

## **Invariant Hilbert subspaces of the oscillator representation** Aparicio, S.

## Citation

Aparicio, S. (2005, October 31). *Invariant Hilbert subspaces of the oscillator representation*. Retrieved from https://hdl.handle.net/1887/3507

| Version:         | Corrected Publisher's Version                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| License:         | Licence agreement concerning inclusion of doctoral thesis<br>in the Institutional Repository of the University of Leiden |
| Downloaded from: | https://hdl.handle.net/1887/3507                                                                                         |

**Note:** To cite this publication please use the final published version (if applicable).

## Stellingen

#### belonging to the thesis

#### Invariant Hilbert subspaces of the oscillator representation

by Sofía Aparicio Secanellas

1. Let G be equal to  $SL(2, \mathbb{R}) \times O(1, 1)$  and let  $\omega_{1,1}$  be the oscillator representation of G on  $L^2(\mathbb{R}^2)$ . The explicit decomposition of this representation was given by B. Ørsted and G. Zhang in [1]. They also obtained that the oscillator representation of G on  $L^2(\mathbb{R}^2)$  decomposes multiplicity free. This result can be extended to every  $\omega_{1,1}(G)$ -invariant Hilbert subspace of  $\mathcal{S}'(\mathbb{R}^2)$ .

See Chapter 7 of this thesis

- 2. Let  $\pi_{\delta,s}$  be the representations of  $SO(n, \mathbb{C})$  with  $n \geq 3$  induced by a maximal parabolic subgroup of  $SO(n, \mathbb{C})$ . Let us consider  $s \in \mathbb{C}$  and  $\delta \in \mathbb{Z}$ .
  - a) If n = 3, 4, 5 and  $\delta < 0, \pi_{\delta,s}$  is irreducible for s real and  $s \in [\delta, -\delta]$ .
  - b) If n > 4, even and  $n + \delta < 6$ ,  $\pi_{\delta,s}$  is irreducible for s real and  $s \in (n + \delta 6, -n \delta + 6)$ .
  - c) If n > 5, odd.
    - c1) If  $n + \delta \ge 6$  and  $\delta < 0$   $\pi_{\delta,s}$  is irreducible for s real,  $s \in [\delta, -\delta]$  and  $s \delta \notin \mathbb{Z}_{odd}$ .
    - c2) If  $n + \delta < 6$  and  $\delta > 0$   $\pi_{\delta,s}$  is irreducible for s real,  $s \in (n + \delta 6, -n \delta + 6)$  and  $s \delta \notin \mathbb{Z}_{even}$ .
    - c3) If  $n + \delta < 6$  and  $\delta < 0$   $\pi_{\delta,s}$  is irreducible for s real and  $s \in (n+\delta-6, -n-\delta+6)$  or for s real,  $s \in [\delta, n+\delta-6] \cup [-n-\delta+6, -\delta]$  and  $s \delta \notin \mathbb{Z}_{odd}$ .

See Appendix B of this thesis

3. Let G be the group  $SL(2, \mathbb{R}) \times SO(2n)$  with n > 1 and let  $\omega_{2n}$  be the oscillator representation of G on  $L^2(\mathbb{R}^{2n})$ . Any minimal  $\omega_{2n}(G)$ -invariant Hilbert subspace of  $\mathcal{S}'(\mathbb{R}^{2n})$  occurs in the decomposition of  $L^2(\mathbb{R}^{2n})$ .

See Chapter 6 of this thesis

4. Let  $f \in \mathcal{D}(\mathcal{O}(n,\mathbb{C})/\mathcal{O}(n-1,\mathbb{C}))$ . Then it follows

$$||f||^{2} = C \sum_{\delta \in \mathbb{Z}} \int_{\mathbb{R}} \frac{1}{|c(\delta, is)|^{2}} ||\mathcal{F}_{\delta, is}f||^{2} ds$$

with C a positive constant,  $\mathcal{F}_{\delta,is}f$  the Fourier transform of f and

$$c(\delta, is) = 2^{\rho-1} \frac{\Gamma(\frac{n}{2})\Gamma(\frac{1+\rho}{2})\Gamma(\frac{-is+|\delta|-\rho+2}{2})\Gamma(\frac{-is+|\delta|}{2})}{\sqrt{\pi}\Gamma(\frac{-is+|\delta|-\rho+n}{2})\Gamma(\frac{-is+|\delta|+\rho}{2})}$$

See Chapter 8 of this thesis

- 5. Let G be the group  $U(1,1) \times U(n)$  with  $n \ge 1$  and let  $\omega_n$  be the oscillator representation of G on  $L^2(\mathbb{C}^n)$ . Any  $\omega_n(G)$ -invariant Hilbert subspace of  $\mathcal{S}'(\mathbb{C}^n)$  decomposes multiplicity free into minimal invariant Hilbert subspaces of  $\mathcal{S}'(\mathbb{C}^n)$ .
- 6. The pairs  $(SL(n, \mathbb{C}), GL(n-1, \mathbb{C}))$  and  $(Sp(n, \mathbb{C}), Sp(n-1, \mathbb{C}) \times Sp(1, \mathbb{C}))$  with  $n \geq 3$  are generalized Gelfand pairs.
- 7. Let us consider the space  $X = \mathrm{SO}(n, \mathbb{C})/\mathrm{SO}(n-1, \mathbb{C})$ , the function  $Q(x) = x_1$  on X and the holomorphic differential operator  $\Box$  on X associated with the Casimir operator. If F is  $\mathcal{C}^2$ -function on  $\mathbb{C}$ , then

$$\Box(F \circ Q) = LF \circ Q$$

where L is the second order differential operator on  $\mathbb{C}$  given by

$$L = a(z)\frac{d^2}{dz^2} + b(z)\frac{d}{dz}$$

with  $a(z) = z^2 - 1$  and b(z) = (n - 1)z.

8. In the case of  $SL(2, \mathbb{R}) \times O(2n)$  and  $U(1, 1) \times U(n)$  with  $n \ge 1$  any minimal Hilbert subspace of the space of tempered distributions invariant under the oscillator representation, occurs in the Plancherel formula.

Conjecture: In the case of  $SL(2, \mathbb{C}) \times SO(n, \mathbb{C})$  with  $n \geq 3$  and odd there are minimal invariant Hilbert subspaces which do not occur in the Plancherel formula.

9. The Spanish occupation in Holland was terrible. But it had at least a good consequence, the foundation of the University of Leiden.

# References

 B. Ørsted and G. Zhang. L<sup>2</sup>-versions of the Howe correspondence. I. Math. Scand., 80(1):125–160, 1997.