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Chapter 1

Introducing Feature Network Models

Feature Network Models (FNM) are graphical models that represent dissimilarity
data in a discrete space with the use of features. Features are used to construct a dis-
tance measure that approximates observed dissimilarity values as closely as possi-
ble. Figure 1.1 shows a feature network representation of all presidents of the United
States of America, based on 14 features, which are binary variables that indicate
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Figure 1.1: Feature network of all presidents of the USA based on 14 features from Schott
(2003, pp. 14-15). The presidents are represented as vertices (black dots) and labeled with
their names and chronological number. The features are represented as internal nodes (white
dots).
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whether a president has the characteristic or not (the characteristics were adapted
from Schott, 2003, pp. 14-15). The features are: political party, whether the pres-
ident served more than 1 term, was assassinated or died in office, was taller than
6 ft, served as vice-president (V.P.), had facial hair, owned slaves, was born British,
appeared on a banknote, is represented at Mount Rushmore, went to Harvard and
is left handed.

In the network the presidents are represented as vertices (black dots) labeled
with their name and chronological number. The features are represented as internal
nodes (white dots). The general idea of a network representation is that an edge
between objects gives an indication of the relation between the objects. For exam-
ple, there is an edge present between president Kennedy and the feature assassinated,
which in turn has a direct link with the feature died in office. As a result of the embed-
ding of this 14-dimensional structure in 2-dimensional space, objects that are close
to each other in terms of distances are more related to each other than objects that
are further apart. The network representation has a rather complex structure with a
large number of edges and is not easily interpretable. One of the objectives of Fea-
ture Network Models is to obtain a parsimonious network graph that adequately
represents the data. The three components of FNM, the features, the network repre-
sentation and the model, will be explained successively in this introduction, using a
small data set with16 objects and 8 features, that can be adequately represented in 2
dimensions. While explaining the different components, the topics of the chapters
of this monograph will be introduced.

1.1 Features

A feature is, in a dictionary sense, a prominent characteristic of a person or an object.
In the context of FNM, a feature is a binary (0,1) vector that indicates for each object
or stimulus in an experimental design whether a particular characteristic is present
or absent. Features are not restricted to nominal variables, like eye color, or binary
variables as voiced versus unvoiced consonants. Ordinal and interval variables, if
categorized, can be transformed into a set of binary vectors (features) using dummy
coding. Table 1.1 shows an example of features deriving from an experimental de-
sign created by Tversky and Gati (1982). The stimuli are 16 types of plants that vary
depending on the combination of two qualitative variables, the form of the ceramic
pot (4 types) and the elongation of the leaves of the plants (4 types), see Figure 1.2.
The two variables can be represented as features using dummy coding for the levels
of each variable and Table 1.1 shows the resulting feature matrix. In the original ex-
periment, all possible pairs of stimuli were presented to 29 subjects who were asked
to rate the dissimilarity between each pair of stimuli on a 20-point scale. The data
used for the analyses are the average dissimilarity values over the 29 subjects as
presented in Gati and Tversky (1982, Table 1, p. 333).

In psychology, the concept of feature as basis for a model has been introduced
by Tversky (1977) who proposed the Contrast Model, which is a set-theoretical ap-
proach where objects are characterized by subsets of discrete features and similar-
ity between objects is described as a comparison of features. The Contrast Model
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Table 1.1: Feature matrix of 16 plants (Figure 1.2) varying in form of the pot (features: a, b,
c) and elongation of the leaves (features: p, q, r), see Tversky and Gati (1982).

Features

Plants a b c p q r

1 ap 1 0 0 1 0 0
2 aq 1 0 0 0 1 0
3 ar 1 0 0 0 0 1
4 as 1 0 0 0 0 0
5 bp 0 1 0 1 0 0
6 bq 0 1 0 0 1 0
7 br 0 1 0 0 0 1
8 bs 0 1 0 0 0 0
9 cp 0 0 1 1 0 0

10 cq 0 0 1 0 1 0
11 cr 0 0 1 0 0 1
12 cs 0 0 1 0 0 0
13 dp 0 0 0 1 0 0
14 dq 0 0 0 0 1 0
15 dr 0 0 0 0 0 1
16 ds 0 0 0 0 0 0

was intended as an alternative to the dimensional and metric methods like multidi-
mensional scaling, because Tversky questioned the assumptions that objects can be
adequately represented as points in some coordinate space and that dissimilarity be-
haves like a metric distance function. Believing that it is more appropriate to repre-
sent stimuli in terms of many qualitative features than in terms of a few quantitative
dimensions, Tverksy proposed a set-theoretical approach where objects are charac-
terized by subsets of discrete features and similarity between objects is described
as a comparison of features. According to Tversky, the representation of an object
as a collection of features parallels the mental process of participants faced with a
comparison task: participants extract and compile from their data base of features a
limited list of relevant features on the basis of which they perform the required task
by feature matching. This might lead to a psychologically more meaningful model
since it is testing some possible underlying processes of similarity judgments.

Distinctive features versus common features

The Contrast Model describes the similarity between two objects in terms of a linear
combination of the features they share (the common features) and the features that dis-
tinguish between them (distinctive features). The idea is that the similarity between
two objects increases with addition of common features and/or deletion of distinc-
tive features. In set-theoretical terms, a common feature is equal to the intersection of
the feature sets that belong to each pair of objects and a distinctive feature is equal to
the union minus the intersection of the feature sets (= the symmetric set difference).
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Figure 1.2: Experimental conditions plants data. The 16 plants vary in the form of the pot and
in elongation of the leaves. (Adapted with permission from: Tversky and Gati (1982), Simi-
larity, separability, and the triangle inequality. Psychological Review, 89, 123-154, published by
APA.)

For example plant 1 (Table 1.1) is characterized by the feature set S1 = {a, p} and
plant 2 is characterized by the feature set S2 = {a, q}. The plants 1 en 2 have one
common feature {a} and two distinctive features {p, q}. The mathematical represen-
tation of the similarity between the plants 1 and 2 following the Contrast Model is
equal to:

ς(S1,S2) = θ f (S1 ∩ S2)− α f (S1 − S2)− β f (S2 − S1), (1.1)

where the first part after the equal sign represents a function f of the common fea-
tures part with the corresponding weight θ and the remaining two parts express
functions of the distinctive features part with corresponding weights α and β, and
the total similarity value is expressed as a linear combination of the common fea-
tures part and the distinctive features part. Tversky (1977) and Gati and Tversky
(1984) observed that the relative weight of distinctive features and common features
varies with the nature of the task: in conceptual comparisons, the relative weight of
common to distinctive features was higher in judgments of similarity than in judg-
ments of dissimilarity. The relative weight of common to distinctive features also
changed depending on the task instructions: when subjects were instructed to rate
the amount in which to objects differ, the relative weight of the distinctive features
to common features increases.
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Table 1.2: Overview of graphical and non-graphical models based on common features (CF)
and distinctive features (DF)

Model Author(s) CF, DF Graphical
representation

Contrast Model (CM) Tversky (1977) CF + DF not available

Additive similarity trees Sattath and Tversky (1977) DF additive tree

ADCLUS Shepard and Arabie (1979) CF clusters with
contour lines

MAPCLUS Arabie and Carroll (1980) CF clusters with
contour lines

EXTREE Corter and Tversky (1986) DF additive tree +
marked segments

CLUSTREES Carroll and Corter (1995) CF trees like MAPCLUS
and EXTREE

Feature Network Models Heiser (1998) DF network (trees)
(FNM)

Modified Contrast Model Navarro and Lee (2004) CF + DF clusters
(MCM)

The Contrast Model in its most general form has been used in practice with a
priori features only (Gati & Tversky, 1984; Keren & Baggen, 1981; Takane & Sergent,
1983), but many models have been developed since, which search for either the com-
mon features part or the distinctive features part of the model, or a combination of
both. The models that are based uniquely on common features, the common features
models are several versions of additive clustering: ADCLUS (Shepard & Arabie, 1979),
MAPCLUS (Arabie & Carroll, 1980) and CLUSTREES (Carroll & Corter, 1995). It should
be noted that the CLUSTREES model differs from the other common features models
because it finds distinctive feature representations of common features models. The
additive similarity trees (Sattath & Tversky, 1977)) and the extended similarity trees
(EXTREE, Corter & Tversky, 1986) both use distinctive features and are distinctive
features models. A model that has the closest relation to the Contrast Model is the
Modified Contrast Model developed by Navarro and Lee (2004) that aims at finding
a set of both common and distinctive a priori unknown features that best describes
the data. Table 1.2 gives an overview of the models with the corresponding graphical
representation, which will be explained in Section 1.2.

Feature Network Models (FNM) use the set-theoretical approach proposed by
Tversky, but are restricted to distinctive features. The definition of distinctive fea-
tures used in FNM states that features are not inherently distinctive, but become
distinctive after application of the set-theoretic transformation, in this case, the sym-
metric set difference. This definition means that it is not possible to classify, for
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example, the features describing the plants in Table 1.1 as distinctive or common be-
cause the set-theoretic transformations have not taken place yet. Chapter 4 makes
the definition of distinctive feature more concrete by defining the complete set of
distinctive features and by showing how to generate the complete set in an efficient
way using a special binary code, the Gray code.

Although the two types of feature models, the common features model (CF) and
the distinctive features model (DF), are in a sense opposed to each other and can
function as separate models, there is a clear relation between the two. Sattath and
Tversky (1987), and later Carroll and Corter (1995), have demonstrated that the CF
model can be translated into the DF model and vice versa. However, these theo-
retical results have not been applied in the practice of data analysis, where one fits
either one of the two models, or the combination of both. Chapter 5 adds an impor-
tant result to the theoretical translation between the CF model and the DF model,
and shows the consequences for the practice of data analysis. It will become clear
that for any fitted CF model it is possible to find an equally well fitting DF model
with the same shared features (common features) and feature weights, and with the
same number of independent parameters. Following the same results, a model that
combines the CF and DF models can be expressed as a combination of two separate
DF models.

Where do features come from?

The features in Table 1.1 are a direct result of the experimental design and represent
the physical characteristics of the objects (the plants). Most of the feature meth-
ods mentioned in the previous sections use a priori features that derive from the
experimental design or a psychological theory. In the literature, examples where
features are estimated from the data are rare. There is, however, no necessary rela-
tion between the physical characteristics that are used to specify the objects and the
psychological attributes that subjects might use when they perceive the objects. It
is therefore useful to estimate the features from the data as well. An example of a
data analysis with theoretic features and with features estimated from the data will
be given for the plants data. Chapter 4 is entirely devoted to the subject of selecting
adequate subsets of features resulting from theory or estimated from the data.

It should be noted that a well known set of theoretic features plays an important
role in phonetics as part of the Distinctive Feature Theory. The distinctive features
form a binary system to uniquely classify the sounds of a language, the phonemes.
The term distinctive used here is not the set-theoretic term used for the distinctive
features of the FNM. Various sets of distinctive features have been proposed in pho-
netics and the first set consisting of 14 features has been proposed by Jakobson, Fant,
and Halle (1965): the distinctive features are the ultimate distinctive entities of lan-
guage since none of them can be broken down into smaller linguistic units (p. 3).
A subset of these distinctive features will be used to illustrate the Feature Network
Models in Chapter 2 and Chapter 4.
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Feature distance and feature discriminability

FNM aim at estimating distance measures that approximate observed dissimilarity
values as closely as possible. The symmetric set difference can be used as a dis-
tance measure between each pair of objects Oi and Oj that are characterized by the
corresponding feature sets Si and Sj. Following Goodman (1951, 1977) and Restle
(1959, 1961), a distance measure that satisfies the metric axioms can be expressed as
a simple count µ of the elements of the symmetric set difference, a count of the non
common elements between each pair of objects Oi and Oj and becomes the feature
distance:

d(Oi, Oj) = µ[(Si − Sj) + (Sj − Si)] = µ[(Si ∪ Sj)− (Si ∩ Sj)]. (1.2)

Heiser (1998) demonstrated that the feature distance in terms of set operations can
be re-expressed in terms of coordinates and as such, is equal to a city-block metric
on a space with binary coordinates, a metric also known as the Hamming distance. If
E is a binary matrix of order m × T that indicates which of the T features describe
the m objects, as in Table 1.1, the re-expression of the feature distance in terms of
coordinates is as follows:

d(Oi, Oj) = µ[(Si ∪ Sj)− (Si ∩ Sj)]

= ∑
t
|eit − ejt|, (1.3)

where eit = 1 if feature t applies to object i, and eit = 0 otherwise. In the example of
the plants 1 and 2 the feature distance is equal to the sum of the distinctive features
{p, q}, in this case 2. The properties of the feature distance and especially the relation
between the feature distance and the city-block metric are discussed in Chapter 5.

For fitting purposes, it is useful to generalize the distance in Equation 1.3 to a
weighted count, i.e., the weighted feature distance:

d(Oi, Oj) = ∑
t

ηt|eit − ejt|, (1.4)

where the weights ηt express the relative contribution of each feature. Each feature
splits the objects into two classes, and ηt measures how far these classes are apart.
For this reason, Heiser (1998) called the feature weight a discriminability parameter.
The feature discriminability parameters are estimated by minimizing the following
least squares loss function:

min
ηηη

= ‖Xηηη − δδδ‖2, (1.5)

where X is of size n× T and δδδ is a n× 1 vector of dissimilarities, with n equal to all
possible pairs of m objects: 1

2 m(m− 1). The problem in Equation 1.5 is expressed in a
more convenient multiple linear regression problem, where the matrix X is obtained
by applying the following transformation on the rows of matrix E for each pair of
objects, where the elements of X are defined by:

xlt = |eit − ejt|, (1.6)
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where the index l = 1, · · · , n varies over all pairs (i, j). The result is the binary (0, 1)
matrix X, where each row represents the distinctive features for each pair of objects,
with 1 meaning that the feature is distinctive for a pair of objects. It is important to
notice that features become truly distinctive features only after this transformation,
while the features in the matrix E are not inherently common or distinctive. The
weighted sum of these distinctive features is the feature distance for each pair of
objects and is equal to d = Xηηη. The feature distances serve as starting point for the
construction of the network, as will become clear in the next section.

1.2 Feature Network

In general, there are two types of graphical representations of proximity data: spa-
tial models and network models. The spatial models - multidimensional scaling -
represent each object as a point in a coordinate space (usually Euclidean space) in
such a way that the metric distances between the points approximate the observed
proximities between the objects as closely as possible. In network models, the ob-
jects are represented as vertices in a connected graph, so that the spatial distances
along the edges between the vertices in the graph approximate the observed proxim-
ities among the objects. In MDS, the primary objective is to find optimal coordinate
values that lead to distances that approximate the observed proximities between the
objects, whereas in network models, the primary objective is to find the correct set
of relations between the objects that describe the observed proximities.

Parsimonious feature graphs

The symmetric set difference, which is the basis of FNM, describes the relations be-
tween the object pairs in terms of distinctive features and permits a representation of
the stimuli as vertices in a network using the feature distance. In the network, called
a feature graph, the structural relations between the objects in terms of distinctive fea-
tures is expressed by edges connecting adjacent objects and the way in which the
objects are connected depends on the fitted feature distances. Distance in a network
is the path travelled along the edges; the distance that best approximates the dissim-
ilarity value between two objects is the shortest path between the two corresponding
vertices in the network.

The feature distance has some special properties resulting from its set-theoretical
basis that allows for a representation in terms of shortest paths, which also consid-
erably reduces the number of edges in the network. A complete network, i.e. a
network where all pairs of vertices (representing the m objects) are connected has
n = 1

2 m(m− 1) edges. Figure 1.3 shows a complete network of the plants data where
all pairs of plants are connected with an edge. Such a network is obviously not
adequate in explaining the relations between the objects, due to lack of parsimony.

The feature distance parallels the path-length distance in a valued graph when
one of the metric axioms, the triangle inequality, becomes an equality: dik = dij + djk
(Flament, 1963; Heiser, 1998). In a network graph, each time that the distance dik
is exactly equal to the sum dij + djk the edge between the objects i and k can be
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Figure 1.3: Complete network plants data.

excluded, resulting in a parsimonious subgraph of the complete graph. In terms of
features the condition dik = dij + djk is reached when object j is between objects i and
k. The objects can be viewed as sets of features: Si, Sj, and Sk. Betweenness of Sj
depends on the following conditions (Restle, 1959):

1. Si and Sk have no common members which are not also in Sj;

2. Sj has no unique members which are in neither Si nor Sk.

Apart from the experimental objects, we can also identify hypothetical objects
called internal nodes. These are new feature sets defined in terms of the intersec-
tion of available feature sets. As an example, Figure 1.4 shows two of the plants
(numbers 13 and 14, with feature sets {d, p} and {d, q}, respectively) and an internal
node defined by a feature set containing the single feature {d}. It is clear that be-
tweenness holds with respect to the internal node, because its feature set is exactly
equal to the intersection of the sets belonging to plants 13 and 14, as can be seen
in the right part of Figure 1.4. For the network representation in terms of edges,
the betweenness condition implies that the feature distances between the three ob-
jects reach the triangle equality condition. Calling the internal node ’dpot’, we have
d14,13 = d14,dpot + ddpot,13 = 1 + 1 = 2. For the ease of explanation the feature dis-
tances are represented as unweighted counts of the number of distinctive features.
Consequently, the edge between the plants 13 and 14 can be excluded (see the left
part of Figure 1.4).

Hence, sorting out the additivities in the fitted feature distances, with the possi-
ble inclusion on internal nodes, and excluding edges that are sums of other edges



10 CHAPTER 1. INTRODUCING FEATURE NETWORK MODELS

14

13

1

12

{d,q}

{d,p}

{d}

14

13
dpot

Figure 1.4: Triangle equality and betweenness.

results in a parsimonious subgraph of the complete graph, expressed in a binary ad-
jacency matrix with ones indicating the presence of an edge. It should be noted that
the approach of sorting out the additivities is different from the network models of
Klauer (1989, 1994) and Klauer and Carroll (1989), who sort out the additivities on
the observed dissimilarities. Using the fitted distances instead leads to better net-
works because the distances are model quantities whereas dissimilarities are subject
to error. The network approach used in FNM is also different from the social net-
work models (cf. Wasserman & Faust, 1994) that use the adjacency matrix as the
starting point of the analyses, whereas for the FNM it is the endpoint.

Figure 1.5 shows the result of sorting out the triangle equalities on the fitted fea-
ture distances for the plants data, where features d and s have been omitted. Note
that each of the first four features a, b, c, and d is redundant, since it is a linear com-
bination of the other three. The same is true for p, q, r, and s. To avoid problems
with multicollinearity in the estimation, one feature in each set has to be dropped.
Hence from now on, we continue the example with a reduced set of 6 features. The
feature graph clearly has gained in parsimony compared to the complete network in
Figure 1.3. The network has been embedded in 2-dimensional Euclidean space, with
the help of PROXSCAL (a multidimensional scaling program distributed as part of
the Categories package by SPSS, Meulman & Heiser, 1999), allowing ratio proxim-
ity transformation. The edges in the network express the relations between pairs of
plants based on the weighted sum of their distinctive features. More details on the
interpretation of the network model will be given in section 1.3. Chapter 5 discusses
in detail the betweenness condition as well as the algorithm used for sorting out
the triangle equalities and also introduces the internal node as a way to simplify the
network representation.

Embedding in low-dimensional space

A network is by definition coordinate-free because it is entirely determined by the
presence or absence of edges between vertices and by the lengths of these edges. The
distances between the objects in a network do not serve the same interpretational
purpose as in multidimensional scaling, where distances are a direct expression of
the strength of the relation between the objects. In FNM the relation between the



1.2. FEATURE NETWORK 11

  10.63

  7.72

  10.05

  6.86

  10.05

  7.72

  7.40

  6.86

  7.40   7.40

 7.72

  6.61

  6.61

  10.63

 8.71

  6.86

1

2

3

4

5

6

7

8

9

10 11
12

13

14

15
16

a

b

c

d

psrq

  10.05   10.05

  6.61

  6.61

  6.86

  10.63

  10.63

  7.40

Figure 1.5: Feature graph of the plants data using the features resulting from the experimen-
tal design with varying elongation of leaves and form of the pot (with 6 of the 8 features).

objects is primarily expressed by the presence of edges between the vertices. The
embedding of the network in a lower dimensional space is therefore of secondary
importance. In this monograph, the embedding chosen for the feature graphs re-
sults from analysis with PROXSCAL (Meulman & Heiser, 1999) of the Euclidean dis-
tances computed on the weighted feature matrix. Most of the representations are in
2 dimensions, sometimes other options are chosen to obtain a representation that is
better in terms of visual interpretability.

The embedding discussed so far concerns the vertices of the network represent-
ing the objects, while the features themselves can also be visualized. There are sev-
eral possibilities to represent features graphically in the network plot. Most of the
network plots in this monograph show the features as vectors. This representation
is obtained using PROXSCAL (Meulman & Heiser, 1999) with the option of restricting
the solution of the common space by a linear combination of the feature variables.
Another version is to represent the features as internal nodes, as in the presidents
network (Figure 1.1). The representation of features as internal nodes which will be
discussed and illustrated in Chapter 5.
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Figure 1.6: Additive tree representation of the plants data.

Feature structure and related graphical representation

The feature structure typically represented by FNM is a non-nested structure, or in
terms of clusters, an overlapping cluster structure. In contrast, hierarchical trees and
additive trees require a strictly nested feature structure. The graphical representa-
tion of a non-nested structure is more complex than a tree (Carroll & Corter, 1995).
At least three solutions have been proposed in the literature (see the overview in Ta-
ble 1.2): ADCLUS starts with a cluster representation and adds contour lines around
the cluster to reveal the overlapping structure; two other representations start with a
basic tree and visualize the overlapping structure by multiple trees (Carroll & Corter,
1995; Carroll & Pruzansky, 1980) or by extended trees (Corter & Tversky, 1986). Ex-
tended trees represent non-nested feature structures graphically by a generalization
of the additive tree. The basic tree represents the nested structure and the non-nested
structure is represented by added marked segments that cut across the clusters of the
tree structure (Carroll & Corter, 1995, p. 288). The FNM is the only model that rep-
resents this overlapping feature structure by a network representation.

Imposing restrictions on the feature structure in FNM allows for other graphical
representations than a network. Chapter 3 shows that an additive tree is a special
subgraph of the complete feature graph, where each edge is represented by a sep-
arate feature. To obtain an additive tree representation as in Figure 1.6, the feature
matrix must satisfy certain conditions. To produce a tree graph with FNM a nested
set of features is not sufficient. A set of internal nodes (hypothetical stimulus ob-
jects) has to be added to the set of actual stimulus objects, or external nodes. As will
become clear in Chapter 3, if the internal nodes have the correct feature structure,
they will force the betweenness condition to hold in such a way that a tree graph
results.
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Figure 1.7: Feature network representing a 6-dimensional hypercube based on the un-
weighted, reduced set of features of the plants data. Embedding in 2-dimensional Euclidean
space was achieved with PROXSCAL allowing ordinal proximity transformation with ties un-
tied and the Torgerson start option.

Feature networks and the city-block model

The symmetric set difference is a special case of the city-block metric with binary
dimensions represented by the distinctive features. Therefore, the network repre-
sentation lives in city-block space. The dimensionality of this city-block space is de-
fined by the number of features T forming a T-dimensional rectangular hyperblock,
or hypercuboid with the points representing the objects located on the corners. In
the special case when the symmetric set difference is equal for adjacent objects in
the graph, the structure becomes a hypercube. The feature structure of the plants
data yields a hypercube structure when all feature discriminability parameters are
set equal to one. Figure 1.7 shows the resulting 6-dimensional network structure
using the theoretical features and after sorting out the triangle equalities. Using the
weighted feature distance transforms the lengths of the edges of the 6-dimensional
hypercube into a 6-dimensional hypercuboid as in Figure 1.5. (The visual compar-
ison between the network representations in the Figures 1.5 and 1.7 requires some
effort because due to the embedding in lower dimensional space, the emplacement
of the plants has changed.)

Chapter 5 demonstrates that there exists a universal network representation of
city-block models. The results rely on the additivity properties of the city-block
distances and the key elements of the network representation consisting of between-
ness, metric segment additivity and internal nodes. The universal network construc-
tion rule also applies to other models beside the distinctive features model, namely
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the common features model (additive clustering), hierarchical trees, additive trees
and extended trees.

1.3 Feature Network Models: estimation and inference

Figure 1.8 shows an overview of the steps necessary to fit a Feature Network Model
on data using the program PROXGRAPH that has been developed in Matlab. Start-
ing with observed dissimilarities and a set of features, the feature discriminability
parameters are estimated as well as the feature distances. The estimated feature
distances lead to an adjacency matrix after being processed by the triangle equality
algorithm and to coordinates obtained with PROXSCAL (Meulman & Heiser, 1999),
leading to the final result, a feature network. As explained so far, the network rep-
resentation of the dissimilarity data provides a convenient way to describe and dis-
play the relations between the objects. At the same time the network representation
suggests a psychological model that relates mental representation to perceived dis-
similarity. The psychological model is not testable with the graphical representation
only. In FNM the psychological model can be tested by assessing which feature(s)
contributed more than others to the approximation of the dissimilarity values. The
statistical inference theory proposed in this monograph derives from the multiple re-
gression framework, as will become clearer in the following. An important topic of
this monograph is the estimation of standard errors for the feature discriminability
parameters in order to construct 95% confidence intervals . Another way to decide
which features are important is to use model selection techniques to obtain a relevant
subset of features.

Statistical inference

The use of features, when considered as prediction variables, leads in a natural way
to the univariate multiple regression model, which forms the starting point for sta-
tistical inference. It is however not the standard regression model because positivity
restrictions have to be imposed on the parameters. The feature discriminability pa-
rameters represent edge lengths in a network or a tree and, by definition, networks
or trees with negative edge lengths have no meaning and cannot adequately rep-
resent a psychological theory. The problem becomes more prominent in additive
tree representations because each edge is represented by a separate feature. There-
fore, the feature discriminability parameters are estimated by adding the following
positivity constraint to Equation 1.5:

min
ηηη

= ‖δδδ− Xηηη‖2 subject to ηηη ≥ 0. (1.7)

The multiple regression approach has been used earlier in models related to
FNM. The Contrast Model (Takane & Sergent, 1983), the common features model
(Arabie & Carroll, 1980), and the tree models (Corter, 1996) use ordinary least squares
to estimate the parameters of the models. The use of nonnegative least squares is
sparse in the literature of tree models. Arabie and Carroll (1980) implemented a sub-
routine in the MAPCLUS algorithm that encourages the weights to become positive,
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Figure 1.8: An overview of the steps necessary to fit Feature Network Models with PROX-
GRAPH.

but claim to explicitly avoid the use of nonnegative least squares because in the con-
text of iterative algorithm it would reduce the numbers of clusters in the solution.
Hubert, Arabie and Meulman (2001) have successfully implemented nonnegative
least squares in their algorithm for the estimation of the edge lengths in additive
trees and ultrametric trees. In the domain of phylogenetic trees, nonnegative least
squares has been introduced by Gascuel and Levy (1996).

While nonnegative least squares has been used to estimate the parameters in
models related to FNM, there are no examples in the literature of the estimation of
theoretical standard errors, with or without nonnegativity constraints. The models
related to FNM, the extended tree models (Corter & Tversky, 1986), the CLUSTREE
models (Carroll & Corter, 1995) and, the Modified Contrast Model (Navarro and Lee,
2004) do not explicitly provide a way to test for significance of the features. It should
be noted, however, that Corter and Tversky (1986) use a descriptive version of the F-
test by permuting residuals to test the significance of the overlapping features added
to the additive tree solutions. The other network models (Klauer, 1989, 1994; Klauer
& Carroll, 1989) only give the best fitting network and yield no standard errors for
the parameter estimates. Krackhardt (1988) provided a way to test the significance of
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Table 1.3: Feature discriminability estimates, standard errors and 95% confidence intervals
for plants data using six features selected from the complete experimental design in Table 1.1
and associated with the network graph in Figure 1.5 (R2 = 0.60).

Features η̂ σ̂η̂ 95% t-CI

a 6.29 0.57 5.15 7.42
b 3.64 0.57 2.50 4.77
c 2.85 0.57 1.71 3.98
d 0.00∗ 0.00 0.00 0.00
p 6.86 0.57 5.73 8.00
q 3.95 0.57 2.82 5.08
r 3.09 0.57 1.96 4.22
s 0.00∗ 0.00 0.00 0.00

∗ To avoid multicollinearity, the fourth level of the
flowerpots (d) and the plants (s) has been omitted.

regression coefficients in networks for dyadic data that suffer from various degrees
of autocorrelation by using quadratic assignment procedures. Unfortunately, his
results do not apply to FNM because of the presence of constraints on the feature
parameters.

Statistical inference in inequality constrained least squares problems is far from
straightforward. A recent review by Sen and Silvapulle (2002) showed that topics
on statistical inference problems when the associated parameters are subject to pos-
sible inequality constraints abound in the literature, but solutions are sparse. In the
context of the inequality constrained least squares problem, only one author (Liew,
1976) has produced a way to compute theoretical standard errors for the parameter
estimates. Liew (1976), however, did not evaluate the sampling properties of the
theoretical standard errors. Chapters 2 of this monograph shows an application of
the theoretical standard errors and associated 95% confidence intervals for feature
networks with a priori known features. The performance of the theoretical standard
errors is compared to empirical standard errors using Monte Carlo simulation tech-
niques. Chapter 3 evaluates the performance of the theoretical standard errors for
features structures in additive trees and the results are extended to the case where
the feature structure (i.e., the tree topology) is not known in advance.

Table 1.3 shows the feature discriminability parameters and the associated theo-
retical standard errors and 95% t-confidence intervals for the theoretic features of the
plants data. To avoid multicollinearity, the feature discriminability parameters and
the associated standard errors have been estimated with a smaller feature set, than
the set of theoretical features presented in Table 1.1. Two features have been omitted,
namely the fourth level of the flowerpots (feature d) and the fourth level of plants
(feature s). As a result these two features have zero values in Table 1.3. The overall
fit of the model is reasonable with an R2 equal to 0.60. The estimates of the fea-
ture discriminability parameters indicate that the features a, representing the square
formed pot, and p, representing the round shaped leaves, are the most important in
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Table 1.4: Feature matrix resulting from feature subset selection with the Positive Lasso on
the plants data.

Features

Plants F1 F2 F3 F4 F5 F6

1 ap 1 1 0 1 1 1
2 aq 1 1 1 0 1 1
3 ar 1 1 1 0 0 1
4 as 1 1 1 0 0 0
5 bp 0 1 0 1 1 1
6 bq 0 1 1 0 1 1
7 br 0 1 1 0 0 1
8 bs 0 1 1 0 0 0
9 cp 0 0 0 1 1 1

10 cq 0 0 1 0 1 1
11 cr 0 0 1 0 0 1
12 cs 0 0 1 0 0 0
13 dp 0 0 0 1 1 1
14 dq 0 0 0 0 1 1
15 dr 0 0 0 0 0 1
16 ds 0 0 0 0 0 0

distinguishing the plants. The network representation in Figure 1.5 reflects the im-
portance of the features a and p by larger distances between plants that possess these
features and plants that do not possess these features. The edges in the network (Fig-
ure 1.5) are labeled with the feature distances, which can be reconstructed from the
feature discriminability parameters in Table 1.3. For example, the distance between
the plants 2 and 4 is equal to 3.95, which is the sum of the feature discriminability
parameters corresponding to their distinctive features: q(= 3.95) + s(= 0.00).

Finding predictive subsets of features

In many research settings the features are not known a priori and the main objec-
tive is to find a relevant set of features that explain the dissimilarities between the
objects as accurately as possible. Chapter 4 proposes a method to find adequate sets
of features that is closely related to the predictor selection problem in the multiple
regression framework. The basic idea is to generate a very large set of features (or,
if possible, the complete set of features) using Gray codes. Since features are binary
variables, they can efficiently be generated with binary coding. Next, a subset of
features is selected with the Lasso option of the Least Angle Regression (LARS) algo-
rithm (Efron, Hastie, Johnstone, & Tibshirani, 2004), a recently developed efficient
model selection algorithm that is less greedy than the traditional forward selection
methods used in the multiple linear regression context. To meet the positivity con-
straints necessary in FNM, the Lasso has been modified into a Positive Lasso. The
resulting strategy incorporates model selection criteria during the search process,
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leading to a set of features that is not necessarily optimal in the current data, but
that constitutes a good compromise between model fit and model complexity. This
approach of finding a balanced trade-off between goodness-of-fit and prediction ac-
curacy has not been used in the psychometric models related to FNM, except for the
independently developed Modified Contrast Model (Navarro & Lee, 2004) that uses
a forward feature selection method and a model selection criterion related to the BIC
criterion.

Table 1.4 displays the results of the Positive Lasso subset selection method on the
plants data. The 6 selected features differ in several aspects from the theoretical fea-
tures derived from the experimental design. Only the two most important features
from the experimental design, features a and p were selected by the Positive Lasso
(the features F1 and F4) in Table 1.4. Figure 1.9 represents the corresponding feature
graph, which is clearly different from the feature graph based on the theoretic fea-
tures (Figure 1.5): it is more parsimonious and has better overall fit (R2 = 0.81). The
plants have the same order in the network as in the experimental design and form
a grid where each edge represents exactly one feature. For example plant number 6
and plant number 2 are connected with an edge representing the square shaped pot.

  9.18

  8.10

  6.64

  8.10

  7.01

  8.10

  8.10

  9.18

  6.93

  6.64

  6.93

  7.01

  6.93

  6.93

  8.16

  7.01  5.48

  6.64

  7.01

1

2

3

4

5

6

7

8

13

10

11

12

14

15

16

9

a

b

c

d

p

s

r

q

  5.48

  5.48

  6.64

Figure 1.9: Feature graph for the plants data, resulting from the Positive Lasso feature subset
selection algorithm on the complete set of distinctive features. The original experimental
design is the cross classification of the form of the pot (a,b,c,d) and the elongation of the
leaves (p,q,r,s). Embedding in 2-dimensional space was done with PROXSCAL using ratio
transformation and the simplex start option. (R2 = 0.81)
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The edge lengths show that the pots of the form c and d are perceived as more sim-
ilar (the plant numbers 9 and 13 even coincide on the same vertex in the network)
than the pots with form a and b. Moreover, the network representation shows that
it can perfectly represent the three types of triples of stimuli mentioned by Tversky
and Gati (1982), where the geometric models based on the Euclidean metric fail. The
three types of triples are:

1. Unidimensional triple: all stimuli differ on 1 dimension, e.g. the plants 1, 5 and
9 representing the combinations (ap, bp, cp) in Figure 1.9;

2. 2-dimensional triple: all pairs of stimuli differ on both dimensions, e.g. the
plants 1, 6 and 11 with feature combinations (ap, bq, cr);

3. Corner triple: two pairs differ on one dimension and one pair differs on 2 di-
mensions, e.g. the plants 1, 5 and 6, having feature combinations (ap, bp, bq).

Only the city-block metric or the feature network is able to correctly display the
relations between these three types of triples because the triangle inequality reduces
to the triangle equality in all cases. The Euclidean model and other power metrics
than the city-block are able to represent unidimensional triples, and into some extent
2-dimensional triples but fail in representing the corner triples. According to the
power metrics other than the city-block model, the distance between plants 1 and 6
(differing on two dimensions) is shorter than the sum of the distances between the
plant pairs (1,5) and (5,6). The network representation shows that the shortest path
between the plants 1 and 6 is the path from 1 to 5 to 6.

1.4 Outline of the monograph

This monograph is organized as follows. Chapter 2 explains how to obtain theoret-
ical standard errors for the constrained feature discriminability parameters in FNM
with a priori known features. The performance of the theoretical standard errors is
compared to empirical standard errors (resulting from the bootstrap method) using
Monte Carlo simulation techniques. Chapter 3 shows that additive trees can be con-
sidered as a special case of FNM if the objects are described by features that form
a special structure. The statistical inference theory based on the multiple regression
framework is further developed by extending the theory from FNM to additive trees,
but also by extending the use of theoretical standard errors and associated 95% con-
fidence intervals to a priori unknown feature structures (in this case, tree topologies).
Chapter 4 proposes a new method to find predictive subsets of features, especially
for the situation where the features are not known in advance. Using the multiple
regression framework of the FNM, a new version of Least Angle Regression is de-
veloped that restricts the feature discriminability parameters to be nonnegative and
is called the Positive Lasso. While the Chapters 2, 3 and 4 all extend the statistical
inference properties of the FNM, Chapter 5 is not directly concerned with statistical
inference and focuses on the properties of feature graphs. It shows that there exists
a universal network representation of city-block models that can be extended to a
large class of discrete models for similarity data, including the distinctive features
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model, the common features model (additive clustering), hierarchical trees, addi-
tive trees, and extended trees. Chapter 6 concludes this monograph with a general
conclusion and discussion.

Since the chapters 2 - 5 all represent separate papers, a certain amount of overlap
is inevitable, especially in the sections describing the Feature Network Models.



Chapter 2

Estimating Standard Errors in Feature
Network Models 1

Abstract

Feature Network Models are graphical structures that represent proximity
data in a discrete space while using the same formalism that is the basis of least
squares methods used in multidimensional scaling. Existing methods to derive a
network model from empirical data only give the best fitting network and yield
no standard errors for the parameter estimates. The additivity properties of net-
works make it possible to consider the model as a univariate (multiple) linear
regression problem with positivity restrictions on the parameters. In the present
study, both theoretical and empirical standard errors are obtained for the con-
strained regression parameters of a network model with known features. The
performance of both types of standard errors are evaluated using Monte Carlo
techniques.

2.1 Introduction

In attempts to learn more about how human cognition processes stimuli, a typical
psychological approach consists of analysing the ratings of perceived similarity of
these stimuli. In certain situations, it is useful to characterise the objects of the exper-
imental conditions as sets of binary variables, or features (e.g. voiced vs. unvoiced
consonants). In that case it is well known that multidimensional scaling methods
that embed data with underlying discrete properties in a continuous space using the
Euclidean metric, will not exhaust the cognitive structure of the stimuli (Shepard,
1974, 1980, 1987). For discrete stimuli that differ in perceptually distinct dimensions
like size or shape, the city-block metric achieves better results (Shepard, 1980, 1987).

In contrast to dimensional and metric methods, Tversky (1977) proposed a set-
theoretical approach, where objects are characterized by subsets of discrete features.

1The text of this chapter represents the following article in press: Frank, L. E. & Heiser, W. J. (in
press). Estimating standard errors in Feature Network Models. British Journal of Mathematical and Statis-
tical Psychology. With an exception for the notes in this chapter, which are reactions to remarks made by
the members of the promotion committee.

21
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According to Tversky, the representation of an object as a collection of features par-
allels the mental process of participants faced with a comparison task: participants
extract and compile from their data base of features a limited list of relevant features
on the basis of which they perform the required task. This theory forms the ba-
sis of Tversky’s Contrast Model where similarity between objects is expressed by a
weighted combination of their common and distinctive features. Tversky, however,
did not explain how these weights should be combined to achieve a model that could
be fitted to data. Recently, Navarro and Lee (2004) proposed a modified version of
the Contrast Model by introducing a new combinatorial optimisation algorithm that
leads to an optimal combination of common and distinctive features.

Feature Network Models (Heiser, 1998) are a particular class of graphical struc-
tures that represent proximity data in a discrete space while using the same for-
malism that is the basis of least squares methods used in multidimensional scaling.
Feature Network Models (FNM) use the set-theoretical approach proposed by Tver-
sky, but are restricted to distinctive features only. It is the number of features in
which two stimuli are distinct that yields a dissimilarity coefficient that is equal to
the city-block metric in a space with binary coordinates, i.e., the Hamming distance.
Additionally, the set-theoretical basis of FNM permits a representation of the stimuli
as vertices in a network. Network representations are thought to be especially useful
in case of nonoverlapping sets. General graphs or networks can represent parallel
correspondences between the structures within two nonoverlapping subsets, which
can never be achieved by continuous spatial representation nor hierarchical repre-
sentations (Shepard, 1974).

In addition to the issue how to model the cognitive processing of discrete stimuli
adequately, it is equally valuable to be able to decide which features are more im-
portant than others and to test which features are significantly different from zero.
The models related to the FNM, the extended tree models (Corter & Tversky, 1986),
the CLUSTREE models (Carroll & Corter, 1995) and, the Modified Contrast Model
(Navarro & Lee, 2004) do not explicitly provide a way to test for significance of the
features. The other network models (Klauer, 1989, 1994; Klauer & Carroll, 1989)
only give the best fitting network and yield no standard errors for the parameter
estimates.

The additivity properties of networks make it possible to consider FNM as a
univariate (multiple) linear regression problem with positivity restrictions on the
parameters, which forms a starting point for statistical inference. Krackhardt (1988)
provided a way to test the significance of regression coefficients in networks for
dyadic data that suffer from various degrees of autocorrelation by using quadratic
assignment procedures. Unfortunately, his results do not apply to FNM because of
the presence of constraints on the feature parameters.

Positivity restrictions on the parameters lead to an inequality constrained least
squares problem. Statistical inference in inequality constrained least squares prob-
lems is far from straightforward. A recent review by Sen and Silvapulle (2002)
showed that topics on statistical inference problems when the associated parameters
are subject to possible inequality constraints abound in the literature. According to
the authors of the review, the reason for this abundance is that optimal estimators or
tests of significance generally do not exist for such nonstandard models.
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In the context of the inequality constrained least squares problem, only one au-
thor (Liew, 1976) has proposed a way to compute theoretical standard errors for the
parameter estimates. To the authors’ knowledge there are no other examples of the
application of these theoretical standard errors in the literature. Liew (1976), how-
ever, did not evaluate the sampling properties of the theoretical standard errors. The
purpose of this paper is to gain more insight in the sampling distribution of the the-
oretical standard errors and to evaluate the usability of the standard errors in the
framework of FNM in the case of known features. The accuracy of the theoreti-
cal standard errors and the use of these standard errors in constructing confidence
intervals, is verified using bootstrap procedures and Monte Carlo techniques. The
specific context of the FNM necessitates an adaptation of the Monte Carlo technique.

The paper is organised as follows. In the next section the Feature Network Mod-
els are described and illustrated with an application on a data set. Then, two ways
of obtaining standard errors are described: theoretical standard errors and bootstrap
standard errors. The results of the bootstrap study are presented in this section as
well. The usability of both types of standard errors is verified by a Monte Carlo
analysis, which forms the last section before the discussion.

2.2 Feature Network Models

Feature Network Models (FNM) are graphical structures that represent proximity
data in a discrete space. The properties of these models will be explained using a
well known data set, the perceptual confusions among 16 English consonants col-
lected by Miller and Nicely (1955). These 16 phonemes can be described by five ar-
ticulatory features: voicing, nasality, affrication2, duration3 and place of articulation (see
Table 2.1). The authors were particularly interested in which articulatory features
are important in distinguishing the consonants when affected by varying signal to
noise conditions.

The original data consist of 17 matrices in which each cell contains the frequen-
cies of confusion between the spoken phoneme (the rows) and the phoneme written
down by the participants (the columns). Shepard (1972) converted the pooled data
from the first noise condition (the first six original matrices) to a symmetric matrix of
similarities with the transformation ςij = ( fij + f ji)/( fii + f jj), where f denotes the
frequencies of confusion. For our study, the similarities were further transformed
into dissimilarities δij by the transformation δij = − log(ςij), assuming that the sim-
ilarity measures decay exponentially with distance.

The data are illustrative for the use of Feature Network Models because there
are a priori features that describe the objects, i.e., the articulatory properties (Table
2.1). Features are binary variables indicating for each object whether a particular
characteristic is present or absent. Note that features are not always intrinsically
binary: any ordinal or even interval variable if categorised can be transformed into a
binary feature, using dummy coding. For example, the place of articulation has three

2At present, phonetic experts would call this feature friction.
3The feature duration is not a proper phonetic feature and has been adopted arbitrarily by Miller &

Nicely (1955) to distinguish the difference between {s, S, z, Z} and the remaining consonants.



24 CHAPTER 2. ESTIMATING STANDARD ERRORS IN FNM

Table 2.1: Matrix of 16 English consonants, their pronunciation and phonetic features

Features

Consonants F1
? F2 F3 F4 F5 F6

p (pie) 0 0 0 0 0 1
t (tie) 0 0 0 0 1 0
k (kite) 0 0 0 0 0 0
f (fie) 0 0 1 0 0 1
θ (thigh) 0 0 1 0 1 0
s (sigh) 0 0 1 1 1 0
S (shy) 0 0 1 1 0 0
b (buy) 1 0 0 0 0 1
d (die) 1 0 0 0 1 0
g (guy) 1 0 0 0 0 0
v (vie) 1 0 1 0 0 1
ð (thy) 1 0 1 0 1 0
z (Zion) 1 0 1 1 1 0
Z (vision) 1 0 1 1 0 0
m (my) 1 1 0 0 0 1
n (night) 1 1 0 0 1 0

?F1 = voicing; F2 = nasality; F3 = affrication; F4= duration;
F5 = place, middle; F6 = place, front.

categories to indicate the place in the mouth where the phonemes are pronounced:
front, middle and back. Dummy coding produces the two features place, front and
place, middle (Table 2.1).

Feature distance

Some set theoretic properties of the binary feature matrix lead to the estimation of
a distance measure that approximates the observed dissimilarities. For example,
the phoneme g has one feature {voicing} and phoneme v has the features {voicing,
affrication, place front}. The difference between the union and the intersection (= the
symmetric set difference) expresses which feature g has that v does not have and
vice versa: (g ∪ v) − (g ∩ v) = {affrication, place front}. Following Goodman (1951,
1977) and Restle (1959, 1961), a distance measure that satisfies the metric axioms can
be expressed as a simple count µ of the elements of the symmetric set difference
between the stimuli Oi and Oj and becomes the feature distance: d(Oi, Oj) = µ[(Oi ∪
Oj)− (Oi ∩Oj)].

Heiser (1998) demonstrated that the feature distance in terms of set operations
can be re-expressed in terms of coordinates and as such, is equal to a city-block
metric on a space with binary coordinates, a metric also known as the Hamming
distance. The properties of the feature distance were known before, but it has never
been used as a model to be fitted to data. If E is a binary matrix of order m× T that
indicates which features t describe the m objects, as in Table 2.1, the re-expression of
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the feature distance in terms of coordinates is as follows (Heiser, 1998):

d(Oi, Oj) = µ[(Oi ∪Oj)− (Oi ∩Oj)]

= ∑
t
|eit − ejt|, (2.1)

where eit = 1 if feature t applies to object i, and eit = 0 otherwise. In the example of
the two phonemes g and v the feature distance is equal to 2.

For fitting purposes it is useful to generalise the distance in Equation 2.1 to a
weighted count, i.e., the weighted feature distance:

d(Oi, Oj) = ∑
t

ηt|eit − ejt|, (2.2)

where the feature discriminability parameters ηt express the relative contribution of
each feature.

The feature parameters are estimated by minimising the following least squares
loss function:

min
η̂ηη

= ‖Xηηη − δδδ‖2, (2.3)

where X is of size n× T and δδδ is a n× 1 vector of dissimilarities, with n equal to all
possible pairs of m objects: 1

2 m(m− 1). The problem in Equation 2.3 is expressed in a
more convenient multiple linear regression problem, where the matrix X is obtained
by applying the following transformation on the rows of matrix E for each pair of
objects, where the elements of X are defined by:

xl = |eit − ejt|, (2.4)

where the index l = 1, · · · , n varies over all pairs (i, j). The result is the binary (0, 1)
matrix X, where each row represents the distinctive features for each pair of objects,
with 1 meaning that the feature is distinctive for a pair of objects. The weighted sum
of these distinctive features is the fitted distance for each pair of objects and is equal
to d = Xηηη. Corter (1996, Appendix C, p. 57) uses a similar matrix X in the linear
regression context to obtain the lengths of the branches in an additive tree.

The properties of the transformation in Equation 2.4 in terms of rank deficiency
are not fully known yet. A full rank matrix E does not automatically lead to a full
rank matrix X, and a rank deficient matrix E does not necessarily produce a rank
deficient matrix X. In the present implementation of the Feature Network Models,
this transformation is systematically checked for rank deficiency.

The feature distance parallels the path-length distance in a valued graph when
one of the metric axioms, the triangle inequality, is reaching its limiting additive
form dij = dil + djl (Flament, 1963; Heiser, 1998). Hence, sorting out the additivi-
ties in the fitted feature distances and excluding edges that are sums of other edges
results in a parsimonious subgraph of the complete graph. It should be noted that
the approach of sorting out the additivities is different from the network models of
Klauer (1989, 1994) and Klauer and Carroll (1989), who sort out the additivities on
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Table 2.2: Feature parameters, standard errors and 95% confidence intervals for consonant
data

Features η̂ σ̂η̂ 95% CI

Voicing 2.13 0.17 1.80 2.47
Nasality 1.32 0.22 0.88 1.76
Duration 0.98 0.19 0.60 1.36
Affrication 0.83 0.18 0.47 1.20
Place, front 0.76 0.19 0.38 1.12
Place, middle 0.57 0.18 0.21 0.93

the dissimilarities. Using the fitted distances instead leads to better networks be-
cause the distances are model quantities whereas dissimilarities are subject to error.

The feature distances (d = Xηηη) are represented as additive counts of edge lengths
in the graph, where the edge lengths are the feature parameters ηηη. Figure 2.1 shows
the network that results from the fitted distances on the consonant data. For display
purposes the 6-dimensional feature network has been embedded in 3-dimensional
Euclidean space by multidimensional scaling (Torgerson, 1958). Table 2.2 shows the
feature discriminability parameters that result from minimising the loss function
in Equation 2.3. Since the feature discriminability parameters represent edges in a
network, the parameters are constrained to be nonnegative.

The values in Table 2.2 lead to the conclusion that the features voicing and nasality
are the most important phonetic features used by the respondents to distinguish the
16 consonants; the phonetic features duration and affrication come in third and fourth
place. The model has an R2 equal to .90.

Feature Network Models as graphs

The network in Figure 2.1 clearly shows the distinction between the consonants
based on the voicing feature: all voiced consonants are on the left part of the network
and are well separated from the unvoiced consonants. Next, the phonetic feature of
nasality visibly divides the two consonants m and n from the rest. The consonants s,
S, z and Z form a group in the form of rectangle and are different from the remaining
12 consonants because of the length of their pronunciation, described by the fea-
ture duration4. The most striking part of the network is the parallel structure that
characterises the voiced consonants (minus the nasals) {b, g, d, v, ð, Z, z} on the one
hand and the unvoiced consonants {p, t, k, f, θ, s, S} on the other hand. Subsets of
consonants can be distinguished by the same structure they share. For example, the
voiced fricatives {f, θ, S, s} have the same structure as the unvoiced fricatives {v, ð,
z, Z} due to shared properties on the phonetic feature place of articulation.

4Given the arbitrarily chosen features of duration (see footnote 3), it would be more appropriate to
state that the consonants s, S, z and Z differ from the remaining 12 consonants in the acoustic property that
is captured by the feature duration.
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Figure 2.1: Feature Network Model on consonant data (dh = ð; zh = Z; th = θ; sh = S).

Features: known or unknown

So far we have described the Feature Network Models in the case where features
are known in advance. The example on the consonant data shows a typical research
setting for this case, where the researchers are interested in the relative importance of
specific features of the objects used in their experiment. Another research situation
where the FNM could be used, is when one is primarily interested in finding the
psychological features that underlie the human cognition process, and which are
typically not known in advance. In this feature selection problem, the FNM use a
clustering algorithm that is called cluster differences scaling5 (Heiser, 1998).

In terms of statistical inference, the situation of known features corresponds to
a univariate multiple regression problem with a fixed set of predictor variables. A
different framework for statistical inference is needed for the unknown features be-
cause the predictors are random variables. The present paper addresses statistical
inference with a priori features.

5The first application of FNM used a cluster differences scaling algorithm (Heiser, 1998) with num-
ber of clusters equal to two, which constitutes a one-dimensional MDS problem with the coordinates
restricted to form a bipartition. Because it is still a hard combinatorial problem, the implementation uses
a nesting of several random starts together with K-means type of reallocations.



28 CHAPTER 2. ESTIMATING STANDARD ERRORS IN FNM

2.3 Obtaining standard errors in Feature Network Models with a
priori features

As explained before, the additivity properties of networks make it possible to con-
sider Feature Network Models as a univariate multiple linear regression problem
with positivity restrictions on the parameters. The constraints on the feature param-
eters are necessary to maintain the structural consistency of the FNM, because the
feature parameters represent edge lengths in a network.

The sampling distribution of an estimator that is derived under inequality con-
straints is seriously affected by the constraints. In the case of nonnegativity, the
sampling distribution of the least squares estimator becomes of the mixed discrete-
continuous type. Without the constraints, the distribution of the least squares es-
timator is asymptotically normal. Imposing nonnegativity constraints causes the
area of the normal density curve left of the origin to be replaced by a probability
mass concentrated at the origin. Consequently, the sampling distribution of the con-
strained estimator is not centred around the true value anymore, and, hence the
estimator is biased. This bias does not necessarily make it a worthless estimator.
On the contrary, a constrained estimator will be a better estimator as the true value
moves farther (in the positive direction) from the origin (cf. Theil, 1971)

In this context, Liew (1976) evaluated the asymptotic properties of the inequal-
ity constrained least squares estimator (ICLS) and proved that if the prior belief of
positive parameters is correct, which means that it is correct to impose restrictions,
the ICLS estimator is an asymptotically unbiased, consistent, and efficient estimator.
In the framework of the Feature Network Models, the prior belief would be that
there exists a representation of the data in terms of distances between points in a
network where all edge lengths are positive. Liew (1976) also proposed a way to ob-
tain standard errors for the ICLS estimator. The next section explains how theoretical
standard errors can be obtained for the ICLS estimator.

Estimating standard errors in inequality constrained least squares

In the case that the features are known, the distinctive-feature additivity allows for
considering the Feature Network Model as a univariate (multiple) linear regression
model:

δδδ = Xηηη + εεε (2.5)

where δδδ is a n× 1 vector with dissimilarities, X is a known n× T binary (0, 1) matrix
of rank T, and ηηη is a T × 1 vector. We assume that εεε is a n × 1 random vector that
follows a normal distribution,

εεε ∼ N (µ, σ2I), (2.6)

where I is an identity matrix of rank n, and where it is assumed that σ2 is small
enough to ensure the occurrence of negative dissimilarities to be negligible. The
parameters of the vector ηηη are subject to positivity constraints because they represent
edge lengths in the network.
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The quadratic programming problem that yields the inequality constrained least
squares estimator η̂ICLS is the following (cf. Björk, 1996):

min
η̂ηη

= (δδδ− Xη̂ηη)′(δδδ− Xη̂ηη)

subject to Aη̂ηη ≥ r. (2.7)

The matrix of constraints A is a C × T matrix of rank C, and r is a C × 1 null-vector
because all parameters are constrained to be greater than or equal to zero. In the
case when no intercept is estimated C equals T, A is a T × T identity matrix, and r
becomes a T× 1 null-vector. If an intercept is estimated, there is no reason to impose
restrictions on the value of this parameter because is does not directly represent an
edge length in the network. In that case C equals T − 1.

The duality theory of the quadratic programming problem displayed in Equation
2.7 serves as the basis for the estimation of the standard errors of the parameters
(Liew, 1976). The dual function of the primal problem in Equation 2.7 is:

max
λλλKT

= r′λλλKT + 1
2 (δδδ′δδδ− η̂ηη′X′Xη̂ηη),

subject to A′λλλKT + X′δδδ = (X′X)η̂ηη, λλλKT ≥ 0, (2.8)

where η̂ηη is a solution to the primal problem, and λλλKT is the C × 1 dual vector of
Kuhn-Tucker multipliers, which is the nonnegative complementary solution of the
fundamental problem.

To solve the quadratic programming problem in Equation 2.7, the current imple-
mentation of PROXGRAPH uses Algorithm AS 225 (Wollan & Dykstra, 1987). This
algorithm proceeds by cyclically estimating Kuhn-Tucker vectors. For the special
case of nonnegative least squares, Wollan and Dykstra rephrased the problem of
Equation 2.7 in a more convenient, lower dimensional space:

min
η̂ηη

= (η̂ηηOLS − η̂ηη)′S−1(η̂ηηOLS − η̂ηη)

subject to −Aη̂ηη ≤ 0, (2.9)

where η̂ηηOLS is the vector with the unrestricted, ordinary least squares estimates (OLS),
S−1 is equal to the inverse of X′X, and η̂ηη is the solution vector subject to the con-
straints −Aη̂ηη ≤ 0. The result of this optimisation problem is η̂ηηICLS, the vector with
inequality constrained least squares estimates (ICLS). Due to the different formula-
tion of the primal problem in Equation 2.9, the resulting dual vector of Kuhn-Tucker
multipliers is equal to 1

2λλλKT in Equation 2.8.
For the solution obtained by solving Equation 2.9, the following relation exists

between the ICLS estimator and the OLS estimator, using the properties of the ele-
ments of Equation 2.8 and the results obtained by Liew (1976):

η̂ηη ICLS = (X′X)−1X′δδδ + (X′X)−1A′ 1
2λλλKT

= η̂ηηOLS + (X′X)−1A′ 1
2λλλKT, (2.10)
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where λλλKT is the vector with Kuhn-Tucker multipliers that results from solving
the quadratic programming problem with Algorithm AS 225. Equation 2.10 clearly
shows that if none of the elements of the vector η̂ηηICLS is bounded, i.e., all elements
satisfy the constraint −Aη̂ηη ≤ 0 (Equation 2.9), then all elements of λλλKT become zero,
and, as a result, the ICLS estimates reduce to the OLS estimates.

The same relation between the ICLS estimator and the OLS estimator is used to
obtain standard errors for the ICLS estimates. The estimated standard errors for the
OLS estimator vector are

σ̂OLS =
√

σ̂2diag
[
(X′X)−1

]
, (2.11)

with σ̂2 =
[
(δδδ− Xη̂ηηOLS)

′(δδδ− Xη̂ηηOLS)
]

/(n− T). The estimated standard errors for the
ICLS estimator vector are

σ̂ICLS =
√

σ̂2diag
[
M(X′X)−1M′

]
, (2.12)

where

M = I + diag[(X′X)−1A′ 1
2λλλKT][diag(η̂ηηOLS)]

−1. (2.13)

If the model is unconstrained, the estimated variance-covariance matrix reduces to
the variance-covariance matrix of the OLS estimator.

Determining the standard errors by the bootstrap

Considering Feature Network Models as multiple linear regression models also of-
fers a context for the bootstrap. The bootstrap (Efron & Tibshirani, 1998) is a compu-
ter-intensive resampling method that uses the empirical distribution of a statistic to
asses its variability, and is widely used as an alternative to parametric approaches.

There are two methods of bootstrapping a regression model: bootstrapping pairs
and bootstrapping residuals (Efron & Tibshirani, 1998). In simple regression with
one dependent variable and one predictor variable, bootstrapping pairs or bivariate
sampling, implies that for each sampled observation the corresponding value of the
predictor variable is sampled as well. Applied to the multiple regression situation
of the Feature Network Models, bivariate sampling becomes multivariate sampling
because there are several features, or predictor variables. The multivariate bootstrap
proceeds in the following way: for each sampled observation δl (l = 1, · · · n), from
the vector of dissimilarities of the original sample, the corresponding row (x′ l) of the
feature matrix X is sampled as well. A bootstrap sample b∗b (b = 1, · · · , B) taken
from an original sample of n observations has the following form:

b∗b = {(δδδl , x′ l)1, (δδδl , x′ l)2, · · · , (δδδl , x′ l)n}. (2.14)

The other bootstrap method, bootstrapping residuals, does not sample directly
from the observations on the dependent variable and the predictor variable, but
samples with replacement from the estimated residuals obtained from fitting the
regression model to the data. Fitting the Feature Network Model leads to

δ̂δδ = Xη̂ηη + ε̂εε, (2.15)
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where δ̂δδ is the vector with predicted values of the dissimilarities, X is the fixed fea-
ture matrix, η̂ηη are the estimated feature parameters, and ε̂εε is the vector with esti-
mated residuals. A bootstrap sample b̃b, using the method of sampling residuals, is
obtained by keeping Xη̂ηη fixed and sampling with replacement from ε̂εε:

b̃b = {(x′1η̂ηη + ε̂1, x′1), (x′2η̂ηη + ε̂2, x′2), · · · , (x′nη̂ηη + ε̂n, x′n)}. (2.16)

In deciding which method is better, Efron and Tibshirani (1998) argue that the
choice depends on how far the linear regression model can be trusted. The linear
regression model in Equation 2.5 says that the error between δl and its mean x′ lηηη
does not depend on x′ l , which is a strong assumption that can fail even when the
linear regression model is correct. Bootstrapping residuals is therefore more sen-
sitive to assumptions than bootstrapping pairs that only assumes that the original
pairs (δl , x′ l) are randomly sampled from some distribution g. However, Efron and
Tibshirani (1998) conclude that both sampling methods yield reasonable standard
errors, even if the statements in Equations 2.5 and 2.6 are completely wrong.

Two arguments have lead to the choice of multivariate sampling in this study.
First, the properties of the error distribution related to proximities are not sufficiently
known to justify strong assumptions. The second one is a more practical argument:
it is obvious from Equation 2.16 that the method of sampling residuals can lead to
the undesired situation of negative dissimilarities, when by chance a large negative
residual ε̂l is associated with a smaller value of x′ lη̂ηη.

Opposed to bivariate or multivariate sampling, where the sampling of the pre-
dictor variables (the features) depends on the sampling of the dependent variable
(the dissimilarity), another approach would be to sample the predictor variables
and the dependent variable independently, which is called univariate sampling (Lee
& Rodgers, 1998). These authors demonstrate that bivariate sampling matches the
logic of computing standard errors and constructing confidence intervals , whereas
univariate sampling is more suited for hypothesis testing. The difference follows
from the way the empirical sampling distribution is used to test the null hypothesis
of a statistic. In univariate sampling the scores on the predictor variables are ran-
domly matched with the scores on the dependent variable, and consequently, the
expected value of the statistic is 0. The consequences for the empirical distribution
resulting from the different methods is that for bivariate or multivariate sampling
the empirical sampling distribution is centered around the value of the observed
sample statistic and that for univariate sampling the empirical sampling distribution
is centred around the value 0. Hence, in bivariate sampling H0 would be rejected if
the middle 95% of the empirical distribution does not include the value 0 and in
univariate sampling H0 would be rejected if the middle 95% of the distribution does
not include the observed sample statistic. In this paper we are interested in obtain-
ing standard errors and confidence intervals for the feature parameters and we are
not primarily interested in hypothesis testing. Therefore, the method of choice is
multivariate sampling.
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Bootstrap procedures

A number of B = 10, 000 bootstrap samples was taken from the consonant data
(Miller & Nicely, 1955). Bootstrap samples were taken using multivariate sampling,
which means that for each dissimilarity δl sampled from the consonant data, the cor-
responding row of the original X matrix with features was sampled as well. All
computations were programmed with Matlab and random samples were taken us-
ing the pseudo-random number generator of Matlab, which was set to 1.0 before
running the program.

Nominal standard errors, σ̂OLS and σ̂ICLS, where estimated for the OLS and ICLS
estimators (using Equations 2.11 and 2.12), as well as estimates of bias (the mean of
the bootstrap replications of ICLS and OLS minus the respective sample estimates)
and bootstrap standard errors sdB (the standard deviation of the B bootstrap repli-
cations). Nominal confidence intervals , based on the t distribution (df = n − T,
with n equal to the number of dissimilarities and T equal to the number of features),
were computed for the η̂OLS and η̂ICLS estimators, using σ̂OLS and σ̂ICLS. Two types
of bootstrap confidence intervals were computed on the 10,000 bootstrap samples:
the bootstrap-t interval and the bias-corrected and accelerated bootstrap interval, the
BCa (Efron & Tibshirani, 1998). The bootstrap-t interval is computed in the same
way as the nominal confidence interval , with the only difference that the bootstrap
standard errors are used instead of the estimated standard errors for the sample.

Nominal confidence intervals and bootstrap-t intervals are by definition sym-
metric, whereas BCa intervals are only symmetric if the distribution of the statistic
is symmetric, otherwise they adjust to the shape of the sampling distribution, espe-
cially in case of skewness. The BCa follows the shape of the sampling distribution
by modifying the endpoints of the interval, which are based on percentile points.
This adjustment involves an extra step in the bootstrap procedure where the acceler-
ation parameters are computed with a jackknife procedure (for details on the com-
putations see Efron & Tibshirani, 1998, Chapter 14, and for computation in Matlab,
see Martinez & Martinez, 2002, Chapter 7.4 and Appendix D.1).

Results bootstrap

Table 2.3 shows that the nominal standard errors for both η̂OLS and η̂ICLS estimators
are almost equal to the empirical variability of these parameters captured by the
bootstrap standard deviations (see columns σ̂OLS, σ̂ICLS, and sdB). For the feature
duration, the nominal standard error of the ICLS estimate is slightly larger than the
bootstrap standard deviation. The lower value of the bootstrap standard deviations
can be explained by the fact that during the sampling process the constraints are
activated more often for parameter values that are almost equal to zero, and, as a
result, there is less variability. In that case, the nominal standard errors overestimate
the variability.

In terms of bias the OLS estimates have lower bias than the ICLS estimates (see
Table 2.3). This difference is to be expected because the ICLS estimator is biased in a
finite sampling situation as its empirical distribution is not centred around the true
parameter value due to imposing constraints. Comparing the results in Table 2.3 to
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Table 2.3: Three types of 95% Confidence Intervals for ICLS and OLS estimators resulting
from the bootstrap study on the consonant data.

Results ICLS estimates

Features η̂ICLS Bias σ̂ICLS sda
B Nominal CIb Boot. t CIb BCa CIb

Constant 2.23 -0.02 0.13 0.13 1.97 2.48 1.97 2.48 1.98 2.47
Voicing 1.21 0.01 0.11 0.11 0.99 1.42 0.99 1.42 0.99 1.42
Nasality 0.78 -0.00 0.13 0.12 0.52 1.03 0.53 1.02 0.53 1.01
Affrication 0.37 -0.00 0.11 0.11 0.14 0.59 0.16 0.58 0.16 0.58
Duration 0.09 0.01 0.12 0.09 -0.15 0.33 -0.09 0.27 0.00 0.31
Place, middle 0.08 0.02 0.07 0.09 -0.06 0.23 -0.09 0.26 0.00 0.29
Place, front 0.00 0.00 0.00 0.01 0.00 0.00 -0.02 0.02 0.00 0.07

Results OLS estimates

Features η̂OLS Bias σ̂OLS sda
B Nominal CIb Boot. t CIb BCa CIb

Constant 2.34 -0.00 0.13 0.14 2.07 2.60 2.06 2.61 2.05 2.59
Voicing 1.19 0.00 0.11 0.11 0.98 1.40 0.98 1.41 0.98 1.41
Nasality 0.77 0.00 0.13 0.12 0.52 1.02 0.53 1.01 0.53 1.00
Affrication 0.36 0.00 0.11 0.10 0.14 0.58 0.15 0.57 0.16 0.57
Place, middle 0.13 -0.00 0.11 0.11 0.09 0.34 -0.09 0.35 -0.10 0.33
Duration 0.08 0.00 0.11 0.11 -0.13 0.30 -0.13 0.29 -0.11 0.30
Place, front -0.22 0.00 0.11 0.11 -0.43 0.00 -0.43 -0.00 -0.42 -0.01
a Standard deviation based on B = 10, 000 bootstrap samples.
b For each confidence interval (CI) the left column corresponds to the lower end point of the interval and the right column

to the upper end point.

the empirical distribution of the ICLS and OLS estimates in Figure 2.2, leads to the
following conclusions. The higher values of bias occur for the features duration and
place middle, where the constraints are activated more often because these features
have parameter values almost equal to zero. The irregularity in the activation of
the constraints, i.e., sometimes they are activated and sometimes not, leads to an
empirical distribution that is not centred around the true value. In contrast, the
feature place front has almost no bias because the constraints are activated almost all
the time, resulting in a distribution centred around zero, which is the true value.
Even if bias is present, it is not substantial when compared to the bootstrap standard
deviations: in all cases the ratio of the bias divided by the standard deviation is
lower than .25, a critical value for bias proposed by Efron and Tibshirani (1998).

A way to evaluate the performance of the nominal standard errors of the ICLS
estimator, is to compare the nominal confidence intervals of this estimator with the
nominal confidence intervals of the OLS estimator. Table 2.3 shows that, in general,
the nominal confidence intervals for both the OLS and ICLS estimators follow the



34 CHAPTER 2. ESTIMATING STANDARD ERRORS IN FNM

empirical confidence intervals (standard bootstrap and BCa) very closely, except for
the three ICLS estimators of the features duration, place middle and place front, where
constraints are activated. Figure 2.3 clearly displays the difference between the stan-
dard bootstrap interval and the nominal interval on the one hand, and the difference
between the BCa interval and the nominal interval, on the other hand. Figure 2.3 also
illustrates how the BCa interval results in adjustments of both endpoints of the inter-
val, in an attempt to approximate the shape of the empirical distribution. Figure 2.4
displays the comparison between the ICLS estimator and the OLS estimator, and also
includes the BCa intervals, which give the best available estimation of the parameter
space. Figure 2.4 leads to the conclusion that for the features where constraints are
activated, sometimes the nominal confidence intervals tend to be slightly larger than
the empirical confidence intervals .

To answer the question whether the feature parameter values are significantly
different from zero, the three types of confidence intervals for both the OLS and ICLS
estimators are unanimous within each estimator, but lead to a slightly different con-
clusion for the separate estimators. In case of the ICLS estimator, the parameters
duration, place middle and place front are not significantly different from zero, and, in
case of the OLS estimator only place middle and duration are not significantly different
from zero. In conclusion, the nominal standard errors for the ICLS estimator perform
equally well as the nominal standard errors for the OLS estimator, even if the ICLS
estimator is slightly biased.



2.3. OBTAINING STANDARD ERRORS WITH A PRIORI FEATURES 35

Constant Voicing Nasality Affrication Middle Duration Front

−0.5

0

0.5

1

1.5

2

2.5

3
O

LS
 e

st
im

at
es

Features

Constant Voicing Nasality Affrication Duration Middle Front

−0.5

0

0.5

1

1.5

2

2.5

3

IC
LS

 e
st

im
at

es

Features

Figure 2.2: Empirical distribution of OLS (top) and ICLS (bottom) estimators (1,0000 bootstrap
samples).
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Figure 2.3: Comparison of nominal confidence intervals for ICLS estimator with bootstrap-t
CI (top) and bootstrap BCa CI (bottom); long bar = nominal CI; short bar = bootstrap-t CI or
BCa CI.
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2.4 Monte Carlo simulation

The purpose of the simulation study is to evaluate the performance of the nominal
standard errors of the ICLS estimator compared to empirical (bootstrap) standard
errors. In addition, the performance of these nominal standard errors are evaluated
by comparing the coverage of the nominal confidence intervals with the coverage of
bootstrap confidence intervals . The coverage is equal to the proportion of times the
true value is included in the confidence interval.

The performance of the standard errors of the ICLS estimator was evaluated us-
ing positive true feature parameters, which represents a situation where it is correct
to apply constraints and consequently, the asymptotic properties of the ICLS estima-
tor are expected to hold. For the asymptotic properties to hold, normally distributed
errors and homogeneous variances are required as well. Given positive true feature
parameters, true distances can be computed that can be used as population values
from which dissimilarities can be sampled by adding some error to the true dis-
tances.

However, sampling dissimilarities that meet the properties of the normal distri-
bution and homogeneous variances is not straightforward. A way to obtain dissimi-
larities that is commonly used in the multidimensional scaling context is the follow-
ing (see for example, Weinberg, Carroll, & Cohen, 1984): first, one computes true
distances on some a priori determined coordinates. Next, one adds disturbances by
multiplying the distances by exp(σ̂ × z), where σ̂ is the sample standard deviation
obtained from a real data set, and z is an independently sampled standard normal
deviate. The resulting dissimilarities are lognormally distributed with location pa-
rameter d and dispersion σ̂. Lognormally distributed dissimilarities are not suitable
for the current situation because we use the standard least squares framework with
normal errors. Therefore, we created a method that allows for sampling dissimilari-
ties with the required properties of normality and homogeneous variances. The new
method uses the binomial distribution, as will be explained in the next section.

Sampling dissimilarities from the binomial distribution

If Y is a binomially distributed random variable, Y ∼ Bin(κ, p), then it is well known
that the expected value of Y is E(Y) = κp and the variance of Y is Var(Y) = κp(1−
p). If N independent random variables are binomially distributed, Y` · · ·YN ∼
Bin(κ, p), then the expected value of the mean of the N random variables equals

E(Y) =
1
N

N

∑
`=1

E(Y`) = κp = µ, (2.17)

and the variance of the mean is equal to

Var(Y) =
1

N2

N

∑
`=1

Var(Y`) =
κp(1− p)

N
=

σ2

N
. (2.18)
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If N is large enough, the distribution of the mean of N binomially distributed
variables will approximate the normal distribution with the following parameters:

Y ∼ N (µ,
σ2

N
). (2.19)

The binomial distribution offers the possibility to sample dissimilarities within
the framework of the normal distribution. The dissimilarities can be viewed as re-
sulting from a process where N participants evaluate the degree of dissimilarity of
n = 1

2 m(m − 1) object pairs on an κ-points scale, where a large number means that
a pair of objects is very dissimilar. The result is an n × N matrix ∆̃∆∆ of random vari-
ables with range [0, κ]. The elements of ∆̃∆∆ are denoted by ∆̃l` (l = 1, 2, · · · , n; ` =
1, 2, · · · , N).

All elements in some row of ∆̃∆∆ follow a binomial distribution with κ equal to
the total number of points on the scale, and pl the binomial parameter. When two
objects are very dissimilar, the value of pl will be larger because more participants
will evaluate the resemblance of the objects with larger κ-values. The expected value
of the mean ∆l of each row is

E(∆l) = E
[ 1

N

N

∑
`=1

∆̃l`

]
=

1
N

N

∑
`=1

E(∆̃l`) = κpl = dl , (2.20)

where dl is the true distance for object pair l. The variance of ∆l is

Var(∆l) =
1

N2

N

∑
`=1

Var(∆̃l`) =
dl(1− pl)

N
. (2.21)

If the number of replications N is large enough, the distribution of the mean ∆l
approximates the normal distribution with the following parameters:

∆l ∼ N
(

dl ,
dl(1− pl)

N

)
. (2.22)

From this set-up, it follows that the random variables ∆̃l` are identically distributed
with expected value dl . Let δ̃l` denote a realisation from ∆̃l`. The sampling process
follows the steps in Figure 2.5. The first step is to sample N replications from a
binomial distribution with pl equal to dl/κ. The result is a matrix of size n × N
with binomial scores δ̃l`. Each of the n simulated dissimilarity values is obtained by
taking the mean of each row of this matrix, which is equal to:

δl =
1
N

N

∑
`=1

δ̃l`, (2.23)

and the resulting dissimilarities approximate the normal distribution shown in Equa-
tion 2.22.

During the sampling process the variance of the dissimilarities can be manipu-
lated because the magnitude of the variance depends on the number of replications
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Figure 2.5: Sampling dissimilarities from a binomial distribution

N. A large number of replications leads to lower variance levels, and a small number
to higher variance levels. Figure 2.5 displays a situation of heterogeneous variance
because each row of the matrix has the same number of replications N, but a differ-
ent value of σ2 due to different values of pl . The situation of homogeneous variances
can be obtained by choosing the value of N for each row in such a way that the re-
sulting variance is equal for each row. Given a situation of homogeneous variance,
one can obtain a heterogeneous variance condition by choosing N equal to the mean
of the N values needed for the homogeneous variance situation. The result is a vec-
tor of heterogeneous variances that are centered around the value of the variance of
the homogeneous variance

Simulation procedures

The simulation proceeded as follows. True distances were computed with:

d = Xηηη, (2.24)

where the true parameters are equal to the ICLS estimates (η̂ICLS) in Table 2.3 and X
is obtained with the feature matrix of the consonant data (Table 2.1). A number of
S = 1, 000 samples of n = 120 dissimilarities each, was created by sampling from the
binomial distribution as described before, with pl equal to dl/κ, where the dl are the
distances from Equation 2.24, and κ equals 15. A homogeneous variance condition
was created with σ2 equal to 0.34, which corresponds to the observed residual error
variance after fitting the Feature Network Model on the consonant data.

Each simulation sample formed the starting point for a bootstrap of B = 10, 000
samples, using the method of multivariate sampling. The simulation procedures
were programmed in Matlab and made use of its pseudo-random number generator,
which was set to 1.0 prior to the simulation process.

The simulation (based on S = 1, 000 samples) yielded 1,000 nominal standard
errors (σ̂ICLS, σ̂OLS) for the ICLS and OLS estimators. The 1,000 bootstraps (each based
on B = 10, 000 bootstrap samples) resulted in 1,000 bootstrap standard deviations
(sdB) of the ICLS and OLS estimators.
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The bias and the root mean squared error (rmse) are commonly used measures
to evaluate the performance of estimates (cf. Efron & Tibshirani, 1998; Freedman &
Peters, 1984). Good estimators are unbiased and have small rmse. The estimation of
bias is equal to the expected value of a statistic, E(θ̂), minus the true value θ. Relative
bias estimates, which are equal to [E(θ̂)− θ]/θ, are useful for comparisons between
parameter values of different magnitude. The rmse is equal to the square root of
E[(θ̂− θ)2] and takes into account both bias and standard error of an estimate, as can
be deduced from the following decomposition (Efron & Tibshirani, 1998):

rmse =
√

sd2
θ̂
+ bias2

θ̂
. (2.25)

Estimates of bias were calculated for the feature parameter estimates η̂ICLS, the
nominal standard errors (σ̂ICLS, σ̂OLS), and the bootstrap standard deviations. For
example, the bias of each nominal standard error σ̂η is estimated by:

biasσ̂η =
[

1
S

S

∑
a=1

σ̂ηa

]
− ση , (2.26)

where S indicates the number of simulation samples, and η stands for the ICLS or the
OLS estimator. The bias of σ̂OLS is calculated using Equation 2.11, with the difference
that σ2 and X are the true standard deviation and true predictors used to create the
simulation samples, as explained in the beginning of this section. The bias of σ̂ICLS is
computed with Equation 2.12, using the true values σ2, X and M from Equation 2.13.
The bias for the bootstrap standard errors is calculated in the same way, with the
exception that 1

S ∑S
a=1 σ̂ηa is replaced by the sum of the bootstrap standard deviations

sdB.
The nominal standard errors were used for the construction of nominal 95% con-

fidence intervals. Empirical 95% confidence intervals were calculated as well, using
the same intervals as in the bootstrap study, i.e., the bootstrap-t confidence interval
and the BCa confidence interval . The performance of all confidence intervals was
evaluated by computing coverage percentages. The coverage percentage is equal to
the proportion of the simulated samples in which the confidence interval includes
the true parameter value. The presence of a true feature parameter equal to zero al-
lows for calculating the empirical alpha, which is the proportion of times the interval
contains a zero and leads to the incorrect rejection (given the true value equal to zero)
of H0 (cf. Lee & Rodgers, 1998). Following the same logic, the other, nonzero feature
parameters, are suitable for the calculation of the empirical power by counting the
number of times the interval contains a zero, which leads to the correct rejection of
the H0.

Additional simulation studies

The same simulation procedures described in the previous section were repeated
using the structures derived from three additional data sets. The data sets were
selected on the presence of a clear feature structure of the stimuli that the authors
intended to test in their experiments. Besides the number of stimuli (objects) that
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varies from 9 to 36 in the data sets, another important characteristic of the data is
the different numbers of true parameter values that are equal or close to zero. True
parameter values that approach zero lead to an increasing number of activated con-
straints during the simulation process, which will give a better insight in the proper-
ties of the nominal and the empirical standard errors of the constrained least squares
estimator.

The first data set is the similarity of faces data (Corter & Tversky, 1986) where
the stimuli consist of 9 schematic faces constructed factorially using three different
shapes (Top-Heavy, Even, Bottom-Heavy) and three different expressions (Smile,
Neutral, Frown). The participants were asked to rate the similarity of the faces be-
tween all pairs of faces on a 9-point scale. The feature structure found by the authors
is presented in the first part of Table 2.4. Fitting the Feature Network Model using
this feature structure yields an R2 of 99.73 and the feature parameter values that are
shown in Table 2.4. From these feature parameter values true distances were derived
using κ = 9 (based on the 9-point scale used in the experiment) and, an error vari-
ance equal to 0.03, which corresponds to the observed residual error variance after
fitting the Feature Network Model on the similarity of faces data. The second data set
is the Swedish letters data (Kuennapas & Janson, 1969), where 57 participants judged
the similarity of all unique pairs of the 28 Swedish letters on a 100-point scale. Table
2.4 presents the feature structure that the authors obtained from a factor solution ex-
cluding loadings < 0.30. The fit of the FNM on this feature structure leads to an R2 of
96.51 and the feature parameters that are displayed in Table 2.4. The true distances
used for the simulation were derived from these feature parameters with k = 100 as
in the experiment, and an error variance of 0.02, based on the original sample. The
third data set is the well known Morse code data by (Rothkopf, 1957), which concerns
the ratings of all possible pairs of the 36 Morse codes by 150 participants who did
not know the code. We used the 2-dimensional MDS solution by Shepard (1980) to
derive the feature structure shown in Table 2.4. The feature parameter values result-
ing from fitting the feature structure wth FNM is presented in Table 2.4 and the R2

equals 92.70 with a residual error variance of 0.15. This variance value together with
a κ equal to 100 were used to derive true distances for the simulation study.
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Table 2.4: Description of features and the corresponding objects for three additional data
sets

Feature Description Objects η̂ICLS

Features for similarity of faces data, based on the extended tree solution (Corter & Tversky, 1986)

F0 Universal feature All objects 1.54
F1 Top-Heavy (T) TS, TN, TF 0.51
F2 Even (E) ES, EN, EF 0.62
F3 Bottom-Heavy (B) BS, BN, BF 0.00
F4 Smile (S) TS, ES, BS 0.38
F5 Neutral (N) TN, EN, BN 0.81
F6 Frown (F) TF, EF, BF 0.70

Features for Swedish letters data based on the factor solution with loadings > 0.30 (Kuennapas &
Janson, 1969)

F0 Universal feature (intercept) all 28 letters 0.53
F1 Vertical linearity t, f, l, r, i, j 0.13
F2 Roundness o, c, ö, e 0.04
F3 Parallel vertical linearity n, m, h, u, r 0.05
F4 Vertical linearity with dot i, j, l 0.00
F5 Roundness attached to vertical linearity q, p, g, b, d, o, h, y 0.06
F6 Vertical linearity with crossness k, h, b, x, d 0.00
F7 Roundness attached to a hook å, ä, a, ö 0.12
F8 Angularity open upward v, y, x, u 0.12
F9 Zigzaggedness z, s, r, x 0.13

Features for Morse code data based on the 2-dimensional MDS solution by Shepard (1980)

F0 universal feature All objects 1.11
F1 1 component E, T 1.25
F2 2 components A, I, M, N 0.90
F3 3 components D, G, K, O, R, S, U, W 0.40
F4 4 components B, C, F, H, J, L, P, Q, V, X, Y 0.00
F5 5 components 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 0.40
F6 dots only E, H, I, S, 5 0.49
F7 1 dash, 1 dot A, N 0.19
F8 1 dash, 2 dots D, R, U 0.10
F9 1 dash, 3 dots B, F, L, V 0.11
F10 1 dash, 4 dots 4 0.15
F11 2 dashes, 1 dot G, K, W 0.00
F12 2 dashes, 2 dots C, P, Z 0.00
F13 2 dashes, 3 dots 13, 3, 7 0.00
F14 3 dashes, 1 dot 14, J, Q, Y 0.12
F15 3 dashes, 2 dots 15, 2, 8 0.15
F16 4 dashes, 2 dots 16, 1, 9 0.42
F17 dashes only 0 0.63
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2.5 Results simulation

Bias

Table 2.5 displays the bias and rmse for the ICLS and the OLS estimators, the bootstrap
standard deviations of these estimates, and the nominal standard errors σ̂ICLS, σ̂OLS.
The bias of the ICLS estimator, displayed in the first part of Table 2.5, is almost equal
to the bias of the OLS estimator, except that the ICLS estimator has more bias for the
parameters with values equal or close to zero, and for the intercept parameter. The
variability of the ICLS estimator, expressed by the standard deviation, is in general
equal to the variability of the OLS estimator, but lower for the (near) zero parameter

Table 2.5: Bias and rmse of η̂, σ̂η̂ , and bootstrap standard deviation (sdB) for OLS and ICLS

estimators, resulting from the Monte Carlo simulation based on the consonant data.

ICLS OLS ICLS OLS ICLS OLS ICLS OLS ICLS OLS

η mean η̂ bias η̂ rel. bias η̂ sd η̂ rmse η̂

2.23 2.19 2.23 -0.04 0.00 -0.02 0.00 0.11 0.13 0.12 0.13
1.21 1.21 1.20 0.00 -0.00 0.00 -0.00 0.11 0.11 0.11 0.11
0.78 0.78 0.78 -0.00 -0.00 -0.00 -0.00 0.13 0.13 0.13 0.13
0.37 0.37 0.37 0.01 0.01 0.02 0.02 0.11 0.11 0.11 0.11
0.09 0.11 0.09 0.01 0.00 0.14 -0.00 0.09 0.11 0.09 0.11
0.08 0.08 0.08 0.00 -0.01 0.00 -0.10 0.08 0.11 0.08 0.11
0.00 0.04 -0.00 0.04 -0.00 −∗ −∗ 0.07 0.11 0.08 0.11

σ
‡
η mean σ̂η̂ bias σ̂η̂ rel. bias σ̂η̂ sd σ̂η̂ rmse σ̂η̂

0.14 0.14 0.13 0.00 0.00 0.01 -0.00 0.01 0.01 0.01 0.01
0.11 0.11 0.11 -0.00 0.00 -0.01 -0.00 0.01 0.01 0.01 0.01
0.13 0.13 0.13 -0.00 0.00 -0.00 -0.00 0.01 0.01 0.01 0.01
0.11 0.11 0.11 0.00 0.00 -0.00 -0.00 0.01 0.01 0.01 0.01
0.11 0.15 0.11 0.04 0.00 0.38 -0.00 0.06 0.01 0.08 0.01
0.11 0.15 0.11 0.04 0.00 0.32 -0.00 0.05 0.01 0.06 0.01
0.00 0.05 0.11 0.05 0.11 −∗ −∗ 0.06 0.01 0.07 0.11

σ
‡
η mean sdB bias sdB rel. bias sdB sd sdB rmse sdB

0.14 0.12 0.13 -0.02 -0.00 -0.14 -0.01 0.01 0.01 0.02 0.01
0.11 0.11 0.11 -0.00 0.00 -0.01 -0.00 0.01 0.01 0.01 0.01
0.13 0.13 0.13 -0.00 -0.00 -0.01 -0.00 0.01 0.01 0.01 0.01
0.11 0.11 0.11 -0.00 0.00 -0.02 -0.00 0.01 0.01 0.01 0.01
0.11 0.08 0.11 -0.03 0.00 -0.23 -0.00 0.02 0.01 0.03 0.01
0.11 0.08 0.11 -0.03 -0.00 -0.30 -0.01 0.03 0.01 0.04 0.01
0.00 0.06 0.11 0.06 0.11 −∗ −∗ 0.03 0.01 0.07 0.11

∗ The true values being equal to zero, the calculation of the relative bias leads to dividing by zero.

‡ ση stands for σICLS and σOLS because in this particular case both true variability values are equal.
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values. The rmse shows the same pattern: the rmse for both estimators are equal,
with lower rmse of the ICLS for the (near) zero parameters. In sum, the ICLS estimator
performs better than the OLS estimator in estimating the true value, which is to be
expected in a situation where it is correct to apply constraints. The same conclusions
for the ICLS and the OLS estimator can be drawn from the additional three simulation
studies (the results are not shown in a table).

The second part of Table 2.5 provides information on the performance of the
nominal standard errors, σ̂ICLS, σ̂OLS, compared to the true standard deviations σICLS

and σOLS. The estimator σ̂OLS has no bias (except for the standard deviation associ-
ated with the parameter that has true value equal to zero), whereas σ̂ICLS is clearly
biased, especially for the (near) zero parameter values. The rmse of σ̂ICLS is larger
than the rmse of σ̂OLS when the true values are almost equal or equal to zero. The
results of the three other simulation studies show the same pattern: σ̂ICLS is biased,
while σ̂OLS has no bias, and the rmse of σ̂ICLS is larger than the rmse of σ̂OLS when the
true values are almost equal or equal to zero (the results are not shown in a table).

The last part of Table 2.5 shows the bootstrap standard deviations of the ICLS
and the OLS estimators. In general, the empirical variability of the OLS estimator
is almost equal to both the nominal variability and the true variability, which is to
be expected from a consistent and unbiased estimator. The empirical variability of
the ICLS estimator is smaller compared to both true and nominal variability. The
bootstrap estimates of variability of this estimator have more bias and higher rmse
values than the OLS estimator. Again, these conclusions hold without exceptions for
the three remaining simulation studies (no results shown in a table).

Coverage

Table 2.6 displays the coverage proportions of the nominal and the empirical 95%
confidence intervals for the ICLS and the OLS estimators, resulting from the simula-
tion study based on the consonant data. The coverage of the OLS estimator is equal
or very close to the nominal 95% level for all types of confidence intervals, nominal
as well as empirical. The coverage of the ICLS estimator does not show the same
consistent pattern as the OLS estimator: the nominal coverage is better than the em-
pirical coverage , but it is sometimes too liberal with proportions exceeding the 95%
level. There is no difference in performance between the bootstrap-t interval and the
BCa interval: both bootstrap intervals have inadequate coverage for the (near) zero
parameter values. Apparently, the BCa interval has some difficulties in correcting
for the bias.

Compared to the simulation based on the consonant data, the three additional
simulation studies have exactly the same results for the OLS estimator, but some
differences appear for the ICLS estimator. The coverage proportions for the ICLS
estimator obtained from the four simulation studies are summarized in Figure 2.6.
(The plot showing the results of the consonant data is based on the proportions in
Table 2.6, and the remaining plots are based on similar tables, which are not shown
in this paper.) The simulation based on the Morse code data shows almost the same
pattern as the simulation based on the consonant data. The most striking result is
that the coverage performances of the BCa intervals are poor when the parameter



46 CHAPTER 2. ESTIMATING STANDARD ERRORS IN FNM

values are equal or close to zero, but improve with higher parameter values. Both
the nominal and the bootstrap-t confidence intervals perform better when parameter
values are equal or close to zero. In the middle range of the parameter values, the
three types of confidence intervals perform equally well with coverage proportions
approaching the nominal 95% level. The same pattern of coverage results for all
three confidence interval types, however in a lesser extent, can be seen in the plot of
the simulation based on the Swedish letters data (Figure 2.6). The best results occur
in the simulation based on the similarity of faces data: the three types of confidence
intervals perform equally well by attaining the nominal 95% level for all parameter
values. In this particular condition, there is only one true parameter value equal
to zero, while all the other conditions have increasing numbers of true parameter
values equal or close to zero.

Table 2.6: Coverage , empirical power and alpha for nominal and empirical 95% confidence
intervals (Monte Carlo simulation based on consonant data)

ICLS OLS ICLS OLS ICLS OLS

Proportion coverage 95% confidence intervals

η Nominal CI Bootstrap-t CI BCa CI

2.226 0.98 0.95 0.94 0.95 0.93 0.95
1.206 0.96 0.95 0.95 0.95 0.95 0.95
0.778 0.95 0.95 0.95 0.95 0.95 0.95
0.366 0.95 0.95 0.94 0.95 0.95 0.95
0.092 0.97 0.95 0.89 0.95 0.82 0.95
0.084 0.99 0.96 0.86 0.95 0.98 0.95
0.000 0.98 0.95 0.97 0.94 0.92 0.94

Empirical power and alpha 95% confidence intervals

Empirical power
η Nominal CI Bootstrap-t CI BCa CI

2.226 1.00 1.00 1.00 1.00 1.00 1.00
1.206 1.00 1.00 1.00 1.00 1.00 1.00
0.778 1.00 1.00 1.00 1.00 1.00 1.00
0.366 0.92 0.92 0.93 0.92 0.98 0.92
0.092 0.14 0.14 0.15 0.14 0.43 0.14
0.084 0.07 0.10 0.09 0.10 0.11 0.10

Empirical alpha
η Nominal CI Bootstrap-t CI BCa CI

0.00 0.02 0.05 0.03 0.06 0.08∗ 0.06
∗ p < .05; A 95 % CI around α, [0.037, 0.064], can be obtained by considering

each hypothesis test as a Bernoulli outcome, with p = .05, q = 1− p = .95,

S = 1000, and standard deviation
√

pq/S (cf. Lee & Rodgers, 1998).
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Figure 2.6: Coverage Nominal CI, Bootstrap-t CI, and BCa CI for ICLS estimates for all sim-
ulation studies. The order of the plots follows the increasing number of zero and close to zero
parameters present in the data.
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The general conclusion seems to be that differences in performance of coverage
between the three types of confidence intervals increase when there are more true
parameter values equal or close to zero, and as a consequence, more constraints are
activated. The most important differences arise in the simulation based on the Morse
code data that has the largest number (= 4) of true parameter values equal to zero.

Power and alpha

Concerning the empirical power and the empirical alpha levels, as can be seen in
Table 2.6, the empirical power is very high for the highest parameter values for both
estimators; when the parameter values come closer to zero, power declines rapidly.
This result does not only hold for the simulation based on the consonant data (as
shown in Table 2.6), but also holds for the remaining three simulation studies.

The empirical alpha in the consonant data based simulation (Table 2.6) is very
close to the nominal 5% level for the OLS estimator only, and holds for all confi-
dence intervals. The empirical alpha levels for the ICLS estimator are too conser-
vative when nominal confidence intervals and bootstrap-t confidence intervals are
used. In contrast, the BCa interval shows liberal empirical alpha levels. The same
conclusions can be extended to the other simulation studies.

2.6 Discussion

In this paper we tried to construct a basis for statistical inference for the Feature
Network Models by placing the models in the context of univariate (multiple) lin-
ear regression with positivity constraints on the parameters. We evaluated the per-
formance of theoretical standard errors for the inequality constrained least squares
estimator in comparison to its empirical variability.

In conclusion, the simulation studies show that the ICLS estimator is a better es-
timator than the OLS estimator, because it has has smaller rmse when true parameter
values are positive. The nominal standard errors of the ICLS estimator are, how-
ever, larger than the empirical variability of this estimator. These larger values of the
standard errors lead to liberal coverage proportions and to conservative empirical
alpha levels. The nominal standard errors of the OLS estimator are very close to the
empirical variability. The best coverage results, as well as the best results of empir-
ical alpha, are achieved by the OLS estimator, and these results hold for all types of
confidence intervals.

In case of the ICLS estimator, the worst coverage performances occur with the
BCa intervals, especially with increasing number of true parameter values equal or
close to zero, and consequently more activated constraints. The bootstrap-t and the
nominal confidence intervals perform better with increasing number of activated
constraints: the results are equal (simulation based on Swedish letters data) or, some-
times, there are better results for the nominal confidence intervals (simulation based
on consonant data), and sometimes the bootstrap-t intervals perform better (simula-
tion based on Morse code data). However, the results of the bootstrap-t intervals are
not that much better to entirely justify the computational costs.
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The expectation is that when estimates are biased, the BCa confidence intervals
will perform better. The reason for the unsatisfactory results for BCa intervals is
not fully understood yet, and needs further investigation. A tentative explanation
would be that, when constraints are activated very often, up to 50% of the sampling
values of the ICLS estimates values are equal to zero. As a result, the sampling dis-
tribution is so much disturbed that the BCa interval cannot adjust for it anymore,
which results in confidence intervals that are too narrow.

The general conclusion is that one should be careful with the use of confidence
intervals when several constraints are activated in the constrained least squares con-
text. The results of a nonparametric bootstrap study in this situation can lead to the
wrong conclusions about the coverage of the confidence intervals . The BCa intervals
are the least to be trusted. The nominal and the bootstrap-t intervals perform much
better, with the nominal intervals having the advantage of no computational costs.

The confidence intervals in this study were used for coverage purposes and were
not primarily intended for hypothesis testing. The same duality theory that serves
as the basis for the estimation of the standard errors can also be applied to obtain
a hypothesis test, where the null hypothesis of the inequality constraints (the con-
strained model) is tested versus an unrestricted alternative, using the Kuhn-Tucker
test (Wolak, 1987). This test involves the calculation of weights that can be obtained
in closed form for the cases were the number of predictor variables is less than 4. For
more than 4 predictor variables, approximate weights can be obtained using Monte
Carlo techniques. The requirement of this additional simulation step is the reason
that we did not include the Kuhn-Tucker test in our simulation procedures.

There are several limitations in this study. Statistical inference was limited to the
context of known features, which corresponds to a univariate (multiple) regression
problem with a fixed set of predictor variables. The case of unknown features neces-
sitates a different framework for statistical inference because the predictor variables
become random variables. The simulation study is limited to the situation where
the assumptions for statistical inference in linear regression hold. Additional sim-
ulation studies are needed to evaluate the performance of the theoretical standard
errors under violation of the assumptions (e.g. skewed distributed variables).

Similar results can be obtained for standard errors in additive trees (Frank &
Heiser, 2004) and are expected to hold for ultrametric trees also. In either case, the
distances follow the path-length metric, which, when defined on the tree structure,
may be viewed as an additive version of the distinctive features model of dissim-
ilarity. Furthermore, Carroll and Corter (1995) have shown that clusterings with
associated weights estimated using the common features model can be represented
by ultrametric, additive and extended trees or multiple trees, when the distances are
defined as path lengths between objects. So in principle, a simple adjustment of the
FNM yields the standard errors for all these models. It should be noted, that the re-
verse process, the representation of distinctive features models by common features
models, still faces problems of non-uniqueness. However, for the ADCLUS model
the current theory can be applied directly on the cross product terms of the feature
indicators for all object pairs, and therefore, our results are easily extended to this
model as well.

Even in models not primarily related to the FNM, but having the same inequality
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constrained least squares context, like for example the latent budget model (Mooi-
jaart, van der Heijden, & van der Ark, 1999) or the Q-matrices in the rule space
model for cognitive diagnosis (Tatsuoka, 1995), the results of this study are expected
to hold.

We noticed that the constraints are not activated very often, which means that,
most of the time the ICLS estimates reduce to the OLS estimates. Therefore, we be-
lieve that statistical inference for the Feature Network Models can benefit from the
nice statistical properties of the OLS estimator.



Chapter 3

Standard Errors, Prediction Error and
Model Tests in Additive Trees 1

Abstract

Theoretical standard errors and confidence intervals are given for the esti-
mates of branch lengths in psychometric additive trees for a priori known tree
topologies as well as for estimated tree topologies. A model test and an estimate
of prediction error to compare different tree topologies are also given. The sta-
tistical inference theory proposed here differs from existing approaches due to
the combination of the use of features with the multiple regression framework.
Additive trees can be considered as a special case of Feature Network Models,
where the objects are described by features, which are binary variables that indi-
cate whether a particular characteristic is present or absent. Considering features
as predictor variables leads in a natural way to the univariate multiple regression
model.

3.1 Introduction

In general, there are two types of graphical representations of proximity data: spatial
models and network models. The spatial models - such as multidimensional scaling
- represent each object as a point in a coordinate space (usually Euclidean space) in
such a way that the metric distances between the points approximate the observed
proximities between the objects as closely as possible. In network models, the objects
are represented as nodes in a connected graph, so that the spatial distances between
the nodes in the graph approximate the observed proximities among the objects. In
MDS, the primary objective is to find optimal coordinate values that lead to distances
that approximate the observed proximities between the objects, whereas in network
models, the primary objective is to find the correct set of relations between the objects
that describe the observed proximities.

1This chapter has been submitted for publication as: Frank, L. E. & Heiser, W. J. (2005). Standard
errors, prediction error and model tests in additive trees. Submitted manuscript. With an exception for the
notes in this chapter, which are reactions to remarks made by the members of the promotion committee.
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Feature Network Models or FNM (Heiser, 1998) represent proximity data in a
discrete space, usually by a network representation. The relations between the ob-
jects are characterized by the kind of features they possess and by the combination
of these features. Features are binary variables indicating for each object whether a
particular characteristic is present or absent. The relations between the features, or
the feature structure, determine the shape of the graphical representation, which is
either a network or a tree. Therefore, FNM can be viewed as a general framework
for graph representations, where the network is the general case and trees are special
cases.

In FNM, the relation between any two objects i and j is represented by the sym-
metric set difference (= the difference between the union and the intersection of two
sets) of the set of features that describes the two objects. The symmetric set differ-
ence expresses the number of features that object i possesses that are not shared by
object j and vice versa, which amounts to the number of non-common elements of
the objects. Applying the symmetric set difference on binary features in a binary co-
ordinate space, corresponds to the Hamming distance, or the city-block distance. The
relation between the objects can be expressed in terms of city-block distances, which
is useful for graphical display purposes. Besides the graphical representation, the
features in their own right are highly informative about the relations between the
objects. In the final solution, each feature has a parameter value that indicates its
relative importance: the feature discriminability value.

Since the introduction by Tversky (1977) of the Contrast Model, where objects are
represented by subsets of discrete features, several different tree models have been
developed in the psychological literature that are based on features (see Carroll &
Corter, 1995, and Corter, 1996 for an overview). These models neither provide ways
to estimate the standard errors of the parameter values, nor provide confidence in-
tervals to assess the stability of the solution. In some psychometric applications (e.g.
De Soete, 1983; Corter, 1996) least squares minimization is used to obtain the solu-
tion, treating the problem as a multiple regression model. Nevertheless, in the psy-
chological literature, the statistical inference aspects of the multiple regression model
have not been fully exploited for additive trees. The statistical inference theory pro-
posed in this paper derives from the multiple regression framework because the use
of features, when considered as predictor variables, leads in a natural way to the
univariate multiple regression model. However, the standard multiple regression
statistical inference theory cannot be applied because the network or additive tree
representation imposes constraints on the model parameters. Negative edge lengths
have no meaning in a network or an additive tree. In the context of FNM the im-
plication is that the feature discriminability parameters associated with the features
(the predictor variables) are constrained to be positive. These positivity constraints
are even more relevant for additive tree representations because each branch in the
tree is represented by a single feature, as will become clearer in this paper.

In contrast to the psychological tree domain, the phylogenetic tree domain does
have a strong tradition of statistical inference. Important contributions in the field
of statistical inference in phylogenies were made by Felsenstein (1985 and, for an
overview, 2004, Chapters 19 - 21) and by Nei, Stephens, and Saitou (1985). Felsen-
stein (1983) evaluated the stability of a tree topology using the bootstrap to calculate
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the proportion of bootstrap trees that agree with the original tree in terms of topolo-
gy and not directly in terms of branch lengths. In addition, the phylogenetic litera-
ture offers many examples of the estimation of the standard errors of branch lengths.
The branch lengths are usually estimated with ordinary least squares, and the vari-
ances of the branch lengths are calculated by taking into account the method used
to compute the evolutionary distances (Li, 1989; Nei et al., 1985; Rzhetsky & Nei,
1992; Tajima, 1992). Bulmer (1991) estimated the branch lengths and their standard
errors with generalized least squares, which allows for correcting the correlation of
distances between species that share one or more common paths. Despite the abun-
dance of methods to compute standard errors for the branches of the phylogenetic
trees, none of these methods take into account that when estimating the standard er-
rors of the branch length estimates, one should correct for the fact that the estimates
of the branch lengths have been constrained to be positive. The problem of biased
estimates of the branch lengths has been diagnosed by Gascuel and Levy (1996),
who correctly remark that the right way to estimate the edge lengths in phyloge-
nies is to use linear regression under positivity constraints, and by Ota, Waddell,
Hasegawa, Shimodaira, and Kishino (2000), who use a mixture of χ2 distributions
to construct appropriate likelihood ratio tests for nested evolutionary tree models.
The mixture of χ2 distributions is based on earlier results obtained by Self and Liang
(1987) and Stram and Lee (1994) who derived limiting distributions of the likelihood
ratio statistic when varying numbers of parameters are on the boundary. However,
in the additive tree framework, Ota et al. (2000) have not made adjustments for the
estimation of the standard errors of the branch lengths.

Recently, Frank & Heiser (in press a) showed how to compute standard errors
and confidence intervals for the inequality constrained feature discriminability pa-
rameters in FNM. In this paper, we will show that the same statistical inference
theory that has been proven to be useful for networks also applies to the family
of tree representations. We propose a way to compute standard errors and confi-
dence intervals for branch lengths of additive trees, and especially for tree topolo-
gies that include star shaped components, which means that one or more branches
have edge lengths equal to zero (resulting from the correction of negative values).
The multiple regression framework can be used to impose inequality constraints on
the parameters and at the same time to compute theoretical standard errors for the
inequality constrained least squares parameters that represent the edge lengths of
the branches in an additive tree. These standard errors were introduced by Liew
(1976) and take into account the fact that the parameter estimates are bounded be-
low by zero. Whereas the results presented by Frank & Heiser (in press a) were
limited to the situation of an a priori known feature structure (or tree topology), the
present study shows that the same theory can be applied for the situation where
the tree topology is not known in advance if the sample can be divided in a test
set and a training set. Resulting from the same inequality constrained least squares
framework, the paper shows an application of the Kuhn-Tucker test that is used to
test whether the constrained solution is in accordance with the data. In addition, an
easy way to estimate the prediction error of the model is provided, which allows for
comparison of different tree topologies.

The remainder of this paper is organized as follows. It starts with a description of
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the Feature Network Models with an application on sample data, followed by an ex-
planation of additive trees as special cases of FNM. Next, the statistical inference the-
ory for inequality constrained least squares is introduced and evaluated with Monte
Carlo simulation techniques. The first simulation study shows how to obtain the
empirical p-value for the Kuhn-Tucker test. The second simulation study assesses
the performance of the theoretical standard errors in comparison to bootstrap stan-
dard errors for the case where the tree topology is known in advance. It will become
clear that the theoretical standard errors are much closer to the true values than the
bootstrap standard errors and that the confidence intervals based on theoretical stan-
dard errors have better coverage performance than the bootstrap confidence inter-
vals. The third simulation study shows that the same statistical inference theory can
be applied in the situations where the tree topology is not known in advance and es-
timated with the neighbor-joining (NJ) method (Saitou & Nei, 1987). The NJ method
is a widely used tree finding algorithm, especially in the phylogenetic domain, that
is related to the ADDTREE algorithm by Sattath and Tversky (1977), which was de-
veloped in the mathematical psychology domain. Saitou and Nei (1987) and Gascuel
(1994) have demonstrated that the NJ and the ADDTREE algorithms are strongly re-
lated and usually provide identical or very similar trees. A comparison between
the statistical inference theory proposed for FNM in this paper and the statistical
inference practice in the phylogenetic tree domain is provided in the discussion.

3.2 Feature Network Models

Since the general framework of this paper is the network representation, this section
starts with a description of the Feature Network Models. FNM represent proxim-
ity data in a discrete space usually by a network representation. The properties of
the models will be illustrated using a data set, the kinship data of Rosenberg and
Kim (1975). A number of 165 female students and 165 male students were asked to
group fifteen kinship terms on the basis of their similarities in minimally two and
maximally fifteen categories. Half of the students were allowed to do the sorting
task more than one time. Dissimilarity measures were derived for each pair of kin-
ship terms by counting the number of subjects who placed the two terms in different
categories. The data that were used in this study are the dissimilarity values of the
female students (n = 165). Analyzing the dissimilarity matrix for the female stu-
dents with the cluster differences scaling algorithm2 of FNM (Heiser, 1998) yielded
a solution with 5 features, displayed in Table 3.1. The features represent criteria most
likely used by the female students to categorize the kinship terms.

Features are binary variables indicating for each object whether a particular char-
acteristic is present or absent. Some set theoretic properties of the binary feature ma-
trix lead to the estimation of a distance measure that approximates the observed dis-
similarities. The difference between the union and intersection (= the symmetric set

2The first application of FNM used a cluster differences scaling algorithm (Heiser, 1998) with num-
ber of clusters equal to two, which constitutes a one-dimensional MDS problem with the coordinates
restricted to form a bipartition. Because it is still a hard combinatorial problem, the implementation uses
a nesting of several random starts together with K-means type of reallocations.
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Table 3.1: The 5 binary features describing the kinship terms

Kinship terms Gender Nuclear family Collaterals Generation(1, 2) Parent/child

aunt 0 0 1 1 0
brother 1 1 1 0 0
cousin 1 0 0 0 0
daughter 0 1 1 0 1
father 1 1 1 1 1
granddaughter 0 1 0 1 1
grandfather 1 1 0 1 0
grandmother 0 1 0 1 0
grandson 1 1 0 1 1
mother 0 1 1 1 1
nephew 1 0 0 0 1
niece 0 0 0 0 1
sister 0 1 1 0 0
son 1 1 1 0 1
uncle 1 0 1 1 0

difference) expresses the number of non-common features possessed by the objects
i and j. For example, the symmetric set difference for the two kinship terms aunt
and cousin is the set {Gender, Collaterals, Generation}. Following Goodman (1951,
1977) and Restle (1959, 1961), a distance measure that satisfies the metric axioms
can be expressed as a simple count µ of the elements of the symmetric set differ-
ence between the stimuli Oi and Oj and becomes the feature distance: d(Oi, Oj) =
µ[(Oi ∪Oj)− (Oi ∩Oj)].

If E is a binary matrix of order m × T that indicates which features t describe
the m objects, as in Table 3.1, the re-expression of the feature distance in terms of
coordinates is as follows (Heiser, 1998):

d(Oi, Oj) = µ[(Oi ∪Oj)− (Oi ∩Oj)]

= ∑
t
|eit − ejt|, (3.1)

where eit = 1 if feature t applies to object i, and eit = 0 otherwise. This re-expression
of the feature distance in terms of binary coordinates is also known as the Hamming
distance. The feature distance used in FNM is a weighted version of the distance in
Equation 3.1:

d(Oi, Oj) = ∑
t

ηt|eit − ejt|, (3.2)

where the weights ηt express the relative contribution of each feature. Each feature
splits the objects into two classes, and ηt measures how far these classes are apart.
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Table 3.2: Feature parameters (η̂), standard errors and 95% t-confidence intervals for Feature
Network Model on kinship data with R2 = .95.

Features η̂ σ̂η 95% CI

Gender 27.54 0.63 26.31 28.77
Nuclear family 25.22 0.66 23.93 26.51
Collaterals 21.71 0.64 20.46 22.96
Generation (1,2) 18.58 0.64 17.33 19.83
Parent/child 15.06 0.64 13.81 16.31

For this reason, Heiser (1998) called the feature weight a discriminability parameter.
The feature discriminability parameters are estimated by minimizing the following
least squares loss function:

min
η̂ηη

= ‖Xη̂ηη − δδδ‖2, (3.3)

where X is of size n× T and δδδ is a n× 1 vector of dissimilarities, with n equal to all
possible pairs of m objects: m(m − 1)/2. The problem in Equation 3.3 is expressed
in a more convenient multiple linear regression problem, where the matrix X is ob-
tained by applying the following transformation on the rows of matrix E for each
pair of objects, where the elements of X are defined by:

elt = |eit − ejt|, (3.4)

where the index l = 1, · · · , n varies over all pairs (i, j). The result is the binary (0, 1)
matrix X, where each row (x′) represents the distinctive features for some pair of ob-
jects, with 1 meaning that the feature is distinctive for a pair of objects. The weighted
sum of these distinctive features is the fitted distance for each pair of objects and is
equal to d = Xηηη. Corter (1996, Appendix C, p. 57) uses a similar matrix X in the
linear regression context to obtain the lengths of the branches in an additive tree.

Table 3.2 shows the feature discriminability parameters η̂t obtained by PROX-
GRAPH, the program developed in Matlab to fit the FNM. The five features solution
explains 95.35% of the variance in the data, and the values of the feature parameters
lead to the conclusion that the most important categorizing criteria were: Gender,
Nuclear family, and Collaterals. All five features played a more or less important role
in categorizing the kinship terms as follows from the 95% t-confidence intervals that
show that all feature parameters differ significantly from zero (Table 3.2).

Figure 3.1 shows the Feature Network representation that results from the fitted
distances on the kinship data. The kinship terms are the vertices in the network and
the feature distances (d̂ = Xη̂ηη) are represented as the sum of the edge lengths along
the shortest path in the graph, where the edge lengths are the feature parameters
η̂ηη. How the network is obtained will be explained in the following section. The
five-dimensional feature network has been embedded in 3-dimensional Euclidean
space using PROXSCAL3, a multidimensional scaling program distributed as part of

3with the interval transformation option and initialized with the simplex solution
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Figure 3.1: Feature Network representation for the kinship data with the three most impor-
tant features (Gender, Nuclear family and, Collaterals) represented as vectors. The plus and
minus signs designate the projection onto the vector of the centroids of the objects that posses
the feature (+) and the objects that do not have that feature (-).

the Categories package by SPSS (Meulman & Heiser, 1999). The solution of the
common space was restricted by a linear combination of the feature variables that
are represented as vectors in Figure 3.1, leading from the origin through the point
with coordinates equal to the correlations of each feature with each of the three di-
mensions. The network clearly shows the distinction between the female kinship
terms and the male kinship terms produced by the most important feature Gender.
This feature as well as the second and third most important features Nuclear family
and Collaterals are represented by vectors in the network. The plus and minus signs
on each vector designate the projection onto the vector of the centroids of the kin-
ship terms that posses the feature (+) and the kinship terms that do not possess that
feature (−).

3.3 Feature Network Models: network and additive tree
representations

The relations between the features in FNM determine the shape of the network. A set
of overlapping features will result in a network graph, which is a connected graph
with cycles. When the set of features has a nested structure, i.e., all pairs of features
are either nested or disjoint, the network will have the shape of an unrooted additive
tree, a graph without cycles (Buneman, 1971). If the unrooted additive tree is a
bifurcating tree, there are fixed numbers of edges (branches), internal and external
nodes, given a number of objects m (cf. Felsenstein, 2004, Chapter 3). Bifurcating
trees have interior nodes of degree 3, meaning that each internal node connects to
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(a,b,c,d) 1 0 0 0 0 0 0 0 0
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Figure 3.2: Nested and disjoint feature structure and corresponding additive tree represen-
tation. Each edge in the tree is represented by a feature and the associated feature discrim-
inability parameter ηt.

three other nodes (internal or external) and every external node (or leaf node) is of
degree 1, which means that only one branch leads to an external node. Given these
specifications, the bifurcating unrooted additive tree for m objects has a number of
2m− 3 edges because for each new object added to an existing tree an internal node
and two new edges must be added (cf. Felsenstein, 2004, Chapter 3). Following this
reasoning, the number of internal nodes is fixed to (2m − 3 − 1)/2. In contrast to
the bifurcating trees, the multifurcating trees do not have a fixed number of edges
and nodes for a given number of objects. Since the degree of each internal node
in multifurcating trees is not necessarily equal to 3, there exists a range of possible
numbers of internal nodes and numbers of edges that depend on the number of
internal nodes.

In terms of features, the bifurcating unrooted additive tree has a set of T = 2m− 3
nested features and the internal nodes are represented by (T − 1)/2 supplementary
objects added to the original set of objects in the feature matrix. Figure 3.2 shows the
feature matrix and the corresponding tree graph for an example of 6 objects. There
are T = 2m − 3 = 9 nested features, m = 6 leaf nodes and, no = (T − 1)/2 = 4
internal nodes. The nested structure of the features becomes apparent: the features
either exclude each other or one is a subset of the other. Each cluster in the tree, for
example the bipartition of the objects a and b against the other objects, is represented
by a cluster feature, that is, a feature which describes more than one object, in this
example feature F2. The internal nodes are defined as supplementary objects with a
feature pattern that is the intersection of the feature patterns of a subset of the objects.
Therefore, they can be labeled by listing the objects in the subset. The leaf nodes of
the tree represent the 6 objects and the associated edges correspond to unique features,
which are features that belong to one object exclusively. In the example in Figure 3.2
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Figure 3.3: Betweenness holds when J = I ∩ K, where I, J, and K are sets of features describ-
ing the corresponding objects i, j, and k.

the unique features are the set {F4, F5, F6, F7, F8, F9}. Note that these unique features
are also either nested or disjoint with respect to the cluster features.

Additive tree representation and feature distance

The feature distance parallels the path-length distance in a valued graph when one
of the metric axioms, the triangle inequality, is reaching its limiting additive form
dik = dij + djk (Flament, 1963; Goodman, 1951, 1977; Heiser, 1998). In a network
graph, each time that the distance dik is exactly equal to the sum dij + djk the edge
between the objects i and k can be excluded, resulting in a parsimonious subgraph
of the complete graph.

In terms of features the condition dik = dij + djk is reached when object j is be-
tween objects i and k. The objects can be viewed as sets of features: Si, Sj, and Sk.
Betweenness of Sj depends on the following conditions (Restle, 1959):

1. Si and Sk have no common members which are not also in Sj;

2. Sj has no unique members which are in neither Si nor Sk.

Figure 3.3 clearly shows that betweenness holds when the set Sj is exactly equal to
the intersection of the sets Si and Sk - in that case Sj has no unique features (Tversky
& Gati, 1982) -, or when the set Sj consists of a subset of the intersection of the sets Si
and Sk. In both situations dik = dij + djk. In the following, it will become clear that
an additive tree structure results from a special feature structure where there always
is an internal node Sj between any two leaf nodes Si and Sk.

An additive tree is a special subgraph of the complete graph, where each edge
is represented by a separate feature. The edges leading directly to leaf nodes corre-
spond to unique features, the set of features that describe only one object (see Fig-
ure 3.2). A nested set of features is not sufficient to produce a tree graph with FNM. A
set of internal nodes has to be added to the set of objects (the external nodes). These
internal nodes play the role of the set Sj in the betweenness condition by forcing the
betweenness to hold exactly for any pair of objects i and k that have an associated
nested set of features, leaving only paths between objects that are in an hierarchical
relation to each other. Each edge between two internal nodes corresponds exactly to
one cluster feature, and the edge length to its weight (see Figure 3.2).
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It should be noted that the estimated distances between the internal nodes in the
tree cannot be compared to dissimilarities because these quantities are not observed.
To calculate all distances simultaneously requires a modification of the original fea-
ture matrix E (Equation 3.1). The feature matrix E is augmented with a supplemen-
tary set of objects equal to the number of internal nodes.

The augmented ET matrix is as follows:

ET =
[

EC EU
EN E0

]
, (3.5)

where EC is a m × TC matrix, representing the set of cluster features and EU is a
m× TU matrix representing the set of unique features. Both parts describe the set of
observed objects. The remaining two parts are related to the set of internal nodes
(no): EN is of size no × TC and E0 contains zeros only and has size no × TU. Each row
of EN and E0 represents the feature pattern of each node. This nodal feature pattern
is equal to the intersection of the feature patterns belonging to the objects (the rows
of EC and EU) that are represented by each particular node. The intersection of the
feature patterns related to the unique features is always zero and, consequently, E0
contains zeros only. Figure 3.2 shows the four parts of the augmented ET matrix.
The objects (a, b, c, d, e, f ) are described with cluster features and with unique fea-
tures: the part with the cluster features, EC, is formed by the set features {F1, F2, F3},
the part of the unique features, EU , is formed by {F4, F5, F6, F7, F8, F9}. The feature
patterns of the internal nodes are represented by the parts EN and E0. The E0 part is
related to the unique features and contains zero’s only. The EN relates to the cluster
features and the feature pattern of each internal node is formed by taking the inter-
section of the feature pattern belonging to the corresponding objects. For example,
the feature pattern for internal node (a, b) is formed by taking the intersection of the
feature pattern for object a = {110} and object b = {110}, resulting in the feature
pattern {110}.

Dissimilarities are only available for the objects and not for the internal nodes.
Therefore, the feature discriminability parameters ηηη are estimated using only the
parts EC and EU . After applying the featurewise distance transformation in Equa-
tion 3.4 to the matrix [EC EU ], the resulting matrix X is used to obtain the estimates
of the feature discriminability parameters (η̂ηη) by minimizing the loss function in
Equation 3.3. To obtain the estimated distances for the edges that are linked to in-
ternal nodes, the featurewise distance transformation (Equation 3.4) is applied to
the augmented matrix ET , yielding the matrix XT . The estimated feature distances
for the complete tree are equal to d̂T = XTη̂ηη. Given this description, it is easy to
understand that every tree topology, known by theory or resulting from any tree
constructing algorithm, can be transformed into an augmented feature matrix ET ,
such that, when analyzed as FNM with PROXGRAPH, it will lead to a tree represen-
tation of the data.

Example of additive tree obtained with feature structure

An example of a multifurcating additive tree is the solution obtained by De Soete
and Carroll (1996) on the kinship data. The augmented ET based on this given tree
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Figure 3.4: Unresolved additive tree representation of the kinship data based on the solution
obtained by De Soete & Carroll (1996).

topology is displayed in the first part of Figure 3.5 and yields the additive tree repre-
sentation in Figure 3.4. The 2-dimensional embedding of the tree has been obtained
by submitting Euclidean distances calculated on the augmented ET to the MDS pro-
gram PROXSCAL4, a multidimensional scaling program distributed as part of the
Categories package by SPSS (Meulman & Heiser, 1999). The associated feature pa-
rameters and 95% t-confidence intervals are given in Figure 3.6. The construction
of the confidence intervals will be explained in the next section. Some of the fea-
ture parameters have zero values (F2, F3, F4, F21, F23) leading to the unresolved tree
representation of Figure 3.4. The expected number of nodes is 12 + 1 = 13 with 15
objects, but only 6 internal nodes remain in the final solution due to activation of the
positivity constraints. The feature structure (ET) can therefore be simplified to the
matrix shown in the second part of Figure 3.5.

4allowing a ratio scale transformation with a simplex start.
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Feature structure resolved tree

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

aunt        0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
brother     1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cousin      0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
daughter    1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
father      1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
granddaughter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
grandfather 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
grandmother 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
grandson    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
mother      1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nephew      0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
niece       0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
sister      1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
son         1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uncle       0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

nodes
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Feature structure unresolved tree

Nuclear family + Grandparents/Grandchildren Collaterals

F1 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F22 F24 F25 F26 F27

aunt         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
brother      1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
cousin       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
daughter     1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
father       1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
granddaughter 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
grandfather  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
grandmother  1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
grandson     1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mother       1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
nephew       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
niece        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
sister       1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
son          1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uncle        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

nodes
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Nuclear family Collaterals Gandparents/Grandchildren

Figure 3.5: Feature structure for the resolved additive tree representation (top) of the kinship
data and simplified feature structure for the unresolved additive tree representation (bottom)
of Figure 3.4.
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Figure 3.6: Feature parameters (η̂ICLS) and 95% t-confidence intervals for additive tree solu-
tion on kinship data with R2 = .96.

3.4 Statistical inference in additive trees

This section shows how the multiple linear regression framework can be used to
obtain several statistical inference measures for additive trees. The features of an
additive tree can be considered as predictor variables and the feature discriminabil-
ity parameters are estimated like regression coefficients, with the major difference
that positivity constraints are imposed on the feature discriminability parameters,
because they represent edge lengths in the tree representation. This section shows
how to obtain standard errors for the inequality constrained least squares estimators
that can be used to construct 95% t-confidence intervals for the feature discriminabil-
ity parameters. The statistical inference theory is intended for the case where the tree
topology is known in advance, but can also be applied when the tree topology is un-
known, as will be shown in the following. This section also provides an application
of the Kuhn-Tucker test that is used to test whether the constrained solution is in ac-
cordance with the data and results from the same theory used to obtain the standard
errors. The last topic of this section provides a way to estimate prediction error with
the generalized cross-validation (GCV) statistic. This estimate of prediction error com-
bines the the analytical approximation of leave-one-out cross-validation commonly
used in linear fitting methods with the inequality constrained least squares theory.

Obtaining standard errors for additive trees

An important difference of the current approach compared to what is usually done
in the phylogenetic domain is that phylogenetic trees do not use explanatory vari-
ables like the features. In the case that the feature structure is known, the distinctive-
feature additivity allows for considering the additive tree as a univariate multiple
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linear regression model:
δδδ = Xηηη + εεε (3.6)

where δδδ is a n× 1 vector with dissimilarities, X is a known n× T binary (0, 1) matrix
of rank T and ηηη is a T× 1 vector. Each row of the matrix X results from the operation
xl = |eit − ejt| (Equation 3.4). For an additive tree representation, X contains the
featurewise distances that result from the matrix ET formed by the set of cluster
features and unique features, as explained in the previous section.

We assume, like Ramsay (1982), that εεε in Equation 3.6 is a n × 1 random vec-
tor that follows a normal distribution with constant variance σ2 over replications of
judgments,

εεε ∼ N (µ, σ2I), (3.7)

where I is an identity matrix of rank n, and where it is assumed that σ2 is small
enough to ensure the occurrence of negative dissimilarities to be negligible. The pa-
rameters of the vector ηηη are subject to positivity constraints because they represent
edge lengths of the tree. As explained in the beginning of this section, the phyloge-
netic domain does not apply positivity constraints when estimating branch lengths
and trees that yield negative branch length estimates are simply discarded. Hence,
the phylogenetic domain might benefit from the following theory on inequality con-
strained least squares estimation.

The inequality constrained least squares estimator η̂ICLS results from the quadratic
programming problem (cf. Björk, 1996):

min
ηηη

= (δδδ− Xηηη)′(δδδ− Xηηη)

subject to Aηηη ≥ r, (3.8)

where the matrix of constraints A is a C × T matrix of rank C, and r is a C × 1 null-
vector because all parameters are constrained to be greater than or equal to zero.

The duality theory of the quadratic programming problem of Equation 3.8 is the
basis for the estimation of the standard errors of the parameters (Liew, 1976) and
results in the following expression of the estimator η̂ICLS in terms of the dual solution:

η̂ηηICLS = (X′X)−1X′δδδ + (X′X)−1A′ 1
2λλλKT, (3.9)

where λλλKT is the vector with Kuhn-Tucker multipliers that results from solving the
quadratic programming problem with Algorithm AS 225 (Wollan & Dykstra, 1987).
As shown by Liew (1976) the estimated standard errors for the ICLS estimator vector
are

σ̂ICLS =
√

σ̂2diag
[
M(X′X)−1M′

]
, (3.10)

where

σ̂2 =
[
(δδδ− Xη̂ηηOLS)

′(δδδ− Xη̂ηηOLS)
]

/(n− T), (3.11)

and

M = I + diag[(X′X)−1A′ 1
2λλλKT][diag(η̂ηηOLS)]

−1. (3.12)
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If the model is unconstrained, the estimated variance-covariance matrix reduces to
the variance-covariance matrix of the ordinary least squares (OLS) estimator. For
more details the reader is referred to Liew (1976), Wolak (1987), and Frank & Heiser
(in press a). The standard errors for the ICLS estimator can be used to construct 95%
t-confidence intervals in the usual way.

When the tree topology is not known yet and has to be estimated from the sample
data first, the theory described in the previous paragraph cannot be applied directly.
The standard errors cannot be estimated on the same data that were used to obtain
the tree topology. In practice, the problem can be circumvented by dividing the sam-
ple in a training set and a test set. The training set is used to derive the tree topology,
which is fitted on the test data to obtain the standard errors and the 95% t-confidence
intervals for the feature discriminability parameters. The rationale behind this ap-
proach is the following: assuming that the sample is an adequate representation of
the population, the training set will yield a tree topology that is close to the popu-
lation tree or feature set. The deviations from the true tree topology are assumed
to result from sampling error, and, therefore, will probably lead to near zero feature
discriminability values and confidence intervals that contain the value zero. These
assumptions have been verified by Monte Carlo simulation and the results are pro-
vided in the following.

Testing the appropriateness of imposing constraints

In the previous it has been assumed that there exists a representation of the data
in terms of (positive) distances between points in a network or a tree. The validity
of this assumption can be verified in a hypothesis-testing framework: we can test
whether the data is consistent with true values of the parameters satisfying the re-
strictions imposed on the estimated coefficients. The null hypothesis of the inequal-
ity constraints Aη̂ηηICLS ≥ r (the ICLS solution) can be tested against an unrestricted
alternative η̂ηηOLS ∈ At (the OLS solution). These multivariate inequality constraints
lead to the following likelihood ratio test:

−2ln
(

LICLS

LOLS

)
= 2(lnLOLS − lnLICLS), (3.13)

where LICLS and LOLS are the maximum values of the likelihood function under the
null hypothesis Aηηη ≥ rrr and the alternative hypothesis ηηη ∈ At, repectively. If σ2 is
known the LR statistic takes the following form:

LR =
[
(δδδ− Xη̂ηηICLS)

′(δδδ− Xη̂ηη ICLS)− (δδδ− Xη̂ηηOLS)
′(δδδ− Xη̂ηηOLS)

]
/σ2. (3.14)

According to Wolak (1987) the LR statistic is also the optimal value of the objective
function, or the primal function of the following quadratic programming problem:

min
ηηη

=
[
(δδδ− Xηηη)′(δδδ− Xηηη)− (δδδ− Xη̂ηηOLS)

′(δδδ− Xη̂ηηOLS)
]

/σ2

subject to −Aηηη ≥ r. (3.15)

Wolak (1987) showed that the Kuhn-Tucker test statistic (KT) is equal to the LR test
statistic using the theory of quadratic programming, which states that the optimal
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value of the objective function of the primal equals that same value for the dual
problem under certain conditions. The necessary conditions are that X′X is non-
singular and A(X′X)−1A′ is positive definite. The Kuhn-Tucker test statistic is the
optimal value of the dual problem of the objective function of Equation 3.13, and can
be formulated as follows:

KT =
[
λλλ′KTA(X′X)−1A′λλλKT

]
/4σ2 (3.16)

Wolak (1987) also showed that the KT and the LR statistics have the same distri-
butions and continue to possess the same distribution if the same estimate for σ2 is
used when σ2 is unknown and replaced by its estimated value σ̂2. The null distribu-
tion of both test statistics is a weighted sum of Snedecor’s F distributions, a property
that also holds for covariance matrices other than σ2I. For the hypothesis testing
problem H0 : λλλKT = 0 versus H1 : λλλKT ≥ 0 (which is equivalent to the testing prob-
lem H0 : Aηηη ≥ r versus H1 : ηηη ∈ AT), the null distribution of the KT statistic (and
the LR statistic) with σ2 replaced by σ̂2 (Equation 3.11), is equal to:

Pr0,4σ̂2ΛΛΛ [KT ≥ q] =
C

∑
c=1

Pr[Fc,n−T ≥
q
C ]w(C, c, 4ΛΛΛ)

Pr0,4σ2ΛΛΛ [KT = 0] = w(C, 0, 4ΛΛΛ), (3.17)

where ΛΛΛ = (A(X′X)−1A′)−1, and q is the value of the Kuhn-Tucker test statistic.
The weights w denote the proportion of times λλλKT (Equation 3.16) has exactly c el-
ements larger than zero and can be calculated in closed form for the cases in which
C ≤ 4 (see Wolak, 1987, Appendix). For the cases where the number of constraints
exceeds the number 4, Monte Carlo techniques can be used, as will be explained in
the Method section.

Estimating prediction error

In addition to the the Kuhn-Tucker test that requires one of the models to be nested
within the other (a constrained model versus an unconstrained model), there is an
easy way to evaluate the goodness-of-fit of models that are not necessarily nested
within each other. Likelihood ratio tests are not suited for testing nonnested models,
which have the same number of effective parmeters (Felsenstein, 2004, pp. 316-318;
Huelsenbeck & Rannala, 1997). Therefore, Felsenstein (1985, 2004) evaluates the
goodness of fit of the tree topology by constructing a consensus tree using a resam-
pling strategy (the nonparametric bootstrap). The AIC statistic (Akaike, 1974) can
be used for any pair of models whether nested or not, and has been used for that
purpose in phylogenetics (Kishino & Hasegawa, 1990), but also in several MDS ap-
plications (Takane, 1981, 1983; Takane & Carroll, 1981; Winsberg & Ramsay, 1981)
and is mainly suitable when a log-likelihood loss function is used. Here, we propose
a criterion closely related to AIC that is frequently used in the context of linear mod-
els: the generalized cross-validation (GCV). This statistic provides a convenient ap-
proximation to leave-one-out cross-validation for linear fitting under squared-error
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loss (Hastie, Tibshirani, & Friedman, 2001, p. 216). A linear fitting method is one for
which we can write:

ŷyy = Syyy. (3.18)

The hat matrix S from Equation 3.18 is equal to the combination of matrices that
transforms the observed data y into the predicted values ŷ.

Using the hat matrix, linear fitting methods can be written as follows,

1
N

N

∑
i=1

[yi − ŷi]
2 =

1
N

N

∑
i=1

[
yi − ŷi
1− Sii

]2
, (3.19)

where Sii is the ith diagonal element of S. The GCV approximation is

GCV =
1
N

N

∑
i=1

[
yi − f̂ (xi)

1− trace(S)/N

]2
, (3.20)

where the quantity trace(S) is the effective number of parameters. Applied to the ad-
ditive tree the generalized cross-validation statistic can be computed as follows. From
Liew (1976) we know that the following relation exists between the ICLS and the OLS
estimator, which leads to the matrices needed to construct the hat matrix:

η̂ηηICLS = Mη̂ηηOLS

= M(X′X)−1X′δδδ. (3.21)

From the relation expressed in Equation 3.21 it follows that the predicted distance
values can be obtained with:

d̂ = XM(X′X)−1X′δδδ, (3.22)

and, consequently, the hat matrix is equal to

S = XM(X′X)−1X′. (3.23)

The generalized cross-validation error for the additive tree can be estimated using the
trace of the hat matrix from Equation 3.23:

GCVFNM =
1
n

n

∑
l=1

[
δl − d̂

1− trace(S)/n

]2
. (3.24)

3.5 Method Monte Carlo simulations

To evaluate the performance of the statistical inference theory described in the pre-
vious section, three Monte Carlo simulations were conducted using data structures
that approximate the practice of data analysis with additive tree models. The first
simulation shows how to obtain the empirical p-value for the Kuhn-Tucker test de-
scribed in Equations 3.16 and 3.17. The second simulation study evaluates the per-
formance of the nominal standard errors for known tree topologies compared to



68 CHAPTER 3. STATISTICAL INFERENCE IN ADDITIVE TREES

empirical (bootstrap) standard errors. The third simulation study assesses the per-
formance of the nominal standard errors when the tree topology is unknown. In
this study the performance of the GCVFNM statistic that serves as an approximation
for the prediction error is evaluated as well. All simulation procedures were pro-
grammed in Matlab and made use of its pseudo-random number generator, which
was set to 1.0 prior to the simulation process.

Empirical p-value Kuhn-Tucker test

The null distribution of the Kuhn-Tucker test was calculated by simulating many
data sets from a fixed population distribution. The model parameters were esti-
mated from the original data (the kinship data) under the null hypothesis, i.e. the
inequality constrained least squares model with associated feature parameters as
displayed in Table 3.2. A number of 1,000 multivariate normal samples of n = 105
dissimilarities were sampled using the binomial distribution to ensure positive dis-
similarity values that follow a normal distribution. The details of the method of
sampling from the binomial distribution are described in Frank & Heiser (in press
a). The Kuhn-Tucker test statistic (Equation 3.16) was calculated for each data set,
and the proportion of the replicates in which the value of the test statistic exceeded
the value obtained for the original data represents the significance level of the test.

Simulation for nominal standard errors with a priori tree topology

The purpose of this simulation study is to evaluate the performance of the nominal
standard errors of the ICLS estimator compared to empirical (bootstrap) standard er-
rors, for the situation where the tree topology is known in advance. In addition, the
performance of these nominal standard errors are evaluated by comparing the cov-
erage of the nominal confidence intervals with the coverage of bootstrap confidence
intervals . The coverage is equal to the proportion of times the true value is included
in the confidence interval.

In this simulation study the performance of the standard errors of the ICLS es-
timator was evaluated using positive true feature parameters, which represents a
situation where it is correct to apply constraints and consequently, the asymptotic
properties of the ICLS estimator are expected to hold. For the asymptotic proper-
ties to hold, normally distributed errors and homogeneous variances are required
as well. Given positive true feature parameters, true distances can be computed
that can be used as population values from which dissimilarities can be sampled by
adding some error to the true distances. True distances were computed with:

d = Xηηη, (3.25)

where the true parameters are equal to the ICLS estimates (η̂ICLS) in Table 3.2 and X
is obtained with the feature matrix of the kinship data (Figure 3.5). The true tree is
starlike because several branches have branch lengths equal to zero. A number of
S = 1, 000 samples of n = 105 dissimilarities each, was created by sampling from
the binomial distribution and with a homogeneous variance condition created with
error variance σ2 equal to 14.4, which corresponds to the observed residual error
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variance after fitting the FNM on the original kinship data (see for details on the
method of binomial sampling, Frank & Heiser, in press a). Each simulation sample
formed the starting point for a bootstrap of B = 10, 000 bootstrap samples, using
the method of multivariate sampling, which means that for each dissimilarity δl
(l = 1, · · · , n) sampled from the kinship data, the corresponding row of the original
X matrix with features was sampled as well. The simulation yielded 1,000 nominal
standard errors (σ̂ICLS) for the ICLS estimator. The 1,000 bootstraps (each based on
10,000 bootstrap samples) resulted in 1,000 bootstrap standard deviations (sdB) of
the ICLS estimator.

To evaluate the performance of the estimators, two commonly used measures,
the bias and the root mean squared error (rmse), were used. Estimates of bias were
calculated for the feature parameter estimates η̂ICLS, the nominal standard errors
σ̂ICLS, and the bootstrap standard deviations sdB. Bias is equal to the expected value
of a statistic, E(θ̂), minus the true value θ. For example, the bias of each nominal
standard error σ̂ICLS is determined in the simulation study by:

biasσ̂ICLS
=

[
1
S

S

∑
a=1

σ̂ICLS

]
− ση , (3.26)

where S indicates the number of simulation samples. The bias of σ̂ICLS is computed
with σICLS equal to Equation 3.10, using the true values σ2, X and M from Equa-
tion 3.12. The bias for the bootstrap standard errors is calculated in the same way,
with the exception that 1

S ∑S
a=1 σ̂ICLS is replaced by the sum of the bootstrap standard

deviations sdB.
The rmse is equal to the square root of E[(θ̂− θ)2] and takes into account both bias

and standard error of an estimate, as can be deduced from the following decompo-
sition (Efron & Tibshirani, 1998):

rmseθ =
√

sd2
θ̂
+ bias2

θ̂
. (3.27)

The nominal standard errors (σ̂ICLS) were used for the construction of nominal
95% confidence intervals , based on the t distribution (d f = n − T, with n equal to
the number of dissimilarities and T equal to the number of features). Empirical 95%
confidence intervals were obtained with the bootstrap-t interval, which is computed
in the same way as the nominal confidence interval with the only difference that the
bootstrap standard errors (sdB) are used instead of the estimated standard errors for
the sample. For both nominal and empirical confidence intervals , the coverage per-
centage is equal to the proportion of the simulated samples in which the confidence
interval includes the true parameter value.

In a previous study (Frank & Heiser, in press a) we also used the bias-corrected and
accelerated bootstrap interval, the BCa (Efron & Tibshirani, 1998) in addition to the
bootstrap-t interval. Due to the disappointing results obtained for the BCa intervals,
especially when larger numbers of constraints are activated, we restricted this study
to the bootstrap-t intervals, which performed better.
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Simulation for nominal standard errors with unknown tree topology

The data structure used for this simulation study is based on data from Tversky
and Hutchinson (1986, Table 1, p. 5). The data represent mean ratings of similarity
between 20 common fruits on a 5-point scale (range 0 - 4, with 4 meaning highly
related). For use with an additive tree model, the data were first transformed to dis-
similarity values by subtracting each original similarity value from 4. An additive
tree was inferred from these dissimilarities with the neighbor-joining (NJ) method
(Saitou & Nei, 1987) using the NJ algorithm programmed for Matlab by Strauss (see
http://www.biol.ttu.edu/Strauss /Matlab/Matlab.htm). Next, the feature structure
(features and internal nodes) was derived from the NJ tree topology by constructing
the feature matrix ET as in Equation 3.5. The feature matrix equal to the NJ tree topol-
ogy was submitted to the FNM program (PROXGRAPH) to obtain the ICLS estimates
(η̂ICLS) for the feature discriminability parameters and the estimated distances. Fig-
ure 3.7 shows the resulting tree, where three major clusters become apparent. There
is a large cluster with the following three subclusters tropical (exotic) fruit (coconut,
pineapple, pomegranate, banana), melons (honeydew, watermelon) and citrus fruit (lemon,
orange, grapefruit). This cluster also comprises the tomato that is in a sense exotic be-
cause it is not generally recognized as fruit. The second cluster (grapes, blueberry,
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Figure 3.7: Additive tree representation of the fruit data obtained with PROXGRAPH based
on the tree topology resulting from the neighbor-joining algorithm.
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strawberry, date, olive) seems to be determined by the shape and the size of the fruits:
small and berry shaped. The third cluster (plum, apricot, pear, apple, peach) contains
two subfamilies from the rosaceae family, the pome fruits (pear, apple) and the stone
fruits (plum, apricot, peach). The feature structure and the feature discriminability
parameters of this tree serve as the true model for the simulation study and are dis-
played in Table 3.3.

A number of 100 simulation samples with dissimilarities were sampled from the
true distances using the aforementioned method of binomial sampling. Two levels
of error variance (σ2 = 0.5, σ2 = 1.0) were used. To obtain the nominal standard
errors when the tree topology is unknown, each sample was divided in a training
set and a test set such that the test set contained a proportion of 0.33 of the total sam-
ple size. Three levels of total sample size were used: 50, 100 and 300 observations.
A total sample size of 50 means that 50 subjects evaluated the relatedness of the 20
fruits on a 5-point scale. The test set contains 33% of the total sample size and the
training set the remaining observations. The data that were analyzed were the mean
values of the total dissimilarity values in the training set and in the test set. The
mean dissimilarity values of the training set of each simulation sample were sub-
mitted to the NJ algorithm to obtain an NJ tree topology. Next, the feature structure
(features and internal nodes) was derived from this tree topology by constructing
the feature matrix ET as in Equation 3.5. The feature parameters and associated
nominal standard errors were obtained by fitting the training tree topology on the
test set dissimilarities using PROXGRAPH. In addition, the prediction error of each
sample was estimated with the GCVFNM statistic (Equation 3.24), which was esti-
mated for each test sample using the tree topology obtained in the training sample.
The same GCVFNM statistic was also estimated with the training tree topologies and
the true distances instead of the test sample dissimilarities. With no sampling er-
ror present, the GCVFNM values give an unbiased estimate of the error due to model
misspecification. Both GCVFNM estimates were compared in all experimental condi-
tions. The performance of the GCVFNM statistic was further assessed by comparing
its distribution in the 6 experimental conditions to the distribution of the number of
true features that were recovered in the training tree topologies. Tree topologies that
recover a large number of true features should have lower estimates of prediction
error.

The performance of the nominal standard errors (σ̂ICLS) was evaluated by the cov-
erage proportions of t-confidence intervals constructed with estimates of the nom-
inal standard errors (σ̂ICLS). The coverage percentage is equal to the proportion of
the simulated samples in which the confidence interval includes the true feature dis-
criminability value, in the same way as for the simulation with fixed tree topology.
There is, however, an important difference, because, in this simulation study, an NJ
tree topology was estimated for each simulation sample. As a result, the training
sample of each simulation sample yielded a feature set that does not necessarily
contain all the features present in the true tree topology. Therefore, the proportion
of confidence intervals that include the true feature discriminability value can only
be obtained for feature discriminability parameters associated with features that are
part of the true tree topology. In practice, this means that each tree topology in-
ferred for the training samples, was compared to the true tree topology and only
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the nominal standard errors associated with features that belong to the true model
were used to obtain the coverage proportions of the t-confidence intervals . The fea-
ture discriminability parameters (η̂ICLS) belonging to features that are not included
in the true tree topology were also evaluated. To verify the assumption that features
that are not included in the true model will lead to small η̂ICLS values, t-confidence
intervals were constructed using the nominal standard errors (σ̂ICLS). The propor-
tion of the confidence intervals that contain the value zero provided evidence for the
tenability of the aforementioned assumption.

A few words have to be said about the method used to compare the features
resulting from the training sample tree topology with the features from the true
tree topology. In terms of a feature model, the tree topology consists of a set of
features that are binary (0, 1) variables. A binary vector is in fact the binary code
representation of an integer. In the same way, features can be considered as unique
representations of integers with the number of bits equal to the number of objects
(m). Although there are several binary coding systems available, the Gray code sys-
tem was used because in the context of FNM it proved to be an efficient method
to generate the complete set of distinctive features (Frank & Heiser, in press b). In
this simulation study, the Gray code system was used to derive the unique Gray
code rank number for the features in the true tree topology and for the features in
the training sample topologies. The Gray code rank numbers were derived using a
Matlab transcription by Burkardt (see http://www.csit.fsu.edu/ burkardt/) of the
original algorithms for generating Gray codes in Nijenhuis and Wilf (1978). Since
the binary feature vectors can be uniquely identified by a Gray code rank number,
the comparison between the features of the training tree topologies and the features
of the true tree topology amounts to a simple comparison of integers.
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Table 3.3: The 17 cluster features (F1 - F17) and 20 unique features (F18 - F37) with associated
feature discriminability parameters for the neighbor-joining tree on the fruit data.

Feature Objects η̂ICLS

F1 watermelon, honeydew 0.634
F2 strawberry, blueberry 0.309
F3 orange, lemon 0.116
F4 orange, grapefruit, lemon 0.386
F5 date, olive 0.300
F6 grapes, strawberry, blueberry 0.192
F7 pineapple, coconut 0.159
F8 apple, pear 0.102
F9 peach, apricot 0.245
F10 peach, apricot, plum 0.038
F11 grapes, strawberry, blueberry, date, olive 0.136
F12 orange, grapefruit, lemon, watermelon, honeydew 0.004
F13 F12 + pineapple, coconut 0.095
F14 F13 + pomegranate 0.063
F15 apple, peach, pear, apricot, plum 0.155
F16 F14 + tomato 0.019
F17 F16 + F11 0.009
F18 orange 0.461
F19 apple 0.832
F20 banana 1.253
F21 peach 0.615
F22 pear 0.838
F23 apricot 0.645
F24 plum 0.850
F25 grapes 0.846
F26 strawberry 0.576
F27 grapefruit 0.709
F28 pineapple 1.023
F29 blueberry 0.694
F30 watermelon 0.682
F31 honeydew 0.568
F32 pomegranate 1.179
F33 date 0.895
F34 coconut 1.247
F35 tomato 1.506
F36 olive 1.235
F37 lemon 0.739
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Figure 3.8: Histogram of Kuhn-Tucker test statistic obtained with parametric bootstrap
(1,000 samples) with ICLS as H0 model, based on kinship data. The empirical p-value is equal
to .74 and represents the proportion of samples with values on the Kuhn-Tucker statistic larger
than 0.89, the value of the statistic observed for the sample.

3.6 Results simulation

Results Kuhn-Tucker test and estimates of prediction error

Figure 3.8 shows the result of the simulation based on the additive tree model ob-
tained on the kinship data. The Kuhn-Tucker test statistic for the original sample is
equal to 0.89 and a proportion of 0.74 of the 1,000 simulated samples have values
equal or larger to the sample value of the statistic under the H0. Therefore, there
is no reason to reject the null hypothesis and consequently, it seems appropriate to
apply the positivity constraints on these data.

Concerning the estimates of prediction error, the resolved tree yields a GCVFNM

value equal to 278.37 and the unresolved tree has GCVFNM = 246.10. Only relative
magnitudes of this statistic are meaningful and the conclusion is that the unresolved
tree has less prediction error. In summary, the result of the Kuhn-Tucker test shows
that the inequality constraints reasonably fit the data, and the estimate of prediction
error shows that the unresolved tree has better prediction properties.

Performance of the nominal standard errors for known tree topology

Figure 3.9 shows the mean, the bias, and the rmse of the distribution of the 1,000
nominal standard errors as well as the distribution of the 1,000 bootstrap standard
errors plotted against the true variability values. Plotting against the true variability
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Figure 3.9: Mean (panel A), bias (panel B), and rmse (panel C) of the 1,000 simulated nominal
standard errors σ̂ICLS (•) and the 1,000 bootstrap standard deviations sdB (�) plotted against
the true nominal standard errors σICLS .

allows for comparing the results for the parameters with activated constraints (nom-
inal standard errors equal to zero) and the remaining parameters with no activated
constraints. The distribution of the bootstrap standard deviations and the nominal
standard errors show a different pattern depending whether constraints are acti-
vated or not. When constraints are activated, the pattern of the nominal standard
errors is almost equal to the pattern of the bootstrap standard deviations: the values
of the mean (panel A), the bias (panel B) and the rmse (panel C) are very related.
When constraints are not activated, the distribution of the bootstrap standard devi-
ations reveals a clearly different pattern compared to the nominal standard errors.
The mean of the bootstrap standard deviations (panel A) is evidently smaller than
the mean of the nominal standard errors, which are very close to the true variability
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Figure 3.10: Coverage proportions of the nominal t-CI and bootstrap t-CI for the true feature
discriminability values, based on the 1,000 simulated samples.

values, and, consequently, the bootstrap standard deviations are biased downwards
(panel B), showing an underestimation of the true variability, whereas the nominal
standard errors show almost no bias. The larger bias values for the bootstrap stan-
dard deviations, combined with larger variability (not shown) lead to larger values
for the rmse (panel C).

Figure 3.10 shows the coverage proportions of the nominal and the bootstrap
95% t-confidence intervals for the ICLS estimator. The coverage of the nominal confi-
dence intervals is closer to the nominal 95% level than the coverage of the bootstrap
confidence intervals that are mostly lower than the nominal values and achieve sev-
eral low coverage values around 40%. This finding corresponds with the patterns
observed in Figure 3.9, where the bootstrap standard deviations are clearly biased
downwards.

Performance of the nominal standard errors for unknown tree topology

The right panel of Figure 3.11 displays the distribution of the number of true cluster
features present in the NJ tree topologies inferred for the 100 training samples in
each experimental condition. Since the unique features are always the same for each
topology, only the cluster features are represented. There are 17 cluster features in
the true tree topology for the simulation study. The NJ tree topologies obtained in the
training samples consistently had 17 cluster features, with two exceptions only. In
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Figure 3.11: Left panel: Distribution of the GCVFNM statistic estimated on the test samples
based on the tree topology inferred for the training samples under all experimental conditions
for 100 simulation samples. The asterisk in each box represents the mean of the true GCVFNM

values. Right panel: Distribution of the number of cluster features equal to the true cluster
features (TC = 17) present in the tree topologies obtained for the training samples of the same
100 simulation samples in each experimental condition.

the low error condition with sample size 100 and with sample size 50, 1 sample out
of 100 yielded a NJ tree topology with 16 cluster features. The boxplots in the right
panel of Figure 3.11 show that the number of true features recovered in the training
sample decreases when the sample size decreases and when the error level is higher,
except for sample size 300. The distributions of the prediction error, estimated with
the GCVFNM statistic on each test sample (left panel of Figure 3.11), mirror these
effects: higher levels of GCVFNM correspond to less well recovered tree topologies.
To evaluate the performance of the GCVFNM, this statistic was also estimated with
the training tree topology fitted on the true distances. The mean of these GCVFNM

values in each of the experimental conditions is represented with an asterisk in the
left panel of Figure 3.11 and it is clear that the mean of the GCVFNM values in the
test samples is very close to the mean of the GCVFNM values obtained for the true
distances.
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Table 3.4: Proportion of 95% t-confidence intervals containing the value zero in the test
samples for the feature discriminability parameters associated with features not present in
the true tree topology

Error level 0.5 0.5 0.5 1.0 1.0 1.0
Sample size 300 100 50 300 100 50

Coverage
1.00 1.00 0.82 0.85 0.92 0.80 0.81
0.99 0.00 0.18 0.15 0.00 0.15 0.14
0.98 0.00 0.00 0.00 0.08 0.04 0.03
0.96 0.00 0.00 0.00 0.00 0.00 0.02

The feature discriminability values for the features in the training samples that
are not included in the true model were recorded for all experimental conditions.
Most of these feature discriminability values were equal to zero, but some reached
higher values, with a maximum value of 0.26. However, most of these values did
not significantly differ from zero, as can be deduced from the coverage proportion
of the t-intervals in Table 3.4. In general, at least 96% of the confidence intervals
contained the value zero. When error level was low and sample size was equal to
300, all confidence intervals contained the value zero. With increasing error level
and decreasing sample sizes, the proportion of confidence intervals spanning zero
gradually drops off to 0.96. These results lead to the conclusion that, in general,
the feature discriminability parameters associated with features that are not part of
the true tree topology, had values that do not significantly differ from zero. Even
in the worst case, only a very small proportion (4%) of the feature discriminability
parameters associated with features that are not part of the the true tree topology,
had values that differ significantly from zero.

Figure 3.12 gives insight in the performance of the nominal standard errors in
each experimental condition related to the proportion of correctly recovered features
in the training samples. The squares indicate the proportion of features in the NJ tree
topologies inferred for the training samples that correspond to the features in the
true tree topology. The set of unique features (corresponding to the numbers 18 to 37
in Figure 3.12) is by definition part of the tree topology and therefore, these features
have perfect recovery results in all experimental conditions. The recovery of the clus-
ter features is clearly affected by the experimental conditions. The set of features that
are less well recovered form the following subset {F3, F7, F8, F10, F12, F13, F14, F16, F17}.
When sample size decreases and error becomes higher, an increasing number of fea-
tures from this set are less well recovered. It is, however, not surprising that this
particular set of features is not well recovered because these features have the small-
est feature discriminability parameters in the total feature set (see, Table 3.3). From
the point of view of interpretation, these less well recovered cluster features form
subsets of fruits that are counterintuitive, like, for example, the combination of cit-
rus fruits and the two types of melons, represented by F12 (Table 3.3).
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The bullets in Figure 3.12 represent the proportion of nominal t-confidence in-
tervals in the test samples that cover the true feature discriminability parameter for
the features that are part of the true tree topology. The feature discriminability pa-
rameters that have lower coverage proportions are associated with the same subset
of features that are less well recovered. The coverage proportions of the nominal
t-confidence intervals are adequate (ranging from 0.95 to 1.0) for the features that
are well recovered, but become lower (sometimes reaching values lower than .40)
for the features that are less well recovered.

3.7 Discussion

This paper showed how to obtain theoretical standard errors and confidence inter-
vals for the estimates of branch lengths in psychometric additive trees for a priori
known tree topologies as well as for estimated tree topologies. The statistical infer-
ence theory proposed here derives from the multiple regression framework, which is
directly related to the feature representation of additive trees. Using features along
with the univariate multiple regression framework offers a different perspective on
statistical inference in psychometric additive trees and might be useful for the phy-
logenetic tree domain as well.

However, a comparison between evolutionary trees and psychometric trees is
not straightforward because different assumptions are made about the estimated
distances in the tree, and, consequently, the results might not be exchangeable be-
tween the two types of tree models. In phylogenetic trees, the distances in the tree
represent evolutionary distances, which in most cases are equal to the number of nu-
cleotide substitutions for all pairs of nucleotide sequences representing the species.
In psychometrics there is no generally accepted theory about the underlying distri-
bution of dissimilarities between objects. In multidimensional scaling theory, sev-
eral possible distributions have been proposed. Ramsay (1982) suggested the nor-
mal distribution, the log-normal distribution (because of the nonnegative nature of
dissimilarities) and a symmetric alternative, the inverse Gaussian (or Wald) distribu-
tion. Restle (1961) proposed the gamma distribution and Takane (1981) and Takane
and Carroll (1981) used various distributions that take into account the specific data
generation process that underlies each data collection method.

Despite these differences, both types of tree domains share the following impor-
tant property: from evolutionary perspective, but also in psychology, a tree with
negative branch lengths has no meaning and cannot be accurate by definition. Con-
sequently, all tree searching algorithms search for tree topologies with positive
branch lengths while discarding all tree topologies that yield negative estimates of
branch lengths. Searching for a tree with positive branch lengths implies that pos-
itivity constraints should be imposed on the estimates of the branch lengths. Im-
posing inequality constraints during estimation has consequences for the statistical
properties of the estimates: they become biased because their distribution is trun-
cated at zero. The presence of the inequality constraints cannot be ignored and
should be part of the tree searching algorithms, as already pointed out by Gascuel
and Levy (1996), but also when the variability of the branch lengths are estimated.
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This paper shows that the theoretical standard errors for inequality constrained
least squares estimates are useful in assessing the variability of the branch lengths
in psychometric additive trees. For a priori known tree topologies the theoretical
standard errors perform well. When the tree topology is not known in advance and
estimated with the NJ method, the performance of the confidence intervals based
on the theoretical standard errors is adequate, except for the features that have very
small feature discriminability values and, at the same time, are not well recovered
by the NJ method.

The results of this study are however limited to the normal distribution assump-
tion, necessary in the inequality constrained least squares framework. In addition,
the assumption of homogeneous variances (Equation 3.7) is arguable because the
dissimilarity values that share the same objects are likely to be correlated. In mul-
tidimensional scaling, solutions have been proposed by Ramsay (1982) who uses a
multiplicative variance components model instead of the additive model of Equa-
tion 3.7 and introduces MINQUE variance estimates for cases where the configura-
tion matrix is known. In the phylogenetic domain, Bulmer (1991) uses generalized
least squares to account for the heterogeneity. In theory, the combination of ICLS
estimates with generalized least squares, yielding inequality constrained general-
ized least squares estimates (ICGLS), could be a solution. In practice, the statistical
properties are barely known (Werner, 1990; Werner & Yapar, 1996) and since the gen-
eralized least squares estimates become a computational burden with large number
of objects (cf. Felsenstein, 2004), the ICGLS estimates are a difficult way to go.

The use of features as predictor variables in a multiple regression framework has
additional advantages. An important advantage is that measures of prediction er-
ror that are regularly used in this framework become easily available. In this paper
we showed how the statistical inference theory of the inequality constrained least
squares estimator can be incorporated in the general theory of linear fitting meth-
ods to obtain an estimate of prediction error, the generalized cross-validation statistic,
which is a convenient closed form formula that approximates leave-one-out cross-
validation. Besides the very low computational costs, another advantage of the gen-
eralized cross-validation statistic is that it can be used to compare different tree topolo-
gies with the same number of degrees of freedom, i.e. models that have the same
number of predictors or features. For the likelihood ratio test, a commonly used test
to compare phylogenies, the comparison of tree topologies with the same degrees of
freedom is a problem because the test is limited to the case of nested topologies (cf.
Felsenstein, 2004, Chapter 19).

Another advantage of considering the feature framework for additive trees, is
that a frequently used test in the phylogeny domain, testing speciation or popula-
tion splitting, can be done explicitly by adding cluster features to the model. In phy-
logenetic trees, internal nodes are usually called branching points and indicate that
an important event of speciation or population splitting occurred there (cf. Nei et
al., 1985). The internodal distances are not observed and therefore are inferred form
the other, non-internodal distances, as well as the associated standard errors. Sev-
eral tests for the branching points have been proposed (Bulmer, 1991; Li, 1989; Nei
et al., 1985; Tajima, 1992). An alternative for the interior-branch test is the bootstrap
method proposed by Felsenstein (1985), which calculates the proportion of bootstrap
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trees that agree with the original tree topology inferred for the sample. A popula-
tion splitting that occurs in a large proportion of bootstrap trees is considered to be
very plausible. Sitnikova, Rzhetsky, and Nei (1995) compared the interior-branch
test with the bootstrap test and concluded that the bootstrap test tends to yield con-
servative confidence values compared to the interior-branch test and that the dif-
ference between the two tests becomes more salient when the true tree is starlike,
which means that some branches have length zero resulting from the correction of
negative branch lengths.

Considering features in additive trees allows for a different way to test the branch-
ing points. In the phylogeny literature, the branching points result from a certain
topology that depends on the tree finding algorithm. FNM offers the possibility to
test explicitly for specific ancestral species just by adding cluster features to the fea-
ture matrix ET . The values of the feature discriminability parameters and the asso-
ciated confidence intervals indicate whether the ancestral species are plausible. The
simulation study in this paper for the case of unknown tree topologies, inferred for
each simulation sample with the NJ method, is in fact a parametric version of Felsen-
stein’s bootstrap method (1985) because it calculates the proportion of features from
the true topology that are recovered in the samples while assuming a model with
normally distributed error terms. The confidence intervals obtained with the the-
oretical standard errors for the feature discriminability parameters led to the same
conclusion about the most plausible features (including cluster features that indicate
speciation) in the model, but at much less computational cost.

Although strong assumptions have to be made (normally distributed errors and
homogeneous variances), we believe that the theoretical standard errors for the in-
equality constrained least squares estimates are useful for estimating the variability
of branch lengths of tree topologies obtained with algorithms like ADDTREE and NJ,
which use least squares estimates for the branch lengths. Using features along with
the multiple regression framework has many advantages, as has been demonstrated
in this paper. Nevertheless, the question remains whether these results are useful for
the phylogenetic trees. The answer relies on the challenge to combine the theoretical
standard errors for the inequality constrained least squares estimator with the many
methods proposed in the phylogenetic literature that take into account the way the
evolutionary distances were obtained.
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Figure 3.12: Coverage proportions in all experimental conditions for feature discriminabil-
ity parameters based on nominal t-CI (•) in the test samples and proportions recovered true
features in the training samples (�) for each of the 37 features forming the true tree topology.



Chapter 4

Feature Selection in Feature Network
Models: Finding Predictive Subsets of
Features with the Positive Lasso 1

Abstract

A set of features is the basis for the network representation of proximity data
achieved by Feature Network Models (FNM). Features are binary variables that
characterize the objects in an experiment, with some measure of proximity as
response variable. Sometimes features are provided by theory and play an im-
portant role in the construction of the experimental conditions. In some research
settings, the features are not known a priori. This paper shows how to gener-
ate features in this situation and how to select an adequate subset of features
that takes into account a good compromise between model fit and model com-
plexity, using a new version of Least Angle Regression that restricts coefficients
to be nonnegative, called the Positive Lasso. It will be shown that features can
be generated efficiently with Gray codes that are naturally linked to the FNM.
The model selection strategy makes use of the fact that FNM can be considered
as a univariate multiple regression model. A simulation study shows that the
proposed strategy leads to satisfactory results if the number of objects 6 22. If
the number of objects is larger than 22, the number of features selected by our
method exceeds the true number of features in some conditions.

4.1 Introduction

Feature Network Models or FNM (Heiser, 1998) are graphical models that represent
proximity data in a discrete space while using the same formalism that is the basis of
least squares methods used in multidimensional scaling. A typical application area
for FNM would be cognitive psychology where one studies how human cognition

1This chapter has been accepted for publication as: Frank, L. E. & Heiser, W. J. (in press). Feature se-
lection in Feature Network Models: finding predictive subsets of features with the Positive Lasso. British
Journal of Mathematical and Statistical Psychology. With an exception for the notes in this chapter and Fig-
ure 4.2, which are reactions to remarks made by the members of the promotion committee.
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processes stimuli by analyzing the ratings of perceived (dis)similarity of these ob-
jects. If N respondents evaluate the dissimilarity of m objects and T binary features
characterize these objects, the number of features in which two objects are distinct
yields a dissimilarity coefficient that can be used as a structural model to be fitted
to the data. The additivity properties of networks make it possible to consider the
model as a univariate multiple linear regression problem with positivity restrictions
on the parameters. The positivity restrictions are necessary because the parameters
represent edge lengths in the network representation of the models.

Least squares and multiple linear regression estimates have been frequently ap-
plied in models that are related to FNM, like, for example, extended similarity trees
(Corter & Tversky, 1986) and additive clustering with ADCLUS (Shepard & Arabie,
1979) or with MAPCLUS (Arabie & Carroll, 1980). However, the possibilities offered
by multiple linear regression have not been fully explored in the context of these
models. For instance, statistical inference is not common practice for these cluster-
ing and tree models. Recently, theoretical standard errors were introduced and used
to construct confidence intervals for the parameters of the FNM (Frank & Heiser, in
press a) and related additive trees (Frank & Heiser, 2004) using the theory of nonneg-
ative least squares. In this article, we use the multiple linear regression framework
for the selection of a subset of features that constitutes a good compromise between
model fit and model complexity.

Before introducing the feature selection strategy proposed in this work, more
has to be said about the nature of the features and the feature sets that are used to
represent the proximities. The concept of a feature was introduced in psychology
by Tversky (1977) who proposed the Contrast Model (CM) to describe the similar-
ity between two objects in terms of a linear combination of the features they share
(common features) and the features that distinguish between them (distinctive fea-
tures). The Contrast Model in its most general form has been used in practice with a
priori features only (Gati & Tversky, 1984; Keren & Baggen, 1981), but many models
have been developed since, which search for either the common features part or the
distinctive features part of the model, or a combination of both. Models based on
common features are additive similarity trees (Sattath & Tversky, 1977) and addi-
tive clustering (ADCLUS, Shepard & Arabie, 1979; MAPCLUS, Arabie & Carroll, 1980;
CLUSTREES, Carroll & Corter, 1995). The distinctive features are used for the ex-
tended similarity trees (EXTREE) proposed by Corter and Tversky (1986). A model
that has the closest relation to the CM is the Modified Contrast Model (MCM) de-
veloped by Navarro and Lee (2004) that aims at finding a set of both common and
distinctive features that best describes the data. This model comprises an imple-
mentation of Tversky’s Contrast Model as well as the Common Features (CF) and
the Distinctive Features (DF) models, that are special cases of both CM and MCM.
FNM is based on the distinctive features only.

All aforementioned methods aim at finding a set of features that does not nec-
essarily have a nested structure as required in hierarchical trees and additive trees.
Rather, a less restricted structure of possibly overlapping clusters or features is
sought. The FNM is the only model that represents this overlapping feature struc-
ture by a network representation. To find such a feature structure, we propose a
strategy that is related to the predictor selection problem in the multiple regression
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framework. The basic idea is to generate a very large number of features (or if pos-
sible, the complete set of features) first, and then select the best set of features with a
subset selection algorithm. We used the Lasso option of the Least Angle Regression
(LARS) algorithm (Efron et al., 2004), a recently developed efficient model selection
algorithm that is less greedy than the traditional forward selection methods used
in the multiple linear regression context, in the sense that the traditional methods
have the tendency to eliminate useful predictors that happen to be correlated with
the predictor selected in the previous step. We modified the Lasso option of this
algorithm into a Positive Lasso to meet the positivity constraints of our model.

The large number of features presented to the subset selection algorithm is gener-
ated using the Gray code, a cyclic permuted version of the usual binary code, which
will be explained below. Gray codes have a natural link with the network represen-
tation of the feature profiles for the objects in the FNM. In addition, the symmetry
property of distinctive features leads to a very efficient use of the Gray codes because
only half of the total number of codes is sufficient to enumerate the set of all possi-
ble distinctive features. This property allows in practice for enumerating the total
number of features for numbers of objects m smaller or equal to 22. If m exceeds
22 and complete enumeration is no longer possible, we propose the use of a very
large sample of Gray codes combined with a filter technique to reduce the number
of features before using subset selection.

The strategy proposed here is different from the algorithms for the other meth-
ods because it approaches the problem of finding an adequate set of features from
a different angle: most methods search for sets of features while fixing the number
of features in advance. Typically, several solutions with different numbers of fea-
tures are generated, and the best set of features is selected based on criteria such
as goodness-of-fit and interpretability. The first application of FNM used a cluster
differences scaling algorithm (Heiser, 1998) with number of clusters equal to two,
which constitutes a one-dimensional MDS problem with the coordinates restricted
to form a bipartition. It is still a hard combinatorial problem, and, therefore the im-
plementation uses a nesting of several random starts together with K-means type
of reallocations. The strategy proposed in this paper incorporates model selection
criteria during the search process, leading to a set of features that is not necessarily
optimal in the current data, but that has predictive value with a balanced trade-off
between goodness-of-fit and prediction accuracy. Prediction accuracy or prediction
error, which can be assessed with closed form formulas or can be approximated
with cross-validation techniques, has not been used yet in this context, except for
the Modified Contrast Model (Navarro & Lee, 2004) that uses a forward feature se-
lection method and a model selection criterion related to the BIC criterion.

The remainder of the article is organized as follows. The second section presents
the theory of the Feature Network Models and the generation of binary features us-
ing Gray codes. The section ends with an application on a data set and a comparison
of features provided by theory and features selected by the strategy we propose. The
third section shows the results of a simulation study that evaluates the performance
of our strategy, and the last section provides concluding remarks.
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Table 4.1: Matrix of 16 English consonants, their pronunciation and phonetic features

Consonants F∗1 F2 F3 F4 F5 F6 F7

p (pie) 0 0 0 0 0 1 0
t (tie) 0 0 0 0 1 0 0
k (kite) 0 0 0 0 0 0 1
f (fie) 0 0 1 0 0 1 0
θ (thigh) 0 0 1 0 1 0 0
s (sigh) 0 0 1 1 1 0 0
S (shy) 0 0 1 1 0 0 1
b (buy) 1 0 0 0 0 1 0
d (die) 1 0 0 0 1 0 0
g (guy) 1 0 0 0 0 0 1
v (vie) 1 0 1 0 0 1 0
ð (thy) 1 0 1 0 1 0 0
z (Zion) 1 0 1 1 1 0 0
Z (vision) 1 0 1 1 0 0 1
m (my) 1 1 0 0 0 1 0
n (nigh) 1 1 0 0 1 0 0

*F1 = voicing; F2 = nasality; F3 = affrication; F4 = duration; F5 = place, middle;
F6 = place, front; F7 = place, back.

4.2 Theory

Feature Network Models

Feature Network Models (FNM) are graphical structures that represent proximity
data in a discrete space. The properties of these models will be explained using a
well known data set, the perceptual confusions among 16 English consonants col-
lected by Miller and Nicely (1955). These 16 phonemes can be described by 7 artic-
ulatory features2: voicing, nasality, affrication3, duration4 and three places of articula-
tion (see Table 4.1). The authors were particularly interested in which articulatory
features are important in distinguishing the consonants when affected by varying
signal to noise conditions. The original data consist of 17 matrices in which each
cell contains the frequencies of confusion between the spoken phoneme (the rows)
and the phoneme written down by the participants (the columns). Shepard (1972)
pooled the data from the first six original matrices (representing 6 different signal-

2It should be noted that the feature set consists of 7 features instead of the 6 features used for the
same data in Chapter 2. The articulatory feature place of articulation has three levels (front, middle, back)
and is represented in Table 4.1 by the three binary features F5, F6 and F7 as a result of dummy coding.
Representing the three levels by three variables leads to multicollinearity, and as a result, the third level
has been left out from the feature set in Chapter 2. In the present chapter, the technique of the (Positive)
Lasso is robust to multicollinearity and therefore, the complete feature set is used.

3At present, phonetic experts would call this feature friction.
4The feature duration is not a proper phonetic feature and has been adopted arbitrarily by Miller &

Nicely (1955) to distinguish the difference between {s, S, z, Z} and the remaining consonants.
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to-noise conditions) collected by Miller and Nicely and coverted the pooled data to
a symmetric matrix of similarities with the transformation ςij = ( fij + f ji)/( fii + f jj),
where f denotes the frequencies of confusion. For our study, the similarities were
further transformed into dissimilarities δij by the transformation δij = − log(ςij),
assuming that the similarity measures decay exponentially with distance.

The data are illustrative for the use of features provided by theory, i.e., phonetic
theory describes the articulatory properties of the phonemes. In many situations,
no theory is available about the objects. Features are binary variables indicating for
each object whether a particular characteristic is present or absent. Features are not
always intrinsically binary: any ordinal or even interval variable if categorised can
be transformed into a set of binary features, using dummy coding. For example, the
place of articulation has three categories to indicate the place in the mouth where
the phonemes are pronounced: front, middle and back. Dummy coding produces
the three features place, front, place, middle, and place, back (Table 4.1).

Some set theoretic properties of the binary feature matrix lead to the estimation of
a distance measure that approximates the observed dissimilarities. For example, the
phoneme g has feature {voicing, place back} and phoneme v has the features {voicing,
affrication, place front}. The difference between the union and the intersection (=
the symmetric set difference) expresses which feature g has that v does not have
and vice versa: (g ∪ v) − (g ∩ v) = {affrication, place front, place back}. Following
Goodman (1951, 1977) and Restle (1959, 1961), a distance measure that satisfies the
metric axioms can be expressed as a simple count τ of the elements of the symmetric
set difference, a count of the non common elements, between the stimuli Oi and Oj
and becomes the feature distance: d(Oi, Oj) = τ[(Oi ∪Oj)− (Oi ∩Oj)].

If E is a binary matrix of order m × T that indicates which features t describe
the m objects, as in Table 4.1, the re-expression of the feature distance in terms of
coordinates is as follows (Heiser, 1998):

d(Oi, Oj) = τ[(Oi ∪Oj)− (Oi ∩Oj)] (4.1)

= ∑
t
|eit − ejt|,

This re-expression of the feature distance in terms of binary coordinates is also known
as the Hamming distance. The feature distance used in FNM is a weighted version of
the distance in Equation 4.1:

d(Oi, Oj) = ∑
t

ηt|eit − ejt|, (4.2)

where the weights ηt express the relative contribution of each feature.
If we string out the dissimilarities into a vector, we can use a univariate multiple

linear regression model for the dissimilarities:

δδδ = Xηηη + εεε, (4.3)

where δδδ is a n× 1 vector with dissimilarities, X is a known n× T binary (0, 1) matrix
of rank T, with n equal to all possible pairs of m objects, i.e., 1

2 m(m− 1), ηηη is a T × 1
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vector with feature discriminability parameters, and εεε is a T × 1 vector. We assume
that εεε is a n× 1 random vector that follows a normal distribution,

εεε ∼ N (µ, σ2I), (4.4)

where I is an identity matrix of rank n, and where it is assumed that σ2 is small
enough to ensure the occurrence of negative dissimilarities to be negligible. The
feature parameters are estimated by minimizing the following nonnegative least
squares loss function:

min
ηηη

= ‖δδδ− Xηηη‖2 subject to ηηη ≥ 0, (4.5)

where the feature parameters ηηη are constrained to be positive because they represent
edge lengths in the network representation of the network, as will be explained in
the next paragraph. To be able to express the loss function of the FNM in a more
convenient multiple regression problem as done in Equation 4.5, the original matrix
E must be transformed first. The matrix X is obtained by applying the following
transformation on the rows of matrix E for each pair l of the total of n pairs of objects,
where the elements of X are defined by:

xlt = |eit − ejt|, (4.6)

where the index l = 1, · · · , n varies over all pairs (i, j). The result is the binary (0, 1)
matrix X, where each row contains the featurewise distances for each pair of objects,
with 1 meaning that the feature is distinctive for a pair of objects. It is important to
notice that features become truly distinctive features only after this transformation,
while the features in the matrix E are not inherently common or distinctive. The
weighted sum of these featurewise distances is the fitted distance for each pair of
objects and is equal to d̂ = Xη̂ηη. Transforming the objects × feature matrix to the
object pairs × features matrix is necessary to apply the multiple regression approach
and, at the same time, provides a considerable reduction of the number of features
to be generated, as will become clear later.

The multiple regression approach has been used earlier in the context of the com-
mon features model (Arabie & Carroll, 1980), and for tree models (Corter, 1996).
However, the nonnegative least squares method has not been used by these au-
thors, although they were aware of the problem. Only Arabie and Carroll (1980)
address the problem by implementing a subroutine in the MAPCLUS algorithm that
encourages the weights to become positive. These authors explain that the use of
nonnegative least squares has been avoided explicitly because in the context of the
iterative algorithm that is the basis of the MAPCLUS algorithm, it would reduce the
number of clusters in the solution. We implemented the nonnegative least squares
option in PROXGRAPH (the program used to fit FNM), not during the feature selec-
tion procedure, but for the situation where the features are supplied by the user. In
that case, the use of nonnegative least squares has a considerable advantage because
it opens the way to statistical inference by providing theoretical standard errors for
the feature parameters (Frank & Heiser, in press a).



4.2. THEORY 89

Table 4.2: Feature parameters (η̂), standard errors, and 95% confidence intervals for Feature
Network Model on consonant data with R2 = 0.61

Features η̂ σ̂η 95% CI

Constant 2.11 0.13 1.85 2.37
Voicing 1.22 0.11 1.01 1.43
Nasality 0.81 0.13 0.56 1.06
Affrication 0.12 0.11 -0.11 0.34
Duration 0.32 0.12 0.10 0.55
Place, middle 0.00 0.00 0.00 0.00
Place, front 0.10 0.07 -0.04 0.24
Place, back 0.26 0.10 0.06 0.45

Table 4.2 shows the feature discriminability parameters that result from minimiz-
ing the loss function in Equation 4.5, as well as the corresponding standard errors
and 95% confidence intervals. The method to compute the standard errors and 95%
t-intervals for inequality constrained feature parameters in the context of Feature
Network Models has been described in (Frank & Heiser, in press a). The model with
seven features has an R2 = 0.61, and the values of the feature parameters lead to
the conclusion that the most important categorizing criteria used by the participants
were the following: voicing, nasality, duration, and place, back. The features affrication,
place, middle, and place, front do not play an important role as follows from the 95%
t-confidence intervals that show that the feature parameters of these features do not
significantly differ from zero (see Table 4.2).

The feature distance parallels the path-length distance in a valued graph if one
of the metric axioms, the triangle inequality, is reaching its limiting additive form
dij = dil + djl when l is on the shortest path from i to j (Flament, 1963; Heiser,
1998). Hence, sorting out the additivities in the fitted feature distances and exclud-
ing edges that are sums of other edges results in a parsimonious subgraph of the
complete graph. Figure 4.1 shows the Feature Network representation that results
from the fitted distances on the consonant data. The phonemes are the vertices in
the network and the estimated feature distances (d̂ = Xη̂ηη) are represented as ad-
ditive counts of edge lengths in the graph, where the edge lengths are the feature
parameters η̂ηη. For display purposes the 7-dimensional feature network has been
embedded in 3-dimensional Euclidean space using PROXSCAL5 (a multidimensional
scaling program distributed as part of the Categories package by SPSS, Meulman &
Heiser, 1999). The solution of the common space was restricted by a linear combi-
nation of the feature variables, to be able to represent the features as vectors in the
same space. The final network representation was obtained using the default options
for 3-D plotting in Matlab. The three most important features (voicing, nasality, and
duration) are represented as vectors in Figure 4.1, leading from the origin through
the point with coordinates equal to the correlations of each feature with each of the
three dimensions. The network clearly shows the importance of the voicing feature:

5with the interval transformation option and initialized with the simplex solution
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all voiced consonants are on the left part of the network and well separated from the
unvoiced consonants on the right part. The second important feature, nasality, sepa-
rates the consonants m and n from the other consonants. The consonants s, S, z and Z

form a group with the shape of a rectangle and differ from the remaining 12 conso-
nants because of the length of their pronunciation, described by the feature duration.
The plus and minus signs on each vector designate the projection onto the vector of
the centroids of the consonants that possess the feature (+) and the consonants that
do not possess that feature (−).

Generating features with Gray codes

Given that features can be viewed as binary variables, a very straightforward way to
produce all possible binary (0,1) features for m objects is to generate the binary codes
for m bits of the integers 0 to 2m − 1, as illustrated in Table 4.3 for m = 4. Another,
more restrictive way to produce the binary features, is to use the Gray code (Gray,
1953). A Gray code represents each number in the sequence of integers {0 · · · 2m − 1}
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Figure 4.1: Feature Network representation for the consonant data with the three most im-
portant features (voicing, nasality, and duration) represented as vectors. The plus and minus
signs designate the projections onto the vector of the centroids of the objects that possess the
feature (+) and the objects that do not have that feature (-). (dh = ð; zh = Z; th = θ; sh = S).
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Table 4.3: Binary code and Gray code for 4 bits

Integer Binary Gray

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

as a binary vector of length m in an order such that adjacent integers have Gray code
representations that differ only in one bit position, meaning that the transition from
one integer to the next in the order requires changing just one bit at a time, which is
called is called the adjacency property (cf. Gardner, 1972).

Table 4.3 shows the Gray coding corresponding to the integers based on 4 bits.
There is a specific relationship between the Gray code and the binary code: Gray
codes are binary codes arranged in a special order. Table 4.3 clearly shows the pat-
tern of the flipping of one bit at a time, compared to the binary codes, where the
transition from one integer to the next in the order is not restricted to the change of
one bit. There are many ways to produce a binary sequence that has the adjacency
property. The most common way to produce such a sequence is the so called binary
reflected Gray code that starts with all bits zero and successively flips the right-most
bit that produces a new string. Generating the binary reflected Gray codes works as
follows. For m bits the list Lm starts with L1 and produces the list 0, 1. For m > 1 bits,
Lm is formed by taking the first half of the list, Lm−1 prepending a 0 to every number,
then following that list by the reverse of Lm−1 with a 1 prepended to every number
(cf. Savage, 1997). For example, to obtain L2, the list L1 (0,1) is written forwards and
backwards, producing 0, 1, 1, 0, and, prepending 0’s to the first half and 1’s to the
second half, yields the L2 list 00, 01, 11, 10.

In contrast to the more arbitrary binary codes, the Gray codes are directly related
to the Feature Network Models. An m-bit Gray code is equal to a Hamiltonian cycle
on an m-dimensional hypercube (Gilbert, 1958; Savage, 1997). It represents all the
possible feature combinations for m objects. It is a cycle that visits each combination
only once. The feature distance is a city-block metric on the binary coordinates of
this same space. Since adjacent Gray codes differ by only one bit, feature distances
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of three consecutive Gray codes are additive. The binary coordinates represent the
feature pattern of each object. Based on their feature pattern, the objects have their
place in this m-dimensional hypercube.

The Gray code shares with the binary code the nice property that the second half
of the list of the codes is the complement of the first half. Table 4.3 shows this prop-
erty: the pattern of the Gray codes (and the binary code) representing the integers
8 to 15 is the negative of the pattern of the integers 0 to 7. The fact that the second
half of the Gray codes for m objects is the complement of the first half constitutes a
useful property in the context of the Feature Network Models. Since complementary
features yield the same X-matrix and consequently the same η̂ values as the original
features, only half of the number of 2m features needs to be generated. This property
holds for the distinctive features only, and not for the common features, where it
would be necessary to generate the complete Gray code. Further reductions can be
obtained by discarding the feature with zeros only, because it has no meaning in the
Feature Network Models. The feature with ones only (the universal feature) is al-
ways located in the second half of the Gray code and will therefore not be part of the
set of generated features. However, PROXGRAPH, the program used to fit FNM (pro-
grammed in Matlab), has the option of adding the universal feature to the model.
A remark has to be made about a special category of features, the unique features,
which describe only one object (having a 1 for that particular object and zero values
for the remaining objects). In the common features model the presence of one or
more unique features in the object × features matrix E leads to a zero feature prod-
uct in the predictor set and is one of the problems to be avoided in, for example, the
MAPCLUS algorithm (Arabie & Carroll, 1980). The FNM that use featurewise dis-
tances does not have this inconvenience and therefore all Gray codes representing
the unique features can be part of the complete feature set.

Summarizing, complete enumeration of the distinctive features for m objects
amounts to generating 1

2 (2m) − 1 Gray codes, using the integers {1 · · · 1
2 (2m) − 1},

and forming the complete set of featurewise distances D that contains a total num-
ber of TD = 1

2 (2m)− 1 predictors. Taking the set D as the starting point of the feature
subset selection process constitutes a considerably smaller problem than would be
the case for the generation of predictors in a univariate multiple regression problem
with arbitrary binary predictors. In that case the number of predictors to be enu-
merated amounts to 2n, where n is equal to 1

2 m(m− 1), which shows the proportion
of additional predictors that are needed. The possibility of using the transforma-
tion from the matrix E to the matrix X allows for this reduction of the number of
predictors to be generated.

However, there are limitations to the total number of distinctive features that
can be handled because the set TD of predictors grows considerably with increasing
number of objects m. For example, for m = 20 the set TD contains 1

2 (2m) − 1 =
1
2 (220) − 1 or about a half million distinctive features, growing to about 1 million
for m = 21, becoming more than 2 million for m = 22 and exceeding 4 million for
m = 23. A set of 1

2 (222)− 1 ( = about 2 million) predictors is the maximum number
that the current implementation of the predictor selection algorithm, the Positive
Lasso, can handle simultaneously.
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To generate the Gray codes within PROXGRAPH, we used a Matlab transcription
by Burkardt of the original algorithms for generating Gray codes in Nijenhuis and
Wilf (1978) (see http://www.csit.fsu.edu/ burkardt/, Fortran and C++ files of the
same algorithms are also available at this site). Both binary code and Gray code
have the convenient attribute that features can be (re)produced by a simple integer
or rank number. This property saves computer memory because it is not necessary
to save the entire sequence of 1

2 (2m) − 1 features, since the original feature set can
be retrieved by simply keeping track of the corresponding integer or rank number.
Another advantage of saving the integer or rank numbers is the possibility of getting
back the original features after transformations to featurewise distances have been
applied on those features. In the Feature Network Models one important transfor-
mation performed on the features is the transformation from the (m × T) matrix E
representing the T features that describe the m objects to the matrix X of size (n× T),
that contains the symmetric set difference for each of the n = 1

2 m(m− 1) object pairs
(Equation 4.6). This matrix X is also the format for the features when submitted to
the feature selection algorithm. The problem with this transformation is that it is not
reversible because the results are not unique. In the simple example of one feature
and two objects the result 0 can come from x12 = |1− 1|, where both objects have the
feature, or from x12 = |0− 0|, where neither of the objects possesses the feature. The
result 1 is not unique either. It means that one of the two objects has the feature, but
it is not clear which object has the feature. Therefore, saving the rank numbers of the
features in the set before applying the transformation, makes it possible to reproduce
the original feature matrix at the end of the entire feature selection process.

Selecting a subset of features with the Positive Lasso

Above we have shown that the FNM can be considered as a univariate multiple
linear regression problem with positivity constraints on the feature discriminability
parameters (see Equations 4.3, 4.4, and 4.5). When the features are known in ad-
vance and their number is reasonably small, the feature discriminability parameters
can be obtained directly by minimizing the nonnegative least squares loss function
of Equation 4.5. However, in the case of unknown features, the Gray codes are used
to generate a very large number of features, and, as a result, the simple nonnega-
tive least squares loss function cannot be used. The large number of features calls
for a variable selection method. There are many methods available for variable se-
lection, see for example a recent review by Guyon and Elisseeff (2003). Given the
multiple regression context of the FNM, we have chosen the least absolute shrink-
age and selection operator (Lasso). The Lasso is a constrained version of ordinary
least squares (OLS) and minimizes the residual sum of squares subject to the sum
of the absolute value of the coefficients being less than a constant (Tibshirani, 1996).
Let x1, x2, · · · , xT be n-vectors representing the T featurewise distances with n equal
to the number of unique pairs of objects, and δδδ the n vector of dissimilarities. It is
assumed that the featurewise distances have been standardized to have mean 0 and
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unit length and that the response variable (δδδ) has mean 0:

n

∑
l=1

δl = 0,
n

∑
l=1

xnt = 0 and
n

∑
l=1

x2
lt = 1 for t = 1, 2, · · · , T. (4.7)

Applied to the context of the FNM, the Lasso loss function can be written in the
following way:

min
ηηηL

= ‖δδδ− XηηηL‖2 subject to G(ηηηL) 6 b, (4.8)

where the constraint G(ηηηL) = ∑T
t=1|ηt| and b ≥ 0 is the tuning parameter that con-

trols the amount of shrinkage. If η̂ηη0 is the vector of ordinary least squares estimates
and b0 = ∑T

t=1|η̂0
t |, the Lasso estimates become the ordinary least squares estimates

for values of b > b0. On the other hand, values of b < b0 will cause shrinkage of
the solutions toward 0, and some of the coefficients will become exactly equal to 0.
This effect constitutes the parsimony property that characterizes the Lasso compared
to ridge regression, which is related to the Lasso and is probably more generally
known.

For any given constraint value b in the path of Lasso solutions6, only a subset
of the features has non-zero values of the regression coefficients η̂. While ridge re-
gression also shrinks coefficients, it does not, however, set any coefficients to 0 and,
as a result, does not lead to more simple models. The differences in the nature of
shrinkage between the Lasso and ridge regression result from the constraints used
in both methods. Both methods use the residual sum of squares loss function, but
where the Lasso uses the constraint ∑T

t=1|ηt|, ridge regression uses ∑T
t=1 η2

t instead
(see for more details: Hastie et al., 2001; Tibshirani, 1996). From the viewpoint of ge-
ometry, the Lasso constraint leads to a constraint region with corners and flat edges,
while ridge regression leads to round shaped constraint regions, see Figure 4.2. The
residual sum of squares function has elliptical contours and both methods find the
first point where these elliptical contours hit the constraint region. In the case of the
Lasso, when the elliptical contours hit a corner, some of the estimated parameters
become exactly 0, while in the case of ridge regression the estimated parameters will
never become 0 because the elliptical contours will never hit a corner.

In general, shrinkage improves prediction accuracy, trading off decreased vari-
ance for increased bias, Hastie et al. (2001). For the special case of the Lasso, shrink-
age leads to more parsimonous models because some coefficients become exactly
zero. Another advantage of the Lasso, especially useful for the FNM context, is that
it does not suffer from overfit or highly correlated settings because it avoids the ex-
plicit use of the OLS estimates. This means that the design matrix X need not be
of full rank, which is very convenient in a situation with a very large number of
featurewise distances.

6In contrast to ordinary least squares, the Lasso does not yield a single solution but a path of solutions
depending on the values of the tuning parameter b. Typically, Lasso solutions are computed for several
values of b, ranging from b = 0 to b = b0. An example of a path of Lasso solutions can be viewed in
Figure 4.3, starting with b = 0, which forces all coefficients to become zero, and ending with the value of
b = b0 equal to the sum of the coefficients of the ordinary least squares solution.
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Figure 4.2: Graphs of estimation for the Lasso (left) and ridge regression (right) with con-
tours of the least squares error functions (the ellipses) and the constraint regions, the diamond
for the Lasso and the disk for ridge regression. The corresponding constraint functions are
equal to |β1| + |β2| 6 b for the Lasso and β2

1 + β2
2 6 b2 for ridge regression . It is clear that

only the constraint function of the Lasso can force the β̂-values to become exactly equal to 0.
(The graphs are adapted from Hastie et al. (2001), p. 71).

The computation of Lasso solutions is a quadratic programming problem, and
can be solved by numerical analysis algorithms, but the LARS or Least Angle Re-
gression (Efron et al., 2004) is a better approach. The LARS algorithm works as
follows. It starts with all feature parameters of the vector η̂ηη = (η̂1, η̂2, · · · , η̂T)′ equal
to 0. The next step is to find the predictor xt most correlated with response δδδ, which
is added into the model. The residuals r = d̂ − δδδ are calculated and the parameter
η̂t is increased in the direction of the sign of its correlation with δδδ until some other
feature xk has as much correlation with the current residual vector as does xt. The
feature parameters (η̂t, η̂k) are increased in their joint least squares direction, until
some other feature xq has as much correlation with the current residual. The just
described steps are repeated until all features have been entered in the model and
the process stops when corr(r, xt) = 0 ∀ t, which corresponds to the OLS solution. In
the situation where the number of predictors T exceeds the number of observations
n, the LARS algorithm terminates at the saturated least squares fit after n − 1 pre-
dictors have entered the active set (see, for more details, Efron et al., 2004, p. 444).
The number n− 1 follows from mean centering the columns of the matrix of predic-
tors X which results in a row-rank equal to n − 1. It should be noted however, that
although the model contains no more than n − 1 predictors, the number of different
predictors that have entered the model during the complete sequence of solutions is
typically greater than n− 1.

LARS provides an efficient way to compute the Lasso sequence of solutions si-
multaneously for all values of b, as b varies from 0 to infinity by applying the fol-
lowing modification: if a non-zero parameter becomes zero, it is removed from the
active set of features and the joint direction is recomputed. The implementation
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of LARS in R also allows for the transformation of the Lasso into a Positive Lasso
necessary for the FNM where all feature discriminability parameters should be pos-
itive. We applied the procedure described in Efron et al. (2004, section 3.4, p. 421)
to the LARS algorithm programmed in R. The result is the solution of the following
minimization function:

min
ηηηPL

= ‖δδδ− XηηηPL‖2 subject to G(ηηηPL) 6 b and all ηt > 0, (4.9)

where the constraint in Equation 4.8 is extended with a positivity constraint for the
feature discriminability parameters.

Selecting the number of features with an AIC criterion

The Lasso and the Positive Lasso do not yield a single solution η̂ηη, but a path of
possible solutions defined by the continuum depending on the values of the tuning
parameter b, which represents the amount of shrinkage. Choosing a value for b leads
automatically to the choice of the number of features in the model, i.e. the number
of features with nonzero η̂-values. The problem is to choose a good value for the
a priori unknown b, such that the corresponding model minimizes the prediction
error.

Efron et al. (2004) proved that for some LARS estimators, the best value for b can
be found with an adaptation of Mallows’ Cp statistic (Mallows, 1973, 1995), where
the step number of the LARS algorithm is used as an estimate for the degrees of free-
dom of the corresponding model. For the Lasso and the Positive Lasso estimators,
the step number of the LARS algorithm cannot be used as an estimate for the degrees
of freedom because the total number of steps can exceed the total number of predic-
tors in the full model. However, recently, Zou, Hastie, and Tibshirani (2006) showed
that the number of non-zero coefficients is an unbiased estimate for the degrees of
freedom for the Lasso, an informative measurement of model complexity, with no
special assumptions on the predictors. This estimate for the degrees of freedom in
the Lasso can be used to estimate the prediction error of each of the models along
the path of Lasso solutions by the following AIC criterion, derived especially for the
Lasso (Zou et al., 2006):

AICL =
‖δδδ− d̂‖2

n
+

2
n

d̂ f (d̂)σ2
L , (4.10)

where d̂ = Xη̂ηηL, and the error variance σ2
L , if unknown, is replaced with an estimate

based on the largest model. In the case where the number of predictors exceeds the
number of observations, the largest model in the total sequence of Lasso solutions
resulting from the LARS algorithm, involves at maximum n − 1 predictors. Since
the largest model is a (nearly) saturated model, the error variance is very close to
zero. Therefore, we estimated σ2

L in Equation 4.10 by taking the mean of the error
variances of all models in the sequence of Lasso solutions.

The AICL criterion, which approximates the Mallows’ Cp statistic (Mallows, 1973,
1995) closely, has been shown to offer substantially better accuracy than cross-vali-
dation and related nonparametric methods, if one is willing to assume the model
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is correct (Efron et al., 2004; Zou et al., 2006). We used the AICL criterion to select
the best model for the Positive Lasso solutions and to assess the prediction error,
assuming that the theory about the effective number of non-zero parameters applies
for the Positive Lasso as well. To our knowledge it is the best criterion available at
the moment.

Figure 4.3 shows the results of the modifications of the Lasso-LARS algorithm
into the Positive Lasso as in Equation 4.9 using the theoretical (phonetic) features
of the consonant data (Table 4.1). The left top panel shows the paths of the Lasso
estimates of the feature discriminability parameters against the degrees of freedom
expressing the effective number of nonzero parameters. Feature 5 (place, middle)
obtains negative feature discriminability parameters along the path. The right top
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Figure 4.3: Estimates of feature parameters for the consonant data. Top panels: trajectories of
the Lasso estimates η̂L (left panel) and the AICL values plotted against the effective number
of parameters (= d f ) of the Lasso algorithm (right panel). The model with lowest AICL value
(= 0.65) contains all 7 features. Lower panels: trajectories of the Positive Lasso estimates η̂PL
(left panel) and the adjusted AICL values plotted against the effective number of parameters
(= d f ) of the Positive Lasso algorithm (right panel). The model with lowest AICL value (=
0.71) has 5 features.
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Table 4.4: Estimates of feature discriminability parameters (η̂ICLS = ICLS, η̂L = Lasso, and
η̂PL = Positive Lasso) for the consonant data

Features η̂ICLS η̂L η̂PL

intercept 2.11 2.22 2.39
Voicing 1.22 1.20 1.07
Nasality 0.81 0.80 0.62
Affrication 0.12 0.11 0.00
Duration 0.32 0.31 0.22
Place, middle 0.00 -0.25 0.11
Place, front 0.10 0.15 0.00
Place, back 0.26 0.28 0.09

panel shows the AICL values at each step of the iterations, plotted against the esti-
mated degrees of freedom, represented by the effective number of non-zero param-
eters as in Equation 4.10. The AICL curve, which also represents the estimates of
prediction error, shows that the best model occurs at 7 d f , the model that contains
all features. The complete model corresponds to the ordinary least squares solution
because the Lasso always converges to it. The lower left panel shows the path of
the Positive Lasso estimates of the feature discriminability parameters and it is clear
that all trajectories stay in the positive part of the parameter space. The AICL curve
in the lower right panel indicates that the best model occurs at d f = 5 with only 5 of
the 7 features present in the model.

Table 4.4 displays the estimates of feature discriminability parameters according
to the best Lasso model and the best Positive Lasso model based on the AICL curves
compared to the inequality constrained least squares estimates obtained with Equa-
tion 4.5. In this case the Lasso estimates η̂L are equal to the ordinary least squares
estimates, without positivity constraints, and yield a negative coefficient value for
feature place, middle. The Positive Lasso estimates η̂PL show that the two features
affrication and place, front have coefficient values equal to zero as a result of activated
positivity constraints, and consequently, these two features are not part of the model.
This finding confirms the results of the 95% CI presented before (Table 4.2) showing
that the feature parameters (η̂ICLS) of these two features do not significantly differ
from zero7.

7It should be noted that from the perspective of phonetic theory, it is rather unusual that the feature
affrication disappears from the model and should probably be ascribed to the experimental conditions
used by Miller and Nicely (1955). The authors presented the consonants under 6 different signal-to-
noise conditions and, as a result, the non-fricative consonants become contaminated with noise and are
no longer distinguishable from the fricatives. The same experimental conditions could also explain the
fact that voicing has so much influence, while it is known as a phonetic feature that is easily lost during
perception.
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Generating features by taking a random sample combined with a filter

When the number of objects m exceeds 22, it is not possible to generate the complete
set of distinctive features. In that case, we propose to take a sample from the total
number of rank numbers representing the Gray codes associated with the number
of objects. This sample might still be too large to be submitted to the Positive Lasso
algorithm and necessitates some preselection strategy. Preselection is often used as
a preprocessing step before variable subset selection. A review on this topic has
been given by Guyon and Elisseeff (2003). A common preselection strategy is the
ranking method that performs this preprocessing step by selecting variables that
have high values on a scoring function, usually the coefficient of determination or
R2 (Guyon & Elisseeff, 2003). The variables are sorted in decreasing order based
on their values on the scoring function. To build a predictor, nested subsets are
constructed which incorporate progressively more variables of decreasing relevance.
Other scoring functions are the correlation, where positively correlated variables are
top ranked and negatively correlated variables bottom ranked. We propose the use
of the regression coefficient, or, in the context of FNM, discriminability parameter η̂,
which is a scaled version of the correlation coefficient as can be seen in the following
relation (cf. Draper & Smith, 1998, p. 42):

η̂ =
sδδδ

sx
rδδδx, (4.11)

where sδδδ and sx are the standard deviations of the dependent variable δδδ and the
predictor variable x, and rδδδx is the correlation between the dependent variable and
the predictor variable. It is clear that when both δδδ and x are standardized, as required
for the Positive Lasso, the regression coefficient is equal to the correlation.

Example of feature generation and selection on the consonant data

The previous section showed the results of the Positive Lasso on the a priori phonetic
features of the consonant data. In many data analytic situations, the features are not
given by theory. This section shows an example of feature generation using Gray
codes followed by feature selection with the Positive Lasso on the same consonant
data. First, all possible distinctive features were generated with the number of Gray
codes equal to 1

2 (216)− 1 = 32, 767 because there are 16 consonants, yielding a 16×
32, 767 matrix of objects by features. After transformation of this matrix into the
120× 32, 767 matrix X using Equation 4.6, the complete set of featurewise distances
was analyzed with the Positive Lasso algorithm.

Figure 4.4 shows that the AICL curve attains its lowest value (= 0.51) at the
model with 7 features. Table 4.5 shows the values of the feature discriminability
parameters for the feature matrix obtained from phonetic theory and for the feature
matrix resulting from the Positive Lasso algorithm. The model resulting from the
Positive Lasso has higher fit (R2 = 0.70) and lower prediction error values compared
to the model based on phonetic theory.

Table 4.6 displays the features of the model selected by the Positive Lasso algo-
rithm juxtaposed to the 7 features based on phonetic theory. Comparing the features



100 CHAPTER 4. FEATURE SELECTION IN FEATURE NETWORK MODELS

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

A
IC

 (
Cp

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 23 24 34 33 33 61 60 59 59 70 69 69 75 74 74 89
Df

Figure 4.4: AICL-plot for the consonant data using all possible features generated with Gray
codes (T = 32, 767). The lowest AICL value (= 0.51) points to a model with 7 features.

from phonetic theory to the features resulting from the Positive Lasso, leads to the
conclusion that the two feature sets are very different from each other, except for
the first feature that represent the phonetic property voicing. The remaining features
selected by the Positive Lasso do not seem to be related to the theoretic phonetic
properties of the consonants. However, the network representation of the feature set
selected by the Positive Lasso displayed in Figure 4.5 does make sense in terms of
phonetics: there is a clear distinction between the voiced consonants (m, n, b, d, ð,
g, v, z, Z) on the left part of the configuration and the unvoiced consonants on the
right part. The nasals (m, n) form a distinct cluster, showing the importance of the
phonetic property nasality. The cluster (s, θ) represents middle voiceless consonants
and the cluster (ð, b, v) front and middle voiced consonants. Another cluster that
can be distinguished comprise the voiceless plosives, (p, t, k) opposed to the three
voiced plosives (b, d, g)8. The clusters just described correspond to clusters found
with ADCLUS by Shepard and Arabie (1979) and with MAPCLUS by Arabie and Car-
roll (1980).

8From the perspective from phonetics, the same remarks that were made in footnote7 for the solution
of the set of 7 theoretic features in Figure 4.3 and Table 4.4 also apply to this solution.
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4.3 Simulation study

In this section we report a Monte Carlo experiment that evaluated the performance
of our method given that the true feature structure (the true model) is known in ad-
vance. The first question that will be addressed is the following: does the Positive
Lasso select the correct subset of features given that the true feature set is known, un-
der different data analytic conditions such as error, n/T ratio (number of object pairs
compared to the number of features), and the size of the feature discriminability pa-
rameters? The performance criterion of this study is the proportion of recovery of
the true features, measured by Gray code rank number. We verified the baseline con-
dition of the proportion of recovery on error-free data, which resulted in complete
recovery of the correct features for the experimental conditions. Another question
addressed by the simulation study is: how does the method of random sampling
from Gray codes combined with a filter perform compared to the complete enumer-
ation method? Proportion of recovery of true features is not a useful performance
criterion in this situation because random samples of features are taken and that
would merely result in testing the performance of the pseudo-random number gen-
erator, instead of testing the performance of the method. Instead, the following mea-
sures serve as outcome: the effective number of parameters (Df ) and the prediction
error (AICL).
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Figure 4.5: Feature Network representation for the consonant data based on the feature ma-
trix selected by the Positive Lasso displayed in Table 4.6. (dh = ð; zh = Z; th = θ; sh = S).
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Table 4.5: Positive Lasso estimates, R2, and prediction error (K-fold cross-validation) for
the features from phonetic theory (left) and for the features selected from the complete set of
distinctive features (right)

Features from phonetic theory Features selected from the complete set

Features η̂PL Features η̂PL

intercept 2.39 intercept 2.03
Voicing 1.07 F1 0.91
Nasality 0.62 F2 0.33
Affrication 0.00 F3 0.30
Duration 0.22 F4 0.35
Place, middle 0.24 F5 0.22
Place, front 0.00 F6 0.36
Place, back 0.09 F7 0.19

Model fit
R2 0.56 0.70

Prediction error (standard error) based on K-fold cross-validation
K=5 0.35 (0.08) 0.29 (0.04)
K=10 0.35 (0.07) 0.27 (0.05)

Method for simulation study

The experimental conditions of this simulation study result from the cross classifi-
cation of five experimental variables with two levels each. For each experimental
condition, a total of 50 simulation samples were generated. The first experimental
variable is the number of objects m = 12 or 24. The second experimental variable is
the ratio of the number of observations n and the number of features T and has two
levels: n/T = 16 and n/T = 8. Given the two levels of number of objects, the number
of observations n is equal to the number of object pairs n = 1

2 m(m − 1). For the 12
objects condition, which has n = 66, the number of features needed to obtain the two
n/T ratios is 4 and 8. For the 24 objects condition (with n equal to 276) the number
of features needed is equal to 17 and 35. The third experimental variable is the size
of the feature discriminability parameters with two levels: medium values (M) and a
combination of small and large values (S + L). Depending on the number of features
needed the following patterns of 4 feature discriminability parameters is repeated.
For the medium values conditions the pattern is {2.0, 2.5, 1.5, 3.0} and for the small +
large values the pattern is {6.0, 0.2, 0.5, 0.3}. The fourth experimental variable is the
amount of error added to the data, and comes in two levels: 0.05 (low) and 0.35 (high).
The fifth experimental variable is the feature generation strategy, which consists of ei-
ther generating the whole set of possible features using half of the complete Gray
code sequence, or a set of the 100 best features based on the filter criterion of largest
separate η̂ value selected from a large random sample (30%) of all possible features.
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Using the whole set of possible features is only feasible for the 12 objects condition.
As a result, the random sample strategy was applied to all 16 combinations of the
experimental variables (number of objects, n/T ratio, size of the feature discriminability
parameters, amount of error), and the complete set of features strategy was used for
the 12 objects condition only, leading to 6 experimental conditions obtained from
the combination of n/T ratio, size of the feature discriminability parameters and amount
of error. The 50 simulation samples in each experimental condition were submit-
ted to the Positive Lasso algorithm and the performance of the selected models was
evaluated by the following measures that serve as outcome variables: the effective
number of features (Df = the number of nonzero parameters) and the prediction
error AICL obtained with Equation 4.10.

Generating true configurations and sampling dissimilarities

The true configurations are defined by the three experimental variables number of
objects, n/T ratio, and size of the feature discriminability parameters. The combination
of the levels of these three experimental variables results into 8 experimental condi-
tions. For each of these conditions, a feature matrix was created by taking a random
sample from the total number of feature patterns for a given number of features (4,
8, 17, and 35). This method generates features for the number of bits equal to the
number of features and results in a matrix of size [ 1

2 (2T)− 1]× T that represents the

Table 4.6: Matrices of features based on phonetic theory (left) and of features selected by the
Positive Lasso (right)

Features from phonetic theory Features selected by Positive Lasso

Consonants F1 F2 F3 F4 F5 F6 F7 F1 F2 F3 F4 F5 F6 F7

p 0 0 0 0 0 1 0 1 1 1 0 0 1 0
t 0 0 0 0 1 0 0 1 1 1 0 0 1 0
k 0 0 0 0 0 0 1 1 1 1 0 0 1 0
f 0 0 1 0 0 1 0 1 1 1 0 1 1 0
θ 0 0 1 0 1 0 0 1 1 1 1 1 1 0
s 0 0 1 1 1 0 0 1 1 1 1 1 1 0
S 0 0 1 1 0 0 1 1 1 1 1 0 0 0
b 1 0 0 0 0 1 0 0 1 1 1 1 1 1
d 1 0 0 0 1 0 0 0 0 1 1 1 1 1
g 1 0 0 0 0 0 1 0 0 1 1 1 1 1
v 1 0 1 0 0 1 0 0 1 1 1 1 1 1
ð 1 0 1 0 1 0 0 0 1 1 1 1 1 1
z 1 0 1 1 1 0 0 0 0 1 1 1 1 1
Z 1 0 1 1 0 0 1 0 0 0 1 1 1 1
m 1 1 0 0 0 1 0 0 0 0 0 0 0 0
n 1 1 0 0 1 0 0 0 0 0 0 0 0 0
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Table 4.7: Feature matrices for 12 objects and rank numbers used to construct the true con-
figurations for the simulation study

4 features condition 8 features condition

F1 F2 F3 F4 F1 F2 F3 F4 F5 F6 F7 F8

0 1 0 1 1 1 0 0 0 0 0 1
0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0 0 1
0 0 1 1 0 1 0 0 0 1 0 1
0 1 1 1 1 0 0 1 0 0 1 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0 0 1 0
0 1 1 0 1 1 0 1 1 1 1 1
1 0 1 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0

1161 322 688 86 691 415 1921 444 1533 1568 1729 495

complete lattice of possible feature patterns for the given number of features. Se-
lecting at random 12 or 24 (corresponding to the number of objects) feature patterns
yields a connected network. It should be noted that this method is slightly different
from the way the Gray codes are used to create the complete set of distinctive fea-
tures, where Gray codes are generated for the number of bits equal to the number
of objects instead of the number of features. Table 4.7 shows the resulting feature ma-
trices for 12 objects and 4 or 8 features with on the bottom row the corresponding
Gray code rank numbers. The distances of the true configurations were computed
using the levels of the experimental variable size of the feature discriminability param-
eters. The network representations for the 12 objects with 4 and 8 features and the
two different levels of the sizes of feature discriminability parameters are displayed
in Figure 4.6.

The true distances d for these configurations were obtained with d = Xηηη, where
ηηη represents the experimental values of the feature discriminability parameters, and
X results from the transformation from Equation 4.6 applied on the feature matrices
displayed in Table 4.7. The feature matrices and configurations for the 24 objects
condition were obtained in exactly the same way. For each of the experimental con-
ditions 50 samples of dissimilarities were obtained with the two levels of error using
the binomial distribution to ensure positive dissimilarity values that follow a normal
distribution. The details of the method of sampling from the binomial distribution
are described in Frank and Heiser (in press a).
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Figure 4.6: Feature network plots for the experimental conditions for 12 objects. A = 4 fea-
tures, medium ηηη; B = 4 features, small + large ηηη; C = 8 features, medium ηηη; D = 8 features,
small + large ηηη.

Results simulation study

Simulation results of the strategy using the complete set of Gray codes

This section answers the question whether the Positive Lasso selects the correct sub-
set of features given that the true feature set is known, under different data analytic
conditions. Table 4.8 shows the proportions of correctly recovered true feature rank
numbers for the 50 simulation samples under the experimental conditions defined
by combined levels of error, number of features and feature parameter size. In gen-
eral, the true features are better recovered in the medium feature parameter values
condition, compared to the combination of small and large feature parameter values.

When the feature parameter values all have medium size, the recovery is mainly
affected by the ratio of the number of features compared to the number of observa-
tions (n/T). When the true number of features is small (n/T=16), there is perfect
recovery of the features, regardless of the error level. In the condition of larger num-
ber of features compared to the number of observations (n/T=8) the true number
of features is less well recovered. In the low error condition the proportions range
from 0.86 to 1.00, with perfect recovery for the features with the highest true feature
parameter values. In the high error condition, the features with the highest true fea-
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ture parameter values are perfectly recovered, while the features with the lower true
feature parameter values are less well recovered with proportions ranging from 0.00
to 0.62. The condition of combined small and large feature parameter values shows
a different pattern: the features with large feature parameter values are perfectly
recovered in all conditions formed by the combination of error level and the ratio
of number of features compared to the number of observations. The features as-
sociated with small feature parameter values are recovered with small proportions
in the condition of small number of features compared to the number of observa-
tions (n/T=16), and are almost never recovered in the condition of larger number of
features compared to the number of observations (n/T=8).

Additional information on fit and effective number of features in the selected
models is displayed in Figure 4.7, which shows the distributions of 50 simulation
samples on 12 objects for all experimental conditions, using the complete set of dis-
tinctive features. The panels on the first row represent the effective number of fea-
tures (= Df ) selected by the Positive Lasso for each simulation sample and the true

Table 4.8: Proportion of correctly recovered features from the complete set of distinctive
features under combined levels of error (L = low; H = high), the ratio of the number of object
pairs and the number of features (= n/T ratio), and feature parameter (η) sizes, medium and
small + large.

n/T = 16 medium η values

2.0 2.5 1.5 3.0
Error
L 1.00 1.00 1.00 1.00
H 1.00 1.00 1.00 1.00

small + large η values

6.0 0.2 0.5 0.3
Error
L 1.00 0.02 1.00 0.36
H 1.00 0.00 0.22 0.00

n/T = 8 medium η values

2.0 2.5 1.5 3.0 2.0 2.5 1.5 3.0
Error
L 0.98 1.00 0.94 1.00 0.94 1.00 0.86 1.00
H 0.62 1.00 0.16 1.00 0.42 1.00 0.00 1.00

small + large η values

6.0 0.2 0.5 0.3 6.0 0.2 0.5 0.3
Error
L 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
H 1.00 0.00 0.00 0.00 1.00 0.02 0.00 0.00
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number of features is represented as a dashed line. The panels on the second row
show the associated AICL values, which are measures of prediction error for the se-
lected models. Each of the eight panels represents the two error levels, low (L) and
high (H). The four panels on the left correspond to the condition with medium η
values and the four panels on the right (first row and second row) correspond to the
condition with small + large η values.

Since the pattern of the outcomes differs in these two levels of η values, we de-
scribe the results separately, beginning with the medium condition. The panel on the
left of the first row shows the results for true number of features equal to 4. When
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Figure 4.7: Boxplots showing the distributions of 50 simulation samples on 12 objects using
the complete set of Gray codes. The experimental conditions are medium (left panels) and
small + large (right panels) η values, two error conditions, low (L) and high (H), and two
levels of true number of features (4 and 8) corresponding to two levels of n/T ratio equal to
16 and 8. The top panels show the effective number of features selected for each sample (=
Df ) with the true number of features represented as a dashed line. The lower panels show the
associated AICL values.



108 CHAPTER 4. FEATURE SELECTION IN FEATURE NETWORK MODELS

error is low, the true number features are well recovered by the Positive Lasso, with
a little overfitting for a small proportion of samples. The high error condition clearly
shows some overfitting, because most of the models selected by the Positive Lasso
contain 6 features. The corresponding AICL values show that prediction error is
lower when error is low. The next panel shows the results for true number of fea-
tures equal to 8, meaning that there are more features compared to the number of
observations than in the previous condition of 4 features. In the low error condition,
there is a considerable amount of overfitting because most of the selected models
contain 14 features. The high error condition shows that most of the selected mod-
els contain the right number of 8 features. The associated AICL values show that the
prediction error is higher in the high error condition, and that, despite the overfitting
in the low error condition, the prediction error is still very acceptable.

The results for the small + large η values show a different pattern. In the model
with 4 features, most of the samples in the low error condition recover models with
4 features, but some overfitting is clearly present. Most of the models selected in the
high error condition, have fewer than 4 features. The prediction error is lower in the
low error condition than in the high error condition. In the model with 8 features,
the selected models all have 2 features, regardless of the error level. This substantial
amount of underfitting does not have an effect on the prediction error, which is very
low in both conditions. Combining these results with the findings in Table 4.8, we
know that, in almost all the samples, the two features with the highest η values are
selected.

Summarizing, the true number of features are best recovered in the 4 features
model, for both medium and small + large η values. The 8 features model, shows
some overfitting for the medium η values, and some underfitting for the small +
large η values. In all conditions, the prediction error is satisfactory.

Simulation results on random sample of Gray codes + Filter

The model based on 12 objects allows for comparing the strategy of taking a random
sample of features from all possible Gray codes combined with the use of a filter with
the strategy of using the whole set of possible distinctive features obtained with all
possible Gray codes. To assess the performance of the random sample strategy, the
same simulation samples for the 12 objects used with the complete set of distinctive
features, were analyzed again using the random sample strategy. The results of the
random sample strategy are displayed in Figure 4.8. Since the same samples are
used, Figure 4.8 can be compared directly with the results of Figure 4.7 that is based
on the complete set of distinctive features.

The results in Figure 4.8 show that in the majority of the experimental conditions,
the number of features selected by the Positive Lasso are equal to, or very close to the
number of features in the true model. The best results in terms of recovered number
of features are obtained when the true feature parameter values are a combination of
small and large values. The best prediction error values occur when the true model
has smaller number of features (the 4 features model) for both the medium and the
small + large η values. When the true number of features is not recovered, there is,
in general, a tendency towards overfitting. In particular, the condition with medium
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η values and 4 features as the true model, shows a considerable amount of overfit-
ting. However, the associated prediction error values are still the lowest of all the
experimental conditions. In conclusion, compared to the method using the complete
set of distinctive features, the random sample strategy has higher prediction error,
but, in general succeeds in finding subsets of features of (about) the same number as
the true models, besides a tendency to overfit in some conditions.

The simulation results for the model based on 24 objects provided additional
information on the random sample strategy. Figure 4.9 clearly shows that in this
case, the number of features selected by the Positive Lasso exceeded the true number
of features considerably, even more when the true number of features is equal to 35,
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Figure 4.8: Boxplots showing the distributions of 50 simulation samples on 12 objects us-
ing a large random sample of the complete set of Gray codes combined with a filter. The
experimental conditions are medium (left panels) and small + large (right panels) η values,
two error conditions, low (L) and high (H), and two levels of true number of features (4 and
8) corresponding to two levels of n/T ratio equal to 16 and 8. The top panels show the ef-
fective number of features selected for each sample (= Df ) with the true number of features
represented as a dashed line. The lower panels show the associated AICL values.
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Figure 4.9: Boxplots showing the distributions of 50 simulation samples on 24 objects using
a large random sample of the complete set of Gray codes. The experimental conditions are
medium (left panels) and small + large (right panels) η values, two error conditions, low (L)
and high (H), and two levels of true number of features (17 and 35) corresponding to two
levels of n/T ratio equal to 16 and 8. The top panels show the effective number of features
selected for each sample (= Df ) with the true number of features represented as a dashed line.
The lower panels show the associated AICL values.

the condition where the number of features is larger compared to the number of
observations (n/T = 8 condition). The prediction error is much lower for the 17
features model (the condition n/T = 8). It is clear that many more features are
needed to obtain models with acceptable levels of prediction error.
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4.4 Discussion

This paper introduces a method to generate and select a subset of features for the
Feature Network Models. It combines feature enumeration using Gray codes with
a predictor selection algorithm, the Positive Lasso. The fact that FNM can be con-
sidered as a univariate multiple regression problem allows for the use of this type
of predictor selection algorithm. The advantages of the multiple regression frame-
work had not been fully explored in earlier feature models related to the FNM. In
the following we discuss the two basic elements that constitute our method.

The first element is the enumeration of features with Gray codes. The enumera-
tion of all possible subsets makes use of the adjacency property of the Gray codes,
the property that successive numbers differ exactly in one bit. In our study, we did
not explicitly use the adjacency property in the feature selection strategy. Instead of
exploiting the adjacency property of the Gray codes, we used the codes to efficiently
list all possible features where each feature is generated exactly once. The gain of
using the Gray code results from its combination with the transformation from the
objects × features matrix E to the object pairs × featurewise distances matrix X. This
transformation limits the search for predictors to the set of truly distinctive features.
To our knowledge, the explicit search in the space of distinctive features has not been
used as a predictor generation and selection strategy before. The adjacency property
proved to be useful in the simulation study where we needed connected networks
to represent the true network configuration. The list of Gray codes for the number
of bits equal to the number of features (instead of equal to the number of objects)
results in a lattice, or the complete network of all possible feature patterns. Select-
ing m feature patterns from this matrix of size [ 1

2 (2T) − 1] × T ensures a connected
network representation for a given number of objects.

In this context, it should be noted that features can be generated using Gray codes
in two ways. The first method amounts to generating Gray codes for the number of
bits equal to the number of objects. This method is suitable in the situation where
there is no a priori knowledge about the possible number of features suitable for
the data at hand. Features generated in this way yield a feature matrix of size m ×
[ 1

2 (2m)− 1], which obviously leads to a feature selection problem because there are
far more features than observations. The second method is more appropriate for the
situation where there is some knowledge available on the number of features that
would be reasonable for the data. In that case, features could be generated for the
number of bits equal to the number of features instead of equal to the number of
objects, resulting in a matrix of size [ 1

2 (2T)− 1]× T. Again, the symmetric property
of the Gray code allows for discarding the second half of the code. It is no longer
a feature selection problem because the number of features is known in advance,
but rather a problem of finding the right feature pattern for each object, a problem
related to the travelling salesman problem. The set of all possible feature patterns
given a fixed number of features can be viewed as a lattice, or complete network of
all possible feature patterns. The best selection of feature patterns to describe a given
number of objects should correspond to one of the possible shortest path routes on
this lattice.
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For the situation where one searches for sets of fixed numbers, Gray codes have
been frequently used to list all p-element subsets of a q-element set in such a way
that consecutive sets differ by exactly only one element (cf. Nijenhuis & Wilf, 1978).
Applying this particular use of Gray codes to the FNM would lead to the complete
enumeration of all possible subsets of features. It is well known that the number of
subsets grows exponentially with the number of objects m and the number of fea-
tures, limiting the strategy to a very small number of objects and features (a small
explorative study showed that in the context of FNM complete enumeration of all
subsets is limited to number of objects 6 5 and number of features 6 9). Attack-
ing the problem of selecting a subset of features in this way would be an NP-hard
problem (NP = nondeterministic polynomial problem, a category of problems that
cannot be solved exactly in polynomial time, but for which the verification of the
solution can be accomplished in polynomial time). Even if optimal solutions could
be obtained, they would not necessarily yield a good compromise between model
complexity and prediction accuracy. Since our method attempts to achieve this com-
promise it is difficult to compare it to conceptually different techniques like the afore-
mentioned and the cluster differences scaling algorithm that has been used earlier
in FNM.

Using our method, the generation of all possible distinctive features with Gray
codes is feasible for m 6 22. Simple binary codes could have been used instead,
although, the generation of successive objects that differ in only one bit, might be
faster (cf. Savage, 1997). If the number of objects exceeds 22, features are gener-
ated by taking a very large sample from the whole set of Gray codes followed by
a filter technique that selects the features with the highest separate discriminability
parameters. The results of the simulation study show that in this case, the num-
ber of features selected by our method exceeds the true number of features in some
conditions. Therefore, feature generation for m > 22 must be further improved.

Given a very large set of features, obtained with the complete list of Gray codes or
a large sample of this list, the second element of our method consists of selecting the
best subset of features using the Positive Lasso, an adaptation of the Lasso algorithm
to meet the positivity constraints of FNM. The results obtained with the Positive
Lasso are in accordance with results obtained with the Lasso: the Lasso tends to
perform best with a combination of small and large parameter values (Friedman &
Popescu, 2006; Tibshirani, 1996). The results of our simulation study shows that the
best results are obtained in the condition formed by the combination of small and
large feature discriminability parameters. The Positive Lasso is also useful in the
situation of features given by theory or provided by the experimental conditions,
and helps to select the relevant features. We used the Positive Lasso as a tool, but it
certainly merits to be studied in its own right since all its properties are not exactly
known yet.

To select the amount of shrinkage, we used an AIC-like criterion adapted for
the Lasso context. It is well known that AIC, in contrast to BIC, has a tendency
towards overfitting (cf. Zou et al., 2006) and this property probably explains part
of the overfitting observed in our simulation study. However, it is also known that
AIC and BIC possess different asymptotic optimality (cf. Zou et al., 2006): if the
true regression function is not in the candidate models, the model selected by AIC
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asymptotically achieves the smallest average squared error among the candidates.
BIC on the other hand is known for its consistency in selecting the true model: if
the true model is among the candidate models, the probability of selecting the true
model with BIC approaches 1 as the sample size approaches infinity. Given our
setting, when the number of objects exceeds 22 and as a consequence we have to
take a large random sample from the total set of features, we know in advance that
the true model might not be present among the candidate models, which motivates
the choice for the AIC criterion. Yang (2005) recently explored the possibilities of
combining both strengths of BIC and AIC in the context of regression estimation
and concluded that there are some theoretical and empirical results in support of
adaptive model selection, but that it is still not clear whether it can really combine
the strength of AIC (= prediction optimality or minimax-rate optimality) with the
strength of BIC (consistency).

The combination of the two elements (the enumeration of features with Gray
codes and the selection of the best subset of features) leads to a method that aims
at selecting a subset of features that constitutes a good compromise between model
fit and model complexity. The Gray codes allow for defining a finite solution space,
which can be further reduced by restricting the search to the distinctive features only.
In fact, features are generated from a model instead of being the result of collecting
empirical data. Next, the Positive Lasso algorithm selects the best subset regardless
of the number of features in the set. Instead of searching for the optimal solution
in the distinctive features space, we prefer a suboptimal solution, selected with the
Positive Lasso, that has better generalizability properties.

The method described in this paper can be applied directly to the common fea-
tures model, with one restriction. Given that the total set of common features is
larger than the total set of distinctive features, the limits of complete enumeration of
the set of common features will be reached earlier than with 22 objects, the limit for
the distinctive features model.





Chapter 5

Network Representations of
City-Block Models 1

Abstract

City-block models for similarity always allow network representations that
reproduce the same distances as the unique coordinate representation. A rule
to construct such networks is given, based on additivity of city-block distances
across sequences of intermediate points along monotonic trajectories in space.
The paper also defines the concept of internal node, which helps in reducing the
complexity of networks and in making them better interpretable. The general
graph construction rule and definition of internal nodes also apply to the distinc-
tive features model, the common features model (additive clustering), as well
as to hierarchical trees, additive trees, and extended trees. Additivity is the key
property that makes the city-block metric so versatile and causes a basic unity of
dimensional, hierarchical and featural representations of similarity.

5.1 Network representations of city-block models

The city-block distance rule has been under consideration in psychology as a plausi-
ble model for similarity and difference for a long time (Arabie, 1991; Attneave, 1950;
MacKay, 2001; Micko & Fischer, 1970; Nosofsky, 1984; Shepard, 1964). It has been
used not only for human perception (Borg & Leutner, 1983; Garner, 1974; Shepard,
1987), but also for category learning (Kruschke, 1992; Zaki, Nosofsky, Stanton, &
Cohen, 2003), color vision and pattern recognition in honeybees (Backhaus, Menzel,
& Kreißl, 1987; Ronacher, 1992), as well as for perception of electric properties of ob-
jects by weakly electric fish (Emde & Ronacher, 1994). The model has caused a flux
of technical papers concerned with the computational complications that arise when
trying to fit city-block distances to error-contaminated (dis)similarity data (Brusco,
2001, 2002; Eisler, 1973; Eisler & Roskam, 1977; Groenen & Heiser, 1996; Groenen,

1This chapter has been submitted for publication as: Heiser, W. J. & Frank, L. E. (2005). Network
representations of city-block models. Submitted manuscript.
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Heiser, & Meulman, 1998, 1999; Heiser, 1989, 1991; Hubert & Arabie, 1988; Hu-
bert, Arabie, & Hesson-Mcinnis, 1992; Okada & Imaizumi, 1980). There are other
unsolved technical problems; for example, degeneracies in nonmetric multidimen-
sional scaling with all distances tied into only two values are more prevalent in the
city-block metric (and in the dominance metric) than in other Minkowski metrics
(Shepard, 1974). In this paper, we leave these technical issues aside, and focus pri-
marily on some theoretical properties that lead to equivalent representations of the
city-block model.

Substantively, the city-block model has played a major role in the classic distinc-
tion between integral and separable stimulus dimensions, which is an essential con-
sideration in most current experimental and theoretical analyses of category learn-
ing (Ashby & Maddox, 1990; Goldstone, 1994; Kruschke, 1992; Melara, Marks, &
Lesko, 1992; Nosofsky, 1992). Shepard (1964) reported two experiments specifically
designed to test if the metric of psychological space depends on the perceptual an-
alyzability of the stimuli, and found that for objects differing in size and angle of
orientation the city-block distance gave a better account of subjective judgments of
similarity and objective measures of generalization than the Euclidean distance. To-
gether with results on category learning (Shepard & Chang, 1963; Shepard, Hovland,
& Jenkins, 1961), these findings also demonstrated a fundamental role of selective at-
tention for analyzable stimuli (Shepard, 1991). This line of research culminated in the
generalized context model for category learning and attention allocation (Nosofsky,
1984, 1986, 1987, 1992; Nosofsky & Zaki, 2002; Zaki et al., 2003).

Closely connected to the integrality-separability distinction is the uniqueness of
the coordinate system. In the words of Attneave,

”One possible hypothesis would be that the psychological dimensions
are related like physical dimensions in Euclidean space. Another would
be that differences along different dimensions combine additively, in which
case composite judgments would be predicted by a multiple linear re-
gression equation. Perhaps the most significant psychological difference
between these two hypotheses is that the former assumes one frame of
reference to be as good as any other, whereas the latter implies a unique
set of psychological axes.” (Attneave, 1950, p. 555).

One way to distinguish between integral and separable dimensions is to establish
whether a stimulus is more readily associated with another stimulus that is close to it
in the Euclidean metric or with one that may be farther away but matches it on some
pre-determined dimension. Various other converging operations have been used to
distinguish between these two types of dimensions (Garner, 1974). The unique co-
ordinate system of the city-block metric has also motivated other utilizations. Buja
and Swayne (2002) used dimensional uniqueness to identify an orientation of Eu-
clidean solutions, which are rotationally invariant. Heiser (1989) used dimensional
uniqueness as an argument to develop an individual differences city-block model
with dimension weighting.

Nevertheless, uniqueness and additivity of city-block dimensions do not tell us
what structural relations are valid in the whole space. For example, uniqueness and
additivity do not tell us if the stimuli are clustered or not, whether two stimuli are
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close neighbors or not, and whether three stimuli have the same order on all di-
mensions or not. It is remarkable that in applications of the city-block model, there
has not been much attention for actual representations. Some authors do not even
show or list the coordinates; they only report tests of inter-dimensional additivity, or
the relative goodness-of-fit (Melara et al., 1992; Ronacher, 1992; Emde & Ronacher,
1994). One reason for this lack of attention for coordinates might be that the psycho-
logical dimensions are supposed to be monotonic with physical dimensions present
in the stimuli, so that the order of the coordinates is known by design. However,
inter-dimensional additivity does not preclude the possibility that stimulus differ-
ences along one dimension change for different levels of the other dimension, i.e.,
that they show non-linear structural relations (as will become clear in an example of
similarity between rectangles that is discussed in the following).

The present study was triggered by the notion that a simple and direct way to
describe structural relations between objects is to draw a network, with nodes (or
vertices) for the stimuli and with lines (or edges) indicating local connections be-
tween neighbors. Distance in a network is the length of the (shortest) path traveled.
If the stimuli are clustered, we expect to find fully connected subsets, or cliques. If
three stimuli have the same order on all dimensions, we expect to find segmented
pathways without sharp turns. If there is interaction between dimensions, we expect
a nonlinearly distorted grid, and so on. Would it be possible to use the rectangular
grid that is so characteristic for the city-block metric and just connect all pairs of
points on the grid whenever there is no other point lying between them, and finish
by dropping the rest of the grid? Would it still be possible to reconstruct the distance
correctly if we replaced all city-block corners by direct straight lines?

It turns out that it is indeed possible to develop a universal network representa-
tion of city-block models that applies regardless of the dimensionality of the coordi-
nate space. This paper first describes the key elements of the network construction
method, which are the concepts of betweenness, metric segment, and metric-segmental
additivity. Since a network is just a collection of nodes and lines, one needs some
embedding to be able to draw it, but the details of this embedding are of secondary
importance. While the network is the model, an embedding is one of several possi-
ble maps of it. The paper also introduces the possibility of including an additional
set of points corresponding to hypothetical stimulus objects, called internal nodes. An
example of the perception of rectangles will demonstrate their use. It is shown that
networks throw new light on a puzzling characteristic of the city-block model, the
occurrence of partial isometries. Next, the same theory is applied to the Goodman-
Restle symmetric set difference, a special case of the city-block metric, with binary
dimensions called distinctive features. This framework contains a rather large class
of discrete models for similarity data, including additive similarity trees (Buneman,
1971; Sattath & Tversky, 1977), extended similarity trees (Corter & Tversky, 1986),
the additive clustering or common features model (Carroll & Arabie, 1983; Shepard
& Arabie, 1979), and a new set-partitioning model with unicities called the double
star tree. It is shown that the same network construction rule recovers the familiar
additive tree graph, and yields new graphical representations for the other mod-
els. These are illustrated with several examples of similarity data known from the
literature.



118 CHAPTER 5. NETWORK REPRESENTATIONS OF CITY-BLOCK MODELS

5.2 General theory

The discussion starts with the fundamental notion of betweenness in continuous
spatial models, and demonstrates how it leads to additivity of distance. Between-
ness in more dimensions requires the concept of a metric segment, which is the area
between a pair of points that contains all intermediate points for which distance
is additive. Then a network representation is formed from a complete network by
elimination of lines when additivity applies. Some properties of this representation
are discussed with an example of similarity between rectangles. Next, the concept
of an internal node is introduced as a supplementary point located in the metric
segment of any two objects, or in the intersection of several metric segments. This
section concludes with a general characterization of partial isometry, a problematic
phenomenon that is specific for the continuous city-block model.

Betweenness of points and additivity of distances

Geometric models like the city-block model consist of points arranged in some con-
tinuous space, among which we define distances according to a certain rule (or met-
ric) to account for empirical relations between the experimental objects. An ele-
mentary structural property of spatial arrangements is the betweenness relation. In
some situations, betweenness implies additivity of distance. Taking the simplest
case, when we have three ordered points A, B, and C in one dimension, where B is
between A and C, the distance between the outer points A and C is the sum of the
distances from A to B and from B to C. In other words, when B is between A and C
on a line, a condition called intra-dimensional betweenness, we have intra-dimensional
additivity. It is easy to see that more generally, the distance between any two points
on a line is equal to the sum of the lengths of the segments that one crosses when
going from one to the other through a series of intermediate points.

In more than one dimension, the situation changes because it is a common char-
acteristic of all metrics that distances satisfy the triangle inequality. Denoting the
distance between two points A and B by d(A, B), the triangle inequality states that
d(A, C) 6 d(A, B) + d(B, C). Therefore, going through a third point can only add to
the distance. Even if an intermediate point B is between two others on all dimen-
sions, in going from A to C the direct route is generally shorter than going via B.
In Euclidean space, the only exception is when three points are located exactly in a
one-dimensional subspace, in which special case the triangle inequality reduces to
an equality (Torgerson, 1952). By contrast, in city-block space, the triangle equality is
much more common, because betweenness in all city-block dimensions (a condition
that we will call metric-segmental betweenness) always leads to additivity of distance.

We now demonstrate the particular result that under the city-block metric the
triangle inequality reduces to an equality for any three points A, B, and C whenever
B is between A and C on all dimensions (Busemann, 1955, p. 28). Let A have coor-
dinate values zAt, for t = 1, · · · , T where T denotes the number of dimensions. The
city-block distance between A and B is defined as the function

d(A, B) = ∑
t
|zAt − zBt|. (5.1)



5.2. GENERAL THEORY 119

The fact that d(A, B) is built up as a sum of dimension-wise differences is called
inter-dimensional additivity (Suppes, Krantz, Luce, & Tversky, 1989, section 14.4.3).
For metric-segmental additivity to hold, the coordinates have to satisfy, for each
dimension t, either zAt 6 zBt 6 zCt or zAt > zBt > zCt (monotonicity: all choices of
zBt within the constrained area lead to monotonically increasing or monotonically
decreasing sets of coordinate values). Under monotonicity we must have, for any t,

(zCt − zAt) = (zCt − zBt) + (zBt − zAt), (5.2)
|zAt − zCt| = |zAt − zBt|+ |zBt − zCt|, (5.3)

where the three terms in Equation 5.2 are either all positive or all negative, so that
we can take absolute values and freely reverse the order of the arguments in Equa-
tion 5.3, which expresses intra-dimensional additivity for any dimension. Summing
Equation 5.3 over t and using Equation 5.1 we obtain

∑
t
|zAt − zCt| = ∑

t
|zAt − zBt|+ ∑

t
|zBt − zCt|,

d(A, C) = d(A, B) + d(B, C), (5.4)

that is, metric-segmental additivity of distance when we go from A to C via B. This
result forms the basis of the network representations that we develop in this paper.
Joly and Le Calvé (1994) have defined the general concept of a metric segment as the
set of points [AB]met = {M : d(A, B) = d(A, M) + d(B, M)}. The metric segment is a
generalization of the line segment to multidimensional spaces. In Euclidean space,
metric segments are still segments of lines, but in two-dimensional city-block space,
they are rectangles with sides parallel to the axes. In three-dimensional city-block
space, metric segments are cuboids (parallelepipeds with rectangular faces), and in
more than three dimensions, hypercuboids. When dimension-wise differences are all
equal, these structures reduce to squares, cubes and hypercubes.

The prevalence of metric-segmental additivity in city-block space simply expres-
ses the fact that in this type of space, there is a multitude of paths through interme-
diate points covering exactly the same distance. As every passenger knows, there is
a unique shortest route by air from city to city, but within any city where buildings
are arranged in rectangular blocks one can reach distant destinations along several
different routes that are equally long.

Network representation of city-block configurations

The surprising consequence of metric-segmental additivity is that it allows us to
construct a model representation of city-block configurations that does not involve
coordinate values. This coordinate-free representation consists of a set of nodes or
vertices V = {ν1, · · · , νi, · · · , νm}, representing the objects, and a set of line segments
or edges T = {τ1, · · · , τl , · · · , τL}, where L 6 1

2 m(m− 1), connecting pairs of nodes.
Each edge τl has a length ql , collected in the set Q = {q1, · · · , ql , · · · , qL}, which
indicates the distance between the corresponding pair of nodes. Thus, the triad
N = {V , T ,Q} forms a valued graph or network. In a full, or complete network,
we have L = 1

2 m(m − 1), that is, al n = 1
2 m(m − 1) pairs of nodes are connected
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by an edge. Of course, in applications, we would like simplicity to prevail by aim-
ing at an incomplete network with L as small as possible (Klauer & Carroll, 1989). If
L < (m − 1)T, the network is a more parsimonious parametrization than the coor-
dinate space. Moreover, as we shall see shortly, there are other considerations that
also can make a graphical representation attractive.

The construction of the network goes as follows. Given a city-block configuration
M = {Z, D}, where Z is a m × T matrix of coordinates zit, with T the number of
dimensions, and D a matrix of distances d(Zi, Zj) between pairs of points Zi and Zj,
the set V is formed by just allocating a separate node νi to each distinct Zi. The set
T is then formed by elimination. We start with a full list of edges, with the distances
listed in some fixed order in Q. For all triads of points Zi, Zj, and Zk, we determine

the quantity W j
ik = d(Zi, Zj) + d(Zj, Zk) − d(Zi, Zk). Then Zj belongs to the metric

segment [XiXk]met if W j
ik = 0. When there is at least one Zj for which W j

ik = 0, we can
drop the direct edge from νi to νk from the list T , while keeping the direct edges from
νi to νj and from νj to νk. In that case, we also omit the corresponding distance from
the list Q. Dropping the direct edge is possible since metric-segmental additivity
transfers to additivity along the shortest path in the graph. Thus, we are able to use
an interesting parallel between the coordinate space and the graphical space. While
the city-block distance between a pair of points is equal to a sum of distances through
a series of intermediate points in their metric segment, the graphical distance is equal
to the sum of edge lengths in a shortest path that connects two nodes. When W j

ik 6= 0
for all i, j, k, no edges are dropped and the complete network N trivially represents
M.

There is a caveat for the particular case in which two distinct objects, i and j, have
the same location, Zi = Zj. Then d(Zi, Zj) = 0 and d(Zj, Zk) = d(Zi, Zk), from which

it follows that W j
ik = 0, so that the direct edge between νi and νk is dropped. The

same equalities also give Wi
jk = 0, with the effect that the direct edge between νj and

νk is dropped. Consequently, two objects with the same location would become two
nodes that are disconnected from all other nodes in the graph (isolates). By merging
such objects into one node, which has the same distances to the other points, and
again determining the relevant metric segments, the graph will generally become
connected.

The graph N by itself is the desired network representation. However, to visu-
alize or interpret N , we must embed it again in some coordinate space. Note that
we now have more freedom in choice of embedding, since the primary elements of
interpretation are the connectivity and structural order relations between the nodes,
while the exact length of the edges is secondary. The embedding may be in the origi-
nal city-block space if it is two-dimensional, or in some other space with two dimen-
sions. We could use a Euclidean embedding of the graph, obtained, for instance,
by a nonmetric MDS method (cf. (Buja & Swayne, 2002)), or by a metric MDS with
weights to down-weight the large graphical distances (Kamada & Kawai, 1989). Of
course, we can reconstruct the original city-block distances D only if the edges in-
cluded in the plot of the embedding are precisely those from the list T , labeled with
the edge lengths Q. If we would use any other common procedure to draw lines
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Figure 5.1: City-block solution in two dimensions for the rectangle data. The labels W1 −W4
indicate the width levels, and H1 − H4 the height levels of the stimulus rectangles.

between pairs of objects in an embedding, for example, by determining a threshold
graph or a K-nearest neighbor graph (cf. Jain & Dubes, 1988, p. 60), reconstruction
of the original distances by their counterparts in the graph is generally inaccurate.

To illustrate the graphical representation of a city-block configuration, we look
at some data collected and analyzed by Borg and Leutner (1983). The stimuli used
were 16 rectangles of varying width and height, where the two variables each had
four levels increasing in equal steps. All 120 possible pairs of stimuli were presented
twice, in random order, to 21 subjects, who had to rate each pair on a 10-point scale
of dissimilarity. Reliability, calculated per subject as the product-moment correla-
tion over the ratings of stimulus pairs in the two different orders, was 0.75 on av-
erage. The data, averaged over all subjects and replications, were analyzed in two
dimensions2 with the smoothing method for city-block multidimensional scaling de-
scribed in Groenen et al. (1998). This method was specifically designed to avoid be-
ing trapped in local minima of the least squares MDS criterion. Figure 5.1 gives two
versions of the two-dimensional solution. In both versions, the points are labeled
with their width level and their height level. Thus, W1H1 (top-left) is the smallest
rectangle, and W4H4 (bottom-right) the largest. In Figure 5.1A, we have connected
the points with their direct neighbors by design; that is, lines connect rectangles dif-
fering one level on only one variable (as in Borg & Leutner, 1983, their Figure 3).
It shows that the horizontal dimension roughly corresponds to width, the vertical
dimension to height, and that the intervals tend to become smaller as the size of the
rectangles increases, in both dimensions. Borg and Leutner predicted this nonlinear
effect on psychophysical grounds; it was also present in their solution. However,
contrary to their solution, the current solution also exhibits interaction: successive
width intervals tend to become larger as height levels increase, although not uni-

2The fitting criterion used was least squares and metric, since Borg and Leutner (1983) reported that
non-metric fitting showed a linear relationship between dissimilarity and distance.
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formly.
Figure 5.1B gives the network representation, using the same coordinates. Here,

two points are connected if there are no other points between them, that is, if their
metric segment is empty. Recall that in a two-dimensional city-block solution, a met-
ric segment has a rectangular shape, with orientation parallel to the horizontal and
vertical axes. The two points spanning the metric segment are on a main diago-
nal of that rectangular area. This main diagonal is shown as a line in Figure 5.1B if
the metric segment contains none of the other points. For example, a line connects
W1H4 and W2H3, since they span an empty metric segment. One could also say that
the two candidates in the design for being inside their metric segment, W1H3 and
W2H4, are actually located outside of it. Thus, while Figure 5.1A emphasizes con-
formities of the solution with the design, Figure 5.1B highlights violations as well.
Also, note that even though a path like W1H1 − W1H2 − W1H3 − W1H4 is in con-
formity with the design, the tilting to the right contradicts that these stimuli are of
equal width. However, this contradiction shows up as a property of the spatial city-
block solution with the horizontal dimension identified as width, not as a property
of the network, which could have been plotted differently. Furthermore, a path like
W1H4 − W2H4 − W3H4 − W4H4 is correctly monotonic in the horizontal direction;
yet it has two subadditivities giving direct lines from W1H4 to W3H4 and W4H4. The
total number of lines in Figure 5.1B is 56, while the spatial solution has 30 indepen-
dent coordinates. Therefore, the network representation is not parsimonious, but it
does enable a detailed analysis of structural relations in the data.

It might appear that the network representation is unduly complex, compared
to the simplicity of the spatial representation, in which we just plot the coordinates.
More specifically, the network seems to have the following unfavorable properties:

1. Some relatively long lines appear in Figure 5.1B, e.g. between W2H1 and W2H4
or between W1H3 and W4H3. By contrast, the attraction of other network mod-
els often is that they have global properties resulting from the action of local
connections (short lines). Here, the long lines simply reflect that objects can be
opposites on one dimension and direct neighbors on the other dimension.

2. Many nodes have high degree (number of lines that are incident with it, or
number of nodes adjacent to it); for example, 11 lines emanate in Figure 5.1B
from node W2H2, and 10 lines from W2H3, while the lowest degree still is 5 (for
W1H3, W1H4, and W2H4). As can be seen from Figure 5.1A, the current design
predicts nodes with degree 2, 3, or 4.

3. Many crossings of lines occur at locations where there is no intermediate node.
For example, the line between W2H1 and W2H4 in Figure 5.1B crosses 15 other
lines without meeting any other node. In the design of Figure 5.1A, these
rectangles are connected via the much simpler three-segment path W2H1 −
W2H2 −W2H3 −W2H4.

4. The total number of lines is large, 56. If we would consider each line length as
a separate parameter, the network model absorbs many parameters, compared
to the number of independent data values (120). However, it should be noted
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that we actually fitted only 2 × (m − 1) = 30 coordinate values, so the line
lengths cannot be considered as independent quantities. In the design, we
have only 24 lines, and under a model of no interaction, these line lengths
would be further constrained to six independent parameters (3 width intervals
and 3 height intervals).

Since these properties are also prevalent in other examples that we have analyzed
but do not report in detail here, they seem to be a recurring and genuine character-
istic of the present network representation. However, as shall become clear in the
next section, there is a way to alleviate points 1-3, and to some extent point 4 as well,
by introducing an additional set of points, called internal nodes, which also play an
important role in special cases of the model.

It is of special interest to look at the one-dimensional case. If D1 is a distance
matrix of points along a line, then any point lies between two others except for the
endpoints, from which it follows immediately that the graph N has exactly m − 1
edges. Assuming the rows and columns of D1 are ordered in the same way as the
order of the points along the line, the edges of the graph correspond to the elements
on the subdiagonal of D1. We find segmental additivity for all pairs of points (i, j)
that are not consecutive. Specifically, any other element in the upper-right triangle of
the distance matrix D1 is the sum of consecutive elements in the subdiagonal, start-
ing with the subdiagonal element in the same row, and ending with the subdiagonal
element in the same column. Hence, in this case the graph is a chain, which has
graphical distances with exactly the same additivity structure as a set of points on a
line. The chain can be displayed in many ways (for instance, as a curved, connected
sequence of nodes in the plane), all of which give an equivalent reconstruction of the
one-dimensional distances, as long as their edge lengths are equal to the subdiagonal
elements of D1.

Internal nodes

It can be useful to add nodes to the network that do not correspond to the original
set of points in the city-block configuration M. These additional nodes are called
internal nodes, and can be chosen in a number of ways. In general, adding one point
to a network of m nodes leads to m additional edges in the network. Therefore, the
introduction of the internal node should entail the possibility of dropping a number
of edges, too. By placing the new point in a metric segment of a pair of existing
points, the total number of edges reduces by one. Thus, the internal point could be
chosen so that it is in the intersection of as many of the n metric segments as possible.

The case for which the greatest simplification occurs is an equal-distance config-
uration Z0, for four points defined as:

Z0 =


−1 0

0 1
1 0
0 −1

 . (5.5)

It is not hard to verify that the city-block distances between all six pairs of points
in Z0 are equal to 2, and that no point is in the metric segment of any other two
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Figure 5.2: Equal city-block distances among four points. Tetrahedron with equal edge
lengths (left panel) and star graph with equal spokes, which generates the same distances
(right panel).

points3. Hence, the network for Z0 is a complete graph with equal edge lengths, a
structure called a simplex. Now, note that the intersection of all metric segments in
Z0 contains exactly one point, the origin [0 0]′. Introducing the origin as an internal
node, four edges are added to the network, all with edge length 1, which brings the
total number of edges up to 10. However, since the origin is in all of the six metric
segments, the six original edges can all be dropped, bringing the total number of
edges down to four. Figure 5.2 shows the simplex and the reduced network. In
general, in the equal-distance case the number of edges can always be reduced from
1
2 m(m − 1) to m by the introduction of one internal node. The resulting graph is a
special case of a star graph (Carroll, 1976) and the resulting metric is called a ”center
distance” (Le Calvé, 1985).

Let us describe the star graph and the center distance in general terms, as they
are a special city-block structure of independent interest; we will encounter this case
again later. First, a special four-dimensional configuration yields the same city-block
distances as Z0 in Equation 5.5. It is just the uniform diagonal matrix Y0 defined as

Y0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (5.6)

The uniform diagonal configuration Y0 in Equation 5.6 can be generalized to arbi-
trary m and unequal distances, whereas Z0 in Equation 5.5 cannot. In particular,
collecting a set of object-specific, non-negative weights A = {α1, · · · , αm} as diag-
onal entries in the m × m diagonal matrix Y, we calculate the city-block distance

3Note that a diagonal matrix with all diagonal elements equal to 2 generates the same set of distances.
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between any two rows of Y, denoted by Ai and Aj, as

d(Ai, Aj) = ∑
t
|yit − yjt| = |yii − 0|+ |0− yjj| = αi + αj, (5.7)

where the simplification follows from the fact that yij = 0 if i 6= j. Thus, diagonality
of a city-block configuration leads to an additively decomposable metric. Although
the distance function has additive form, note that for i = j we have d(Ai, Ai) = 0,
and not 2αi. Therefore, the distance matrix D is not additive. We can choose between
two geometrical representations of Equation 5.7: either as a polytope with m vertices
in m− 1 dimensions, which follows from the geometry of the rows of Y, or as a star
graph with m external nodes or leaves, one internal node or hub (corresponding to
the m-vector of zeros), and m edges or spokes. The spokes have the special property
that they all coincide in the hub, and are of length αi. The regular simplex shown in
the left panel of Figure 5.2 is a four-point polytope with edges of equal length, while
the reduced network in the right panel of Figure 5.2 is a star graph with four leaves,
one hub, and four spokes of equal length.

We now return to the general case to demonstrate the use of internal nodes.
The two-dimensional city-block solution for the rectangle data of Borg and Leut-

  0.57

  0.19

  0.66

  0.39

  0.39

  0.34

  0.30

  0.32

  0.54

  0.70

  0.79

  0.20

  0.31

  0.10

  0.34
  0.27

  0.18

  0.47

  0.54

  0.08  0.07

  0.24

  0.40

  0.17

  0.07

  0.08

  0.29

  0.52

  0.24

  0.44

  0.48

  0.28   0.03

  0.06

  0.18

  0.50

  0.27

  0.26

  0.10

  0.09

  0.36

  0.04  0.19

  0.27

  0.57

  0.20

  0.55

  0.21

  0.27

  0.55

  0.08

  0.11  0.19

  0.29

  0.31   0.06

  0.06

  0.20

  0.17

  0.20

  0.15

1 23

4

5

6

7

8

9

10 11

12

13 14 15

W1H1

W1H2

W1H3

W1H4

W2H1

W2H2

W2H3

W2H4

W3H1

W3H2

W3H3

W3H4

W4H1

W4H2

W4H3

W4H4

Figure 5.3: Network representation of the two-dimensional city-block solution for the rect-
angle data, including fifteen internal nodes. The labels W1 −W4 indicate the width levels, and
H1 − H4 the height levels of the stimulus rectangles.
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ner (1983), discussed earlier in connection with Figure 5.1, is plotted as a network
with internal nodes in Figure 5.3. The internal nodes are indicated with open dots,
and labeled according to the order in which they were created, while the external
nodes (or leaves) are indicated with solid dots and labeled with their width and
height level. The introduction of internal nodes 1 and 2 eliminated all long lines in
Figure 5.1B between W3H1 and W4H1 on the one hand, and W3H4 and W4H4 on the
other hand. Similarly, the introduction of internal node 3 eliminated the long lines
between W2H1, W2H2, W2H3 and W2H4, all rectangles of width 2. This strategy was
continued for all rectangles of height 3 and other subsets until, starting with internal
node 7, new nodes were introduced with the additional objective of reducing the de-
gree of the external nodes and the number of crossings. The result in Figure 5.3 more
clearly shows the city-block character of the solution than Figure 5.1B, while still ac-
counting for the same distances. It may be verified that if the shortest path between
two points includes one or more internal nodes, their direct distance in Figure 5.1B
equals the sum of the path lengths in Figure 5.3 (up to rounding error).

After adding 15 new nodes, the total number of lines has a small increase from
56 to 61, of which 20 are among internal nodes only, 28 are between internal and
external nodes, and 13 are among external nodes only. The longest lines have been
eliminated, and all nodes have lower degree. For example, node W2H2 now has de-
gree 6, while it had degree 11 before, and node W2H3 now has degree 3, while it had
degree 10 before. In addition, the number of crossings at locations without inter-
mediate node has decreased considerably. Thus, internal nodes can indeed simplify
several aspects of the network representation, and can make it readily interpretable.
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Figure 5.4: Partial isometry: two different configurations with the same city-block distances.
Left panel: Network representation of A, B, C and the points P1−P5. Right panel: Network
representation of A, B, C and the points P1−P5. The two networks share the internal point H,
the hub.
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Partial isometries

The network representation helps to explain a puzzling phenomenon that can occur
in city-block models. Bortz (1974) has noted that under certain conditions the model
coordinates are not unique over and above the usual indeterminacies in distance
models, such as invariance of distances under translation (or choice of origin) and
reflection of dimensions. Figure 5.4 shows an example (adopted from Bortz, his
figure 3), in which two city-block solutions M and M′ are superimposed: they have
the points A, B, and C in common, but M consists in addition of the points P1- P5,
while M′ has the points P1 - P5. Although these two configurations appear to be
quite different, their city-block distances are equal. This effect is high-lighted by
including the lines of the network representation of M (left panel) and M′ (right
panel), and an internal node H that lies in the metric segment of all pairs of points
for which the first is selected from the set {A, B, C}, and the second from either P1-
P5 or P1 − P5. It is clear that the only difference between the left panel and the right
panel of Figure 5.4 is that they are different embeddings of the same network. Only
the part above and to the left of H, the internal node called the hub, shows a reflection
along the 45o direction, while the part below and to the right of the hub is the same.

A general formulation of this phenomenon is as follows. Partial isometries oc-
cur in city-block spaces whenever the set of objects can be partitioned into subsets
{F1, F2, F3, · · · } in such a way that the coordinates of objects from different subsets
are either monotonically ascending (zAt 6 zBt 6 zCt 6 · · · ) or monotonically de-
scending (zAt > zBt > zCt > · · · ) for any t, with A ∈ F1, B ∈ F2, and C ∈ F3. This
condition implies that we can define a hub in the intersection of all metric segments
of points selected from any pair of consecutive subsets. In the network representa-
tion, all between-subset distances are thus channeled through (one or more) hub(s).
In the embedding of the network in city-block coordinates, we can apply reflections
within subsets without altering either the within-subset distances (since reflections
do not change distance) or the between-subset distances (since distances to the hub
remain unaltered). Summarizing, while the coordinate space is not unique under
the monotone subset condition, there is only one network, which merely has differ-
ent embeddings. Both representations allow an interpretation only in terms of the
several within-subset constellations and the global order of the subsets.

5.3 Discrete models that are special cases of the city-block model

Some discrete models of similarity are special cases of the city-block model, and
therefore we can make network representations by the same token. One may define
these discrete models as structures on subsets of objects, but also as city-block mod-
els with binary coordinates. We will first discuss a fundamental property of all dis-
crete models in terms of a condition on subsets, called lattice betweenness, and show
that lattice betweenness is a special case of metric-segmental betweenness when all
coordinates are binary. The most general of all discrete models considered is the dis-
tinctive features model, a distance model based on the symmetric set difference, well
known to be equivalent to the city-block model on binary coordinates. We then dis-
cuss the common features (or additive clustering) model, and show how to obtain
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a network representation for this model, too. After a discussion of the conditions
for obtaining a perfect solution, for both the common and the distinctive features
model, we turn to two special cases, the partitioning model with main effects, and
finally the additive tree model.

Lattice betweenness of feature sets

Restle (1959) tried to justify a metric analysis of psychological similarity from set-
theoretic considerations, by using the concept of betweenness of sets of qualitative
elements and the symmetric set difference as a distance measure4. We first discuss
the nature of betweenness in this context, returning to the set-theoretic distance in
the next section. The common definition in logic for betweenness of sets is to say
that if S = {S1, · · · , Si, · · · , Sm} is a family of subsets of some set of arbitrary or
qualitative elements, Sj is between Si and Sk if the following condition holds:

(Si ∩ Sk) ⊆ Sj ⊆ (Si ∪ Sk) (5.8)

Thus, to be between Si and Sk, subset Sj has to share at least all elements common to
them, while it cannot have elements not present in either of them. The set of all sub-
sets ordered by the inclusion operator ⊆ is a complete lattice (cf. Davey & Priestley,
2002). Therefore, we refer to Equation 5.8 as lattice betweenness. To clarify the relation
of lattice betweenness and metric-segmental betweenness, we have to make explicit
the reliance of the subsets in S on the base set of qualitative elements. Let this base
set be F = {F1, · · · , Ft, · · · , FT}, where the T elements are called features5. We define
the feature matrix E = {eit} as an m × T binary incidence matrix, where eit = 1 if Si
has feature Ft, and eit= 0 if not. Thus, the rows of E characterize an object in terms
of a subset of features, while the columns of E characterize a feature in terms of a
subset of objects.

We now show that lattice betweenness is a special case of metric-segmental be-
tweenness. For metric-segmental betweenness between A, B, and C to hold, the co-
ordinates of a city-block configuration have to be either monotonically ascending
(zAt 6 zBt 6 zCt) or monotonically descending (zAt > zBt > zCt) for all t (if B is
between A and C). Transferring this condition to the binary coordinates in E, we
must have either eit 6 ejt 6 ekt or eit > ejt > ekt for all t (if Sj between Si and Sk). To
get from here to Equation 5.8, consider all eight possible (0, 1)-patterns of eit, ejt, and
ekt. One may easily verify that six of them satisfy monotonicity, while two of them
indicate violation of monotonicity. In particular, violation occurs if

(1− eit)ejt(1− ekt) = 1 or eit(1− ejt)ekt = 1 (5.9)

for any t. Interpreting Equation 5.9 in terms of features, we see that metric-segmental
betweenness implies that the center subset Sj cannot possess any feature Ft that the

4The logician Nelson Goodman already studied the order and topology of qualities in his 1951 book
The Structure of Appearance, a revised version of his 1940 doctoral thesis A Study of Qualities (Harvard
University). Galanter (1956) introduced Goodmans ideas in psychology and put them to work with some
preliminary experimental findings on color vision.

5The index t and parameter T were used earlier for the dimensions of the city-block space, but there
is no danger of confusion, as it will turn out that features have exactly the same role as dimensions.
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two outer subsets Si and Sk fail to have, and that Sj also cannot lack any feature
Ft that the two outer subsets Si and Sk both possess. Thus, Equation 5.9 is equiv-
alent to Si

⋂
Sj

⋂
Sk = ∅ and Si

⋂
Sj

⋂
Sk = ∅ holding at the same time (this is

the formulation in Definition 2 used by Restle, 1959), which is in turn equivalent
to Equation 5.8. Therefore, a single notion of betweenness for a finite set of points
applies equally well in continuous space as in feature space.

Distinctive features model

What metric can we use in a representation of objects as subsets of features? Nat-
ural candidates for a distance between subsets are functions of the symmetric set
difference,

d(Si, Sj) = µ
[
(Si ∪ Sj)− (Si ∩ Sj)

]
= µ

[
(Si − Sj) ∪ (Sj − Si)

]
, (5.10)

where µ[·] is some measure function, usually just a count of the features in the sub-
set6. The first part of Equation 5.10 expresses the symmetric set difference in terms
of the subset of relevant features (i.e., features in the union) that is not common to
the two objects (i.e., features in the intersection). The second part of Equation 5.10
expresses the same notion in terms of the total number of features that belong to Si
but not to Sj (distinctive features for Si with respect to Sj) and those that belong to
Sj but not to Si (distinctive features for Sj with respect to Si). Because of the latter
formulation, Tversky (1977) has called a model based on equation Equation 5.10 a
distinctive features model. Note that we do not interpret the term ”distinctive” as a
qualification of the features (as do Navarro and Lee (2004) in their Modified Contrast
Model), but as a qualification of what contributes to the similarity or difference in
pairs of objects.

One of Restle’s (1959) results was that lattice betweenness is equivalent to ad-
ditivity of the distinctive feature distance, i.e., d(Si, Sk) = d(Si, Sj) + d(Sj, Sk). Al-
though in the present context this result readily follows from the equivalence of
lattice betweenness and metric-segmental betweenness, it is instructive to derive it
explicitly here (via the feature coordinates in E). Suppose µ[·] is a weighted count
measure with weight ηt for feature Ft. As a preliminary step, note that introduction
of the feature coordinates allows us to write Equation 5.10 as

d(Si, Sj) = ∑
t

ηt
[
(1− ejt)eit + (1− eit)ejt

]
, (5.11)

from which it follows that

d(Si, Sj) = ∑
t

ηt(eit − ejt)
2 = ∑

t
|zit − zjt|, (5.12)

with zit = ηteit. Due to the binary nature of eit, we can replace the squares in Equa-
tion 5.12 with absolute values. Thus, the distinctive feature distance is a city-block

6Restle (1959) mentions that Hays (1958) used the same distance concept, calling it the ”implicational
difference”, and that he used multidimensional scaling to embed feature distances in Euclidean space
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distance, where the points are constrained to lie on the corners of a rectangular
(hyper-) block, and where the coordinates on any dimension are limited to two val-
ues, zero or ηt. Each feature splits the objects into two classes, and ηt measures how
far these classes are apart; for this reason, Heiser (1998) called the feature weight ηt
a discriminability parameter.

Next, consider three points Si, Sj, and Sk, and assume betweenness in that order;
then we may rewrite the distance between Si and Sj in Equation 5.11 as

d(Si, Sj) = ∑
t

ηt
[
eit(1− ejt)(1− ekt) + (1− eit)ejtekt

]
, (5.13)

since if Si has Ft and Sj has not, then Sk cannot have that feature either, so that
eit(1 − ejt) = eit(1 − ejt)(1 − ekt) , while if Si does not have Ft but Sj does, then Sk
must have it too, so that (1− eit)ejt = (1− eit)ejtekt . In other words, Equation 5.13
follows from Equation 5.9. With an analogous expression for d(Sj, Sk), we find

d(Si, Sj) + d(Sj, Sk) = ∑
t

ηt
[
eit(1− ejt)(1− ekt) + (1− eit)ejtekt

]
+ ∑

t
ηt

[
eitejt(1− ekt) + (1− eit)(1− ejt)ekt

]
= ∑

t
ηt [eit(1− ekt) + (1− eit)ekt] = d(Si, Sk).

This equality establishes the result. The implication is that we have metric segments
in feature space that are paths along the corners of a (hyper-) block, or equivalently
(Flament, 1963, p. 17) as paths in the lattice spanned by the feature sets. Hence,
the distinctive features model can be represented as a weighted graph or network,
using the same graph construction strategy as the one used for the general city-block
model; for discrete models, Heiser (1998) called these representations feature graphs.
We can also construct internal nodes in the same way. Recall that internal nodes
correspond to additional points that are located in one or more metric segments
generated by the original (external) points. From condition Equation 5.8, it follows
that this rule is equivalent to choosing internal nodes as intersections of feature sets.

Corter and Tversky (1986) provided the first method to fit the distinctive features
model, by constructing a so-called extended similarity tree. They used a three-stage
procedure: in the first stage, their procedure fits the best additive tree to the data,
which limits the features to be either nested or disjoint; in the second stage, it se-
lects additional features to be included in the model, and the third stage the feature
weights are estimated for the total set of features. Heiser (1998) used a two-stage
alternating least squares method, which just cycles between improvement of the
feature structure and improvement of the weight estimates, without the backbone
of the additive tree. A third method was recently proposed by Navarro and Lee
(2004) as a special case of a more general approach, in which they used maximum
likelihood estimation assuming that the similarities are normally distributed with
common variance, and employing a greedy heuristic to find the feature sets. These
methods were all developed independently, and what their relative merits are, is
an open question. There are only a few applications without a priori known fea-
ture structure. Parault and Schwanenflugel (2000) used extended similarity trees
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Figure 5.5: Network representation of distinctive features model for the number data, with-
out internal nodes. Nodes labeled by stimulus value.

to study the development of childrens categorical knowledge of attention. Heiser
and Meulman (1997) used the distinctive features model to cluster profiles of binary
multivariate data.

We now demonstrate the construction of a feature network with an example of
data collected by Shepard, Kilpatric, and Cunningham (1975), who obtained ratings
of similarity between all pairs of integers from zero to nine, considered as abstract
concepts. For ease of comparison, we use the same twelve features as Corter and
Tversky (1986) found with their EXTREE method. Features in models like these are
undefined qualitative elements, but are interpretable by listing the stimuli that have
them. The first three form exclusive subsets: the additive and multiplicative iden-
tities F1 = {0, 1}, powers of two F2 = {2, 4, 8}, and a heterogeneous subset of re-
maining integers F3 = {3, 5, 6, 7, 9}. Next, we have the nested features primes larger
than three F4 = {5, 7}, multiples of three F5 = {3, 6, 9}, powers of three F6 = {3, 9},
and the first two powers of two F7 = {2, 4}. There are five more features that form
overlapping subsets: sets of consecutive integers F8 = {0, 1, 2, 3}, F9 = {7, 8, 9},
F10 = {0, 1, 2, 3, 4}, and F11 = {4, 5}, and the multiples of two, or even numbers
F12 = {2, 4, 6, 8}. Finally, we included two unique features F13 = {0} and F14 = {1},
since otherwise zero and one would have identical feature sets, so that they would
not be distinguished in the model, obtaining mutual distance of zero, and would
become disconnected from the network.
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After estimating the weights using nonnegative least squares (Frank & Heiser, in
press a; Heiser, 1998), and applying our basic edge deletion method of dropping the
direct edge between two points whenever an intermediate point exist in their met-
ric segment, one gets the network displayed in Figure 5.5. This solution accounts
for 98.36% of the dispersion (raw sum of squares) of the data, using 29 edges and
14 parameters. The network itself is a discrete structure in fourteen-dimensional
space, but it was embedded in the Euclidean plane by multidimensional scaling of
the estimated city-block (feature) distances with the program PROXSCAL (Heiser &
Busing, 2004), using a simplex start and allowing a ratio transformation. All edge
lengths are included in Figure 5.5 since the Euclidean distances in the plot only ap-
proximate them. In the embedded network, the three major features F1, F2, and F3
differentiate well, as do the nested features F4, F5, F6, and F7. With his large number
of connections, stimulus 6 clearly exhibits its overlapping position as a member of
the even numbers on the bottom-left and the multiples of three in the center. At the
(bottom-)right side of the plot, we have the overlapping features F8 and F10, and on
the top the primes F4 and top-left the large numbers F9. Therefore, it appears that the
embedded network successfully displays the major characteristics of the distinctive
features model in an accessible way.

Nevertheless, the introduction of internal nodes can make the structure even
more transparent. The natural choice of internal nodes in the distinctive features
model is to identify a cluster in the high-dimensional feature space with a new point
that is located in the intersection of the features shared by the objects in that clus-
ter. For example, the internal node corresponding to the cluster C1 = {0, 1} has the
features F1, F8, and F10, since zero and one share exactly these features. This way
of defining internal nodes ensures that the distance between the two members Si
and Sj of cluster C` splits: d(Si, Sj) = d(Si, C`) + d(C`, Sj), because for an additive
measure µ we have d(Si, Sj) = µ(Si − Sj) + µ(Sj − Si) = µ(Si − C`) + µ(Sj − C`)
when C` = Si ∩ Sj , and d(Si, C`) = µ(Si − C`) since µ(C` − Si) = 0 . Similarly,
we have d(Si, C`) = d(Si, Ck) + d(Ck, C`) for members of two nested clusters with
Si ⊂ Ck ⊂ C`. These additivities lead to better interpretable paths in the network and
a low degree for the external nodes, especially if the features are nested or disjoint.
Nested features lead to nested clusters, represented as a chain of internal nodes. Let
us see how this representation works for the digit data.

The introduction of internal nodes for all clusters corresponding to the 12 fea-
tures, as well as five extra internal nodes associated to the objects 2, 5, 7, 8, and 9, for
which we fitted additional unique features, lead to a network of 27 nodes in 19 bi-
nary dimensions in city-block space. Including unique features for the other objects
did not improve the fit. We obtained a PROXSCAL embedding with the same options
as before; Figure 5.6 displays the result. The seventeen internal nodes are plotted as
open dots, while the ten object nodes (external nodes or leaves) are plotted as solid
dots. Every object node with a unique feature is connected to the rest of the network
via an (unlabeled) internal node with a spike of length equal to the unique feature
weight. Note that all paths from 0 and 1 go through {0, 1} and then through {0, 1, 2,
3}, all paths from 2 go through {2, 4} and {0, 1, 2, 3}, all paths from 3 go through {3,
9} and {0, 1, 2, 3}, all paths from 4 go through {2, 4} and {4, 5}, and so on. In other
words, in this example all objects have only two direct neighbors, which are always
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internal nodes (clusters), except for 0 and 1, which have only one direct neighbor
because they differ only in their unique features, and 7 and 9, which have a mutual
link in addition to their two cluster connections.

Figure 5.6 also shows how nesting of features leads to nested clusters in a chain
of internal nodes. The most important chains are: the small numbers {(0, 1), (0, 1,
2, 3), (0, 1, 2, 3, 4)}, the even numbers {(2, 4), (2, 4, 8), (2, 4, 6, 8)}, and the prime
numbers plus powers and multiples of three {(3, 9), (3, 6, 9), (3, 5, 6, 7, 9)}. The
three chains are connected in a triangle in the center of the display, which forms a
complete sub-network of internal nodes together with the medium-sized numbers
(4, 5) and the large numbers (7, 8, 9). All object nodes are connected via one or two
paths to this basic complete sub-network. The path can be linked either directly, like
from 6 to (2, 4, 6, 8) and from 8 to (7, 8, 9), or go through the closest node in one of the
chains, like from 2 to (2, 4) in the chain of even numbers, or from 2 to (0, 1, 2, 3) in the
chain of small numbers. The global structure of the embedding appears to consist of
a basic plane with the powers of two (2, 4, 8) on one side and the powers of three (3
and 9) on the other side, with small numbers at the right and large numbers at the
left. It appears that objects 5, 6, and 7 do not fit well into this plane, either because
they have a large unicity (5, 7) or because they share only partly features from both
sides (6 is a multiple of both two and three, but not a power of them). The identities
0 and 1 have an eccentric position with large unicity, but as a cluster, they are close
to the small numbers.

Additive clustering or the common features model

Shepard and Arabie (1979) proposed an additive clustering model, which builds up
the similarity s(Si, Sj) between Si and Sj from unrestricted binary features, according
to the rule

sij = s(Si, Sj) = µ
[
Si ∩ Sj

]
= ∑

t
θteitejt, (5.14)

where the θt are again nonnegative weight parameters. This model thus uses a
weighted count of the features in the intersection of the feature sets of each object in
a pair. Since the model only takes features into account that the pair of objects have
in common, Tversky (1977) has called it a common features model. Mirkin (1987) de-
veloped the model independently under the name qualitative factor analysis, around
the same time as Shepard and Arabie, and adjusted it to the analysis of contingency
tables (the two-mode case) in Mirkin (1996). Arabie and Carroll (1980) and Carroll
and Arabie (1983) developed algorithms for finding the feature sets and the feature
parameters of the additive clustering model and its three-way generalization. Soli,
Arabie, and Carroll (1986) reported an application of the three-way additive clus-
tering model. More recent algorithmic strategies are given in Mirkin (1990, 1998),
Chaturvedi and Carroll (1994), and Ten Berge and Kiers (2005), among others.

In the additive clustering model, each feature defines a cluster of objects. The
unrestricted nature of the features implies that the clusters need not be exclusive
and may overlap. As noted by Carroll and Corter (1995), graphical representa-
tions of non-nested overlapping clustering are usually complex and difficult to in-
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Figure 5.6: Network representation of distinctive features model for the number data, with
internal nodes. Solid dots are stimuli labeled by stimulus value, open dots are internal nodes
labeled by subset.

terpret. Shepard and Arabie (1979) used a two-dimensional projection of a three-
dimensional city-block embedding of the original data, and then added contour lines
around sets of points that correspond to clusters in the additive clustering solution.
Carroll and Pruzansky (1980) proposed representing non-nested clustering by mul-
tiple trees, and (Corter & Tversky, 1986) by extended trees. What we want to show
now is that the clusters derived from the additive clustering model have a natu-
ral representation as a feature network. To demonstrate this possibility, we express
the common features model as a special case of the distinctive features model. This
relationship was first established by Sattath and Tversky (1987).

Suppose that we have a feature set F , coded in a feature matrix E, and weight
parameters (θ̂1, · · · , θ̂t, · · · , θ̂T), that approximate some similarity ςij according to
the common features model (Equation 5.14), where we denote the approximation
by ŝij = ∑t θ̂teijejt. We want to demonstrate that it is possible to form a specific
linear transformation d̂ij = 2K− 2ŝij that follows exactly a distinctive features model,
where K is some constant that we will specify later. We can use the same feature set
F , but we have to append to it a set of m unique features. A unique feature is a feature
with only one object associated to it, with non-negative weight. To distinguish the
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features in E from the unique features, we call the former shared features, since there
are always two or more objects sharing a non-unique feature. The feature matrix of
a set of unique features is diagonal, so that by themselves they form an additively
decomposable metric associated with a star graph, as we saw in the discussion of
Figure 5.2. We will use the notation eit∗ for the unique features, with t∗ = 1, · · · , m,
and with the understanding that eit∗ = 1 if i = t∗ and eit∗ = 0 otherwise. Without
danger of confusion, we use αi = ∑t∗ αt∗ eit∗ for the unique weight of object i.

To let the switch from common features model to distinctive features model
work, it suffices to take identical weights for the shared features, while the weights
for the unique features are a simple function of the shared feature weights, specified
as follows:

η̂t = θ̂t

α̂i = K −∑
t

θ̂teit. (5.15)

The constant K can be chosen freely as long as it does not make the weights αi neg-
ative, i.e., as long as it satisfies K > maxi ∑t η̂teit. From Equations 5.15 we have
K = α̂i + ∑t η̂eit, so that we may write

d̂ij = 2K − 2ŝij = K + K − 2 ∑
t

θ̂teitejt

= α̂i + ∑
t

η̂teit + α̂j + ∑
t

η̂tejt − 2 ∑
t

η̂teitejt

=

[
∑

t
η̂teit + ∑

t
η̂tejt − 2 ∑

t
η̂teitejt

]
+

[
α̂i + α̂j

]
= ∑

t
η̂t|eit − ejt|+ ∑

t∗
α̂t∗ |eit∗ − ejt∗ |. (5.16)

Note that whenever we have the approximation d̂ij , we also recover ŝij = K −
1
2 d̂ij. Also, note that (η1, · · · , ηt, · · · , ηT) and (α1, · · · , αt∗ , · · · , αm) should not be
seen as a set of T + m independent parameters, because both are functions of the T
parameters (θ1, · · · , θt, · · · , θT). Clearly, d̂ij in Equation 5.16 has the desired form of a
distinctive feature distance, since the sum of two feature distances is again a feature
distance with dimensionality equal to the sum of the two original dimensionalities.
Therefore, we can check all triads of points for lattice betweenness to see which
edges of the network we can delete, as usual.

It is often useful in this approach to the graphical representation of the common
features model to define m internal nodes, one for each object, with shared features
that are the same, but without unique features. The effect will be that the feature
graph displays the structure of the shared features in its internal nodes, each of
which corresponds to (and can be labeled with) exactly one object. In addition, each
internal node has one unique edge (a spoke toward one external node) attached to
it, the length of which indicates the relative distance of an object towards all others.
This spoke (and its length) is analogous to a unique factor (and its variance) in fac-
tor analysis. Hence, Mirkin (1987) name qualitative factor analysis for the common
features model is well chosen.
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In factor analysis, the diagonal of the correlation matrix to which we fit the model
is constant, and the unique factors are necessary to account for the variance left
unexplained by the common factors. In the common features model, the shared
features produce diagonal terms equal to ŝii = ∑t θ̂teit , the sum of the weights that
an object possesses, and these will generally not be constant either. Hence, if one
would like to account for the diagonal elements of the similarity matrix, one would
need to append a set of m unique features to the common features model as well,
that is, write the model as

s(Si, Sj) = ∑
t

θteitejt + ∑
t∗

βt∗ eit∗ ejt∗ ,

with eit∗ denoting the unique feature of object i and βt∗ = βi > 0 its non-negative
weight. The diagonal elements are equal to the sum of all weights relevant for object
i:

s(Si, Si) = ∑
t

θteit + ∑
t∗

βt∗ eit∗ = ∑
t

θteit + βi,

while the off-diagonal elements remain the same as before, since ∑t∗ βt∗ eit∗ ejt∗ = 0 if
i 6= j. Therefore, if we want diagonal elements equal to some constant value, that is,
s(Si, Si) = K, the unique weights for the extended common features model should
be chosen as

β̂i = K −∑
t

θ̂teit,

that is, identical to the unique weights under the extended distinctive features model
in Equation 5.15, because η̂t = θ̂t. Since in practice one usually does not model the
diagonal elements of the similarity matrix, the issue never seems to arise. However,
to make the model complete, the common features model needs the same unique
features as the distinctive features model.

In the distinctive features model, the effect of the unique features with weights
α̂i defined in Equation 5.15 also is to make the sum of the weights for each object
constant. This property can be expressed geometrically by calculating the feature
distance of object Si with respect to the origin O (internal node with all-zero profile),
and inserting Equation 5.15:

d(Si, O) = ∑
t

η̂teit + α̂i = ∑
t

η̂teit + K −∑
t

η̂teit = K.

Hence, the common features model for similarity matrices with equal self-simila-
rities is a special case of the distinctive features model: if the unique feature weights
satisfy Equation 5.15, then reversing the argument in Equation 5.16 shows that the
distances satisfy a common features model. In practical terms, for any fitted com-
mon features model we can find an equally well fitting distinctive features model,
with object nodes at constant distance from the origin, with the same shared features
and feature weights, and with the same number of independent parameters.

As an example of the network representation of the common features model,
consider the body parts data collected by Miller (1969), which was reanalyzed by
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Figure 5.7: Network representation of common features model for body-parts data, with in-
ternal nodes.

Carroll and Chang (1973), and Shepard and Arabie (1979). Miller’s data on the per-
ceived similarity of 20 body parts are counts of the number of times in which 50
subjects, in a free sorting task, put a pair of stimuli into the same group. As noted
by Shepard and Arabie, the body parts had been chosen based on a rather clear
hierarchy of anatomical inclusion, but with some ambiguities. We have used the
same 10 common features and weights found by their ADCLUS procedure, which ac-
counted for 95.6% of the variance in the similarities. Using Equation 5.15 to calculate
weights for the shared and unique features under the distinctive features model and
applying the general graph construction rule we obtain the network representation
in Figure 5.7. In this representation, eleven internal nodes have been included to
reduce the degree of some of the nodes. One of them is labeled by O, and can be
interpreted as the root or the origin of the network, since it is defined by a profile
of zeros on all features. The other internal nodes are labeled by the subsets found
by Shepard and Arabie. They are defined by the intersection of the features of the
objects in the subset that they represent. The network clearly shows that there are
four major clusters: a trunk cluster (consisting of body, chest, lung, neck, trunk, and
waist), a leg cluster (knee, leg, thigh, toe), arm cluster (arm, elbow, hand, palm), and
a head cluster (ear, cheek, face, head, lip, mouth), which is consonant with previous
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analyses. In this solution, we do not find evidence that trunk, leg, arm, and head are
especially close to their closest cluster point, to warrant the higher-order status that
they had in the Carroll and Chang (1973) solution.

A strong point of the current representation is that violations of hierarchical
structure are recognizable as cycles in the network. One major cycle is between the
origin, the trunk cluster and the head cluster (via head, neck), and another one is
between the origin, the arm cluster, and the leg cluster (via elbow, knee). These cy-
cles arise from the presence of feature 5, which connects two physically neighboring
parts, head and neck, and feature 10, which connects two functionally analogous
parts, elbow and knee. Thus, in addition to its simple portrayal of the additive
clustering solution, in which the clusters themselves can be included in a natural
way, the network representation of a common features model allows an immediate
diagnosis of departures from purely hierarchical structure. Note the following reg-
ularities in Figure 5.7. The sum of the line lengths from each leave node (solid dot)
to the origin is constant and equal to 1.07 (up to rounding error). One can read off
the dissimilarity between two leaves as the length of their shortest connecting path.
At the same time, one can read off their similarity as the sum of the line lengths of a
path from the origin to the smallest cluster that they share.

Exact fit of feature models

Is there a feature set that always yields an exact fit to an arbitrary (dis)similarity
matrix under these feature models? There is no exact answer in the literature to this
question, but the previous section shows how to obtain one. It is clear that under
the common features model a basis consisting of all size-two clusters corresponding
to all pairs of objects would be sufficient to fit any similarity matrix exactly. Let us
denote the features of this basis by ei(k,l), where k, l varies over all ordered pairs, and
we have the property ei(k,l) = 1 if i = k or i = l, and ei(k,l) = 0 otherwise. Since
ei(k,l)ej(k,l) = 0 for all k, l except if i = k and j = l, there is exactly one feature for each
similarity, so that we can choose θ̂(k,l) = ςkl , obtaining an exact fit ςij = ŝij.

Under the distinctive features model, we can use the same basis of all size-two
clusters, but we need again to include unique features to reproduce any dissimi-
larity matrix up to a known additive constant. It is not hard to show that in this
feature structure no object is between any other object, so that the feature network is
a complete graph7. The specification of the parameters is

η̂(k,l) = L− 1
2

δkl ,

α̂i =
1
2 ∑

j 6=i
δij − (m− 2)L, (5.17)

7For three objects A, B and C, the relevant features are AB, AC, and BC. Thus, it suffices to consider
A = {AB, AC}, B = {AB, BC}, and C = {AC, BC}. Whatever object is chosen as the middle one, it
violates the requirement defined in Equation 5.9 that it should not lack any feature that the two outer
objects possess. For instance, A and C share AC, but B lacks it.
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where L is some positive constant. With these weights, the feature distance becomes

d(Si, Sj) = ∑
k,l

η̂(k,l)|ei(k,l) − ej(k,l)|+ α̂i + α̂j

= 2(m− 1)L− 1
2 ∑

j 6=i
δij −

1
2 ∑

i 6=j
δij + δij − 2L

+
1
2 ∑

j 6=i
δij +

1
2 ∑

i 6=j
δij − 2(m− 2)L

= δij. (5.18)

Thus, for any choice of L in Equation 5.17, we have perfect reconstruction of the dis-
similarities. It turns out that adding a constant to the weights of the shared features
can be compensated by subtracting (another) constant from the unique features. This
indeterminacy is caused by the fact that all pairs of objects differ on the same num-
ber of shared features (m− 1), and on the same number of unique features (two). We
can identify a solution by selecting L so that the smallest unicity becomes zero, for
example. However, there is another consideration. When choosing L too small we
obtain one or more negative weights η̂(k,l) for the shared features, and when choos-
ing L too large we obtain one or more negative weights α̂i for the unique features,
both of which are violations of the model assumptions. Requiring nonnegativity of
the two sets of weights in Equation 5.17 gives the following bounds for L:

max
(i,j)

δij 6 L 6 min
i

1
m− 2 ∑

j 6=i
δij. (5.19)

Therefore, we can identify a solution whenever the dissimilarities allow finding an
L in the interval Equation 5.19. If no such L exists, we can add the smallest positive
constant to the dissimilarities ensuring that Equation 5.19 becomes satisfied. Find-
ing such an additive constant is possible, because the lower bound involves only
one dissimilarity, while the upper bound involves the sum of m − 1 dissimilarities
divided by m − 2, so that the upper bound grows faster than the lower bound. In
conclusion, a feature network based on size-two clusters and singletons can always
reproduce an arbitrary dissimilarity matrix.

Even though perfect reproduction involves as many as 1
2 m(m + 1) features, while

there are merely 1
2 m(m − 1) independent data values, it should be noted that each

α-weight can be written as a linear function of the data values, so that we actually
do rely on exactly 1

2 m(m− 1) independent quantities. A calculation similar to Equa-
tion 5.18 shows that the feature distance of any object to the origin is constant; in
particular, we have d(Si, O) = L. Since the square root of the feature distance is
Euclidean (see Equation 5.12), it follows that the vertices of the complete graph that
perfectly reproduces an arbitrary dissimilarity matrix are located on a hypersphere
of dimension 1

2 m(m + 1) with radius
√

L .
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Partitioning in clusters with unicities: the double star tree

Consider the situation in which the model consists of a set of unique features and a
set of shared features, where the latter has the special property of forming a partition
of the set of objects. Thus, each shared feature is disjoint from (or non-overlapping
with) any other shared feature, and no object lacks a shared feature (in addition
to its unique feature). Without the presence of unique features, this case would be a
standard clustering task for which several methods have been developed (cf. Hubert,
Arabie, & Meulman, 2001). As we saw earlier, unique features can be represented
as a star graph. A partitioning in T subsets can be represented as a star graph, too,
in which each subset is a vertex and the center of the star is again the origin (an
internal node with zero on all features). Fitting a model that is the sum of two star
graphs is a simple special case of Carrolls (1976) multiple tree structure approach,
but surprisingly no one has considered it in any detail8.

The graphical representation obtained for the sum of the distances in the star
graph of the unique features and the distances in the star graph of the partitioning
has a particularly simple form. We need one internal node for the origin, and T
other internal nodes (where T is the number of clusters), each having a single non-
zero value for one of the features defining the partitioning. With our usual graph
construction procedure of eliminating direct lines when two nodes are reachable
through another node in their metric segment, we obtain a graph in which each in-
ternal cluster node connects only with the origin and with the leaves that constitute
the cluster. Thus, the origin node has degree T, the cluster nodes have degree nt + 1,
where nt is the number of objects in cluster t, and the object nodes are leaves with
degree one. Any distance between two objects in different clusters equals the sum of
four line lengths along the unique path connecting them. Starting with Si, we have
the line from the leave of Si to the node of the cluster where Si belongs to, the line
from that cluster node to the origin, the line from the origin to the cluster node of Sj,
and finally the line from the cluster node of Sj to the leave of Sj. The distance be-
tween two objects in the same cluster is just the sum of two line lengths. The graph
of the double star tree is simple because it contains no cycles and has only T + m
lines. There is also a one-to-one relation between line lengths and feature weights.

For the Shepard et al. (1975) number data, analyzed earlier with the general dis-
tinctive features model and displayed in Figures 5.5 and 5.6, Hubert et al. (2001)
repeatedly found the optimal partition {(0, 1), (2, 4, 8), (3, 6, 9), (5, 7)}, with differ-
ent clustering criteria. Therefore, we adopted this partitioning and estimated weight
parameters for the shared and unique features with nonnegative least squares. Fig-
ure 5.8 displays the resulting network. We see that the graph has all the properties
described in the previous paragraph. It has no cycles, and since m = 10 and T = 4
in this case, it contains 4 + 10 = 14 lines. The origin only connects with the four
cluster nodes, and each object only with the cluster node of its own cluster. The dis-
tance between 1 and 5, which belong to different clusters, is the sum of the four line

8The closest example of a partitioning model with unicities that we could find in the literature is
one of the hierarchical tree structure models proposed by Carroll and Chang (1973), which they call the
”branches only” model. The partitioning occurs incidentally in their example of the body-parts data,
because the fitted tree is not fully resolved
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Figure 5.8: Network representation of double star tree for the number data.

lengths along the path (1) − (0, 1) − (O) − (5, 7) − (5), amounting to 0.12 + 0.20 +
0.10 + 0.18 = 0.60 (compared to 0.61 in Figure 5.5). The distance between 2 and 8,
which belong to the same cluster, is the sum of the two line lengths along the path
(2)− (2, 4, 8)− (8), amounting to 0.09 + 0.16 = 0.25 (compared to 0.32 in Figure 5.5).
The double star tree accounts for 94.84% of the dispersion (compared to 98.36% for
the more general model), so it still has a good fit. It is easy to check that none of the
within-cluster distances is larger than any between-cluster distance, which is a sign
of the quality of the partitioning; for example, compare the largest distance of 0.42
within cluster (0, 1) with a smallest distance of 0.44 between 4 and 6 in the powers of
two and the multiples of three clusters. It is a strong point of the double star tree that
it models within-cluster distances in addition to between-cluster distances. In con-
trast, other partitioning methods usually assume that the within-cluster distances
are random or zero.

Additive tree model

Consider building up a model with one feature defining a partitioning in two clus-
ters and a full set of unicities, and introduce an extension with features that are
limited to be proper subsets of previous clusters (excluding singletons, since there is
no need to duplicate the unicities). This construction leads to at most m − 3 shared
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features that are either nested or disjoint. In terms of feature sets, the implication
is that any three objects can be labeled so that Si ∩ Sj = Si ∩ Sk ⊂ Sj ∩ Sk. Now
the feature distance satisfies a special property that is characteristic for an additive
or weighted tree, called the additive inequality or the four-point condition (Buneman,
1971; 1974). A tree is a connected graph without cycles, and the qualifier additive
underlines the property that the distance between any two nodes in a weighted tree
is the sum of the weights (line lengths) along the shortest path connecting the nodes.
Tversky (1977) was the first to give an interpretation of an additive tree in terms of
the distinctive features model, and advocated its use as a practical simplification of
his more general Contrast Model. Colonius and Schulze (1981) gave a measurement-
theoretical characterization of the tree structure in terms of topological relations be-
tween pairs of objects and described corresponding sorting tasks for data collection.

Cunningham (1974, 1978), Carroll (1976) and Sattath and Tversky (1977) moti-
vated their work on the additive tree by pointing out limitations of the more com-
mon hierarchical tree and multidimensional scaling representations as models for
similarity data. Given two disjoint clusters in a hierarchical tree, for example, all
within-cluster distances are smaller than all between-cluster distances, which are all
equal. Such severe constraints do not necessarily hold in an additive tree. Pruzan-
sky, Tversky, and Carroll (1982) offered guidelines for deciding between spatial
and tree representations on the basis of data properties such as skewness of the
(dis)similarity distribution (under an additive tree model the distance distribution
is skewed to the left, and under a spatial model distances are skewed to the right).
Carroll, Clark, and DeSarbo (1984) proposed extensions of additive tree model to
three-way data. Despite its elegance and flexibility, applications of additive trees in
psychology are sparse, except perhaps in categorization research. An example is the
study of contrast categories in predicting typicality ratings by Verbeemen, Vanover-
berghe, Storms, and Ruts (2001).

Several algorithms are available for fitting an additive tree (see Barthélemy &
Guénoche, 1991). The major ones are ADDTREE (Sattath & Tversky, 1977),
ADDTREE/P (Corter, 1982), an improved implementation of the ADDTREE algorithm
because it allows for using metric information, the closely related and widely used
neighbor-joining (NJ) method (Saitou & Nei, 1987), and a least squares method due
to De Soete (1983). GTREE (Corter, 1998) uses only metric information to select the
nearest neighbor for each object and therefore represents an entirely distinct algo-
rithm from ADDTREE and ADDTREE/P. Viewed as a distinctive features model, the
tree is characterized by at most m − 3 shared features that are either nested or dis-
joint, and m unique features. Given the tree structure, we can find anyone of the
features by cutting any branch of the tree, causing the objects to fall apart in two
exclusive subsets. Repeated cutting of all 2m − 3 branches gives the complete set
of features. Given the feature structure, the tree can be found by the present graph
construction method, where each of the m− 3 shared features is included as an addi-
tional internal node (defined as the intersection of the profiles of the objects sharing
the feature). The origin should be included as well; this internal node corresponds
to the complement of the subset defined by the first feature. There is a one-to-one re-
lation between line lengths and feature weights. An interesting special case arises if
we constrain each internal node to be equal to one of the objects (the ”branches only”
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model of Carroll & Chang, 1973), which amounts to setting the weight of some of the
unique features equal to zero. This constrained model has only m− 1 parameters.

Corter and Tversky (1986) found an additive tree for the Shepard et al. (1975)
number data with ADDTREE. Using the procedure just outlined, we recovered seven
shared features. The weight parameters for the shared and unique features have
been re-estimated with nonnegative least squares. Our usual graph construction
method yielded the network displayed in Figure 5.9, which is comparable with our
earlier results for the more general distinctive features model in Figure 5.6 and the
more restricted double star tree model in Figure 5.8. The %DAF of this solution of
95.37 is between those of the other two. There are clear common elements between
the three solutions, in particular the fact that they share the clusters (0, 1), (5, 7), (2,
4, 8), and (3, 6, 9). The additive tree refines (2, 4, 8) into (2, 4) versus (8), and (3, 6,
9) into (3, 9) versus (6), while it introduces the super-ordinate class (3, 5, 6, 7, 9) by
joining (3, 6, 9) and (5, 7). Remarkable differences between the three solutions are
the following. In the general distinctive features model, 9 is close to 7, but not in the
two other models; this is due to the cluster of large numbers (7, 8, 9), which joins
elements from three of the four major clusters apparent in the other two models.
Similarly, the cluster of small numbers (0, 1, 2, 3 ,4) in the general feature model
forms a major violation of the hierarchical structure, since it also combines elements
from three of the four main clusters in the other two models. Both the tree and the
general model join (5, 7) with (3, 6, 9) to form (3, 5, 6, 7, 9), but this cluster does not
occur in the partitioning model. In the tree, (2, 4) joins with 8 into (2, 4, 8), but does
not continue with (2, 4, 6, 8) like in the general model, since 6 is located in another
branch of the tree. All differences are understandable from the structural properties
of the three models.

5.4 Discussion

Additivity across dimensions and uniqueness of coordinate system have always
been the two most appealing properties of the city-block distance, ever since Lan-
dahl (1945) started thinking of models for similarity and difference, and Attneave
(1950) started experimenting with them (Arabie, 1991). Undoubtedly, the simplest
rule for the combination of psychological differences on different dimensions is to
add them up with equal weights (Cross, 1965). This paper has shown that the city-
block distance is not only additive across its component dimensions, but also across
sequences of intermediate points along certain trajectories in space. As an unex-
pected consequence, the extra additivity of distance allows dropping the whole co-
ordinate system. If we can embed dissimilarities in a city-block coordinate system,
we can equally well embed them in a network.

Our construction of the network representation rested upon the notion of the
metric segment between any pair of points in space. A metric segment is the area of
all intermediary points for which additivity of distance applies. City-block space has
metric segments that are rectangles in two dimensions, cuboids in three dimensions,
or hyper-cuboids in more than three dimensions. Since these areas are large enough
to accommodate a considerable number of intermediate points in any finite set of
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Figure 5.9: Network representation of additive tree for the number data.

objects, the possibility of network construction is realistic for city-block models. By
contrast, in Euclidean space metric segments are always line segments, and chances
of finding intermediate points on line segments are negligible with fallible data on
a finite set of objects. We also introduced the general concept of an internal node,
which is a supplementary point in the intersection of several metric segments. Inter-
nal nodes can be helpful in reducing the complexity of the network, and in making
the representation more transparent and better susceptible for interpretation.

A network is coordinate-free, that is, it is entirely determined by the presence
or absence of edges between the nodes, and the lengths of these edges; in other
words, it exists independently from an embedding in some coordinate system. In
some applications, such as the example of the Borg and Leutner (1983) data, one
could consider that property undesirable, since coordinates of objects are essential:
they are the psychological part of the psychophysical function. Nevertheless, when
fitting the city-block model without restrictions enforcing that the dimensions are
indeed simple functions of the independent variables, a procedure often used, there
is no guarantee whatsoever that the coordinates satisfy the expectations. Indeed,
they often do not correspond exactly with the predicted dimensions, as was also
clearly the case in our analysis of the Borg and Leutner data in Figure 5.1. In those
situations, the coordinate-free representation with internal nodes can be useful in
that it offers suggestions of the type of violations that occurred, as we have seen
in the discussion of Figure 5.3. For a real test of inter-dimensional additivity, it
might still be the best to follow simply Attneave (1950), who predicted observed
differences between stimuli varying on two dimensions from observed differences
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between stimuli varying only within dimensions and fitted a regression equation.
Coordinate-free models rely merely on distance and local relations. One may

argue that these two elements are enough to navigate mentally through cognitive
space. There is growing evidence that human navigation in physical space has two
distinct means of keeping track of position and orientation during travel: landmark-
based navigation and path integration (Klatzky, Beall, Loomis, Golledge, & Philbeck,
1999). While landmark-based navigation depends on some coordinate system - be
it Cartesian or with polar coordinates - path integration is a mechanism that builds
up a mental image of the trajectory traversed by encoding distances and turns, on
the basis of sensed self-velocity, self-acceleration, and self-rotation. Thus, in some
circumstances a network representation might have more psychological reality than
a coordinate representation, which also often assumes more continuity in psycho-
logical space than is warranted by the data.

An important difference between networks for continuous city-block models
(most often of low dimensionality) and networks for discrete city-block models (most
often of high dimensionality) is the type of embedding needed to achieve an inter-
pretable display. In the first case, the coordinates of the continuous solution of-
ten suffice, and no extra embedding is necessary (except for high-dimensional so-
lutions). In the second case, we do need a form of multidimensional scaling for
visualizing the nodes and the edges, which adds some arbitrariness to the final dis-
play, since several variations in analysis options are possible (type of fit function
used, type of possible distance transformation specified, type of start configuration
used, and so on). Nevertheless, the linking structure and the edge lengths are in-
variant. Therefore, when reporting a network, either the edge lengths or the feature
parameters themselves should always be included. In addition, the goodness-of-fit
between data and reconstructed network distance (network fit) is a more important
consideration than the goodness-of-fit between reconstructed network distance and
the distances in the visual display (embedding fit).

Network representation of feature structures offers a fruitful framework for the-
oretical comparison and practical use of a whole range of scaling and clustering
methods. For example, our derivation of the common features model as a special
case of the distinctive features model is a new result, owing to a more transparant
notation than the one used in Sattath and Tversky (1987) and Carroll and Corter
(1995). Since our network construction rule applies to continuous and discrete mod-
els alike, it turns out to be a unifying factor for understanding the relations between
them. Figure 10 gives an overview of these relations. From top to bottom, Figure
10 has six levels, each adding some extra restriction to the model. One-step down
from the most general continuous case, the distinctive features model arises from
the restriction that coordinate values be binary (where the distance between the two
values is not necessarily equal for all dimensions). At the same level of generality,
we have Corter and Tversky (1986) extended similarity tree, which is an equivalent
form, provided that we allow the tree being unresolved (for instance, if all features
overlap without nesting, we can only have an extended similarity tree representa-
tion by reducing the tree to a bipartition). Continuing further down in Figure 10, we
have:
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• Third level (common features model, additive tree). The additive tree arises from the
distinctive features model by the restriction that all features are either nested
or disjoint and from the extended similarity tree by the exclusion of marked
segments. As shown in this paper, the common features model arises from a
restriction on the weights of the unique features, so that the total sum of all
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feature weights is constant. Although Sattath and Tversky (1987) have stated
that the distinctive features model and the common features model have the
same level of generality, we believe that their argument runs into a contradic-
tion with respect to the diagonal entries of the similarity matrix (see Heiser
and Frank (2005), for a more detailed argumentation).

• Fourth level (ultrametric tree, double star tree, linear tree). The ultrametric tree
arises from the additive tree by the restriction that all nodes are equidistant
from the root (Carroll, 1976), but it is also a special case of the common fea-
tures model in which all features are restricted to be either disjoint of nested
(Carroll & Corter, 1995). If all features are completely nested and unique fea-
ture weights are zero except for one, we have a chain or linear tree (Sattath &
Tversky, 1977), which is equivalent to a one-dimensional continuous distance
model. As shown in this paper, if all shared features are disjoint, we have a
double star tree.

• Fifth level (singular tree, reduced star tree). If all unique features in the dou-
ble star tree are restricted to have zero weights, we obtain a reduced star tree,
or simply a partitioning. If all shared features in the double star tree are re-
stricted to have zero weights, we obtain a star graph (Carroll, 1976), also called
a singular tree (Sattath & Tversky, 1977).

• Last level (simplex tree). If the leaves of a star graph are equidistant to the root,
that is, if all unique feature weights are equal, we obtain the equidistant star
graph, or simplex tree. Equal distances also arise if an ultrametric tree is com-
pletely unresolved (that is, the weights of all shared features reduce to zero).

It appears that all known discrete models of similarity fit well into this scheme. They
are all special cases of the distinctive features model, and the general rule proposed
in this paper produces their usual graphical representations, thanks to the introduc-
tion of internal nodes.

One model not mentioned in Figure 5.10, Tversky’s (1977) Contrast Model, is de-
composable into a symmetric and a skew-symmetric component, which are uncor-
related; the skew-symmetric component is linear and depends only on the sum of
the feature weights (Zielman & Heiser, 1996),. As already noted by Tversky (1977),
the symmetric version of the Contrast Model is equivalent to a distinctive features
model. Therefore, the symmetric component of the Contrast Model fits in the scheme
of Figure 5.10, and has a network representation. The model recently proposed by
Navarro and Lee (2004), like the Contrast Model, is a linear combination of common
and distinctive features, with the specification that each feature enters either into a
common features combination rule or into a distinctive features combination rule.
Converting the common component into a distinctive component with the speci-
fications in Equation 5.15 in this paper, we have an additive combination of two
distinctive features models, which again is a distinctive features model in the total
feature space. In fact, this hybrid type of model is an example of Carroll’s (1976) gen-
eral strategy of decomposing a (dis)similarity matrix into the sum of multiple trees
or other graphical structures. Although the sum of two additive trees is not a tree, it
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still is a distinctive features model (albeit perhaps not a parsimonious one). Finally,
it is of interest to mention the possibility to combine these discrete structures with
generalized context models and geometric prototype models (M. D. Lee & Navarro,
2002; Nosofsky & Zaki, 2002; Verbeemen, Storms, & Verguts, 2004; Zaki et al., 2003).

Several aspects of network representations allow statistical refinement. Given
the feature structure, estimation of the feature weights is a rather standard statistical
problem. Frank and Heiser (in press a) have shown how to determine standard
errors and confidence intervals for the feature weights in the distinctive features
model. When the data can be split up in a training and a testing sample, it is also
possible to calculate statistical accuracy of parameter estimates, do model tests and
find a well-balanced compromise between model fit and model complexity when
the features are unknown (Frank & Heiser, in press b). Similar work has been done
by M. D. Lee (2001) for additive clustering, Navarro and Lee (2001) for the Contrast
Model, and Frank and Heiser (2005) for additive trees. The emergence of a full-
fledged methodology for city-block models owes much to their additivity, the very
same property that makes them such attractive models for psychological similarity
and difference.



Chapter 6

Epilogue: General Conclusion and
Discussion

6.1 Reviewing statistical inference in Feature Network Models

In this monograph, statistical inference in FNM has been accomplished using the
multiple regression framework. It provided the basis for the estimation of stan-
dard errors, confidence intervals , model test and features subset selection. This
framework has been helpful in solving some problems, but there remain problems
unsolved. The following sections review the results.

Constrained estimation

Considering features in FNM as predictor variables leads to the univariate linear
regression model with positivity constraints on the feature discriminability param-
eters. Due to these positivity constraints, the ordinary least squares estimator be-
comes the inequality constrained least squares estimator (ICLS). One of the key
problems has been to assess the variability of the feature discriminability param-
eters estimated with the ICLS estimator, which has a truncated (normal) distribu-
tion. Statistical inference in inequality constrained least squares problems is far from
straightforward. While there is abundant literature on the computational aspects of
the ICLS estimators (cf. Golub & Loan, 1989; Lawson & Hanson, 1995; Wollan &
Dykstra, 1987), a recent review on statistical inference in inequality constrained least
squares problems (Sen & Silvapulle, 2002) showed that optimal estimators or tests
of significance generally do not exist for such nonstandard methods. In this context,
there is only one author (Liew, 1976) who proposed a direct method to obtain theo-
retical standard errors for the ICLS estimator. The combination of Liew’s theory on
standard errors for the ICLS estimator with an efficient algorithm to compute ICLS
estimates (Algorithm AS 225, Wollan & Dykstra, 1987) written in Matlab code, made
it possible to obtain feature discriminability values and their associated standard er-
rors. This method can be used in any inequality constrained least squares situation.

Imposing positivity constraints results from a priori ideas about the true model
or properties of the population. In the context of FNM the prior belief would be that
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there exists a representation of the data in terms of a network where the edge lengths
are all positive. If one believes that the true model is positive, then, negative values
are non existing effects (in the sense that they only result from sampling error) and
should lead to parameter values equal to zero. The theory about standard errors of
inequality constrained least squares estimators proposed by Liew (1976) is based on
the assumption that the true model parameters are positive and, subsequently, yields
zero values for standard errors related to parameters where the constraints are ac-
tivated. Negative effects, and therefore, non existing effects, yield standard errors
equal to zero, which expresses the idea that non existing effects are not allowed to
have variability. There are differences in opinion about this idea. Tibshirani (1996),
for example, uses a ridge regression approximation for the estimation of standard er-
rors for the Lasso parameters that also leads to zero values for the Lasso parameters
that are shrunken to zero, and finds this an inconvenience. Shrinking parameters is
a rather smooth procedure that eventually leads to parameter values equal to zero.
Inequality constrained least squares is not smooth: a parameter is zero or positive.
In the context of FNM, negative parameter values are assumed to result from sam-
pling error (irreducible measurement error) and, consequently, should not be part of
the model.

The theoretical standard errors for the feature discriminability parameters have
been used in two different settings in this monograph. Chapter 2 provided results
for the theoretical standard errors for an a priori known feature structure in FNM.
Chapter 3 showed an application of the theoretical standard errors for the feature
structure of additive trees, a special case of FNM. Standard errors that yielded ad-
equate 95% t-confidence intervals were obtained in two situations: a priori known
tree topologies and estimated tree topologies. The results on estimated tree topolo-
gies, which were based on the possibility to split the data in a training and a test
sample, are expected to hold for the general FNM framework as well.

In both aforementioned studies, the performance of the theoretical standard er-
rors was evaluated with Monte Carlo simulation techniques and compared with
bootstrap standard deviations of the sampling distribution of the ICLS estimator.
The performance criterion was the coverage probability of 95% t-confidence inter-
vals. The coverage results for a priori known feature structure for the FNM were
different for the theoretical standard errors compared to the bootstrap standard de-
viations, with a tendency to undercover for the bootstrap standard deviations and
a tendency to overcover for the theoretical standard deviations. The tendency to
undercover for the bootstrap confidence intervals was more prominent in the simu-
lations with the additive tree models.

Although the bootstrap is renowned to be applicable in a wide range of situa-
tions, the inequality constrained least squares framework poses some limitations to
the use of the bootstrap to assess the variance of a statistic. The consequence of im-
posing positivity constraints is that the empirical distribution is no longer centered
around the true parameter value, which threatens the consistency of the bootstrap
distribution and this might explain the tendency to undercover for the bootstrap
confidence intervals . Especially when more constraints are activated, the distribu-
tions of the parameters are affected although it is not precisely known what the con-
sequences are. Self and Liang (1987) studied several cases of constrained parameters
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when true parameter values are on the boundary of parameter space. The authors
approximated the distributions of the constrained parameters by a mixture of χ2 dis-
tributions when a small number of parameters are constrained. With more activated
constraints, as is often the case in additive trees, the distribution of the constrained
parameters can no longer be approximated by a mixture of χ2 distributions. The rea-
son that the theoretical standard errors proposed by Liew (1976) work is that they
are based on the standard errors of the unconstrained (ordinary) least squares esti-
mator. According to Self and Liang (1987) in the presence of boundary parameters
one could always reflect the parametric distributions across the boundary to create
a larger problem where the boundary points become interior points. The ordinary
least squares solution represents the larger problem in this case.

Bootstrap standard deviation

In this monograph, the theoretical standard errors were compared to the true values
and to the bootstrap standard deviations. Unlike the computation of the theoretical
standard deviations, which is straightforward once the correct formula is known,
the calculation of the bootstrap standard deviations is preceded by several decisions
and limitations. Considering the FNM as univariate regression models influenced
the choice of a resampling method, but also the presence of dissimilarity values in
FNM. In the context of regression models there are different ways of resampling with
different outcomes (Efron & Tibshirani, 1998; Freedman, 1981; Freedman & Peters,
1984): sampling residuals or sampling pairs of observations (value of the dependent
variable and corresponding row or the matrix of predictor variables). Bootstrapping
pairs was imposed by the FNM setting as a way to avoid negative dissimilarities
that could result from sampling residuals. It is also one of the resampling methods
in the linear regression model context that is robust in presence of heterogeneous
error variance (Liu & Singh, 1992b).

In addition to the choices that have to be made about the method of resampling,
the properties of the bootstrap standard deviations are not completely understood
yet. Even in the ”simple” linear regression case, without constraints, the consistency
of the variance of the bootstrap distribution has not received much attention, while
the consistency of the OLS estimator is well established in the literature; Gonçalves
and White (2005) say on this topic:

”The consistency of the bootstrap distribution, however, does not guar-
antee the consistency of the variance of the bootstrap distribution (the
bootstrap variance) as an estimator of the asymptotic variance, because
it is well known that convergence in distribution of a random sequence
does not imply convergence of moments”.

A better evaluation of the bootstrap standard deviations themselves could be
achieved by performing a double bootstrap, as suggested by Gonçalves and White
(2005) where the bootstrap is used to simulate the distribution of the t statistic which
is based on a standard deviation that in turn has been estimated by the bootstrap.
However, the authors did not actually perform the double bootstrap, which means
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bootstrapping the bootstrap, because the implementation is extremely computation-
ally intensive. There is room for further improvement of bootstrap standard devia-
tions in the case of inequality constraints.

Assumptions and limitations

The application of the theoretical standard errors and associated 95% t-confidence
intervals is limited to the assumption of normally distributed error terms. It is well
known that the assumption of normality does not always hold in psychological re-
search (Micceri, 1989). In the context of FNM, each dissimilarity value typically
represents the mean of the dissimilarity values obtained from N subjects, and by the
central limit theorem it is to be expected that the mean dissimilarity values become
approximately normally distributed fairly rapidly. A more challenging problem is
the issue of correlated data: ”the future of linear models research lies primarily in
developing methods for correlated data” (Christensen, 2002). The problem of depen-
dency in the data has not been addressed in this monograph, but is likely to occur
in the FNM because error terms associate with dissimilarity values that share the
same objects are possibly correlated. The data used in the simulation studies were
generated under the assumptions of normality, independence and homogeneity.

For the special case of FNM, the specification of the error structure might be
a difficult task to accomplish in practice. There are specific experimental settings
that inevitably produce data that yield correlated residuals, also called unobserved
heterogeneity, as in longitudinal or multilevel data (cf. Skrondal & Rabe-Hesket,
2004). When individuals are clustered, for example students in classes, or when the
same individuals are measured several times in a longitudinal setting, the residuals
become correlated and the error structure is reasonably predictable. In the context
of FNM, or more generally, dissimilarity matrices, the error structure is not precisely
known. In addition, it is not clear how to assess the amount of dependency present
in the data and the available tests are limited to specific settings, not comparable to
the situation in FNM. The Durbin-Watson test (Durbin & Watson, 1950) is intended
for autoregressive residuals and other tests like the Box test (Box, 1949) and the intra-
class correlation (cf. Stevens, 1992) are useful to test the independence assumptions
in the presence of several groups of individuals.

Given the difficulty to specify the error structure and the lack of adequate tests,
the question comes up whether it is useful to adjust for correlated residuals a pos-
teriori. Unlike the longitudinal studies, where dependency is inevitable, the FNM
setting offers possibilities to reduce the occurrence of correlated error terms. For
example, taking the mean of the dissimilarity values from a substantial number of
subjects already reduces the correlation. Or one could use permutation techniques
on the collected data matrices to disentangle the correlation structure between dis-
similarity values that share the same object. More research is necessary to specify the
error structure and to find adequate methods to prevent dependency in dissimilarity
data.

If it is not possible to prevent dependency during the data collection step, one
could use generalized least squares to take into account error correlation, but it
would not solve the constrained estimation problem. The challenge is to combine in-
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equality constrained least squares with generalized least squares. Very few attempts
have been made to obtain estimates for the generalized inequality constrained least
squares estimator, GICLS (Werner, 1990; Werner & Yapar, 1996). Assessing the vari-
ability of the GICLS estimator is still a far way to go, although Gulliksson and Wedin
(2000) obtained some results in the perturbation theory for GICLS that are useful to
assess the stability of the solution.

It should be noted that violations of the independence assumption not only affect
parametric statistical inference (theoretical standard errors), but also affect the boot-
strap. This means that the bootstrap method needs to be adjusted. Künsch (1989)
and Liu and Singh (1992a) introduced the moving blocks bootstrap for use with de-
pendent data. Gonçalves and White (2005) have further refined this method for the
linear models with dependent data by establishing conditions for the consistency
of the moving blocks bootstrap estimators of the variance of the least squares es-
timator. Using this bootstrap method might improve the assessment of bootstrap
standard deviations for the feature discriminability parameters in FNM, although
the results might not be the same for the ICLS estimator, and needs further research.

Another issue that has not been addressed in this monograph, is the problem
of multiple confidence intervals. If confidence intervals are used to decide which
features are important (especially the additive tree models have a large number of
features), it eventually leads to the problem of multiple testing. A way out could be
to use the Positive Lasso to select the best subset of features. In several applications
in this monograph, the feature set selected by the Positive Lasso corresponded to
the set of features with appropriate confidence intervals. There obviously exists a
link between the two methods, although it has not been demonstrated yet. Further-
more, there are promising results available for the extension of the LARS algorithm
to generalized linear models (see the discussion of Efron et al., 2004), which might
be a solution to possible correlated error terms in the FNM. For use with the addi-
tive trees models, the Positive Lasso needs further adjustments because the feature
structure is more restricted than in the general FNM. The Positive Lasso and the
Lasso both have the additional advantage of being robust to correlated predictors,
or multicollinearity.

6.2 Features and graphical representation

The set of distinctive features

The representation of features with Gray codes proved to be useful in several as-
pects. In a practical sense, the representation of features by the Gray code consider-
ably simplifies computer manipulations of feature sets. The convenient attribute of
Gray codes to represent features by a rank number (a simple integer) saves computer
time and memory because the original feature set can be retrieved by simply keeping
track of the corresponding rank number. Another advantage of the representation of
features by a unique rank number is the possibility to get back the original features
after transformations to featurewise distances, which is the transformation from the
objects × features matrix E to the pairs of objects × features matrix X. This transfor-
mation is not reversible because the results are not unique. The practical properties
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of the Gray code rank numbers are particularly useful in the generation of the fea-
ture sets, for efficient storage during Monte Carlo simulations, but also for efficient
comparison of different tree topologies. In a more conceptual sense, the representa-
tion in Gray codes allows for defining a finite solution space, which can be further
reduced to distinctive features only, through the transformation from E to X. This
transformation limits the search for predictors to the set of truly distinctive features
and increases the gain of using Gray coding.

Given that it is possible to generate the complete set of distinctive features for up
to 22 objects in an efficient way, it is tempting to search for the optimal set of features
for a given data set. Instead, the Positive Lasso selects a suboptimal solution that has
better generalizability properties. This combination of the Positive Lasso algorithm
and the complete set of distinctive features, has several additional advantages over
the existing algorithms. It selects the best subset regardless of the number of fea-
tures and avoids deciding on the number of features a priori. The selected subset
is not biased toward a certain graphical representation because all possible feature
structures are allowed. However, the method needs to be improved for data sets
that have more than 22 objects or stimuli.

FNM is restricted to the use of distinctive features, which has some computa-
tional advantages as discussed in the previous paragraphs. In the introduction to
this monograph, the distinctive features were presented as opposed to common fea-
tures. The Contrast Model (Tversky, 1977) combines both types of features, but most
of the models based on features that were developed later, mainly concentrate on one
type of feature leading to common features models (CF) or distinctive features mod-
els (DF). The possibility to transform the CF model into the DF model and vice versa,
has already been demonstrated by Sattath and Tversky (1987) and Carroll and Corter
(1995). Chapter 5 further refined the transformation from CF to DF by showing that
for any fitted CF model it is possible to find an equally well fitting DF model with
the same set of shared features (common features) and associated feature weights,
while keeping the same number of parameters. In this transformation, the CF model
is a special case of the distinctive features model, which is a new result. Within this
framework, a model that combines common and distinctive features can be repre-
sented as a sum of two separate DF models. However, the opposite transformation,
from DF to CF is only possible if the objects are equidistant from the origin.

Network representation of features

Compared to all the models that are based on feature structuress, the graphical rep-
resentation in terms of a network is unique for FNM. The network representation
of features offers an interesting framework for theoretical comparison and practical
use of several scaling and clustering methods. Figure 5.10 in Chapter 5 has shown
that a whole family of discrete models of similarity are in fact special cases of the dis-
tinctive features model. The distinctive features models themselves are special cases
of the city-block model and result from the restriction that the coordinate values be
binary. Chapter 5 demonstrated that a coordinate system is not always necessary
to represent city-block models. The additivity properties of the city-block distances
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allow for dropping the whole coordinate system and as a consequence, the dissimi-
larities can equally well be embedded in a network.

Embedding the network

To represent FNM, which are in general high-dimensional structures, as low dimen-
sional feature graphs it is necessary to considerably reduce the dimensionality of the
space. In this monograph, all network representations were obtained with multidi-
mensional scaling performed with PROXSCAL1. The input distances were Euclidean
distances computed with the feature discriminability parameters, and they were
usually represented in 2-dimensional space. To represent the features in the same
solutions space, PROXSCAL offers the possibility to constrain the solution space by
a linear combination of the feature variables. As a result, the features can be repre-
sented as vectors leading from the origin through the point with coordinates equal
to the correlations of each feature with each dimension. For ease of interpretation,
the centroids of the objects that possess a particular feature can be projected onto the
vector representing that feature. The same can be done for the objects that are not
characterized by that feature. Labeling these projected points with plus and minus
signs gives insight in the feature patterns of the objects.

The embedding of feature graphs in a lower dimensional space is for display
purposes only because the model is specified by the network structure, the feature
discriminability parameters and the model fit (the goodness-of-fit between the data
and the reconstructed network distance). The fit between the network distance and
the distance in the visual display, the embedding fit, is of secondary importance. The
embedding is somewhat arbitrary because there are many possibilities to achieve
this goal, depending on the distance transformations used or the type of start con-
figuration used. In addition, the embedding is not restricted to the use of multidi-
mensional scaling on the feature distances. Without using the feature distances, the
objects and the features could also be represented in a biplot obtained with corre-
spondance analysis.

Figure 6.1 shows an example of a plot representing the 14 features that character-
ize the presidents of the United States (the data were described in the introductory
chapter), obtained with correspondance analysis, using row principal normalization.
In row-principal normalization, a president point is located in the center of gravity
of the features that he possesses. By connecting each president point with his own
feature points, it is possible to reconstruct the feature graph from the correspondence
analysis plot. However, in contrast to the feature network representation of the same
data (See Figure 1.1, Chapter 1), the correspondence analysis plot does not allow a
direct reconstruction of the distances between presidents. The strong point of the
feature network representation results from the possibility to represent the feature
structure as well as the distances between the objects by labeling the edges with the
corresponding feature distances.

1PROXSCAL is a multidimensional scaling program distributed as part of the Categories package by
SPSS, Meulman & Heiser, 1999
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FNM and tree representations

Chapter 3 showed that given a special, nested, feature structure, formed by a com-
bination of cluster features, unique features and internal nodes, the feature network
representation becomes an additive tree representation. Do the results obtained for
the additive trees also apply to hierarchical trees? Not directly, because in the hierar-
chical tree additional constraints are necessary to obtain equal distances to the root.
In our context this means that extra constraints should be imposed on the feature
discriminability parameters for the unique features. The problem could however
be circumvented by using common features. The hierarchical tree can be obtained
from a common feature model without unique features, which means that no extra
constraints are necessary.

In the psychological literature, the relation between features and tree representa-
tions exists for a long time, while this relation is unknown in the phylogenetic tree
domain. Both research areas might benefit from their mutual results. In particular,
the use of features in FNM along with the univariate multiple regression framework
led to two results that might be of interest for phylogenies. The first one is the possi-
bility to use the generalized cross-validation statistic as an estimate of prediction error.
This convenient closed form formula can be used to compare different tree topolo-
gies, even if both topologies have the same number of degrees of freedom. Being
able to compare tree topologies with the same number of degrees of freedom, is
an advantage over the likelihood ratio test that is commonly used to compare tree
topologies but is limited to the case of nested topologies. The second result concerns
the possibility of using cluster features to test in an easy way, events of speciation,
the evolutionary process by which new biological species arise. Further improve-
ments of statistical inference in the additive tree representations of FNM could be
obtained by using the Positive Lasso to prune the tree, instead of using confidence
intervals to select the relevant set of features. Pruning the tree will necessitate mod-
ifications of the present implementation of the Positive Lasso to simplify the tree
structure in specific areas in order to keep the representation tree-shaped.
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Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary obser-
vations. The Annals of Statistics, 17, 1217-1241.

Landahl, H. (1945). Neural mechanisms for the concepts of difference and similarity.
Bulletin of Mathematical Biophysics, 7, 83-88.

Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Philadelphia:
Society for Industrial and Applied Mathematics.
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Summary in Dutch (Samenvatting)

Feature Netwerk Modellen (FNM) zijn grafische modellen die nabijheidsdata met
behulp van features weergeven in een discrete ruimte. Nabijheidsdata ontstaan wan-
neer respondenten gevraagd wordt de gelijkenis tussen paren objecten of stimuli
te beoordelen op bijvoorbeeld een 5-punts schaal, waarbij een hoge score aangeeft
dat een respondent de twee objecten erg op elkaar vindt lijken. Wanneer een groot
aantal respondenten dezelfde objectparen hebben beoordeeld, kunnen de scores ge-
bruikt worden om meer inzicht te verkrijgen in de cognitieve processen die een rol
spelen bij het onderscheiden van verschillen en overeenkomsten tussen stimuli. In
de psychometrie wordt dit type data vaak met meerdimensionale schaaltechnieken
(MDS) geanalyseerd. Bij deze technieken worden de objecten afgebeeld als pun-
ten in een laag-dimensionale ruimte en is het doel de geobserveerde nabijheidsdata
voor de verschillende object paren zo goed mogelijk te benaderen met afstanden
tussen de object punten in die ruimte. Er wordt dan aangenomen dat de psycho-
logische afstand tussen objecten, in de vorm van nabijheidsdata voortkomend uit de
ervaringen van de respondenten, benaderd kan worden met een metrische afstand in
een laag-dimensionale ruimte.

De assumptie dat een nabijheidsmaat zich als een metrische afstandsfunctie zou
gedragen is al in 1977 door onder anderen Tversky in twijfel getrokken. (Zo weten
we allemaal dat de beleving van de lengte van dezelfde treinreis met en zonder span-
nend boek, duidelijk anders is en dat de benadering in kilometers geen goede weer-
gave is van deze twee verschillende belevingen.) Als alternatief voor de metrische
representatie van een nabijheidsmaat, stelde hij het Contrast Model voor, waarbij
de afstand tussen objecten wordt weergegeven in termen van een verzameling (set)
kwalitatieve eigenschappen en introduceerde hij de features die als basis dienen voor
het model. Een feature is een prominent kenmerk van een object. De representatie
van objecten als een set features leidt volgens Tversky tot betekenisvollere psycholo-
gische modellen aangezien de features beschouwd kunnen worden als de elementen
van de mentale processen die een rol spelen wanneer respondenten gevraagd wordt
objecten te vergelijken, en als zodanig afzonderlijk getoetst kunnen worden.

In het Contrast Model wordt de nabijheidsmaat voor twee objecten weergegeven
als de som van de features die beide objecten gemeenschappelijk hebben, de common
features, en van de features die beide objecten onderscheiden, de distinctive features.
De nabijheidsmaat wordt in het Contrast Model niet door een afstand benaderd
maar door een lineaire combinatie van een set theoretische constructen: de common
features worden gevormd door de intersectie te nemen van de feature sets die elk
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object beschrijven en de distinctive features worden gevormd door het symmetrisch
set verschil (de vereniging minus de intersectie) van de twee feature sets.

Sinds de introductie van het Contrast Model, zijn verscheidene modellen ont-
wikkeld die ofwel het gemeenschappelijk deel van het model modelleren (het com-
mon features model, CF), ofwel het distinctieve gedeelte (het distinctive features
model, DF), of een combinatie van beide. De inleiding van deze dissertatie (Chap-
ter 1) geeft een overzicht van al deze modellen. Feature Netwerk Modellen (FNM)
concentreren zich op het distinctieve gedeelte en onderscheiden zich van de an-
dere modellen doordat zij een grafische representatie van het DF model geven in
de vorm van een netwerk. De objecten (stimuli) worden voorgesteld als punten in
een netwerk. De afstand tussen de twee objecten is nu de afgelegde afstand langs
de lijnstukken in het netwerk die de twee objecten met elkaar verbinden. De beste
benadering van de nabijheidsmaat is dan het kortste pad tussen de twee objecten,
die als punten zijn gerepresenteerd in het netwerk.

Het gegeven dat de nabijheidsmaat tussen twee objecten benaderd kan worden
door de kortste pad afstand in het netwerk tussen beide objecten, komt voort uit
het feit dat een simpele optelling van het aantal elementen van het symmetrisch
set verschil een maat oplevert die voldoet aan de axioma’s van een metriek, zoals
aangetoond door Goodman (1951, 1977) en Restle (1959, 1961). Heiser (1998) heeft
aangetoond dat deze afstand in termen van het symmetrisch set verschil ook in ter-
men van coördinaten kan worden voorgesteld en noemde deze de feature distance.
Deze afstand is gelijk aan de city-block afstand, ook wel de Manhattan-metriek ge-
noemd, die zijn naam ontleent aan de manier waarop afstanden worden bepaald in
een stad met uitsluitend rechthoekig op elkaar staande straten. De afstand van A
naar B in een dergelijk stadsplan is de som van de lengte van de afzonderlijke blocks
die gepasseerd worden. Dit, in tegenstelling tot de meer gangbare Euclidische me-
triek, die de afstand van A naar B niet in blocks meet, maar via een directe lijn van
A naar B, zoals dit op landkaarten gebeurt. In Manhattan is de Euclidische afstand
van A naar B alleen in ”vogelvlucht” af te leggen.

In het kader van FNM houdt de city-block metriek in dat de waargenomen na-
bijheidsmaat tussen stimuli wordt bepaald door de som van het symmetrisch set-
verschil op elk afzonderlijk feature, dat gelijk staat aan een dimensie in de ruimte.
De feature afstand is dan gelijk aan een city-block metriek in een ruimte met binaire
coördinaten die gevormd wordt door de features (features zijn immers binaire vari-
abelen die aangeven of een object een bepaalde eigenschap wel of niet heeft). Dit
specifieke geval van de city-block metriek wordt ook wel de Hamming afstand ge-
noemd. Dat de nabijheidsmaat benaderd wordt door de som van de ongelijkheden
op iedere afzonderlijke dimensie, is een uniek kenmerk van de city-block afstand die
daarom ook een additieve metriek wordt genoemd.

Als psychologisch model is de additieve metriek aannemelijk indien de stimu-
li verschillen op discrete, niet vermengbare dimensies (features), zoals in 1950 al
aangetoond door Attneave. Een voorbeeld van dergelijke stimuli zijn de bloem-
pot data van Tversky en Gati (1982), waarbij de twee niet vermengbare dimen-
sies gevormd worden door type plant en type bloempot (zie hoofdstuk 1). Het
waargenomen verschil tussen de stimuli (verschillende typen planten in verschil-
lende typen bloempotten) is dan afhankelijk van het waargenomen verschil in type



181

bloempot plus het waargenomen verschil in type plant. Wanneer een gewogen op-
telling van de elementen van het symmetrisch setverschil wordt genomen, kan het
relatieve belang van elk feature voor de oplossing worden bepaald aan de hand
van het bijbehorende gewicht, de feature discriminability parameter (Heiser, 1998). Elk
feature splitst de objecten in twee klassen en de feature discriminability parameter
geeft aan hoe zeer deze twee klassen van elkaar verschillen. Deze parameters kun-
nen geschat worden met behulp van een verliesfunctie gebaseerd op het kleinste
kwadraten criterium.

De bijdrage van dit proefschrift bestaat onder andere uit de introductie van statis-
tische inferentie in FNM en in het algemeen voor modellen die gebaseerd zijn op fea-
tures, aangezien er tot op heden in dergelijke modellen nauwelijks tot geen aandacht
is besteed aan het beoordelen van de stabiliteit van de oplossingen met behulp van
bijvoorbeeld standaardfouten en betrouwbaarheidsintervallen voor de parameters.
Hoofdstuk 2 gaat in op de vraag hoe de bijdrage van elk feature beoordeeld kan
worden op basis van de feature discriminability parameters voor het geval dat de
features a priori bekend zijn op basis van theorie of eerder onderzoek. Het netwerk
in FNM biedt een grafische representatie van de relaties tussen de objecten in termen
van features en zou tegelijkertijd beschouwd kunnen worden als een psychologisch
model voor de mentale representatie van de relaties tussen de objecten zoals deze
naar voren komen in de geobserveerde nabijheidsmaten. De netwerk representatie
zelf is echter niet toereikend om het psychologisch model te toetsen. Voor dit doel
dienen de feature discriminability parameters, die aangeven welk feature het meest
bijdraagt aan de beschrijving van de nabijheidsmaten.

Wanneer de features beschouwd worden als (binaire) predictoren kunnen FNM
gezien worden als een univariaat multipele regressie model met als regressiegewich-
ten de feature discriminability parameters. Het multipele regressie model biedt wel-
liswaar een uitgangspunt voor statistische inferentie, maar de standaard procedu-
res gaan niet op voor de FNM, aangezien er positiviteits restricties gelden voor de
feature discriminability parameters: deze stellen namelijk lijnstukken in het netwerk
voor en negatieve lijnstukken hebben immers geen betekenis en leveren dus ook
geen adequate beschrijving van een psychologische theorie op. Daarom worden in
FNM de parameterschattingen verkregen met behulp van het kleinste kwadraten
criterium met positiviteitsrestricties, bekend als nonnegative least squares.

Data analyse met restricties op de waarden van de parameters is een veel voor-
komend probleem in de statistische literatuur, echter, statistische inferentie voor dit
soort problemen is niet eenvoudig omdat in veel gevallen geen statistische theorie
beschikbaar is. De theorie over standaard fouten bij least squares met positiviteit-
srestricties, beschreven in een bijna vergeten artikel door Liew (1976), blijkt goed
toepasbaar te zijn in de context van FNM. In hoofdstuk 2 worden in een Monte
Carlo studie deze theoretische standaard fouten, die nog niet eerder getoetst waren
in de praktijk, vergeleken met empirische standaard fouten verkregen met de boot-
strap methode. De resultaten zijn bemoedigend: de theoretische standaard fouten
presteren over het algemeen even goed als de empirische standaard fouten, hetgeen
betekent dat volstaan kan worden met het berekenen van een theoretische standaard
fout in plaats van een meer tijdrovende bootstrap uit te voeren.

De resultaten van hoofdstuk 2 beperken zich tot het geval dat de features van
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tevoren bekend zijn, op basis van theorie of eerder onderzoek. Hoofdstuk 3 biedt
een uitbreiding van de statistische inferentie theorie op twee onderdelen. De eerste
uitbreiding betreft het geval waarin de features niet van tevoren bekend zijn. Ten
tweede blijken de behaalde resultaten voor de theoretische standaard fouten in FNM
ook toepasbaar op aan FNM verwante modellen, namelijk de in de psychologie veel
gebruikte additieve bomen (additive trees), die in de biologie en andere gerelateerde
wetenschappen bekend staan als phylogenetische bomen (phylogenetic trees of phylo-
genies) en die veelvuldig gebruikt worden om genetische verwantschap aan te tonen
tussen organismen. Deze boomstructuren zijn een speciaal geval van FNM wan-
neer de features een bepaalde structuur hebben, namelijk wanneer de set features
bestaat uit uitsluitend geneste features en aangevuld met een set interne nodes, die
aangeven waar clusters van objecten zich voordoen, of in het geval van de phylo-
genetische bomen, een afsplitsing in verschillende organismen plaatsvindt.

De resultaten van hoofdstuk 3 laten zien dat de methode om theoretische stan-
daard fouten en bijbehorende 95% betrouwbaarheidsintervallen te berekenen voor
de feature discriminability parameters in FNM ook toepasbaar is voor additieve
bomen of phylogenies. Waarbij moet worden vermeld dat de positiviteitsrestricties
voor de lijnstukken (geschat als de feature discriminability parameters) bij boom-
structuren nog veel meer van belang zijn dan bij FNM aangezien elk lijnstuk exact 1
feature voorstelt. De resultaten berperken zich niet tot het geval waarbij de feature-
structuur al bekend is, maar gelden ook voor nog niet bekende featurestructuren.
In dit laatste geval is een extra stap nodig in het bepalen van de standaardfouten
en bijbehorende 95% betrouwbaarheidsgebieden. In een cross-validatie opzet wordt
de steekproef opgedeeld in twee sets, een training set om de boomstructuur (fea-
ture structuur) te vinden en een test set waarop de gevonden feature structuur gefit
wordt om de standaardfouten en de betrouwbaarheidsintervallen te verkrijgen.

Deze resultaten zijn van belang omdat tot op heden in de psychologische liter-
atuur nog geen statistische inferentie is toegepast op boomstructuren. Het phylo-
genitisch domein kent echter wel een traditie van statistische inferentie. Opvallend
is dat in vrijwel geen enkele methode om phylogenies te fitten, gebruik gemaakt
wordt van positiviteitsrestricties op de parameters die de lijnstukken voorstellen.
Het gebruik in FNM van het multipele regressie raamwerk gecombineerd met fea-
tures kan een waardevolle aanvulling voor phylogenetische bomen betekenen. Niet
alleen kunnen afsplitsingen van verschillende organismen getoetst worden door een
feature aan de set toe te voegen, maar de multipele regressie context biedt ook de
mogelijkheid eenvoudig een algemene cross-validatie statistiek te bereken waarmee
de fit van verschillende boomstructuren systematisch vergeleken kan worden, ook
als deze niet genest zijn. Nadeel van de voorgestelde theoretische standaardfouten
is dat zij berusten op de assumpties van normaal verdeelde error termen en ho-
mogeniteit van de varianties, beide niet altijd aannemelijk in de praktijk van de data
analyse.

Hoofdstuk 4 van dit proefschrift bouwt voort op de situatie waarin de features
niet a priori bekend zijn en introduceert een methode waarmee een adequate sub-
set features gevonden kan worden op een manier die verwant is aan het predictor
selectie probleem in de context van multipele regressiemodellen. De voorgestel-
de methode begint met het opstellen van de complete set distinctieve features voor
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een gegeven aantal objecten. Aangezien features binaire variabelen zijn, kunnen zij
eenvoudig gegenereerd worden met binaire codering. Om een aantal practische re-
denen, is gekozen voor de Gray code, een speciale vorm van de standaard binaire
codering waarbij elk opeenvolgende binaire vector slechts op één bit verschilt van
de voorafgaande vector. De tweede stap van de methode is de selectie van een sub-
set features uit de totale set met behulp van de Lasso, uitgevoerd met het recentelijk
ontwikkeld Least Angle Regression (LARS) algoritme (Efron et al., 2004). De Lasso is
een predictor selectie methode voor multipele regressie modellen die een subset pre-
dictoren (in dit geval features) selecteert op basis van een compromis tussen model
fit en model complexiteit. Het uitgangspunt is niet een optimale subset voor de
gegeven data, maar een subset features die goede predictieve eigenschappen bezit,
dat wil zeggen, een goede fit zal hebben op een nieuwe steekproef.

Voor gebruik met FNM moest de Lasso eerst aangepast worden om aan de posi-
tiviteitsrestricties te voeldoen en dit heeft geleid tot de ontwikkeling van de Positieve
Lasso. De methode is ook toe te passen op a priori gegeven features en aangezien
de beste subset features geselecteerd wordt, kan dit dienen als alternatief voor het
kiezen van de features die het meest bijdragen aan de oplossing met behulp van be-
trouwbaarheidsintervallen. Een nadeel is echter dat de methode alleen goed werkt
voor aantallen objecten niet groter dan 22 omdat de te genereren complete set dis-
tinctieve features dan 2 miljoen bedraagt en deze in de huidige applicatie niet door
de computer bewerkt kan worden.

Naast de verschillende bijdragen op het gebied van statistische inferentie en
modelselectie in de hoofdstukken 2 tot en met 4, richt het laatste hoofdstuk van
dit proefschrift zich op de netwerk representatie van FNM. Hoofdstuk 5 laat zien
dat de netwerk representatie universeel is voor alle city-block modellen. Dit resul-
taat komt voort uit het feit dat de city-block afstand een additieve metriek is en
maakt gebruik van een aantal kernelementen van de netwerk representatie, zoals
metrische segment additiviteit, betweenness en de interne nodes. Deze netwerk
representatie is niet alleen universeel voor alle city-block modellen gebaseerd op
distinctieve features, maar geldt ook voor modellen gebaseerd op common features,
zoals additief clusteren, hierarchische boomstructuren en additieve boomstructuren.
Een overzicht van de relaties tussen deze modellen is te zien in Figuur 5.10.

Eerder in deze samenvatting werd gemeld dat FNM een distinctive features mo-
del (DF) is en in zekere zin tegenovergesteld aan het common features model (CF).
Er is een duidelijke relatie tussen de twee modellen: Sattath en Tversky (1987) en
later Carroll en Corter (1995) hebben aangetoond dat het CF model en het DF model
in elkaar vertaald kunnen worden. Echter dit theoretisch resultaat was nog niet
in de praktijk van data analyse uitgeprobeerd. In hoofdstuk 5 wordt de translatie
van CF naar DF toegepast op empirische data. Het blijkt mogelijk te zijn voor elk
gefit CF model een even goed fittend DF model te vinden met gebruik making van
dezelfde common features en feature gewichten en hetzelfde aantal onafhankelijke
parameters. Een belangrijk resultaat dat hieruit volgt is dat een model dat het CF
model met het DF model combineert, ook uitgedrukt kan worden als een combinatie
van twee afzonderlijke DF modellen, waarmee het DF model een algemener model
blijkt te zijn dan het CF model.

Hoofdstuk 6 sluit het proefschrift af met een algemene conclusie en een discussie.
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De voor- en nadelen van het gebruik van de theoritsche standaard fouten in FNM
worden uiteengezet en vergeleken met de bootstrap standaard fouten, waarbij het
vooral gaat om de assumpties van normaliteit, homogeniteit van de varianties en het
probleem van alpha inflatie bij het gebruik van betrouwbaarheidsintervallen voor
meerdere features. Mogelijke oplossingen en ideeën voor vervolgonderzoek worden
aangedragen. Naast de onderwerpen van statistische inferentie en model selectie,
worden ook de netwerkrepresentatie, de embedding van het netwerk in een ruimte
van lagere dimensionaliteit besproken.
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