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Notation and Symbols

Notation conventions

matrices: bold capital
vectors: bold lowercase
scalars, integers: lowercase

Symbols

Symbol Description

O an object or stimulus
m the number of objects, stimuli
i index i = 1, · · · , m
j index j = 1, · · · , m
k index k = 1, · · · , m

n the number of object pairs = 1
2 m(m − 1)

l index l = 1, · · · , n
N the number of replications of samples of size n × 1
ℓ index ℓ = 1, · · · , N
f a frequency value associated with an object pair
δ a dissimilarity value associated with an object pair

δ̂ an estimated dissimilarity value associated with an object pair
δδδ an n × 1 vector with dissimilarities between all object pairs

δ̂δδ an n × 1 vector with estimated dissimilarities between all object pairs
∆∆∆ an m × m matrix with dissimilarities

∆̃lℓ a random variable producing realisations δ̃lℓ

δ̃lℓ a realisation of random variable ∆̃lℓ

∆̃∆∆ an n × N matrix of random variables ∆̃lℓ

∆l mean of a row l of ∆̃∆∆

ς a similarity value associated with an object pair
ςςς an n × 1 vector with similarities between all object pairs
ΣΣΣς an m × m matrix with similarities
F a feature, which is a binary (0, 1) vector of size m × 1
FC a cluster feature, which is a binary (0, 1) vector of size m × 1
FU a unique feature, which is a binary (0, 1) vector of size m × 1
T the number of features

xxi



xxii NOTATION AND SYMBOLS

TC the number of cluster features
TU the number of unique features

TD the total number of distinctive features = 1
2 (2m) − 1

t index for the features: t = 1, · · · , T
tC index for the cluster features: tC = 1, · · · , TC

tU index for the unique features: tU = 1, · · · , TU

Si the set of features that represents object Oi

E an m × T matrix with columns representing features
e a row vector from the matrix E
e an element of the matrix E
ET an E matrix with special feature structure that yields a tree representation
EC the part of ET (size m × TC) that represents the set of cluster features
EU the part of ET (size m × TU) that represents the set of unique features
X an n × T matrix with featurewise distances obtained with x′ = |eit − ejt|

x′ a row vector from the matrix X
x a column vector from the matrix X
XT an n × TC + TU matrix with featurewise distances obtained with ET

D the complete set of featurewise distances
d a distance between an object pair
d an n × 1 vector of distances between all object pairs

d̂ an n × 1 vector of estimated distances between all object pairs

d̂T an n × 1 vector of estimated distances between all object
pairs for a tree structure

η feature discriminability parameter
ηOLS true value of ordinary least squares feature discriminability parameter
ηICLS true value of inequality constrained least squares

feature discriminability parameter
ηL true value of Lasso feature discriminability parameter
ηPL true value of Positive Lasso feature discriminability parameter
ηηη an T × 1 vector of feature discriminability parameters
ηηηOLS an T × 1 vector of true values ηOLS

ηηηICLS an T × 1 vector of true values ηICLS

ηηηL an T × 1 vector of true values ηL

ηηηPL an T × 1 vector of true values ηPL

η̂, η̂OLS estimated values of η, ηOLS, ηICLS , ηL, ηPL

C the number of constraints necessary to obtain η̂ηη
ICLS

c index c = 1, · · · , C
r a C × 1 vector with constraints
A a C × T matrix of constraints of rank c
λλλKT a m × 1 vector with Kuhn-Tucker mutipliers
ǫǫǫ a n × 1 vector with error values (ǫǫǫ = δδδ − Xηηη)
ǫ̂ǫǫ a n × 1 vector with estimated error values (ǫ̂ǫǫ = δδδ − Xη̂ηη)
ǫ̂ an element from the vector ǫ̂ǫǫ

σ2, σ true variance and standard deviation of ǫǫǫ

σ̂2, σ̂ estimated variance and standard deviation of ǫ̂ǫǫ

σ2
η , ση true variance and standard error of η

σ̂2
η , σ̂η estimated nominal variance and estimated nominal standard error of η

σ̂2
η̂ , σ̂η̂ estimated nominal variance and nominal standard error of η̂

σ2
OLS , σOLS true variance and standard error of η̂OLS



SYMBOLS xxiii

σ̂2
OLS, σ̂OLS estimated variance and standard error of η̂OLS

σ2
ICLS , σICLS true variance and standard error of η̂ICLS

σ̂2
ICLS , σ̂ICLS estimated variance and standard error of η̂ICLS

B number of bootstrap samples
b index b = 1, · · · , B
bb a bootstrap sample (n × 1 vector)
b∗

b a bootstrap sample, multivariate
b̃b a bootstrap sample, with sampled residuals
sdB standard deviation of B bootstrap samples
S number of simulation samples
a index a = 1, · · · , S
s∗ a simulation sample (n × 1 vector)
κ, p parameters binomial distribution
GCV generalized cross-validation statistic
GCVFNM GCV using inequality constrained least squares estimation




