and the simplex start option. (R2 = 0.81)
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The edge lengths show that the pots of the form c and d are perceived as more sim-
ilar (the plant numbers 9 and 13 even coincide on the same vertex in the network)
than the pots with form a and b. Moreover, the network representation shows that
it can perfectly represent the three types of triples of stimuli mentioned by Tversky
and Gati (1982), where the geometric models based on the Euclidean metric fail. The
three types of triples are:

1. Unidimensional triple: all stimuli differ on 1 dimension, e.g. the plants 1, 5 and
9 representing the combinations (ap, bp, cp) in Figure 1.9;

2. 2-dimensional triple: all pairs of stimuli differ on both dimensions, e.g. the
plants 1, 6 and 11 with feature combinations (ap, bq, cr);

3. Corner triple: two pairs differ on one dimension and one pair differs on 2 di-
mensions, e.g. the plants 1, 5 and 6, having feature combinations (ap, bp, bq).

Only the city-block metric or the feature network is able to correctly display the
relations between these three types of triples because the triangle inequality reduces
to the triangle equality in all cases. The Euclidean model and other power metrics
than the city-block are able to represent unidimensional triples, and into some extent
2-dimensional triples but fail in representing the corner triples. According to the
power metrics other than the city-block model, the distance between plants 1 and 6
(differing on two dimensions) is shorter than the sum of the distances between the
plant pairs (1,5) and (5,6). The network representation shows that the shortest path
between the plants 1 and 6 is the path from 1 to 5 to 6.

1.4 Outline of the monograph

This monograph is organized as follows. Chapter 2 explains how to obtain theoret-
ical standard errors for the constrained feature discriminability parameters in FNM
with a priori known features. The performance of the theoretical standard errors is
compared to empirical standard errors (resulting from the bootstrap method) using
Monte Carlo simulation techniques. Chapter 3 shows that additive trees can be con-
sidered as a special case of FNM if the objects are described by features that form
a special structure. The statistical inference theory based on the multiple regression
framework is further developed by extending the theory from FNM to additive trees,
but also by extending the use of theoretical standard errors and associated 95% con-
fidence intervals to a priori unknown feature structures (in this case, tree topologies).
Chapter 4 proposes a new method to find predictive subsets of features, especially
for the situation where the features are not known in advance. Using the multiple
regression framework of the FNM, a new version of Least Angle Regression is de-
veloped that restricts the feature discriminability parameters to be nonnegative and
is called the Positive Lasso. While the Chapters 2, 3 and 4 all extend the statistical
inference properties of the FNM, Chapter 5 is not directly concerned with statistical
inference and focuses on the properties of feature graphs. It shows that there exists
a universal network representation of city-block models that can be extended to a
large class of discrete models for similarity data, including the distinctive features
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model, the common features model (additive clustering), hierarchical trees, addi-
tive trees, and extended trees. Chapter 6 concludes this monograph with a general
conclusion and discussion.

Since the chapters 2 - 5 all represent separate papers, a certain amount of overlap
is inevitable, especially in the sections describing the Feature Network Models.


