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Automated left ventricular volume
estimation in 3D echocardiography using

active appearance models 6
A

SSESSMENT OF LEFT VENTRICULAR (LV ) functional parameters,
such as LV volume, ejection fraction and stroke volume, from

real-time 3D echocardiography (3DE) is labor intensive and
subjective, because in current analyses it requires input from the user.
Automating these procedures will save valuable time in the analysis and
will remove interobserver variability.
We investigated a fully automatic segmentation approach for the left ven-
tricle in real-time 3D echocardiography, based on active appearance mod-
els (AAMs). AAMs were built with end-diastolic images from 54 patients.
We evaluated generalization capabilities of the shape and texture model
and matching performance of the AAM using regular and Jacobian tuning
matching algorithms in various scenarios.
The generalization of the shape model was good, comparable to a model
containing 97% of the total modeled variation. The generalization of the
texture model was moderate, comparable to a model containing 70% of
the variation, which may hamper the AAM matching. In the comparison
of the regular and Jacobian tuning matching methods, the latter obtained
larger capture ranges and a higher accuracy.
The matching results indicate that fully automatic segmentation of the LV
in 3DE using AAMs is feasible. Jacobian tuning matching has shown great
potential for segmentation in echocardiograms and will improve the as-
sessment of LV functional parameters.

This chapter is partially based on:
Automatic segmentation of the left ventricle in 3D echocardiography using active appearance models. M.
van Stralen, K.Y.E. Leung, M.M. Voormolen, N. de Jong, A.F.W. van der Steen, J.H.C. Reiber, J.G. Bosch. Proc IEEE
Int Ultrason Symp 2007; 1480-1483 (© 2007 IEEE) and Improving 3D active appearance model segmentation
of the left ventricle with Jacobian tuning. K.Y.E. Leung, M. van Stralen, M.M. Voormolen, N. de Jong, A.F.W.
van der Steen, J.H.C. Reiber, J.G. Bosch. Proc SPIE Med Imaging 2008; 6914; 69143B (© 2008 SPIE)
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| Introduction6.1

| Goal6.1.1

Assessment of left ventricular (LV) functional parameters, such as LV volume, ejec-
tion fraction and stroke volume, from real-time 3D echocardiography (3DE) is la-
bor intensive and subjective, because in current analyses it requires input from the
user. Automating these procedures will save valuable time in the analysis and will
remove interobserver variability.

Previous chapters of this thesis have focused on semi-automated approaches
for automated 3D segmentation of the left ventricle, and preprocessing steps. The
current chapter is devoted to our achievements towards the realization of a fully au-
tomated 3D segmentation approach based on so-called active appearance models
(AAMs). AAMs hold considerable promise for the difficult task of segmentation in
3D ultrasound, and many research groups have addressed the topic, but the issue
has not been solved so far.

| Related work6.1.2

Previously, various techniques for the automated analysis of the left ventricle have
been presented [Angelini et al. 2005; Corsi et al. 2002; Gérard et al. 2002; Hansegård
et al. 2007a; Kühl et al. 2004; Zagrodsky et al. 2005; Zhu et al. 2007], nevertheless,
most of these [Angelini et al. 2005; Corsi et al. 2002; Gérard et al. 2002; Kühl et al.
2004; Zagrodsky et al. 2005] still require manual interaction in the form of some
indicated landmarks or manually drawn contours to achieve a proper analysis. Za-
grodsky et al. [2005] have presented a fully automatic segmentation approach for
the LV in 3DE, which is initialized by registration of a presegmented template with
the unseen image. This approach is time-consuming and requires a presegmented
template that can be successfully matched to any image to initialize the segmenta-
tion method. Furthermore, the evaluation was done on a limited number of sub-
jects and showed significant problems when the ventricle was not fully captured
in the imaging volume. Hansegård, Orderud et al. [Hansegård et al. 2007b; Or-
derud et al. 2007] combine an active shape model with a Kalman filter and show
promising results. Zhu et al. [2007] attempt to detect the endocardial and the very
challenging epicardial border using a maximum-a-posteriori framework which in-
corporates a statistical speckle model and an incompressibility constraint for the
myocardium. Nillesen et al. apply adaptive filtering using image statistics as a pre-
processing step to the automated segmentation[Nillesen et al. 2007; Nillesen et al.
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2008]. The method lacks a constrictive shape model which hampers the detection.
Extensive research on analysis of time varying 2D echocardographic images has

been carried out by Comaniciu et al. [2004] and Jacob et al. [2002]. They integrate
temporal, textural information with an adaptive shape model in a Kalman filter ap-
proach (see also section 6.5.5.1).

Fully automated 3D LV segmentation approaches in other modalities like CT
[Zheng et al. 2007] and MR [Kaus et al. 2004] do not translate well to ultrasound. other

modalitiesMostly, these rely strongly on the generic intensity difference of tissue and blood
and only apply weak shape continuity constraints on the deformable model (bal-
loons, level sets etc). Due to the significant artifacts in ultrasound (in particular
drop outs and clutter), anisotropy and position and orientation dependent inten-
sity characteristics, ultrasound approaches require stronger shape constraints and
more localized modeling of appearance.

Proposed approach: active appearance models | 6.1.3

Most segmentation and analysis approaches take a data-driven or bottom-up ap-
proach: they derive features from image data and try to fit a model (geometric,
patterns, etc.) to these features. In our case, we propose to follow an opposite ap-
proach, labeled analysis-by-synthesis.

We want to analyze a complex object that has a well-defined topology, but can
exhibit a wide range of natural variability in shape and intensity patterns. Suppose analysis-by-

synthesiswe have a way of synthetically generating realistic images and can cover the vari-
ability with a limited number of parameter settings; then we can solve the analysis
problem by finding the parameters that generate the best-fitting image. An exam-
ple of such an approach is that of active appearance models.

We aim at fully automatic segmentation of the left ventricle in 3DE using ac-
tive appearance models (AAMs). AAMs were first introduced by Cootes and Taylor
[2001b], as extension of active shape models (ASMs). This approach has proven
to be successful in various image segmentation tasks, starting with face recogni-
tion and later on in medical image segmentation. Bosch et al. [2000] have been
exploring the application of AAMs to 2D echocardiography (2DE) and introduced
the active appearance motion models (AAMMs) for analysis of 2DE time sequences
[Bosch et al. 2002]. Since then, AAMs have been adopted to many medical image
segmentation tasks and now have taken an important place in medical image anal-
ysis research, see section 6.2.2.
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| Active appearance models6.2

| Basic formulation6.2.1

AAMs represent the shape and the texture of a certain (part of an) organ (in our
case, the left ventricle in 3D ultrasound) as a mean appearance with its eigenvari-
ations, by applying principal component analysis (PCA) on example training data
annotated by experts. A short, general description of the AAM framework is given
below. A complete description can be found in Cootes and Taylor [2001a].

| Model generation6.2.1.1

We describe the training samples i ∈ {0...N − 1} by their shape si = {x0, y0, z0, . . . ,
xS−1, yS−1, zS−1} containing S corresponding surface points {x., y., z.} and their tex-training

samples ture ti = {g0, . . . , gT−1} containing T corresponding image samples g .. By applying
PCA on these shape and texture vectors we can describe the shape and texture by
their mean shape s̄ and texture t̄ , eigenvector matrix Φs and Φt and the param-
eter vector bs and bt . This requires a definition of (anatomical) point correspon-
dence between the shapes, aligning them to the same pose and size, and calculat-
ing the average shape. This shape alignment step is usually solved through Pro-
crustes alignment [Goodall 1991; Gower 1975]. After that, we can perform PCA on
the shapes. By warping all shapes to the average shape, we get voxelwise corre-
spondence over the neighborhood of the shapes, and we can calculate an average
texture (voxel set) and apply a PCA on texture as well. This gives us a compact de-
scription of both shape and texture:

s = s̄ +Φs bs (6.1)

t = t̄ +Φt bt (6.2)

We can combine the shape and texture to model possible correlation between
typical shape and texture variations by applying a third PCA on the combined pa-
rameter vector

b =
(

Ws bs

bt

)
(6.3)

where Ws corrects for the difference in units between shape and texture, to model
the appearance,

b =Φc c (6.4)
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The parameter vector c is often extended with parameters describing the pose
in 2D or 3D. Depending on the application and the variability that is allowed in the
shape model, most commonly uniform scaling, rotation and translation constitute
these pose parameters. The appearance and pose parameters µ are combined in
the parameter vector pT = (

cT |µT
)
.

Model matching | 6.2.1.2

One of the main advantages of an active appearance model over other segmenta-
tion strategies is its ability to quickly find a good match to the unseen image. An
update strategy is used, which only needs a multiplication of the difference image,
the difference between the synthesized and the underlying unseen image, with a
precomputed parameter update matrix. AAMs are matched iteratively to unseen
data by evaluating the difference between the modeled texture tm and the corre-
sponding texture in the sample image ts , the residual vector

r (p) = ts − tm (6.5)

and minimizing E(p) = r T r . Minimization of E(p) is achieved iteratively by trying
to minimize E(p +δp). The first order Taylor expansion of eqn. 6.5 is

r (p +δp) = r (p)+ ∂r

∂p
δp (6.6)

where ∂r
∂p is the Jacobian J . By differentiating E(p +δp) to p and equating it to zero,

we obtain the RMS solution,

δp =−Ur (p), where U =
(
∂r

∂p

T ∂r

∂p

)−1
∂r

∂p

T

(6.7)

For the derivation of eqn. 6.7 we refer to Cootes and Taylor [2006]. An update of p is
thus simply generated by a multiplication of the pseudo-inverse of the Jacobian ∂r

∂p ,
matrix U . The Jacobian J (and thus also U ) is assumed to be constant during the
matching process and is estimated once and for all matchings in the model training
phase.

Model training | 6.2.1.3

In the model training we learn the relation between each of the model parameters,
and the difference image. This is done by perturbing each of the model param-
eters with predefined step sizes and learning the changes in the difference image
that appear. This results in a matrix that describes the relation between model
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parameters and the difference image (the Jacobian J ). During the matching we
use the inverse relation (update matrix U ) to update the model parameters by sim-
ply multiplying the difference image with the update matrix, which speeds up the
matching tremendously, compared to classical optimization approaches. We esti-estimating the

Jacobian mate the Jacobian by perturbing the model’s parameters for every training sample
tl (l = 1. . . N ) as follows:

dri

dp j
= 1

N

∑
l

∑
k

w
(
δc j k

)(
ri

(
p +δc j k

)− ri
(
p
))

(6.8)

where δc j k is the kth perturbation of parameter p j and
∑

k w
(
δc j k

) = 1 for all j .
The different perturbations of each parameter p j are weighed using a weighting
function w(.), which is usually a suitably normalized Gaussian weighting function
or a uniform weighting function, as in our case.

This estimation assumes that the Jacobian is more or less constant near the
global optimum. Various studies have shown that this assumption can be made
in varying applications. However, ideally one would want to compute the true Ja-
cobian at each position. This would be a computationally very expensive opera-
tion. Lately, Cootes and Taylor [2006] proposed a method that iteratively updates
the Jacobian during the matching. We will discuss this technique in section 6.3.2.4.

| Evolution of AAM (organs, modalities, dimensions + history)6.2.2

The classical AAM as defined by Cootes and Taylor has been extended to a range
of applications. Original applications by Cootes and Taylor concentrated on seg-
mentation of 2D images of human faces, with some extensions to various medical
imaging subjects, such as analysis of vertebral structure in X-ray images [Roberts
et al. 2003; Roberts et al. 2007] and MRI of the brain [Cootes and Taylor 2001b].

Interesting work on the analysis of metacarpals in X-ray images was performed
by Thodberg [2002], including handling of occlusions. Mitchell, Bosch et al. ap-
plied AAMs on cardiac MRI and ultrasound images, first on single 2D cross sections
[Bosch et al. 2000; Mitchell et al. 2001a], later extended to time series (Active Ap-
pearance Motion Models or AAMM [Bosch et al. 2002; Mitchell et al. 2001b]). For
ultrasound, this involved a nonlinear image intensity normalization to overcome
the problem of the highly non-Gaussian gray value distribution in ultrasound. Later
on, the first 3D implementation of AAM was realized and applied to end-diastolic
3D cardiac MRI datasets and pseudo-3D ultrasound datasets [Mitchell et al. 2002].
The ultrasound datasets were actually time sequences of 2D 4-chamber images
stacked into a 3D block, and represented a cylindrical structure with limited 3D
freedom. For 3D ultrasound, therefore, this was merely a proof of principle, not



“PhD” — 2009/2/1 — 21:11 — page 103 — #109

6.2 ACTIVE APPEARANCE MODELS 103

a full realization of a 3D AAM. At the same time, a 2.5D implementation of AAM
was realized by Beichel et al. [2002] for segmentation of the diaphragm in CT im-
ages. This application was not a full 3D implementation, since it modeled the ob-
ject as a set of 2D points with the z-coordinate as an attribute, not as a truly 3D
shape. Very interesting work has been realized by Stegmann et al.: application
in 2D cardiac MRI [Stegmann et al. 2003], extension to a multi-view cluster-aware
AAM on cardiac contrast perfusion MRI sequences ([Stegmann et al. 2005] and to a
bi-temporal 3D AAM for automated estimation of the ejection fraction in 3D MRI
sequences [Stegmann and Pedersen 2005]. Furthermore, 3D segmentation prob-
lems have been mostly approached using multi-plane AAM solutions, i.e. using
multiple 2D cross sections, either uncoupled [Üzümcü et al. 2005] weakly coupled
[Hansegård et al. 2007a] or coupled [Leung et al. 2006b; Oost et al. 2006; Stegmann
et al. 2005]. Such approaches have the benefit of reduced computational load and
complexity of modeling and matching. However, they may pose unrealistic con-
straints on shape change or 3D motion. Oost et al. [2006] relaxed these constraints
by employing a dynamic programming detection step using the AAM segmenta-
tion.

Inspired by the work of Bosch et al., Hansegård et al. [2007a] have shown that ac-
tive appearance models can be applied with success in triplane echocardiograms. AAMs in echo-

cardiographyThey applied multi-view and multi-frame active appearance models, and compared
unconstrained AAMs with AAMs that were constrained by manually placed mark-
ers and by dynamic programming (DP). A DP-constrained AAM proved to work best
in this setting.

In contrast to our approach, Hansegård et al. used a sparse (triplane) AAM, not
a full 3D AAM. Furthermore, only a weak coupling in pose was used, to ensure that
scale and vertical position did not deviate much over the three views. Hansegård et
al. also employed the nonlinear gray value normalization described earlier by our
group.

Several modeling and matching methods have been proposed to generate more
robust AAM segmentation results. For example, Gross et al. [2006] developed algo- robustness of

AAMsrithms to apply AAMs to images of faces with occlusions, by combining their in-
verse compositional approach with a robust error function. An other robust ap-
proach for detecting object pose in stereo images consisted of selecting the appro-
priate multi-view appearance models and subsequent optimization of the robust
error function with a modified Gauss-Newton algorithm [Mittrapiyanuruk et al.
2005]. Beichel et al. [2005] proposed a mean-shift-based method to estimate out-
lier residuals during the matching process. Their approach was applied to differ-
ent types of medical images containing large artifacts. Recently, Cootes and Taylor
[2006] proposed a new Jacobian tuning method, which allows the model’s train-
ing matrix to adapt itself to new, unseen images during matching. The method is
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supposedly more robust, is comparable with respect to speed with the standard
matching method, and requires no extra steps in the model-training phase.

| Motivation for our work6.2.3

AAMs have successfully been applied to a range of segmentation problems, includ-
ing ultrasound, where they have been shown to offer significant advantages. How-
ever, a true 3D AAM for ultrasound has not been demonstrated yet. This could
offer significant benefit over 2D or sparse approaches, and it could be extended in
several ways, e.g. into a multi-phase 3D or truly 4D approach, a hybrid approach
etc. This formed the motivation of our work, and several of these ideas have been
investigated, albeit not always with a definite answer.

| Methods6.3

| Data acquisition6.3.1

In this work we used clinical data of 54 patients, acquired with two types of 3DE
scanners. 18 of these patients were scanned using the fast rotating ultrasound
(FRU) transducer [Voormolen et al. 2006], which was connected to a Vingmed Vivid
5 system (GE Vingmed, Horten, Norway).

The FRU contains a linear phased array transducer that is continuously rotated
around its image axis at high speed, up to 480 revolutions per minute (rpm), whileFRU

transducer acquiring 2D images. A typical data set is generated during 10 seconds at 360 rpm
and 100 frames per second (fps). The images of the left ventricle are acquired with
the transducer placed in apical position, and its rotation axis more or less aligned
with the LV long axis. A single cardiac cycle in general is not sufficient for adequate
coverage of the entire 4D space; therefore, multiple consecutive cycles are merged.
The cardiac phase for each image is computed offline using detected R-peaks in the
ECG [Engelse and Zeelenberg 1979].

The remaining 36 patients, who were referred for stress echo, were scanned us-
ing the Philips Sonos 7500 system (Philips Medical Systems, Andover, Massachusetts,
USA), equipped with the X4 xMatrix transducer, placed in apical position. For thepreprocessing

AAM modeling the FRU data sets are interpolated to Cartesian voxel sets, using
a dedicated interpolation method for sparse irregularly sampled data (chapter 4).
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Gaussian subsampling was applied to 1/4th of the original resolution for both data
types, to reduce speckle in the images.

The data was analyzed using a semi-automatic endocardial border detection
method, allowing manual corrections (chapter 2). For the matrix acquisitions, the semi-

automatic
analysis

data was resliced to generate 10 equidistantly sampled long-axis views in all cardiac
phases, which is a requirement for the analysis. Full cycle LV endocardial borders
were extracted from these analyses and used as the training data sets for the AAM.

AAM for the left ventricle in 3DE | 6.3.2

Modeling | 6.3.2.1

Statistical analysis of the left ventricular shapes requires a corresponding point dis-
tribution for all the training samples. We define this point correspondence based shape model

on key landmark points from the semi-automatic analysis. The points are defined
in an anatomical coordinate system of the left ventricle. This cylindrical coordinate
system is oriented around the long axis (LAX). Near the apex the surface points
are defined in a spherical coordinate system oriented around a center at 3/4th of
the LAX (fig. 6.1a). In the cylindrical part, the surface points are sampled equidis-
tantly along the LAX and over the azimuth angle. For the apical part of the surface,
sampling is done equidistantly over the elevation and azimuth angle. We chose to
define the shape as such, to easily represent the endocardial surface with a regular
sampling. This also avoids the need of performing a Delaunay triangulation on the
mean shape. The neighboring samples are defined intrinsically in the sampling,
which eases the triangulation. The mean shape, with triangulation, is shown in
fig. 6.1b. Instead of using the regular definition of the apex, being the point on the
surface which is most distant from the mitral valve center, we used a more stable
definition. This stable apex is the intersection of endocardial surface with the axis
through the center of gravity (CoG) of the upper quarter of the left ventricle (see fig.
6.1c).

In total, we typically sample at 30 levels from mitral valve to apex, at 30 angles
for each level, together with a point for the apex resulting in 901 points for each 3D
shape (fig. 6.1b).

We represent the translation, rotation and scaling of the model by 7 pose pa-
rameters: 3 for translation, 3 for rotation and 1 for uniform scaling. For the repre- pose

representationsentation of 3D rotation we studied the use of Euler angles and quaternions [Funda
and Paul 1988; Horn 1987]. We chose to represent the rotations using quaternions
because of the unambiguous representation of 3D orientations, the orthogonality
of the representation and the possibility to convert quaternions to rotation matri-
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a b c

Figure 6.1: a) A schematic 2-dimensional representation of the regular cilindrical sam-
pling and the spherical sampling in the apical region. b) The mean mesh, with triangu-
lation, of a model containing 54 patients. The bottom ring structure is added for texture
sampling. c) The redefinition of the long axis and the apex using the center of gravity of
the apical region

ces back-and-forth without any loss of precision. To avoid any ambiguity in the
quaternion representation q = {q0, qx , qy , qz } and to be able to represent the 3D ro-
tation with 3 quaternion parameters {qx , qy , qz }, we defined that the first, omitted
parameter q0 is always positive (since q = −q). Since the norm of the full quater-
nion ‖q‖ is 1, the omitted parameter can be recomputed at any time. Scaling is then
represented by an independent parameter s.

In the shape model we want to model only the biological shape variation of the
left ventricle. Therefore the presegmented shapes are aligned using a 3D ProcrustesProcrustes

alignment alignment [Goodall 1991; Gower 1975]. In this way, the undesirable absolute posi-
tion and orientation of the shape are removed from the model. These are a con-
sequence of the acquisition procedure, not of any biological phenomena and are
therefore not desirable in the shape model.

The texture sampling has been defined, similarly to the shape model, in the
anatomical coordinate system of the left ventricle. We sample the texture radiallytexture model

on the line through the surface points, up to twice the radius of the surface. In this
way, the myocardium, part of the right ventricle and a small region outside of the
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Figure 6.2: Three orthogonal intersections of the model mean. From left to right)
Short-axis view, 2-chamber view and 4-chamber view (approximately)

heart is also modeled, to enlarge the lock-in region of the AAM.
Using this anatomical definition we can easily adjust the sampling density to

be sparse in regions with little information (blood pool) and dense in important
regions (near the endocardium). It also eases the warping of a texture to an arbitrary
model shape, which speeds up the computation of the residual vector r . For the
warping, we apply a trilinear interpolation defined in barycentric coordinates of
tetrahedrons. The texture mean is shown in fig. 6.2. fig. 6.3 shows the three most
prominent modes of appearance of the model built on 54 patients.

Since we use a PCA in the modeling of the textures in the AAM, we assume that
the texture samples are Gaussian distributed. It is known for ultrasound images gray value

normalizationthat their gray value distribution is non-Gaussian. That is why we apply a non-
linear gray value transformation that maps the mean histogram of all the training
samples onto a Gaussian distributed histogram with zero mean and unit variance,
as introduced by Bosch et al. [2002]. In this procedure, a combined normalized his-
togram of all the training samples is created. A histogram transformation is defined
which transforms this combined histogram into a histogram with a Gaussian gray
value distribution. This transformation is then applied to all individual training
samples. Subsequently, the training samples are normalized to zero mean and unit
variance using the regular gray value normalization used in AAMs.

Training | 6.3.2.2

In the training procedure we used perturbations δc of {2, 4, 6, 8, 10} mm for trans- pose and
appearance
parameters

lation, and {0.02, 0.04, 0.06, 0.08, 0.1} for the scaling and rotation parameters. A
uniform weighting function is used for the weighting of the different perturbations.

For training of the parameter update matrix we use perturbations of {0.2, 0.4,
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µ−2σ µ+2σ

Figure 6.3: 3D renderings illustrating the three most prominent modes of variation
from top to bottom with the model mean µ centered



“PhD” — 2009/2/1 — 21:11 — page 109 — #115

6.3 METHODS 109

Figure 6.4: Three orthogonal intersections of the column images of the Jacobian ma-
trix J for the three translation parameters. top to bottom) translation in x-, y-, and
z-direction

0.6, 0.8, 1.0}σ for each of the appearance model parameters. These perturbations
are uniformly weighted. The perturbation sizes were determined experimentally
and correspond to values reported in literature [Cootes and Taylor 2001b; Stegmann
et al. 2003].

Evaluations of the training procedure, as described in section 6.2.1.3, can be
done by visualizing the columns of the Jacobian matrix, warped as textures to the
mean shape. Fig. 6.4 shows the resulting images of the columns of the Jacobian ma-
trix J corresponding to the translation parameters. The column images for trans-
lation show the high correspondence to the x-, y-, and z-derivatives of the average
image, which is as expected.

Regular matching | 6.3.2.3

For the standard AAM matching the parameter update is generated by multiplica-
tion of the current residual r (p) with the update matrix U , as in eqn. 6.7. We em-
ploy a linear search along the update vector δp using update steps k to minimize
the residual r (p +kδp). This linear search can be replaced by more sophisticated
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variants if desired [Cootes and Kittipanya-ngam 2002]. Consequently, the parame-
ter vector p is updated according to the optimal update step k:

pi = pi−1 +kδp (6.9)

These two steps are repeated until either the model converges or no improvement
in r is found (alg. 6.1).

Algorithm 6.1 Regular AAM matching

1: p0, r0 = r (p0), i = 0
2: repeat
3: dpi =−Uri

4: for all k j ∈ k do
5: pi+1(k j ) = pi +k j dpi

6: ri+1(k j ) = r (pi+1(k j ))
7: dr (k j ) = |ri |2 −|ri+1(k j )|2
8: end for
9: select pi+1(k j ) and ri+1(k j ) for largest dr (k j ), if dr (k j ) ≥ 0, else break

10: i = i +1
11: until i ≥ imax

| Matching with Jacobian tuning6.3.2.4

Cootes and Taylor observed that the assumption that the Jacobian is fixed is un-
satisfactory, especially if the image to be segmented is significantly different from
the model mean [Cootes and Taylor 2006]. Recently, they have proposed a search
strategy that updates the Jacobian matrix during each new evaluation of the resid-
ual r (p). The algorithm is closely related to the quasi-Newton methods for solving
least square problems without derivatives [Broyden 1965]. The essence of the idea
is that during the matching process, we apply variations to the parameters and ob-
tain differences in the residuals. The change in residuals as a result of changes in
the parameters provides similar information as is obtained in the regression train-
ing process, but in this case the information is highly specific for the case under
consideration. Therefore, we would like to tune the standard Jacobian to the cur-patient specific

matching rent case using the information obtained during the search.
In short, the method uses a set of constraints on the parameter update at the

current iteration i , given all previous parameter estimates (p0, . . . , pi ) and previous
residuals (r0, . . . ,ri ). The Jacobian J0 from the training phase provides a regulariza-
tion term for estimating current updates for the Jacobian matrix J . The updated
Jacobian matrix Ji is then used to update the appearance parameters. No addi-



“PhD” — 2009/2/1 — 21:11 — page 111 — #117

6.3 METHODS 111

tional line search step is required. A summary of the algorithm is given below; for
the original derivation, we refer to Cootes and Taylor [2006].

Consider a set of i observations of parameter differences dpk = pk −pk−1 and
residual differences drk = r (pk )− r (pk−1), organized in matrices X = (dp1| . . . |dpi ) matching

observationsand R = (dr1| . . . |dri ). We set up i linear constraints on each row jm of J , assum-
ing that a linear update in the parameters generates a linear change in residuals:
X T jm = qm , where qT

m is the mth row of R. Using our trained Jacobian J0 as a regu-
larizer, we can set up a quadratic function of the form f ( jm) =α|X T jm−qm |2+| jm−
j0m |2, where α controls the strength of the regularization and j0m is the mth row of
J0. Differentiating f with respect to jm and equating to zero leads to an equation
for computing a new estimate of J , given the initial estimate from the training set
J0 and all previous parameter updates and residuals:

(I +αX X T )J T = J T
0 +αX RT (6.10)

where I denotes the identity matrix. eqn. 6.10 can be rewritten into a more efficient
version, which is then solved iteratively. Let us define three matrices A = I +αX X T ,
B = J T

0 +αX RT , and C = B T B . By substituting eqn. 6.10 into eqn. 6.7, it can be
shown that the optimal parameter update is given by dp = Ay , if y is the solution to
the linear equation C y =−B T r . Instead of calculating A, B , and C using their defi-
nitions at every iteration, one can show that these matrices can be updated linearly
at the current iteration i +1 using their values at the previous iteration i :

Ai+1 = Ai +αi dpi dpT
i (6.11)

Bi+1 = Bi +αi dri dpT
i (6.12)

Ci+1 =Ci +αi B T
i dri dpT

i +αi dpi dr T
i Bi +α2

i |dri |2dpi dpT
i (6.13)

This leads to the Jacobian tuning algorithm for AAM matching, alg. 6.2.
The resulting algorithm has only a series of simple linear operations, and can

therefore be added straightforwardly to any existing AAM implementation. Note
that the matrices A, B , and C are updated every iteration, regardless of the param-
eter update. It is usually possible to solve the linear equation in alg. 6.2, l.3 using
Cholesky decomposition, as Ci is symmetric and (usually) positive definite. As in
Cootes and Taylor [2006], we use αi = (δ+ |dpi |2)−1, where δ is small, included to
avoid numerical instability after small steps.
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Algorithm 6.2 Jacobian tuning AAM matching

1: Initialize p0, r0 = r (p0), i = 0, A0 = I , B0 = J0, C0 = B T
0 B0

2: repeat
3: Solve Ci y =−B T

i ri for y
4: dpi = Ai y
5: pi+1 = pi +dpi

6: ri+1 = r (pi+1)
7: dri = ri+1 − ri

8: z = B T
i dri

9: Ai+1 = Ai +αi dpi dpT
i

10: Bi+1 = Bi +αi dri dpT
i

11: Ci+1 =Ci +αi zdpT
i +αi dpi zT +α2

i |dri |2dpi dpT
i

12: if |ri+1|2 > |ri |2 then
13: pi+1 = pi

14: ri+1 = ri

15: end if
16: i = i +1
17: until |dpi |2 < ε or i ≥ imax

| Experiments and results6.4

| Model generalization6.4.1

In the proposed AAM a correlation is assumed between the shape and texture of the
training samples. That is why the shape and texture model are coupled by an extra
PCA on these model parameters. By coupling these models, we might benefit fromcoupling shape

and texture the correlation between shape and texture, but we also lose some of the variation
for the shape and texture that is in the model, since shape and texture are not in-
dependent anymore and therefore can only be described together. We investigated
the loss of generality by coupling these models.

Secondly, since the number of training data sets available for training the AAM
is limited, we investigated the degree of generalization that is achieved with these
data sets. Therefore, we compare the error that is found when projecting a patient’smodel

truncation shape or texture on the model in a leave-one-out (L-1-O) evaluation, with the er-
ror that is found when projecting the patients on a model with less variation in
the shape or texture model, but with the current patient included. This is done
by truncating the eigenvector matrix Φ and parameter vector b, such that the re-
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maining eigenvectors account for the desired amount of variation. The number of
eigenmodes t is determined by choosing the t largest eigenvalues λ0 . . .λt−1 such
that

t−1∑
i=0

λi ≥ f
N−1∑
i=0

λi (6.14)

where f is the proportion of the total variation that should be retained and N the
total number of eigenvalues. In this way, we can estimate the amount of variation in
the L-1-O models, by comparison of the projection errors of the L-1-O models with
those of the truncated models. Furthermore, the projection error in L-1-O defines
a lower limit on the final segmentation error, when matching to unseen data in a
L-1-O evaluation.

Coupled vs. uncoupled models | 6.4.1.1

We evaluated the model generalization of the coupled model versus the indepen-
dent shape and texture models. The resulting mean projection errors over all L-
1-O projections are shown in fig. 6.5. Uncoupling the shape and texture models
clearly decreases the projection errors. This is illustrated for the shape model in fig.
6.5. The mean point-to-point (P2P) projection error for the shapes decreases from
1.2 mm for the coupled model to 0.7 mm for the shape model built on 28 patients.
A similar decrease in projection can be expected for the texture model. In these ex-
periments we coupled shape and texture models using a weighting factor Ws (eqn.
6.3) that compensates for the difference in units of shape and texture vectors. This weighting

weighting factor may also be used to prioritize between shape and texture in the
model.

Comparison with truncated models | 6.4.1.2

We also evaluated the model generalization for the shape and texture models indi-
vidually and uncoupled, compared to truncated models from all training patients.

The resulting shape projection errors are shown in fig. 6.6. It shows that the shape

shape model generalizes well. For the L-1-0 case with a model containing 53 pa-
tients, the model can describe any shape with a mean point-to-point (P2P) distance
of 0.41 mm. This corresponds to a projection error of a shape model that contains
approximately 97% of the modeled variance (fig. 6.6).

For the generalization of the uncoupled texture models, we compared texture
models of raw and normalized textures. For the texture model we express the pro-
jection error in mean squared intensity distance (MSD) to the original textures. The
texture intensities are normalized to a normal distribution with mean µ = 0 and
standard deviation σ = 1. Fig. 6.7 shows that the texture model generalization is texture
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Shape generalization

Figure 6.5: Superior generalization levels of uncoupled shape model, w.r.t. the coupled
model. Mean projection errors over all the patients on L-1-O models. Point-to-point
errors for projection of the training shapes on the shape model of the coupled (black)
and uncoupled AAM (red) in L-1-O, for models built on an increasing number of train-
ing data sets (x-axis).

weak compared to the shape model, but that the normalized texture model gener-
alizes to a higher level than the raw texture model, comparable to almost 70% and
60% truncated model respectively. Absolute comparison of the projection error is
misleading, since the raw texture intensities are also scaled to a distribution with
µ = 0 and σ = 1, while the raw intensities are clearly non-Gaussian and therefore
incomparable to the normalized intensities of the normalized texture model.

| Matching evaluation6.4.2

Since the Jacobian tuning method allowed the training matrix to adapt to the test
image, we hypothesized that the method will have a larger capture range. There-
fore, we tested the convergence of both methods: the model was initialized at its
ideal pose and appearance in the test image, the appearance and pose parameters
were then perturbed randomly in a range of several standard deviations, and subse-
quently the standard AAM and Jacobian tuning method were applied to match the
model to the image. The experiments were first performed using a model describ-matching

scenarios ing 100% of the shape and texture variation (scenario A). Next, a model was used
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Shape generalization

Figure 6.6: Generalization levels of the shape model as a function of the number of
training sets. Mean P2P shape projection errors over all the patients on L-1-O models
(redline) vs. the errors obtained by projection on truncated models containing 99%,
98%, 97%, 96%, 95%, 90% and 80% of the total shape variation (dashed lines)

which described only 95% of the shape and 75% of the texture variation (scenario
B); in the previous experiments this was shown to be an accurate representation
of a leave-one-out situation. Models A and B were built and matched on the same
training data. A third scenario (C) was considered, in which models were created
in leave-5-out fashion, such that five datasets were reserved for matching and the
rest was used for training. This resulted in 11 models (with the last model made by
leaving out the remaining four patients).

For all the scenarios we also initialized the models at their mean translation
and appearance parameters, to evaluate the matching results when no information
about the patient is used, to better approximate a real-life matching situation. The
optimal parameters were then found using both matching methods.

For the standard algorithm, update steps k = [1,1 1
2 ,2, 1

2 , 1
4 , 1

8 , 1
16 , 1

32 ] were used.
Matching was terminated if dr (k j ) < 0 for all steps k j . As for the Jacobian tun-
ing algorithm, the matching was allowed to continue until |dp|2 was smaller than
ε = 0.01. For both methods, the matching was stopped if the mean squares of the stop criteria

residual was smaller than 0.001 (in MSD), or if the maximum of 100 iterations was
reached.
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Raw texture generalization Normalized texture generalization

a b

Figure 6.7: Generalization levels of the raw and normalized texture models as a func-
tion of the number of training sets. Mean texture projection errors (in MSD) over all the
patients on L-1-O models (redline) vs. the errors obtained by projection on truncated
models containing 90%, 80%, 70%, 60% and 50% of the total texture variation (dashed
lines) a) For texture models built on the raw textures. b) For texture models built on the
normalized textures.
Note that MSD units between raw and normalized texture models cannot be directly
compared (see section 6.4.1.2)

| Perturbation from ideal parameters6.4.2.1

Point-to-point errors between the matching results and the manually drawn con-
tours were calculated. With a model describing 100% of the shape and texture varia-scenario A

tion (scenario A), very low matching errors could be expected. For this experiment,
a matching was considered converged if the point-to-point (P2P) error, averaged
over the contour, was lower than 1 mm (the largest voxel size). The results revealed
that the Jacobian tuning algorithm was superior to the standard algorithm (see fig.
6.8). In this case, 14.2% (69 out of 54*9 = 486) did not converge using the standard
matching algorithm, whereas the Jacobian tuning algorithm achieved a 100% con-
vergence rate. Most outliers occurred because the standard algorithm was not able
to find an update for all steps k j during the first iteration, such that the residual was
lower than the residual at initialization.

As for the truncated model (scenario B) and the leave-5-out models (scenario
C), a lower spread in errors and much higher accuracy was observed if using thescenario B & C
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Scenario A: 100% shape variation, 100% texture variation

Figure 6.8: Superior matching convergence of the Jacobian tuning algorithm over the
standard AAM matching. Perturbation experiments using a model with 100% shape
and texture variation, initialized with perturbations of 0.1, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5
and 3.0 σ. Boxes indicate 25% and 75% percentiles; whiskers extend to 10% and 90%;
reddots indicate cases with a final matching error above 1 mm

Jacobian tuning algorithm, especially when large perturbations were applied (fig.
6.9). Similar results obtained for scenario C are shown in fig. 6.10.

The difference in the results of the Jacobian tuning matching between scenario
A and B show the impact of the truncation of the shape and especially the texture truncating the

modelsmodel. Just a truncation of the shape model would presumably yield P2P errors that
approach those of the projection experiments (fig. 6.6), close to 0.4 mm. However,
in the matchings on the truncated model (scenario B) we found much larger errors,
around 1.8 mm. This increase can be primarily attributed to the weak truncated
texture model.

Initialization at mean parameters | 6.4.2.2

The matching results for initialization at mean translation and mean appearance
parameters are given in table 6.1. Significantly lower errors P2P and P2S errors were
obtained with the Jacobian tuning algorithm. A segmentation example is shown in
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Scenario B: 95% shape, 75% texture variation

Figure 6.9: Superior matching performance of the Jacobian tuning algorithm (red) over
standard AAM matching, compared to initial errors. Perturbation experiments using a
model with 95% shape and 75% texture variation, initialized with perturbations of 0.1,
0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5 and 3.0 σ (slightly pulled apart for clearer visualization)

fig. 6.11.
As expected from the previously described perturbation experiments, matching

errors again increase from scenario A to B and C. This is due to the diminished
level of generalization of the truncated and L-1-O models. Again, especially the
weakness of the texture model seems to contribute most to the increased matching
errors.

The computation time required for the AAM matching depends mostly on the
number of (allowed) iterations. While there is still much room for optimizations, ancomputation

time iteration takes 1-2 seconds on regular desktop PC (2-3 GHz processor). Compared
to the regular AAM matching, the Jacobian tuning takes twice as much time per
iteration, but needs less iterations to come to convergence. Thus Jacobian tuning
can have a similar computation time if compared to the regular matching.
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Scenario C: leave-5-out

Figure 6.10: Superior matching performance of the Jacobian tuning algorithm (red)
over standard AAM matching, compared to initial errors. Perturbation experiments
using a leave-5-out model, initialized with perturbations of 0.1, 0.3, 0.5, 0.7, 1.0, 1.5,
2.0, 2.5 and 3.0 σ (slightly pulled apart for clearer visualization)

Discussion | 6.5

General conclusions | 6.5.1

We have successfully developed a fully automatic method for segmentation of the
left ventricle in 3D echocardiography based on active appearance models. The
method has shown to provide good segmentation within a set of constraints. We
have explored and compared variations and extensions of the classical AAM ap-
proach, and have charted the current boundaries of applicability in our problem
domain. We have shown the generalization capabilities of the derived statistical
models, discussed the importance of a proper choice of modeling, training and
matching parameters, and showed the considerable added value of enhancements
such as the Jacobian tuning matching approach. The required amount of compu-
tation time was acceptable for practical applications. Although a number of issues
still needs to be tackled, AAMs constitute a very promising approach for automated
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Figure 6.11: Appearance patches and 3D segmentations results using the regular AAM
and the Jacobian tuning algorithms. For all segmentations a short-axis slice and two
long-axis slices are shown. For the two segmentation approaches the detected model
appearances are shown with contours and also a checkerboard image that combines
the detected appearance with the original image and manual contour (redline). On the
right the detected surface (solid) is shown together with the manual surface (mesh). In
this particular case, the manual gold standard is very different from the mean appear-
ance (fig. 6.2). The regular AAM matching has trouble finding the correct segmentation,
as opposed to the Jacobian tuning method
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Table 6.1: Mean ± standard deviation of P2P matching errors when initialized at mean
translation and mean appearance parameters. Also shown are the root-mean-squares
intensity error (RMS), in unnormalized intensity units (range [0 255]).
*indicates that Jacobian tuning has statistically significantly better results than stan-
dard AAM (paired t-test, p < 0.05, N = 54)

Measure Match Scenario

A B C

P2P
(mm)

Initial 7.5 ± 2.6 7.5 ± 2.6 7.5 ± 2.7

Regular AAM 2.3 ± 1.1 3.6 ± 1.7 4.4 ± 1.7

Jacobian tuning 0.06 ± 0.03* 2.9 ± 2.0* 3.9 ± 2.0*

P2S
(mm)

Initial 4.4 ± 1.2 4.4 ± 1.2 4.4 ± 1.2

Regular AAM 2.0 ± 0.6 2.6 ± 0.5 3.0 ± 0.7

Jacobian tuning 0.06 ± 0.03* 2.2 ± 0.7* 2.8 ± 1.0*

RMS
intensity

Initial 5.2 ± 2.5 5.2 ± 2.5 5.2 ± 2.6

Regular AAM 3.4 ± 1.7 3.6 ± 1.5 3.9 ± 1.7

Jacobian tuning 2.0 ± 0.8* 3.5 ± 1.6* 3.8 ± 1.7

segmentation of the LV in 3DE that yearns for further substantiation.
We will discuss the advantages of matching using Jacobian tuning with respect

to the classical matching approach, the current limitations, related work and con-
clude with recommendations for further research.

Regular matching vs. Jacobian tuning | 6.5.2

This study demonstrates, among others, the effectiveness of the new Jacobian tun-
ing matching approach in AAM segmentation of the left ventricle in real-time 3D
ultrasound images. We showed that the Jacobian tuning algorithm has a larger cap-
ture range and higher accuracy than the standard matching algorithm.

It is interesting to see that the outliers in fig. 6.8 are all located above approxi-
mately 4mm, suggesting that, below this threshold, it is possible to find the optimal
appearance parameters using the standard algorithm. The Jacobian tuning method outliers

is much more robust because of its larger capture range, obtaining a 100% success
rate for perturbations up to 3 standard deviations (σ) from the ideal parameters.

Another interesting observation is the lower bound of 2 mm P2P error for the
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truncated and leave-5-out model, which can be achieved for perturbations up to 3
σ using the Jacobian tuning method, whereas the standard algorithm starts to fail
around 2 σ perturbation from ideal parameters (fig. 6.9 and 6.10). Of course, thesecapture range

error bounds and perturbation limits are dependent on the amount of variation
captured in the model. However, it is clear that the Jacobian tuning method has a
much larger capture range than the standard AAM algorithm. This may have signif-
icant consequences in matching models to images acquired with different machine
settings and transducer equipment. For example, it would be worth experimenting
with a model built with Philips data and matched to FRU data. This is a subject of
further investigation.

| AAM matching strategies6.5.3

Other AAM search algorithms have been reported in the literature, which imple-
ment updates to the Jacobian matrix. For example, Batur and Hayes [2005] pro-
posed an algorithm which uses linear updates for the gradient matrix. Their ap-
proach is different to this one in the sense that the current parameters of the tex-
ture model are used to update the appearance parameters. This is combined with a
line search similar to the one in section 6.3.2.3, and matching is stopped if no bet-
ter residuals are found. This is different in our approach, where the Jacobian can
be updated infinitely if desired. The Jacobian tuning method is closely related to
the quasi-Newton method for solving least-squares problems without derivatives
proposed by Broyden [1965]. More sophisticated approaches were proposed by Xu
[1990]. These types of algorithms merit further research and comparison.

| Current bounds of applicability6.5.4

| Rotation matching6.5.4.1

No results for perturbations in rotation are reported in this study. In all our evalu-
ations we have seen that adding the rotation parameters to the optimization pro-
cess raises problems in the optimization. The capture ranges in perturbation ex-
periments including rotation parameters are relatively small compared to capture
ranges of other (pose) parameters and the matching accuracy degrades quickly out-
side these capture ranges for rotation parameters. These limitations could be at-small capture

range tributed to several causes.
Firstly, we can attribute these problems to the high degree of rotational symme-

try of the left ventricle. Both the shape and the texture show only small differences
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with respect to rotation around the LV long axis, which makes the objective metric rotational
symmetryrelatively insensitive to these rotations. Therefore, also the training and matching

of the AAM show poor performance in characterizing and solving these rotations
respectively.

Secondly, the detection of the rotation parameters is likely hampered by typical
ultrasound specific image characteristics. Most acquisitions suffer from drop outs typical image

artifactsas a result of rib shadowing. Current 3D ultrasound equipment employs a footprint
that is not small enough to image in between the ribs without resulting in shadows
in parts of the image, especially the left ventricular lateral wall. Also, prominent
image artifacts are common in the near-field, making it difficult to locate the LV
apex precisely. Together, these typical image artifacts challenge the detection of
the orientation of the LV.

Furthermore, the myocardial texture may vary considerably throughout the left
ventricle, due to misalignment of the acquisition axis with the left ventricular long
axis. This is a typical ultrasound specific feature, caused by the angle of incidence angle of

incidenceof the ultrasound beam to the myocardium. This hampers the detection of the cor-
rect rotation with respect to the LAX since this typical change in texture does not
correspond to any biological variation in shape.

Finally, the inherent nonlinearity of rotation representations may play an im-
portant role. From experimentation with Euler-angle representation vs. quater-
nion representations, we found that quaternions are better behaved with respect
to numerical stability, but still the implementation choices might limit the lock-in
range for rotations. The optimal representation of rotation angles can be a field for
further investigations.

Nonlinear gray value normalization | 6.5.4.2

Another limitation of the current implementation of the AAM for 3DE is the non-
linear gray value normalization. AAM modeling expects a Gaussian distribution
of variability, both for point distributions and textures. Ultrasound gray value dis-
tributions are known to be non-Gaussian. The nonlinear gray value normalization
compensates for the non-Gaussian distribution of the gray values in ultrasound im-
ages. It is trained to transform the (linearly) normalized ultrasound histogram into learned

normalizationa histogram that approximates a Gaussian distribution. Since this normalization
is learned from the set of sample textures, it is limited to normalization of textures
that have a comparable normalized histogram to the sample textures. Especially
in cases where the AAM is far away from the optimal pose, the sampled texture
histogram may be considerably different; e.g. if the scaling factor is too small, the
texture contains mainly blood values.

Alternatives to the gray value normalization scheme merit further research. Im- preprocessing
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provements may be found in preprocessing steps that try to enhance the textures
directly, by emphasizing desired features and masking out undesired ones, such as
ultrasound speckle. This is discussed in section 6.5.5.4.

Other improvements may be found in the modeling of the textures. Larsen et
al. [2007] describe the intensity information using wavelets and wedgelets, result-
ing in a more compact representation of the texture model. This might benefit both
the distribution of the gray values and the generalization of the texture model. Thetexture

modeling generalization of the texture model may also be improved by using a cluster-aware
AAM that employs clustering of the texture space to divide the non-Gaussian dis-
tributed texture model in multiple Gaussian submodels that describe the entire tex-
ture variation [Stegmann et al. 2005].

| Additional constraints6.5.4.3

Current 3D ultrasound imaging systems are not capable of truly real-time imag-
ing of the whole heart. The speed of sound in human tissue is the limiting factor
that determines the maximum number of beam that can be sequentially acquired
per second. Therefore, images of multiple consecutive cardiac cycles are mergedtechnical

imaging
limitations

to obtain a high resolution image of the full left ventricle in 3D over the entire car-
diac cycle. This multi-beat fusion often generates typical image artifacts, as a result
of inter-beat variation, respiratory motion, patient’s motion or transducer motion
during the acquisition. These artifacts challenge the feasibility of locating the true
endocardial border in these images, even by experts.

AAMs are based on a statistical model of the shape and texture of a certain pop-
ulation of example images with their contours. Training and matching of the AAM
relies on correspondence between model parameter variations and the change in
the residual image. This relation is learned from the example data sets. Therefore,limited to

model
variation

AAMs are limited to detection of contours which can be described by the statistical
variation in the shape model, in images that can be reasonably approximated by
the combined shape and texture model. Possible pathological cases, or biological
subsets that are not represented in the training population will be detected with
limited precision.

Furthermore, there may be imperfections in the manually segmented example
data sets with which the models are built. These imperfections degrade the pointmanual

contours as
gold standard

correspondence of the shape model and also influence the quality of the texture
model. Specifically, the alignment of the rotation with respect to the long axis is
problematic. Often the right ventricle’s attachment point and the aortic valve are
hardly visible in the images; this hampers correct determination of this orientation.
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Recommendations | 6.5.5

Temporal domain | 6.5.5.1

In our approach, we have focussed on segmentation of the left ventricle still 3D
echocardiography, while much information about the myocardium is in the dy-
namics of the heart. Therefore, analysis of the temporal domain could greatly en-
hance also the detection in the single cardiac phases.

Extensions can be made, in parallel to single phase detection, to both the shape
and the texture modeling of the AAM. Frangi et al. review various time-varying
modeling techniques in cardiac applications [Frangi et al. 2001].

Even more information might be taken from temporal analysis of the texture.
This may reveal differences between drop outs and shadowing on one hand, and
the lower intensities of the blood pool on the other hand. This distinction is hardly
extractable from single phase analyses. Static features in general, are not expected
to provide much information about the functional parameters. Integration of tem-
poral features with a dynamic shape model in echocardiography have been pro-
posed by several groups. Comaniciu, Zhou et al. present a tracking framework with
an adaptive shape model, where information about measurement uncertainty in
the feature detection is combined with shape information using a Kalman filter
approach. The framework has been shown to work well in 2D echocardiography
[Comaniciu et al. 2004; Zhou et al. 2005]. A similar approach had been proposed by
Jacob et al. [2002].

Hybrid matching | 6.5.5.2

The standard AAM matching, as proposed by Cootes and Taylor [2006] solves the
update problem by using a fixed update matrix that is estimated at the optimal po-
sition. This type of matching assumes that the current model state is close to the
optimum and is thus limited to a so-called lock-in range. Also, it only allows up-
dates to the model parameters and is therefore bound to global model updates and
to the variation in the model. This usually leads to a globally correct segmentation
with minor mismatches. However, local mismatches may even cause the global
segmentation to deteriorate.

Jacobian tuning has been shown to have a larger lock-in range and to result in
a better fit of the model to the data. However, it is still limited to the variation in
the model. Further improvement in local matching of the AAM may be found in a
hybrid matching approach, like a combination with (multidimensional) dynamic
programming.
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| Multidimensional dynamic programming6.5.5.3

The strength of the regular AAM matching in quickly finding a global solution also
has a drawback. Finding a global solution may sometimes result in locally subopti-
mal segmentations. This may especially occur in pathological cases, which may not
be covered by the samples in the model training. Therefore, regular AAM matching
could be extended with multidimensional dynamic programming [Üzümcü et al.
2006] (MDP, an extension of dynamic programming (DP) [Amini et al. 1990; Bell-
mann 1965; Sonka et al. 1999]), to be able to fit the model’s appearance more lo-
cally to these cases, without harming the global optimization. MDP can be used in
this case to locally match the texture, synthesized by the regular matching, to the
underlying unseen image. Since MDP is a path search strategy and we aim at de-
tecting an optimal surface in 3D, MDP could be applied in collinear planes (slices)
of the 3D volume, intersecting the long axis. This yields a set of 2D contours that
constitute the 3D endocardial surface. From this new surface, a pose update can
be computed and the shape can be projected onto the shape model to update the
appearance model. The use of MDP (instead of regular dynamic programming) al-
lows free movement of the surface points on the plane (or even out of plane) in the
MDP update step. This could make the model more easily adapt to rotation errors
for example.

We previously applied DP search in a semi-automatic segmentation approach
for 3D echocardiography [van Stralen et al. 2005]. Oost et al. [2006] have success-
fully applied a hybrid approach to multi-phase X-ray angiograms, Hansegård et al.
[2007a] extended this work to multi-view, multi-phase echocardiography. There-
fore, an extension of the 3D AAM with (multidimensional) dynamic programming
might be a promising subject for further research.

| Preprocessing6.5.5.4

Echocardiographic images have a characteristic granular appearance, referred to
as speckle [Wells and Halliwell 1981]. Speckle is often seen as undesirable in static
(single frame) ultrasound image analysis and therefore we chose to simply reduce
the speckle by Gaussian smoothing. More advanced preprocessing techniques have
been proposed for speckle reduction. Among them are wavelet-based methods
[Achim et al. 2001; Xiao et al. 2004] and anisotropic diffusion methods [Tauber et al.
2004; Yu and Acton 2002]. Nillesen et al. apply adaptive filtering using image statis-
tics as a preprocessing step for automated image segmentation [Nillesen et al. 2007;
Nillesen et al. 2008]. This adaptive filter enhances blood-to-tissue contrast and may
therefore be used as a preprocessing step in the AAM modeling and matching.

Methods based on anisotropic diffusion may be easily incorporated in the re-
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construction process of irregularly distributed ultrasound data, as proposed in chap-
ter 4.

Cardiac phase | 6.5.5.5

A single phase segmentation method provides an important base for detection of
left ventricular functional parameters, e.g. by combining it with a tracking ap-
proach. In such a framework, one is free to choose any cardiac phase for the initial
segmentation.

We studied automated segmentation of the left ventricle in the end-diastolic
(ED) phase. This cardiac phase allows clear visualization of the endocardial wall detection in

end diastolesince it can be easily identified by the R-peak in the ECG and it does not suffer from
much wall motion. A drawback of the use of the ED phase for LV segmentation is
that it is the phase where the LV reaches its largest volume. Therefore, parts of the
LV (especially the apex) might not be captured in the field of view or might be shad-
owed by the ribs or lungs. Also, in ED the endocardial wall is less clearly defined
due to possible visibility of individual trabeculae, forming an irregular undulated
surface [Mannaerts et al. 2003].

An obvious alternative to detection in ED would be single phase detection in
ES. The advantages would be that the ventricle is more likely to be fully captured detection in

end systolein the image volume and shadowing artifacts might be less prominent. Also, we
found in chapter 5 that the acquisition axis is closer to the LV long axis, which eases
the initialization. Also, the endocardial border definition might be more clearly
defined [Mannaerts et al. 2003]. Difficulties of applying detection in ES might be
proper detection of the ES phase from the ECG and the fact that LV geometry in ES
may vary more widely than in ED, as a result of various pathological contraction
patterns (e.g. the occurrence of ’kissing ventricles’).

Uncoupled AAM | 6.5.5.6

The generalization experiments in section 6.4.1 show that with the current size of
the training set, the texture model only generalizes moderately. In cases where only
a small training set is available, compared to the intrinsic dimensionality of the
data, the detection can be improved by decoupling the shape and texture models.
For example, Stegmann and Pedersen [2005] have used these uncoupled appear-
ance models in segmentation of cardiac MR.

A drawback of decoupling the shape and texture models is that correlations be-
tween shape and texture modes are no longer modeled. Furthermore, the dimen-
sionality of the model increases. This may hamper the matching process.

Theoretically, uncoupled models are able to describe unseen patients more pre-
cisely than coupled models. However, this difference can only be appreciated if the
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matching proceeds to a high correspondence with the target image. Only then, the
difference between the coupled and uncoupled model can be seen. As long as a
good global match is not yet achieved (in pose, shape and texture), the uncoupled
model will not be able to tune in great detail and match to the unseen data opti-
mally.

| Improved/manual initialization6.5.5.7

AAMs follow an iterative matching approach in search for a global optimum. This
optimization is not guaranteed to find this global optimum. The quality of the ini-
tialization of the AAM influences the final segmentation result. Thus, the better
the initialization, the better the final segmentation. There are several options to
improve the initial model and to process the given initial data.

The most common way of initializing an AAM is by initialization on the mean
position and orientation and the mean model parameters. In chapter 5 we pre-automated

initialization sented a method to improve the initial transformation parameters automatically
using a Hough transform and multidimensional dynamic programming. Zagrod-
sky et al. [2005] use a computationally costly atlas registration as initialization.

Most automated analyses techniques however, are initialized manually by a hu-
man observer. Initialization is done either by explicitly annotating the apex, a num-manual

initialization ber of points on the endocardial border or the mitral valve [Corsi et al. 2002; van
Stralen et al. 2005], or by indicating the LV position and dimensions by annotations
[Angelini et al. 2001; Gérard et al. 2002; Kühl et al. 2004].

Cootes and Taylor [2001a] also describe a very elegant way to constrain the
AAM, by including priors on the point positions. In this way, manual or automated
feature points can be used to guide the AAM search. Hansegård et al. [2007a] fol-
lowed this approach to combine the regular AAM optimization with dynamic pro-
gramming on multi-plane echocardiography.

| Conclusions6.6

We investigated the use of AAMs for automated segmentation of the left ventricle
in 3D echocardiography. The shape and texture model were based on anatomical
reference points, aiming at optimal sampling of the left ventricle image region.

We evaluated the degree of generalization of an appearance model based on 54
patients and found that the variation in shape can be sufficiently described by these
54 samples. L-1-O projection errors on such a model are comparable to projection
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errors on a truncated model, containing 97% of the total shape variation. Because
of the non-Gaussian distribution of ultrasound intensities, we compared general-
ization levels of raw and nonlinearly normalized texture models. The normalized
texture model showed better generalization than the raw texture model. In contrast
to the shape model, the generalization level of the texture models was low: projec-
tion errors are comparable to a those of a model that is truncated to 70% of the tex-
ture variation. This poses a challenge on the AAM segmentation. Either increasing
the training set, or preprocessing the texture to get a more efficient representation
of the texture variation should be employed to overcome this limitation.

We evaluated matching of the AAM in different scenarios, including variations
in initialization, generalizations levels and matching strategies. Comparison of
matching results using full and truncated models showed the impact of the weak
generalization of the texture model. This is also reflected in the leave-one-out
matching experiments.

The Jacobian tuning algorithm for AAM matching produces quantitatively bet-
ter segmentations than the regular AAM matching, showing larger capture ranges
and a higher accuracy. These experiments demonstrate the effectiveness of an
adaptive update matrix during model matching. Given the large variability in ul-
trasound image appearance, the Jacobian-tuning algorithm has great potential in
improving the standard AAM segmentation.

The main source of errors in matching the AAM are in finding correct rotation
parameters. We excluded the evaluation of rotation matching from our analyses.
Apart from this limitation, which can be circumvented by a proper initialization,
3D AAMs have shown to provide a valuable global segmentation of the left ventricle.
Further research on combining the promising AAM approach using local matching
strategies, temporal image analysis and improved initialization procedures is nec-
essary to achieve a clinically acceptable automated segmentation approach.
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