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Semi-automatic endocardial border
detection for left ventricular volume
estimation in 3D echocardiography 2

W
PROPOSE A SEMI-AUTOMATIC endocardial border detection
method for LV volume estimation in 3D time series of cardiac

ultrasound data. It is based on pattern matching and dynamic
programming techniques and operates on 2D slices of the 4D data
requiring minimal user-interaction.
We evaluated on data acquired with the fast rotating ultrasound (FRU)
transducer: a linear phased array transducer rotated at high speed around
its image axis, generating high quality 2D images of the heart. We auto-
matically select a subset of 2D images at typically 10 rotation angles and
16 cardiac phases. From four manually drawn contours a 4D shape model
and a 4D edge pattern model is derived. Pattern matching and dynamic
programming is applied to detect the contours automatically. The method
allows easy corrections in the detected 2D contours, to iteratively achieve
more accurate models and improved detections.
An evaluation of this method on FRU data against MRI was done for full
cycle LV volumes on 10 patients. Good correlations were found against
MRI volumes (r = 0.94, y = 0.72x + 30.3, a difference of 9.6 ± 17.4 ml
(mean ± standard deviation) ) and a low interobserver variability for 3DE
(r = 0.94, y = 1.11x −16.8, difference of 1.4±14.2 ml). On average only 2.8
corrections per patient were needed (in a total of 160 images). Although
the method shows good correlations with MRI without corrections, apply-
ing these corrections can make significant improvements.

This chapter has been derived from (© 2005 SPIE):
Semi-automatic border detection method for left ventricular volume estimation in 4D ultrasound data. M.
van Stralen, J.G. Bosch, M.M. Voormolen, G. van Burken, B.J. Krenning, R.J.M. van Geuns, E. Angelié, R.J. van
der Geest, C.T. Lancée, N. de Jong, J.H.C. Reiber. Proc SPIE Med Imaging 2005; 5747; 1457-1467.
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| Introduction2.1

For diagnosis of cardiovascular diseases, the volume and ejection fraction of the
left heart chamber are important clinical parameters. 3D echocardiography (3DE)
offers good opportunities to visualize the whole left ventricle (LV) over the com-
plete cardiac cycle. 3D echocardiography is non-invasive, relatively cheap, flexible3D echocardio-

graphy in use and capable of accurate volume measurements [Jenkins et al. 2004; Nosir et
al. 1999]. New, fast 3D ultrasound imaging devices are entering the market and have
the potential of allowing such measurements rapidly, reliably and in a user-friendly
way - provided that a suitable automated analysis is available. Manual segmenta-
tion of the large data sets is very cumbersome and suffers from inconsistencies and
high variability. On the other hand, the human expert’s interpretation and interven-
tion in the detection is often essential for good results. Therefore a semi-automatic
segmentation approach seems most suitable.

| Other approaches2.1.1

Some methods for segmentation of 3D echocardiographic images have been pub-
lished. Angelini et al. [2001] have reported on a wavelet-based approach for 4D
echocardiographic image enhancement followed by a segmentation of the left ven-
tricle using snakes. Corsi et al. [2002] presented a level-set based semi-automatic
method. Montagnat and Delingette [2000] used a 2-simplex mesh and a feature de-
tection based on a simple cylindrical gradient filter. Sanchez-Ortiz et al. [2002] used
multi-scale fuzzy clustering for a rough segmentation in 2D longitudinal slices. B-
splines are used for 3D surface fitting in each time frame. These methods have
not been validated successfully on a reasonable data set. The most practical ap-
proach is described by Kühl et al. [2004]. It uses active surfaces that are controlled
by difference-of-boxes operators applied to averages and variances of the lumi-
nance. This technique is implemented in a commercially available workstation (4D
LV Analysis, TomTec, Unterschleißheim, Germany). The general experience is that
this technique requires much initialization and corrections, and a consistent seg-
mentation is still hard to reach. Another commercial development has been pre-
sented recently: QLAB (Philips Medical Systems, Best, the Netherlands). This pack-
age provides on- and offline 3D quantification tools. However, technical details or
clinical evaluations of these methods have not been reported yet.

We present a semi-automatic endocardial border detection method for left ven-
tricular volume estimation in time series of 3D cardiac ultrasound data.Our methodour approach

is based on pattern matching and dynamic programming techniques and com-
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Figure 2.1: The fast rotating ultrasound (FRU) transducer

bines continuity, robustness and accuracy in 2D cross sections with the spatial and
temporal continuity of the 3D plus time (3D+T) data. It aims at optimally using a
limited amount of user interaction (capturing essential information on shape and
edge patterns according to the user’s interpretation of the ultrasound data) to attain
a fast, consistent and precise segmentation of the left ventricle.

Despite the fact that this method is optimized for data of the fast rotating ultra-
sound transducer (see below), the algorithm can be easily adapted to data of other general

applicabilityimage acquisition systems, for example 3D+T voxel sets. The detection will then be
performed in 2D slices through the LV long axis.

Fast rotating ultrasound transducer | 2.1.2

We performed this study on a special type of image data acquired with a new de-
vice: the fast rotating ultrasound (FRU) transducer (fig. 2.1). The transducer has
been developed by the Department of Experimental Echocardiography of the Eras-
mus MC, the Netherlands [Djoa et al. 2000; Voormolen et al. 2002]. It contains a
linear phased array transducerthat is continuously rotated around its image axis at linear phased

array
transducer

very high speed, up to 480 rotations per minute (rpm), while acquiring 2D images.
A typical data set is generated during 10 seconds at 360 rpm and 100 frames per sec-
ond (fps). The images of the left ventricle are acquired with the transducer placed
in apical position, with the transducer’s rotation axis more or less aligned with the
LV long axis. The analysis assumes that the rotation axis lies within the LV lumen
and inside the mitral ring.

An important advantage of this transducer is that it can be used with any ultra-
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Figure 2.2: A sequence of seven consecutive FRU images with curved image planes

sound machine, since a conventional phased array transducer is used. It also ac-usage with any
ultrasound

machine
quires relatively high quality 2D images, compared to matrix array transducers used
for real-time 3D echocardiography. Furthermore, no ECG triggering is applied, just
an ECG-registration for offline analysis, which allows quick acquisitions.

As a consequence of the very high continuous rotation speed, the images have
a curved image plane (fig. 2.2). During the acquisition, the probe rotates about 22◦

per image with the typical settings given above. The combination of these curved
image planes, and the fact that the acquisition isnot triggered by or synchronizedacquisition is

not ECG
triggered

to the ECG signal, results in an irregular distribution over the 3D plus time (3D+T)
space. A single cardiac cycle in general is not sufficient for adequate coverage of
the whole 3D+T space; therefore, multiple consecutive heart cycles are merged.
The cardiac phase for each image is computed offline using detected R-peaks in
the ECG [Engelse and Zeelenberg 1979]. From the total set of ±1000 2D images, a
subset of images with a regular coverage of the 3D+T space is selected automati-
cally. We perform analysis on the images in this subset. The data is also suitable for
the generation of a time series of 3D voxel sets.
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Methods | 2.2

Frame selection | 2.2.1

To achieve adequate coverage of the whole 3D+T space, multiple consecutive car-
diac cycles are merged and an optimal subset S of the total set of frames T is se-
lected (fig. 2.3). This subset is an optimal fit of the frames on a chosen A×P matrix
of A equidistant rotation angles and P cardiac phases, minimizing the total devia-
tion in rotation angle and cardiac phase.Moreover, the variation in acquisition time limit motion

artifactsover the subset is minimized to limit possible motion artifacts. The constraints are
translated into the following cost functions that will be minimized over the total
subset S,

S =
A⋃

i=1

P⋃
j=1

(argmin
b∈Ci , j

(cangle(αb , i )+ cphase(pb , j )+ ctime(tb))) (2.1)

cangle(α, i ) = k1|αtarget(i )−α|
cphase(p, j ) = k2|ptarget( j )−p|
ctime(t ) = k3|tS − t |

Ci , j is the set of candidate images for angle #i and phase # j . cangle and cphase

describe the costs of selecting an image b with angle αb and phase pb for a chosen
αtarget and ptarget. k1, k2 and k3 are weighting coefficients (typically equal). Since iterative frame

selection
optimization

the cost ctime is dependent on tS (the average acquisition time of the subset itself),
the minimization of the costs of set S is achieved in an iterative manner.

Border detection approach | 2.2.2

We base our method on the knowledge that the edge patterns of the endocardial
border can be complex, very different from patient to patient and even between
regions within an image set. The border position need not correspond to a strong
edge and may be only definable from ’circumstantial evidence’ as identified by an
expert observer. Rather than applying artificial, idealized edge models or templates
derived from a large training set, we propose a tracking approach based on edge patient specific

edge templatetemplates extracted from the user-defined initial borders in the patient’s own im-
ages.

The method is based on the following continuity assumptions (in order of
strength):

(a) border continuity within separate 2D slices of the left ventricle;
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Figure 2.3: Selected subset of 2D FRU images in 16 cardiac phases and 10 rotation an-
gles. Contours are manually drawn in the highlighted images.

(b) spatial continuity of shape and gray value edge patterns over the LV surface
in 3D;

(c) temporal and cyclic motion continuity of the endocardium.
For the FRU transducer, within the original 2D images, both spatial and temporal
distances between neighboring samples are smaller than towards adjacent images
in angle and phase; therefore, border continuity is supposed to be strongest here.

The method is initialized from four manually drawn contours, taken from two
roughly perpendicular views (more or less corresponding to two- and four-chambermanual

initialization cross sections) in two phases: end diastole (ED) and end systole (ES). These are
used to initialize a model for the edge patterns near the 3D LV surface over time
and a 3D shape model of the LV endocardial surface over the entire cardiac cycle.
Both models are inherently 4-dimensional and can be polled at any spatial position
and cardiac phase.

The actual border detection takes place in individual 2D images from the se-
lected subset and is an extension of an approach for 2D+T sequences earlier devel-
oped by Bosch et al. [1998]. For each image b ∈ S (of cardiac phase pb and rotationmethod

overview angleαb), an estimation of the border shape is derived by intersecting the 3D shape
model at phase pb by the (curved) image plane for angle αb . The edge templates
are also interpolated for the desired pb and αb . In the 2D image, a neighborhood
of the estimated shape is resampled along lines perpendicular to the shape esti-
mate. Using a template matching with the local edge templates, the similarity of
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each candidate edge point to the template is calculated. Dynamic programming
is applied to find an optimal continuous border within the restrictions posed by
the 3D model. In this way, the 3D+T surface and edge pattern models guard the
(looser) spatial and temporal consistency of the detection, while the dynamic pro-
gramming approach supplies a continuous and optimal detection locally. The set
of detected contours describes the 3D endocardial surface over the whole cardiac
cycle from which LV volumes, ejection fraction and other valuable parameters can
be computed.

3D surface models | 2.2.3

Definition | 2.2.3.1

As said, for two cardiac phases (ED and ES) a 3D surface model of the LV endo-
cardium is constructed from two almost perpendicular contours. During the ac-
quisition the rotation axis is more or less aligned with the long axis (LAX) of the left
ventricle, but in practice there may be a considerable mismatch (fig. 2.4b). This
implies that the two image planes do not contain the true apex of the left ventri-
cle, and estimating the position and shape of the true apex (and the LV long axis) manual

contours miss
apex

is a non-trivial issue. The local long axes in the 2D manually drawn contours are
defined as the lines through the midpoint of the mitral valve (MV) and center of
gravity of the upper 10% of the contour area. We estimate the 3D LV long axis from
the local long axes by computing the intersection of the planes perpendicular to
these images through the local long axis in the image.

The endocardial surface is estimated by expressing the two contours in a cylin-
drical coordinate system with respect to the estimated LV long axis. Intersection
points of these contours are found with a stack of planes perpendicular to the long
axis (short-axis planes). Within each short-axis plane, a closed contour is found by
interpolating between the intersection points; for this, the radial coordinate com-
ponent r is interpolated over the angle between the intersection points (see section
2.2.3.2 for details). This gives a natural approximation of the ellipsoidal shape of the
left ventricle. Since the two image planes generally do not intersect the real apex,
the apical cap of the LV surface cannot be estimated simply from the two manu-
ally drawn contours, as shown in fig. 2.4b. Therefore, near the 3D apex we use
a spherical coordinate system oriented around the LV long axis, centered at 3/4th

of its length. The surface is estimated by interpolating the radial component over
the elevation angle for multiple rotation angles, using the interpolation method de-
scribed in the next section. A contour estimate for any 2D image at a given rotation shape models

in ED and ESangle and cardiac phase can be made by intersecting its curved image plane with
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a b c

Figure 2.4: a) The interpolation of the endocardial surface in a cylindrical coordinate
system oriented around the LV long axis (LAX). b) 3D surface model. The LAX esti-
mate (dotted) and the rotation axis (dashed) are shown, together with the reconstruc-
tion of the apex by spline interpolation (light gray) from two manually drawn contours
(solid black). c) The extraction of a stylized edge pattern from an image with a manually
drawn contour.

the 3D contour models in ED and ES and then linearly interpolating between the
two resulting ’2D’ contours over cardiac phase to get the contour estimate at the
desired cardiac phase.

| Surface interpolation/fitting2.2.3.2

Fitting a smooth contour through all available intersection points in a short-axis
plane is not always possible. Inconsistencies can occur in the set of input contours
used for the interpolation of the endocardial surface interpolation. They can be
caused by inconsistent manual tracing or by inconsistent image data. The latter
can be caused by substantial differences in cardiac phase between the images or
by inter-beat variation. For the generation of a smooth endocardial surface, we
developed a fitting algorithm that can handle these inconsistencies.

The algorithm is dynamic programming based. Dynamic programming (DP)dynamic
programming [Sonka et al. 1999] is a well known graph search technique that finds the optimal

path through a rectangular array of nodes (the path with the lowest sum of costs)
out of all possible connective paths in an effective manner by calculating lowest
cumulative costs for consecutive layers (lines) while keeping track of the partial
optimal paths. Backtracking from the node with lowest cumulative cost in the last
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layer delivers the overall optimal path. A connective path contains exactly one node
per line and the positions on consecutive lines cannot differ more than a predefined
side step size.

Using this technique, the method fits an optimal curve through a set of possibly
inconsistent intersection points. It allows the assignment of reliabilities to each
point.Also, the curvature can be controlled through parameters in the dynamic control the

curvatureprogramming algorithm and the probability distribution computation, which is ex-
plained below.

The curve is found through the set of intersection points i ∈ I with correspond-
ing reliabilities pi . The nodes in the DP array of size A × R, represent points in
(α,r )-space. Finding the path with the minimum costs solves the fitting problem.
The costs of each node are represented by the cost function C ,

C (n) =− log(P∗(n)), (2.2)

where P∗(n) is the normalized probability that node n represents a point on the
endocardial border. The normalization is performed within each layer of the DP
graph, such that the probabilities within each layer sum up to one. The probabil-
ity P (n) of node n being part of the endocardial border is inversely related to the
angular and radial distance to the intersection points, δα and δr , and is defined as,

P (n) = p0 +
∑
i∈I

pi G(δr ,σ) (2.3)

σ= c1(δα+ c2)c3 (2.4)

The probability distribution is Gaussian (G) in the radial direction (within the DP
layers), as defined in eqn. 2.3. The width of the Gaussian increases with the angular
distance from the input point δα (eqn. 2.4), which makes the distribution more flat
with increasing angular distance. c1, c2 and c3 are parameters that influence the
curvature and smoothness of the resulting curve, where c1 > 0, c2 > 0 and c3 > 1. An
example cost matrix and the resulting curve are shown in fig. 2.5.

Edge pattern model | 2.2.4

The desired edges are tracked over space and time by applying a pattern matching
approach with edge templates.These edge patterns are derived from the manually derived from

manual
contours

drawn contours and interpolated over the (phase, angle)-space. The image is re-
sampled clockwise along the manually drawn contour, on line segments perpen-
dicular to this contour from the inside out. The gray values on these line segments
are smoothed and subsampled to form a stylized edge pattern for this contour (fig.
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a b

Figure 2.5: a) The dynamic programming cost matrix. b) The resulting curve fit through
the input piont

2.4c). A typical edge pattern for a single 2D frame is represented by 32 positions
along the contour and 5 samples around each edge position.

The interpolation over cardiac phase is performed linearly between the edge
patterns in ED and ES. The interpolation over rotation angle is less straightforward.interpolation

over rotation
angle

Since the character of the edge pattern is strongly related to the angle between the
endocardial border and the ultrasound beam and the distance from the transducer,
the pattern changes considerably over the rotation angle, especially when the angle
between the rotation axis and LV long axis is substantial. For images with rotation
angles opposite (±180◦) to those with the manually drawn contours, the image ap-
pears nearly mirrored and the mirrored (anti-clockwise) edge pattern is used. For
angles in between, the edge patterns are linearly interpolated.

| Contour detection2.2.5

With an edge pattern and initial contour for each image b ∈ S (of phase pb and angle
αb), we can now detect the individual endocardial borders (fig. 2.6). In a neighbor-
hood of the initial contour, the image isresampled into an N ×M rectangular arrayimage

resampling by sampling N points along M scan lines perpendicular to the shape. From the styl-
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ized edge pattern for (pb ,αb) an edge template for each scan line is extracted. For
all nodes in the array, the sum of absolute differences with its respective edge tem-
plate defines the cost of the node.We now use a dynamic programming approach dynamic

programming(section 2.2.3.2, [Sonka et al. 1999]) to find the optimal connective path through
the array. Smoothness constraints are enforced by applying additive costs for side
stepping during cumulative cost calculation. To limit the influence of lines with
relatively poor image information, this additive penalty is calculated per line from
the statistics of node costs per line with respect to overall cost statistics, such that
relatively unreliable lines get higher penalties for side stepping.

a b c

Figure 2.6: Contour detection. a) Resampling of the image around the 2D shape es-
timate. b) Edge pattern matching and dynamic programming to detect the optimal
contour. c) The detected contour

For each phase p j , the detected contours of all angles αi together constitute a
3D mesh that describes the endocardial surface. We observe the volume of the left
ventricle over the whole cardiac cycle, by calculating the volumes inside the surface
meshes of all selected cardiac phases.

Correct and redetect | 2.2.6

In the initial detection the shape and edge pattern models are estimated from only
four manually drawn contours. In some cases, this does not provide enough in-
formation for the models to detect the endocardial border well in all the images in
the subset. Also, the border may be poorly defined in some of the images, which
complicates the detection. Therefore the method allows additional corrections in iterative

refinementsthe detected contours in the 2D images. A corrected contour will be treated as an
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additional manual contour and both the edge pattern and shape models will be up-
dated accordingly, achieving a more specific approximation of the actual shape and
appearance. This results in a new set of shape and edge pattern estimates, and all
remaining images are redetected. Through these easy, iterative refinements, cor-
rections will cumulatively lead to a superior global solution.

| Results2.3

We performed a preliminary validation study for this method on a group of 10
subjects with different diagnoses of cardiovascular disease. Full cycle MRI LV vol-
umes on these patients were determined in parallel with the 3DE study, using semi-
automatic segmentation tools (MRI-MASS, Medis medical imaging systems, Lei-comparison

with MRI den, the Netherlands) by an independent observer unaware of the 3DE analyses.
For the 3DE study, for all patients, subsets of images were created with P = 16
phases and A = 10 angles. After establishing equivalent tracing conventions, two
observers individually analyzed all subsets. We evaluated the semi-automatic seg-
mentation method using only the initial four manually drawn contours, and after
applying corrections iteratively.

Reading and converting the data and the automated selection of the subset took
7 minutes per patient on average. After the drawing of the four contours, the fullyanalysis time

automated detection of the other 156 contours took approximately 60 seconds per
patient (Pentium IV 2.6GHz, 2GB RAM). Some examples of manual and detected
contours are shown in fig. 2.7. Corresponding endocardial surfaces for all phases
are shown in fig. 2.8. From the analyses of both observers, interobserver variabil-
ities of full cycle volumes and ejection fractions (EF) were determined, as well as
averages that were correlated to full cycle MRI volumes, both for the situation with
and without applying corrections.

Results of 3DE (average of the two observers) vs. MRI are shown in table 2.1 and
fig. 2.9a-d. Fig. 2.9a shows the full cycle volumes without corrections. A good cor-without

corrections relation of r = 0.92 was found between MRI and 3DE volumes without corrections.
Regression was y = 0.675x + 32.9. In general, ED volumes were underestimated
by 3DE, while ES volumes were slightly overestimated. Overall the MRI volumes
were slightly larger (14.1 ± 19.6 ml (mean ± standard deviation)). Similar differ-
ences between 3DE and MRI volumes have been reported in many studies and can
be attributed to differences in tracing conventions between MRI and 3DE. EF re-
sults showed a reasonable overall difference of 6.2± 8.9%, but the regression was
similarly affected (y = 0.36x +25.8%, r = 0.63). For the 3DE interobserver variabil-
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Figure 2.7: Detection examples: frames at different (phase#, angle#) with contours.
left) 4 frames with manual contours, resp. 1: ED 2c (1,1), 2: ES 2c (6,1), 3: ED 4c (1,3),
4: ES 4c (6,3). right) 4 frames with detected contours, resp. 5: frame (8,2), 6: (14,5), 7:
(4,8), 8: (14,9)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 2.8: Reconstruction of the endocardial border over the full cardiac cycle. The
top row shows phases 1 to 8, the bottom row phases 9 to 16 (of a total of 16 phases).
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ity, results are presented in table 2.1 and fig. 2.9e. The differences were 5.0±13.6 ml
with a regression of y = 1.08x −16.0 (r = 0.94).

After applying corrections, the full cycle results slightly improved in comparison
to MRI volumes: r = 0.94, y = 0.73x +30.3, with a difference of 9.6±17.4 ml (tablewith

corrections 2.1, fig. 2.9b,d). This is equally reflected in EF results: r = 0.64, y = 0.36x+25.8 with
differences of 6.0±8.8%. On average 2.8 corrections were applied per patient (on a
total of 160 images). Interobserver variability (fig. 2.9f) increased slightly due to the
additional corrections, with a correlation of r = 0.94 and y = 1.11x−16.8 (difference
of 1.4±14.2 ml).

Table 2.1: Full cycle volumes and correlations of 3DE vs. MRI and Observer 1 vs. Ob-
server 2 (N = 160)

Volume (ml) Correlation Regression

Without
corrections

MRI 148 ± 48
0.919 0.675x +32.9

3DE 134 ± 36

Obs.1 136 ± 34
0.941 1.08x −16.0

Obs.2 131 ± 39

Without
corrections

MRI 148 ± 48
0.936 0.728x +30.3

3DE 138 ± 38

Obs.1 139 ± 35
0.943 1.11x −16.8

Obs.2 138 ± 41

The volumes are expressed as mean ± standard deviation.

| Discussion2.4

The findings in this study suggest that the semi-automated detection method is a
useful tool for quick, semi-automatic detection of LV endocardial borders. How-
ever, apparent difficulties in interpreting the 3DE images somewhat obscure the
conclusions. Although the different observers can easily reach a satisfactory anal-
ysis of the 3DE datasets, the volumetric results show considerable interobserver
differences. On inspection, these differences were primarily due to different image
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N = 160 r = 0.919 

y = 0.675 x + 32.9 

N = 160 r = 0.936 

y = 0.728 x + 30.3 

N = 160 r = 0.943 

y = 1.11 x – 16.8 

N = 160 r = 0.941 

y = 1.08 x – 16.0 

Without corrections With corrections 

A B 

C D 

E F 

Figure 2.9: All volumes in ml. a) MRI vs. 3DE (average of two observers) volumes, with-
out corrections. b) MRI vs. 3DE (average of two observers) volumes, with corrections.
c) Bland-Altman analysis for MRI vs. 3DE, without corrections. d) Bland-Altman anal-
ysis for MRI vs. 3DE, with corrections. e) Interobserver variability (for 3DE), without
corrections. f ) Interobserver variability (for 3DE), with corrections
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interpretation and corresponding manual contours, not to differences in detected
contours; these consistently followed the observer’s interpretation. Clearly, criteria
for tracing were not established well enough in this case. This was partly due to
the somewhat unconventional cross sections for tracing, partly to the attempt to
trace ’similar to MRI criteria’ which was not completely successful and meant that
we had to deviate from standard ultrasound contour drawing conventions. In some
cases, image quality was a factor as well.

Absolute differences in volumes may seem high, but this is partially due to the
dilated hearts in the set and the consequent high average volumes (mean MRI ED
volume = 187 ml).

It would be useful to extend the study with tracings following normal ultrasound
conventions. This could lead to lower observer variabilities, although the compar-tracing

conventions ison to MRI volumes could be more complicated. Comparison between 3DE and
MRI volumes was hampered by the different tracing conventions; this resulted in
considerable systematic differences, which were also clearly dependent on cardiac
phase. Still, overall regression coefficients were high, especially considering the
large interobserver variations for ultrasound. This suggests that with proper trac-
ing conventions and/or correction formulae, a high correspondence between MRI
and 3DE volumes should be realizable.

Currently, EF measurements by the 3DE method suffer considerably from the
systematic differences and variabilities described above. EF measurements should
also benefit greatly from improved tracing conventions.

Looking at the distribution of volume errors over the full cardiac cycle, a short-
coming of this method becomes clear: the lack of a true mitral valve tracking al-mitral valve

tracking gorithm. Currently, the method simply assumes the movement of the mitral valve
to be linear in systole and diastole, which is a substantial simplification. It is well
known that the valve plane motion is directly related to LV volume change, and
we clearly observe the effect: volume curves which are a bit too ’linear’ in diastole
and systole. Despite the possibility to adjust this movement using corrections, still
high differences can be observed in early systole and diastole in comparison to MRI
volume curves. Extending this method with a mitral valve tracking algorithm is ex-
pected to further improve the results. Several approaches for mitral valve tracking
have already been presented in literature. We elaborate on this topic in chapter 3.
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We presented a new semi-automatic endocardial border detection method for 3D+T
ultrasound data. This method offers fast and reasonably precise automated border
detection with minimal user interaction. The method shows good full cycle results
against MRI in the initial detections with only four manually drawn contours. Af-
ter applying corrections, the results do improve for the individual patients, but in
the overall comparison against MRI these improvements do not make a significant
difference. This can be addressed to the different interpretation of the 3DE data by
the observers in comparison to the MRI data. A satisfying detection in 3DE does
not always result in equivalent volumes.

The method can still be improved by including a mitral valve tracking algo-
rithm. Furthermore, better tracing conventions for this type of 3DE data would
be helpful for consistent analysis.
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