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Automated tracking of the
mitral valve annulus motion in

apical echocardiographic images using
multidimensional dynamic programming 3

W
E DEVELOPED A SEMI-AUTOMATIC method for tracking the mi-
tral valve annulus (MVA) in echocardiographic images, in par-

ticular, tracking the septal and the lateral mitral valve hinge
points.
The algorithm is based on multidimensional dynamic programming com-
bined with apodized block matching. The method was tested on single-
beat apical four chamber image sequences of 20 patients with acute my-
ocardial infarction. The automated tracking results were evaluated by
comparing them with the average manual tracking results of two experts.
The mitral valve hinge point displacements and the total mitral excur-
sions obtained by the automatic technique agreed well with those ob-
tained manually and outperformed two commonly used tracking meth-
ods (forward tracking and minimum tracking).
In conclusion, this novel semi-automatic tracking method is clinically
valuable and capable of tracking the MVA motion within the limits of in-
terobserver variability. The technique is robust, even in low frame rate,
redigitized VCR images of clinical quality.

This chapter has been derived from (© 2007, with permission from Elsevier):
Automated tracking of the mitral valve annulus motion in apical echocardiographic images using multidi-
mensional dynamic programming. S.T. Nevo, M. van Stralen, A.M. Vossepoel, J.H.C. Reiber, N. de Jong, A.F.W.
van der Steen and J.G. Bosch. Ultrasound Med Biol 2007; 33(9); 1389-1399.
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| Introduction3.1

Analysis of the mitral valve annulus (MVA) movement is useful in the evaluation
of global and regional left ventricular (LV) function and is important for diagnosismitral valve

annulus
motion

of mitral annular diseases and LV disorders [Eto et al. 2005; Pai et al. 1991; Willen-
heimer et al. 1999] In addition, the motion of the MVA plane contributes signifi-
cantly to the left ventricular volume change over the cardiac cycle and correlates
well with LV ejection fraction [Eto et al. 2005].

Echocardiography is a non-invasive and low cost technique for evaluating LV
function, but it is not an easy modality for interpretation. Therefore, extracting
quantitative information from such images is of great clinical importance. The
purpose of this work is automatic tracking of the motion of the MVA over the fullthe purpose

cardiac cycle; specifically, tracking the mitral valve hinge points (MVHPs). This
method can be useful on its own, but we mainly intend it to be part of a semi-
automatic border detection approach (chapter 2), to improve the LV volume esti-
mation. Given the septal and the lateral MVHPs in the first frame (fig. 3.1), e.g. by
manual annotation, we desire to track them over the full cardiac cycle.

Figure 3.1: The white points represent the septal (left) and the lateral (right) MVHPs in
the first frame

Common methods for evaluating the mitral annular motion are M-mode echo-
cardiography [Unser et al. 1989; Willenheimer et al. 1999], two-dimensional (2D)related work

echocardiography [Behar et al. 2004; DeCara et al. 2005; Eto et al. 2005], three-
dimensional (3D) echocardiography [Flachskampf et al. 2000] and Doppler tissue
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echocardiography [Rabben et al. 2000]. Unser et al. [1989] performed one-dimen-
sional (1D) dynamic programming (DP) on M-mode echocardiograms (see section
1.2.1) for border detection. Rabben et al. [2000] implemented 1D DP on Doppler
tissue echocardiograms combined with gray-scale M-mode for contour detection.
The dominant drawback of M-mode and Doppler tissue echocardiography is that
they detect the MVA motion only along a fixed line (angle dependency). DeCara
et al. [2005] results for automated tracking of mitral annular displacement based
on speckle tracking. Previous studies [Behar et al. 2004; Eto et al. 2005] suggested
block matching combined with forward tracking for tissue tracking using 2D echo-
cardiography. The main drawbacks of forward tracking are the sensitivity to small
disturbances and tendency to drift away from the optimal path once an error has
occurred.

To overcome such limitations, we propose a 2D echocardiography based track-
ing technique using multidimensional dynamic programming (MDP) combined
with apodized block matching.

Materials and methods | 3.2

Blockmatching | 3.2.1

Block matching is a common technique for motion tracking in ultrasound data
[Chen et al. 1995; Leung et al. 2006a]. Given a sequence of 2D echocardiographic
images, the user selects the point to be tracked in the reference image (first image)
and a region-of-interest (ROI)is defined around it (ROI1). The displacement of a region-of-

interestcertain point is estimated by searching for ROIt (k, l ) (with the same size as ROI1)
in the region-of-search (ROS)in the target frame (t ) with the most similar gray level region-of-

searchpattern to that of ROI1 (see fig. 3.2). For each shift (k, l ) the similarity of the patterns
between ROI1 and ROIt (k, l ) is estimated by a cost function (matching criterion).
The shifts (k, l ) with respect to ROI1 that correspond to good values of the cost func-
tion are likely displacement estimates [Behar et al. 2004; Leung et al. 2006a]. Three
candidates for cost functions were considered:

1. Sum of squared differences (SSD) of gray values between ROI1 in the refer-
ence frame and ROIt (k, l ) in the target frame. This cost function is optimal
when it is minimal. The general formula for the SSD [Leung et al. 2006a],
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Figure 3.2: The block matching components

combined with the apodization kernel is:

SSD(k, l , t ) =
√√√√ j1+N∑

j= j1−N

i1+M∑
i=i1−M

(|I1(i , j )− It (i +k, j + l )| ·W (i , j ))2 (3.1)

where I1(i , j ) and It (i , j ) denote the pixel gray level at position (i , j ) of the
reference frame and the target frame respectively, 2M +1 and 2N +1 are the
size of the ROI, (k, l ) are the offsets of ROIt within It with respect to I1 and
W (i , j ) is an apodization kernel that gives high relevance to central pixels.

2. Sum of absolute differences (SAD) of gray values between ROI1 and ROIt (k, l ).
This cost function is optimal when it is minimal. The general formula for the
SAD [Leung et al. 2006a], combined with the apodization kernel is:

S AD(k, l , t ) =
j1+N∑

j= j1−N

i1+M∑
i=i1−M

(|I1(i , j )− It (i +k, j + l )| ·W (i , j )) (3.2)

3. Normalized cross correlation (NCC) of ROI1 and ROIt (k, l ). This cost function
is optimal when it is maximal. The general formula for the NCC [Bohs and
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Trahey 1991], combined with the apodization kernel is:

NCC (k, l , t ) =

j1+N∑
j= j1−N

i1+M∑
i=i1−M

I1(i , j )It (i , j ,k, l )

√
j1+N∑

j= j1−N

i1+M∑
i=i1−M

I1(i , j )2
j1+N∑

j= j1−N

i1+M∑
i=i1−M

It (i , j ,k, l )2

(3.3)

I1(i , j ) = (
I1(i , j )− Ī1

) ·W (i , j )

It (i , j ,k, l ) = (
It (i +k, j + l )− Īt

) ·W (i , j )

where Ī1 and Īt indicate the mean values of ROI1 and ROIt , respectively. The
NCC has the advantage that it is insensitive to local variations in the mean
and standard deviation of the image gray level [Golemati et al. 2003]. For
consistency with the other cost functions, we considered the cost function
1−NCC (k, l , t ), which is optimal when it is minimal.

Concepts of dynamic programming | 3.2.2

Dynamic programming (DP) is an optimal approach for solving variational prob-
lems by finding locally optimal solutions consecutively. DP algorithms provide an
efficient way of finding an optimal path through a graph of nodes. In an image graph search

techniqueprocessing context, the graph is generally a matrix of image-related cost values or-
dered with root and leaves from left to right. The maximum distance between two
nodes in consecutive columns, the step size, is predefined according to the desired
connectivity. The task is to find a connective path through this matrix with min-
imal total cost. This is achieved by sweeping from left to right through the graph cost matrix

and finding for all nodes the lowest cumulative cost to reach this node from any
of its predecessors in the previous column (for which the lowest cumulative cost
is already known). Each element in the cumulative cost matrix corresponds to the
minimal sum of costs to reach this point from the beginning of the matrix. In the back tracking

last step, the optimal path is extracted by finding the minimal value in the last col-
umn and tracking back through minimal values over the cumulative cost matrix.
The result is a global optimal path [Amini et al. 1990; Sonka et al. 1999; Üzümcü
et al. 2006].

An example of DP search for a 1D path is illustrated in fig. 3.3. The matrix
on the left is the cost matrix as derived from an image related cost function (e.g.
block matching). Each term in the cost matrix represents a node with a given cost.
The matrix on the right is the cumulative cost matrix derived from the original cost
matrix when passing through it from left to right. The backtracking begins from the
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minimal cumulative cost in the rightmost column and propagates to the left. The
optimal path, which connects minimal cumulative costs per column, as calculated
from the back-propagation, is shown in red.

In most cases, DP is applied in the way described above, resulting in an opti-
mal path through a 2D array. In a tracking problem, the horizontal axis represents
the consecutive time steps and the vertical axis represents a certain parameter, for
example, 1D displacement. In our tracking problem, the purpose is to track two pa-
rameters simultaneously: horizontal and vertical displacement. This can be donemulti-

dimensional
dynamic

programming

by applying multidimensional dynamic programming (MDP) [Üzümcü et al. 2006],
2D DP in our case: finding a path through a stack of slices (a 3D data set), where
each slice corresponds to the ROS filled with the values of the 2D cost function that
was obtained from the block matching. 2D DP is illustrated in fig. 3.4.

A common variation of DP in tracking is forcing a path through a node. Certain
points can be imposed to be on the path by setting the costs of all other nodes of
a certain column (in the 1D case) or a certain slice (in the 2D case) to sufficiently
high values [Sonka et al. 1999; Üzümcü et al. 2006]. In our case, the user specifies
the positions of the MVHPs in the first frame. Next, they are tracked over the cardiac
cycle by finding the optimal path that starts at this point.

| Tracking: MDP search combined with apodized block matching3.2.3

The coordinates of the septal and the lateral MVHPs are determined in the first
frame. After the user manually selects the two points representing the positions
of the septal and lateral MVHPs, the automated tracking is started. An image patchmanual

initialization around the manually chosen points in the first frame is used as the ROI to be
matched. Block matching is applied by computing the cost function for each point
in the ROS of each frame. In block matching in medical images, the size of the ROI
is crucial. It should be large enough to identify a unique region, but small enough
not to suffer too much from deformation of the block content over time. We want

Figure 3.3: Example of 1D DP. left) The cost matrix. right) The corresponding cumula-
tive cost matrix with the optimal path marked in red
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Figure 3.4: Example of 2D DP. Each slice represents the cost matrix at a certain frame.
The optimal path is shown in red

to track the motion of the center pixel accurately. However, when using large rect-
angular blocks, the relative contribution of pixels far away from the center pixel
becomes dominant. To limit this effect, we use an apodized block matching (as
given by eqn. 3.1 to eqn. 3.3), meaning that within the summation over the ROI,
the cost elements are multiplied by a 2D Gaussian kernel that gives higher weight
to central elements rather than peripheral ones. The total ROI size is coupled to the
width of the 2D Gaussian apodization kernel: it is chosen such that at least 90% of apodization

the summed apodization weights are included (the width of the ROI was chosen as
2×2 standard deviations of the Gaussian kernel). A path search using MDP is im-
plemented to find the optimal locations of the septal and lateral MVHPs (nodes in
the DP graph) separately over the cardiac cycle. The size of the ROS determines the
dimensions of the DP graph. In this way, the horizontal and the vertical displace-
ments of the MVHPs are tracked.

Parameter selection | 3.2.4

The performance of the method depends on the following parameters:
Width of smoothing filter In the preprocessing phase, the images are smoothed

with a Gaussian filter in the spatial and the temporal domain. The variance (the
width) of the filter determines the amount of smoothing. A Cartesian approach
was followed rather than a polar one since the ROI is always in the same position
and therefore Cartesian coordinates correspond well with polar coordinates. More-
over, the degradation of the image quality mainly occurs due to interlacing artifacts,
which arise in Cartesian coordinates.

Apodized region-of-interest (ROI) size The ROI size (the size of the template to
be matched) is chosen to be four times the standard deviation of the apodization
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kernel in each direction. The ROI size determines the amount of information in-
volved in the calculation of the costs.

Region-of-search (ROS) size The size of the search space should be large enough
to accommodate the maximal displacement over the cardiac cycle without leading
to an unnecessary computational load.

Step size The maximum allowed step size between two successive frames de-
fines the maximum distance that the MVA can pass through. The step size should
be large enough to handle the possible motion, especially the high velocities in
early diastole. However, it should not be too large to maintain temporal and spatial
continuity of the motion [Üzümcü et al. 2006; van Stralen et al. 2005].

The values of the step size and the ROS size were chosen based on normal val-
ues of MVA displacement [Alam and Hoglund 1992; Behar et al. 2004]. These were
consistent with the results of the manual tracking performed on the 20 patients for
the evaluation of the proposed method. The chosen values are given in table 3.1.

Table 3.1: The applied values for the step size in X and Y direction (SSx and SSy ) and
the ROS

SSx (pixels) SSy (pixels) ROS (pixel2)

Septal 2 6 61×91

Lateral 2 7 61×91

| Parameter optimization3.2.4.1

A systematic optimization procedure was carried out to select the values for the
width of the smoothing filter and of the apodized kernel that lead to the best results
in the sense that the Euclidean distance is minimized.The parameter optimization
process was performed in the following fashion: the initial step was trying many
possible combinations of the parameter values in a wide range and the three types
of cost functions. From this phase, we extracted the type of cost function that leads
to the best results and we could define a narrower range of the parameter values
that should be involved in the systematic optimization. Based on the results of the
initial step, all possible combinations of smoothing filter with a standard deviation
in the range [0, 3] and [0, 2] pixels with steps of 0.5 pixels in the spatial and the
temporal domain, respectively (’-’ means that no smoothing at all was applied) and
apodization kernel with a standard deviation in the range [11, 19] pixels with steps
of 2 pixels were examined. It is important to mention that the MDP search did not
require any optimization procedure since it only depends on the ROS and the step
size, which were determined beforehand.
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Table 3.2: Optimal values of the parameters

σx σy σt αx αy ROS

(pixels) (pixels) (frames) (pixels) (pixels) pixels2

Septal 2.5 1 0.5 17 17 69×69

Lateral - - - 17 13 69×53

σx , σy and σt are the standard deviations of the Gaussian filter in the spatial and
the temporal domain, respectively, and αx and αy denote the standard deviations of
the apodization kernel in the horizontal and vertical direction respectively. The region-
of-interest (ROI) sizes are directly derived from αx and αy .

Data acquisition | 3.2.5

Single-beat apical four-chamber image sequences in 20 patients were recorded us-
ing a Hewlett-Packard Sonos 1500 or Sonos 2500 ultrasound system (Hewlett-Pack-
ard Inc, Andover, MA, USA) with a 2.5 MHz transducer. The patients were selected
randomly from a database of 120 patients 3 days after acute myocardial infarc-
tion [Nijland et al. 2002]. Images were recorded on VHS videotape and digitized
by a DT3152 frame grabber (Data Translation, Marlboro, MA, USA). The resolu-
tion was 768×576 pixels with pixel sizes ranging from 0.281×0.281 to 0.422×0.422
mm2/pixel. Cineloop images were acquired with the video frame rate of 25 Hz. All
studies were acquired in apical position. To suppress high noise levels and interlac-
ing artifacts in the raw data, a Gaussian filter (its parameters are given in table 3.2)
was used to smooth the images in both the spatial and the temporal domain.

The tracking errors of three patients (for two of them in the lateral part and for
the third one in the septal part) were detected as outliers and, therefore, they were
excluded from this study. The failure of the tracking in two of them is attributable outliers

to the poor image quality of the sequences, resulting in a non discriminative ROI to
be matched. As for the third outlier, after analyzing the results the two experts who
performed the manual tracking agreed with the tracking results of the automated
method rather than the averaged manual annotation. After excluding the three out-
liers from the study, the optimization was performed again with the remaining 17
patients (374 images in total).
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| Data analysis3.2.6

| Comparison with manual tracking3.2.6.1

Since MVA tracking lacks “ground truth”, we compared the automatically computed
positions with the positions indicated manually by two experts (JB and MvS). Both
experts were constrained to begin the track from the same starting position and the
rest of the cycle was annotated independently. The Euclidean distances between
the computer generated annulus positions and the averaged manual positions were
calculated. We used the average Euclidean distance as the distance measure.

| Comparison with other automatic tracking methods3.2.6.2

The performance of the above automatic MDP-based procedure was evaluated rel-
ative to two other tracking methods:

1. Minimum tracking. This is the simplest approach for tracking problems
based on block matching. The first step of this technique is applying block
matching by calculating the costs using a single fixed template (ROI) for all
frames (like in the proposed automatic procedure). After that, the optimal
locations of the MVHPs are simply the local minima within the ROS for each
frame, without enforcing any temporal continuity.

2. Forward tracking. Forward tracking is a common method that was used in
previous studies [Behar et al. 2004; Eto et al. 2005; Golemati et al. 2003; Ve-
ronesi et al. 2006] for tissue tracking. In this algorithm block matching is ap-
plied and the minimum of the cost function is found in each frame separately.
The template ROI1 is updated in each frame and is set to be the content of
ROIt that minimized the cost function in the previous frame, as described in
section 3.2.1. In this algorithm continuity is imposed by limiting the step size.

The evaluation of the performance of these two methods was done using the sameequal
parameter

settings
parameters as in the MDP-based method since they are independent of the tracking
method. The parameters that were optimized are the width of the smoothing filter,
which depends on the image quality and the size of the ROI, which is linked to the
size of the anatomical structures to be tracked.

| Statistical analysis3.2.7

Since we had manual tracking of two experts, we used the average of both of them
as the best estimate of the true value. The difference between the tracking results
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of the experts is a measure for the interobserver variability. Evaluating the perfor-
mance of the proposed automated method by calculating the correlation between
the manual tracking and the automated tracking is not enough in this context since
high correlations do not necessarily mean that the two methods agree [Bland and
Altman 1986]. Therefore, in addition to the linear regression analysis, we applied
Bland-Altman analysis and measured the agreement between the MDP-based au-
tomated technique and the manual tracking. A paired t-test was applied to verify
the significance of the bias. We compared between the interobserver variability and confidence

intervalthe errors of the automated method by examining the 95% confidence intervals of
the limits of agreement. The 95% confidence intervals for the limits of agreement
were calculated according to:

C I = 2S ± t

√
3S2

n
(3.4)

where S denotes the standard deviation, n is the number of observations, and t
is the 0.05 critical value of the t-distribution with n −1 degrees of freedom. Since
we compare to the average of multiple manual values, we would underestimate
the limits of agreement with respect to the manual method. Therefore, a corrected corrected

standard
deviation

standard deviation [Bland and Altman 1986] was used in the calculations of the
limits of agreement between the automatic technique and the manual tracking:

Sc =
√

S2
e +

1

4
S2

m (3.5)

where Sc is the corrected standard deviation, Se is the original standard deviation of
the automated errors and Sm is the standard deviation of the differences between
the tracking results of the two experts.

Results | 3.3

Parameter settings | 3.3.1

The NCC as a matching criterion yielded the best results of tracking both the septal NCC

and the lateral parts and, therefore, it was chosen as the cost function to be applied.
The parameters obtained with the parameter optimization process are shown in
table 3.2.
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| Tracking results3.3.2

Figure 3.5 shows the average displacement over all 17 patients as function of the
relative phase of the cardiac cycle. It can be seen that good agreement between
the displacements found by the MDP-based automated method and the manual
method was obtained.

Figure 3.5: The average displacements over all 17 patients in Y (left) and X (right) di-
rections in the septal and lateral MVHPs as function of the relative phase of the cardiac
cycle in percentage
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Table 3.3: The maximal excursion as calculated by the automated method and the
manual method

n = 17 MDP-based automated method (mm) Manual method (mm)

Septal 11.0 ± 1.9 10.0 ± 1.8

Lateral 12.4 ± 2.8∗ 11.1 ± 3.2

All the results are expressed as mean ± standard deviation.
∗ Denotes an automated result which is significantly different (p < 0.05) from the manual
result.

Maximal excursion | 3.3.3

The septal and the lateral MVHP maximal excursions over the cardiac cycle were
calculated, the results are given in table 3.3. The MVA maximal excursion, which
usually occurs at end systole, is the maximum distance between the initial MVHP
(at end diastole) and the MVHP in all other frames. The first evaluation of the MDP-
based automated method was done based on the maximal excursion results since
it is related to other important clinical measures such as the ejection fraction and
stroke volume [Alam and Hoglund 1992; DeCara et al. 2005; Eto et al. 2005; Willen-
heimer et al. 1999]. Bland-Altman plots of the difference between the calculated
maximal excursions by both methods against the mean values of the methods are
shown in fig. 3.6. In the septal part, no significant difference (p > 0.05) was found
between the methods. As for the lateral part, a small but significant (p < 0.05) over-
estimation of the automated method with a bias of 1.21 mm was found. However, it
is important to mention that the maximal excursions in the lateral part, as indicated
manually by both experts, were also found to be significantly different (p < 0.05)
from each other.

Full cycle tracking | 3.3.4

The average MVA displacement errors (average Euclidean distance from the man-
ual annotation) over all time samples and all 17 patients obtained from the pro-
posed MDP-based automated procedure, from the forward tracking, from the min-
imum tracking and the interobserver variability are given in table 3.4. It can be
clearly seen that the MDP-based tracking outperformed the forward and the mini-
mum tracking.

High correlations were found (p ¿ 0.01) between the displacement measure-
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Figure 3.6: Bland-Altman plots of the difference between the maximal excursions in
the septal (left) and the lateral (right) parts calculated by the automated method and
those obtained by the manual method

Table 3.4: The errors obtained with the MDP-based automated method, the errors ob-
tained from forward tracking, the errors obtained with the minimum tracking and the
interobserver variability

n = 17
MDP-based

tracking
(mm)

Forward
tracking

(mm)

Minimum
tracking

(mm)

Interobserver
variability

(mm)

Septal 1.33±0.86 2.14±1.12 1.83±2.19 1.43±0.82

Lateral 1.66±1.03 3.62±2.21 4.21±5.29 1.57±0.94

All the results are expressed as mean ± standard deviation.

ments obtained by the manual method and by the MDP-based automated method.
The results, including the regression lines and the correlation coefficients, are
shown in fig. 3.7

Bland-Altman plots for the agreement between the displacements obtained by
our method and by those obtained manually are given in fig. 3.8 and fig. 3.9. The
displacement is defined as the offset from the position in the first frame (end dias-
tole). In these plots a negative displacement in Y direction is an upward movementcoordinate

system and a negative displacement in X direction describes movement to the left. In the
lateral part (fig. 3.9), Bland-Altman analysis showed a small but significant under-
estimation (p < 0.05) with a bias of 0.33 mm in the displacements in X direction
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Figure 3.7: Results of the linear regression of the MVHPs displacement measurements
obtained by the MDP-based automated method and by the manual method

and a small but significant overestimation with a bias of −0.52 mm in the displace-
ments in Y direction. In the septal part (fig. 3.8) no significant difference (p > 0.05)
was found.

The 95% confidence intervals of the limits of agreement, as calculated using
eqn. 3.4, of both methods are shown in table 3.5. It can be seen that in the Y di-
rection narrow limits of agreement for the difference between the two techniques
were obtained although they are significantly different.

The computation time required for the proposed automatic method as well as computation
timethose required for forward tracking and minimum tracking are given in table 3.6.

The computation times shown are for full cycle tracking of the MVHPs on a note-
book PC with an Intel Pentium M processor running at 1.73 GHz with 512 MB of
RAM. However, we did not spend much effort in optimizing our method regarding
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Figure 3.8: Bland-Altman plots of the differences between the automated and the man-
ual displacements in the septal part, in both the horizontal (X ) and vertical (Y ) direc-
tion

Figure 3.9: Bland-Altman plots of the differences between the automated and the man-
ual displacements in the lateral part, in both the horizontal (X ) and vertical (Y ) direc-
tiond

Table 3.5: The 95% confidence intervals for the limits of agreement of the errors in X
direction and Y direction, respectively

MDP-based tracking Interobserver variability

n = 17 X (mm) Y (mm) X (mm) Y (mm)

Septal 2.28±0.20 1.86±0.16∗ 2.39±0.21 1.63±0.14

Lateral 3.12±0.27 2.55±0.22∗ 2.92±0.26 2.09±0.18

All the results are expressed as mean ± standard deviation.
∗Denotes an automated limit of agreement which is significantly different
(p < 0.05) from the interobserver variability.
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Table 3.6: Computation times per patient required for the three tracking methods

n = 17
MDP-based
tracking (s)

Forward
tracking (s)

Minimum
tracking (s)

Computation time 161.1±10.3 110.1±9.7 143.7±13.5

All the results are expressed as mean ± standard deviation.

execution speed.

Discussion | 3.4

We developed a semi-automatic technique for tracking the MVA motion using MDP
combined with apodized block matching. We applied this method on clinical qual-
ity VCR recorded data from 20 patients. We evaluated its feasibility on 17 patients,
after excluding three patients due to poor image quality or ambiguity of the man-
ual annotation of either the septal or the lateral MVHP. Tracking the MVA based on
manual annotation is a cumbersome and tedious procedure with poor repeatabil-
ity. To overcome this limitation, we propose a semi-automatic method that requires
minimal user interaction. Relative to forward tracking and minimum tracking, the
method is robust to noise and small disturbances.

Our method has several advantages for evaluating the MVA motion. First, it
exploits the DP advantages: relatively insensitive to noise and small disturbances, advantages

efficient and producing a time continuous motion [Rabben et al. 2000; Sonka et al.
1999]. Another benefit from the MDP search is the 2D path derived from it. In this
way, our technique is capable of evaluating the spatial displacement of the MVA in
both the horizontal and the vertical direction over the full cardiac cycle. Second,
it takes the advantages of block matching: robust against linear changes, fast and
proven. Third, it is simple and can be performed off-line with a PC. In addition,
the method has the benefits of 2D echocardiography: cheap relative to other image
acquisition modalities, non-invasive, accessible and the images are produced in
real time.

Previous studies [Alam and Hoglund 1992; DeCara et al. 2005; Eto et al. 2005;
Willenheimer et al. 1999] reported that the MVA maximal excursion correlates well MVA excursion

with LV function. The maximal excursions values obtained with our automated
method agreed well with the values obtained with the manual method, consider-
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ing the inherent uncertainty of the manual drawing. Eto et al. [2005] developed an
automated method, based on forward tracking, for tracking the MVA in high frame
rate (greater than 60 Hz) cineloop images of 2D echocardiography. They validated
their method by comparing its results to those obtained by manual annotation in
3D echocardiography and reported an accuracy of 2.5± 1.8 mm (the average dis-
tance between the mean MVA excursion obtained by the automated method and
the manual tracking). However, it is difficult to compare these results to those ob-
tained by our method since they used a different “ground truth”.

The full cycle tracking errors obtained with the MDP-based automated tech-
nique were small (less than 2 mm, see table 3.4) and with clinically acceptable dif-full cycle

tracking results ferences [Eto et al. 2005]. The tracking errors in the lateral part were larger than in
the septal part. This can be explained by the fact that the lateral part is more dif-
ficult for tracking since the ROI has less clearly defined structures with lower echo
level. Consequently, the interobserver variability was also larger in the lateral part
than in the septal part. We found limits of agreement of less than 2 mm which is
good given the uncertainty in our “ground truth”, which is expressed by the man-
ual interobserver variability. Bland-Altman plots revealed good agreement between
the displacements in X direction obtained by both methods. However, the limits of
agreement of the displacements in Y direction obtained by the automated method
were narrow but significantly different from those obtained by the manual method
(see table 3.5). The wider limits of agreement in the X direction are attributable to
the resolution, which is higher in the axial direction than in the lateral direction.
Therefore, the resolution in the X direction, which is mainly governed by its lateral
component, is worse and the limits of agreement are broader.

The displacement in the Y direction is clinically more valuable than in the X di-
rection. No apparent correlation between the error and the average displacement
was found (fig. 3.8 and fig. 3.9). This is a great advantage of the MDP-based au-
tomated method, which does not suffer from increasing errors even at large excur-
sions.

The fact that the best results in the lateral part were obtained without smooth-
ing the images implies again that in the lateral part there are no clear anatomical
structures for tracking and the MVHP is tracked based on the speckles.

In our study, the MDP-based automated method outperformed the forward
tracking and the minimum tracking while requiring comparable computation time
(table 3.6). The forward tracking approach is fastest since the ROS is effectivelyrelated

techniques smaller (limited by the step size), at the cost of finding a suboptimal solution. Un-
like other echocardiography studies [Behar et al. 2004; Eto et al. 2005; Rabben et al.
2000], we used cineloop images with low frame rate (25 Hz) compared with digi-
tal images. Forward tracking was reported to perform well in high quality images
[Behar et al. 2004; Eto et al. 2005; Veronesi et al. 2006] but yielded poor results in
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our case. This is attributable to the fact that in forward tracking once an error oc-
curs it is emphasized since the new ROI is updated erroneously and the detected
path drifts away from the true path. An important contribution to this problem is
the change in appearance of the mitral valve leaflet due to opening and closing of
the valve. Since this is the nature of the problems, applying our method on digital
images with higher frame rate and better image quality would probably reduce the
tracking errors. This is attributable to the fact that our method searches for globally
optimal location of the MVHPs using MDP and uses apodized block matching to
eliminate the dominant contribution from peripheral pixels in the ROI.

We chose the step size and the ROS size based on normal ranges of MVA dis-
placement [Alam and Hoglund 1992; Behar et al. 2004] and, hence, they do not
depend on the quality of the images used in this study. The performance of the choice of

parametersmethod was not very sensitive to the choice of the parameters (smoothing filter
size and ROI size) that were selected during the optimization procedure; the differ-
ences were only a few percent. However, these parameters depend on the image
quality and hence we expect to find different values for other types of data, e.g.
high-quality digital images.

We used the same parameters for tracking the entire data set. Better results may
be achieved by selecting the ROI size for each patient separately based on the auto-
correlation function of the system [Behar et al. 2004]. When implementing the pro- further

improvementsposed method on high quality digital images, its results may be further improved by
using a nonlinear edge preserving filter to increase the signal to noise ratio (SNR)
of the images while preserving important image features [Adam et al. 2006; Behar
et al. 2004] instead of smoothing the data with a linear Gaussian filter as we did.
Using nonlinear filters would probably improve the results in the septal part, where
the MVHP is a strong reflector, rather than in the lateral part, where the MVHP is
weaker (Behar et al. 2004). In our images with dominant interlacing artifacts, how-
ever, a smoothing filter is better than an edge preserving one.

Further work can be the extension of the method to 3D data. The MDP can be
easily adapted to track the MVA in any long-axis slice of a four-dimensional data set
(3D + time), or for detecting the complete mitral ring in a 3D set.

Limitations | 3.4.1

We analyzed only data obtained from patients with acute myocardial infarction.
Although this subsample might not be fully representative, we do not see any rea- patient

populationson why this method would not be suitable for normals or for patients with other
pathologies, as long as no extreme kinematical changes are involved.

The quality of the images was relatively low due to the VCR recorded data. Hence,
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this study should only be seen as evidence for the feasibility of MDP-based auto-
matic mitral valve tracking in VCR images. However, we developed this method onimage quality

such relatively poor-quality data because we were aiming for a robust technique
suitable for 3D ultrasound data, with an inherently lower quality than modern dig-
ital data. Since we wanted to use gross anatomical features rather than highly cor-
related speckle patterns in high frame rate, digital images with good SNR, the VCR
images offered a good substrate.

The suitability of this technique for 3D echo still needs to be investigated, but
its robustness is promising. We believe that our approach will also be useful on
digital data, but further work on such data should be undertaken. At least, it will
require a new parameter optimization process since the image quality influences
the smoothing filter parameters.

| Conclusions3.5

We developed a novel semi-automatic method based on MDP for tracking the MVA
motion. This study showed that the technique is feasible and valuable in evaluating
accurate MVA displacements. The method provides robust and efficient tracking
with minimal user interaction and agrees well with manual MVHPs tracking even
in low quality images.
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