

Harnessing immune regulation for treatment of human diseases: CD4+CD25+ regulatory T cells & antibody glycosylation Wang, J.

Citation

Wang, J. (2011, March 15). Harnessing immune regulation for treatment of human diseases : CD4+CD25+ regulatory T cells & antibody glycosylation. Retrieved from https://hdl.handle.net/1887/16626

Version: Corrected Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16626

Note: To cite this publication please use the final published version (if applicable).

CHAPTER 4

De novo generation and enhanced suppression of human CD4⁺CD25⁺ regulatory T cells by retinoic acid

Jun Wang, Tom W. J. Huizinga and Rene E. M. Toes

Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands

Abstract

Therapies based on CD4⁺CD25⁺FOXP3⁺ T regulatory (Treg) cells offer promise for the restoration of tolerance in many immune-mediated disorders. However, it has been proven difficult to obtain large numbers of Treg cells with potent and stable suppressive ability from adult human peripheral blood due to the lack of specific markers for Treg isolation/characterization, compromised function of isolated CD4⁺CD25⁺⁺ T cell populations, and the difficulty to convert conventional T cells, for example by TGF-β, into Treg cells in a consistent manner. Here we show that: 1) in the presence of TGF-β, all-trans retinoic acid (ATRA) efficiently converts adult human peripheral blood naive CD4⁺ T cells into FOXP3⁺ Treg cells with stable and potent suppressive ability; 2) memory CD4⁺ T cells are resistant to FOXP3 induction and, moreover, inhibit Treg-conversion of naive T cells that can be partially reversed by anti-IL-4; and 3) treatment of isolated CD4⁺CD25⁺⁺ T cells with ATRA/TGF-β enhances their suppressive potential during expansion. Our results indicate that ATRA/TGF-β can be employed to generate highly suppressive CD4⁺FOXP3⁺ Treg cells from adult human peripheral blood and are relevant for the development for Treg-based therapies.

--- J. Immunol. 2009; 183(6): 4119-4126 ---

Introduction

CD4⁺CD25⁺ Treg cells play a critical role in establishing and maintaining self tolerance by damping the immune responses of many types of immune cells. Therefore, enhancing the number and/or function of Treg cells represents a potential treatment for patients with autoimmune disorders or that undergo transplant rejections. Indeed, adoptive transfer of *in vitro* expanded CD4⁺CD25⁺ Treg cells has been successfully used in several animal models of graft rejection, inflammation, and autoimmunity (1-5). However, Treg-based immunotherapy has been hampered in the clinic because of the difficulties in obtaining large numbers of homogenous Treg cell populations *in vitro* that display stable and potent suppressive function (6-8).

So far, several approaches have been explored to obtain Treg cells suitable for the clinical settings. As in mice, Treg cells, isolated on the basis of high CD25 expression can be expanded efficiently in vitro by strong TCR-mediated stimulation in the presence of high amounts of exogenous IL-2 (9, 10). However, because of the lack of specific markers to identify and isolate human Treg cells (11, 12), the contaminating effector cells in the starting population can out-compete the "genuine" Treg cells during expansion. Hereby the suppressive capacity of the expanded T cell population is decreased (6-8). Although the combination of CD25 with other markers, such as CD127, CD45RA, or membrane-bound TNFα (6, 7, 13–15), can lead to a more homogenous T cell population with regulatory ability, the lower number of cells obtained will also lead to a longer expansion period, during which the function of "genuine" Treg cells could wane (16). Moreover, purified CD4⁺CD25⁺⁺FOXP3⁺ T cells may also differentiate into IL-17-producing cells during in vitro culture as reported recently (17). Furthermore, the compromised suppressor function of FOXP3⁺ Treg cells reported in several autoimmune situations could additionally hamper the ability to obtain sufficient numbers of Treg cells with powerful suppressive function from these patients (18-21).

De novo generation of Treg cells from conventional effector cells represents a promising strategy to obtain sufficient Treg cells suitable for immunotherapy. Because FOXP3 is necessary for the suppressive functions, several groups attempted to generate Treg cells by forced overexpression of FOXP3 in CD4⁺CD25⁻ T cells (8, 22, 23). In this way, homogenous FOXP3-expressing T cell population can be obtained *in vitro* and targeted specifically *in vivo* by introducing "suicide" markers/genes. Nonetheless, conflicting data on the suppressor capacity of these FOXP3⁺ T cells have been reported, which might be attributed to the stability and expression levels of FOXP3 (8, 22, 23). In addition, the clinical use of these cells will be compromised by the regulatory constrains associated with gene transfer. Therefore, a method to generate Treg cells without gene transfer would greatly increase their clinical possibilities.

Recently, the methods to reprogram human CD4⁺CD25⁻ T cells to Treg cells *in vitro* have been investigated intensively. It has been reported that *in vitro* TCR-mediated stimulation of CD4⁺CD25⁻ T cells can result in the development of suppressive CD4⁺FOXP3⁺ Treg cells in the absence or presence of exogenous TGF-β (24–27). However, several reports indicate that even in the presence of exogenous TGF-β, TCR-stimulation of human CD4⁺CD25⁻ T cells does not consistently generate Treg cells despite high FOXP3 expression within these cells (28-30). Moreover, the stability of the suppressive capacity of these *in vitro* generated Treg cells has not been fully established.

All-trans retinoic acid (ATRA), the metabolite of vitamin A, has been recently shown to be capable of inducing murine CD4⁺Foxp3⁺ Treg cells from conventional Foxp3⁻ effector cells, either directly by enhancing TGF-β-driven Smad3 signaling in naive cells and/or indirectly by relieving the inhibition from murine memory effector cells (31-39).

Such approaches show great promise as these T cells have been shown effective to combat several immune-mediated disorders in mice (31-33). In humans, it has been shown that ATRA can induce FOXP3⁺ cells with suppressive function from CD4⁺CD25⁻ T cells isolated from cord blood (40). However, the effect of ATRA on adult peripheral blood T cells, i.e., its effect on the induction of CD4⁺FOXP3⁺ Treg cells from naive/memory effector cells or on the suppressive function of isolated CD4⁺CD25⁺⁺ Treg cells, has not been investigated.

In this study, we show that ATRA, together with TGF-β, consistently induces *de novo* generation of CD4⁺FOXP3⁺ Treg cells with potent and stable suppressive ability from CD4⁺CD25⁻CD45RA⁺ naive T cells in adult human peripheral blood. In contrast, CD4⁺CD25⁻CD45RA⁻ memory T cells are not only resistant to FOXP3 induction but also actively inhibit FOXP3 expression in cocultured naive T cells. Furthermore, addition of ATRA and/or TGF-β during the expansion of purified peripheral blood CD4⁺CD25⁺⁺ Treg cells significantly enhances their suppressive capacity. These data indicate that ATRA can be used to generate highly suppressive CD4⁺CD25⁺FOXP3⁺ Treg cells suitable for Tregbased therapy because it not only induces the *de novo* generation of CD4⁺FOXP3⁺ Treg cells but also enhances the suppressive function of isolated CD4⁺CD25⁺⁺ Treg cells during expansion.

Materials and Methods

Culture medium. Human T cells were cultured in complete medium consisting of IMDM (Cambrex) supplemented with 10% heat-inactivated fetal calf serum (FCS, BD biosciences), 100 U/ml penicillin, 100 μg/ml streptomycin (Cambrex) and 2 mM GlutaMAX (Invitrogen).

Antibodies. The following antibodies were used: pacific blue-conjugated anti-CD4 (RPA-T4), phycoerythrin (PE)-conjugated anti-CD25 (M-A251), anti-CD127 (hIL-7R-M21), fluorescein isothiocyanate (FITC)-conjugated anti-CD45RA (L48), AlexaFluor 647 (Alexa 647)-conjugated anti-CCR7 (3D12), allophycocyanin (APC)-conjugated anti-CD62L (Dreg 56) (all from BD Biosciences), and anti-CD25^{Alexa 700} (BC96; Biolegend). Anti-CTLA4^{PE} (eBio20A), anti-FOXP3^{PE/APC} (236A/E7), anti-FOXP3^{FITC/Alexa 700} (PCH101), and neutralization Abs to human IL-4 (MP4-25D2), IL-6 (MQ2-13A5) and IFN-γ (NIB42) were bought from eBiosciences. Adalimumab and Tocilizumab were used to block TNF-α and IL-6R, respectively.

Cell isolation. Human peripheral blood was obtained from healthy blood bank donors after informed consent in accordance with procedures approved by the local human ethics committee. PBMC were prepared by centrifugation over Ficoll-Hypaque gradients and CD4⁺ T cells were purified by positive selection with the Dynabeads FlowComp Human CD4 T cell isolation kit (Invitrogen). CD4⁺ T cells were then labeled with anti-CD4^{APC} or anti-CD4^{Pacific Blue}, anti-CD25^{PE} and anti-CD45RA^{FITC} for 30 minutes at 4 °C. Cells were washed, and CD25⁻CD45RA⁺ naive, CD25⁻CD45RA⁻ memory effector cells, and CD25⁺⁺ (top 5%) Treg cells were sorted *via* a FACS Aria cell sorter (Becton Dickinson, California) with greater than 95% purity. The analysis and sort gates were restricted to the small lymphocyte gate as determined by their characteristic forward and side scatter properties. CD4-depleted PBMC irradiated with 4000 rads were used as feeders in the proliferation/suppression assay.

Activation of human T cells in vitro. Purified CD4⁺CD25⁻CD45RA⁺ naive, CD4⁺CD25⁻CD45RA⁻ memory effector cells and CD4⁺CD25⁺⁺ T cells were activated with 5 μg/ml plate-bound anti-CD3 (OKT-3; BD Biosciences), 1 μg/ml soluble anti-CD28 (CLB-CD28/1; Sanquin), and 50 or 300 (for CD4⁺CD25⁺⁺) U/ml IL-2 for 5 days as described previously (28). ATRA (Sigma) and/or recombinant human TGF-β (PeproTech Inc) were also included in some wells at the concentration of 10 nM and 5 ng/ml, respectively. ATRA was first dissolved in DMSO at 10 mM and further diluted in complete medium. After extensive washing, activated T cells were rested in complete medium supplemented with 100 U/ml IL-2 with or without 10 nM ATRA before further functional tests.

Flow cytometric analysis. Single-cell suspensions were prepared and surface molecules were stained for 30 minutes at 4 °C with optimal dilutions of each antibody. After fixation and permeabilization, cells were incubated with anti-FOXP3 or anti-CTLA4 antibodies using the eBioscience intracellular staining kit. Expression of cell surface and intracellular markers were assessed by using FACSCalibur or LSRII. Data were analyzed by CellQuest Pro for FACSCalibur or FACSDIVA for LSRII, respectively (BD Biosciences). Activation of human CD4⁺CD25⁻ T cells in the presence of TGF-β leads to the appearance of a distinct population (M2 in supplementary Figure 1) of FOXP3^{high}-expressing cells as well as cells displaying lower levels of FOXP3 (M1 in supplementary Figure 1). Although identical results were obtained with other anti-FOXP3 Abs (data not shown) (28, 41, 42), only FOXP3^{high} cells were designated as FOXP3⁺ cells in this study as it has been debated whether these FOXP3^{low} cells are genuine FOXP3⁺ cells (30, 41, 42).

Proliferation and suppression of T cells. Cells were plated at 2 x 10⁴ cells/well in 96-well plates in the presence of 1 μg/ml phytohemagglutinin (PHA) and 5 x 10⁴ cells/well feeders. Cells were pulsed with ³H-thymidine (0.5 μCi/well) on day 4 and proliferation was assessed 18 hours later using a liquid scintillation counter. To test for suppressive capacity, CD4⁺ responder T cells were stimulated as described above. Differently stimulated CD4⁺CD25⁻CD45RA⁺, CD4⁺CD25⁻CD45RA⁻, or CD4⁺CD25⁺ T cells were added, and suppression was assessed by determining ³H-thymidine incorporation.

Statistical analysis. The Mann-Whitney paired test was used to compare the difference among different groups by using GraphPad Prism 5.00 software (GraphPad, San Diego, CA), and values at P < 0.05 were considered significant.

Results

No effect of ATRA on the proliferation/survival of $CD4^+$ T cells

Recently, several reports have shown that ATRA can enhance the TGF-β-induced differentiation of murine T cells into CD4⁺FOXP3⁺ Treg cells (31-39). Moreover, it was demonstrated that ATRA alone could induce the *de novo* generation of FOXP3⁺ Treg cells from CD4⁺CD25⁻ T cells purified from human cord blood (40). However, it is not known whether adult peripheral blood T cells can also be converted by ATRA into FOXP3⁺ Treg cells. Before addressing this issue, we first wished to determine potential adverse effects of ATRA by examining its effect on the proliferation and viability of CD4⁺ T cells. To this end, CD4⁺ T cells were purified from human peripheral blood and subsequently activated with plate-bound anti-CD3, soluble anti-CD28 in the absence or presence of TGF-β, and different concentrations of ATRA. ATRA had no effect on the proliferation of cells as measured by ³H-incorporation and CFSE dilution in the absence or presence of exogenous

TGF-β (supplementary Figure 2A & B). Furthermore, ATRA did not affect the viability of cells as measured by trypan blue exclusion (data not shown) and propidium iodide (PI) staining (supplementary Figure 2B).

Inconsistent induction of Treg cells from $CD4^+CD25^-$ effector T cells in adult human peripheral blood by $TGF-\beta$ and ATRA

To investigate whether ATRA can induce the de novo generation of Treg cells from effector cells in human adult peripheral blood, FACS-purified CD4⁺CD25⁻ T cells (> 98%) FOXP3⁻ cells) were activated in the absence/presence of TGF-β, ATRA, or both for 5 days. After extensive washing, cells were rested for differentiation in IL-2 with or without ATRA for an additional 4-6 days. Next, their proliferative and suppressive capacity was analyzed. Although the addition of ATRA during the first 5 days' stimulation did not affect cell proliferation (supplementary Figure 2 and data not shown), when restimulated, cells cultured with TGF-B, ATRA, or both displayed a significantly decreased proliferative potential as compared to cells activated with neither of them in all tested individuals (Figure 1A). Furthermore, cells preconditioned with both ATRA and TGF-β significantly inhibited the proliferation of autologous responder T cells (Figure 1B, upper panel) in one donor. Taken together, these data indicate that in the presence of exogenous TGF-\(\beta\), ATRA can convert CD4⁺CD25⁻ T cells obtained from adult peripheral blood into Treg cells. However, data obtained from 3 other donors were different as no suppression was observed in any of the conditioned cells (Figure 1B, lower panel). Therefore, ATRA does not consistently induce de novo generation of Treg cells from adult peripheral blood CD4⁺CD25⁻ T cells, even in the presence of exogenous TGF-β.

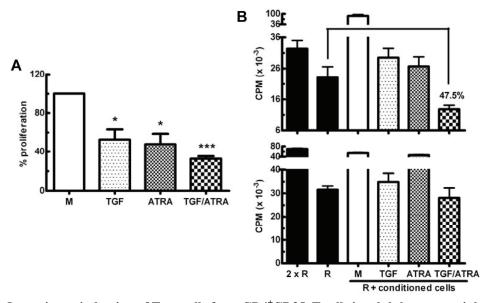
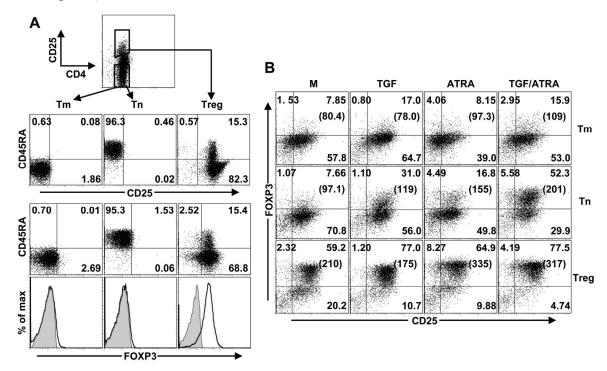



Figure 1. Inconsistent induction of Treg cells from CD4⁺CD25⁻ T cells in adult human peripheral blood by ATRA. CD4⁺CD25⁻ T cells were purified from adult peripheral blood by FACS-sorting and activated with plate-bound anti-CD3, soluble anti-CD28 and IL-2, in the absence (M) or presence of TGF- β (TGF), ATRA (ATRA) or both (TGF/ATRA) for 5 days. These cells were subsequently rested in IL-2 for additional 4-6 days. A, proliferative response of the conditioned cells relative to cells cultured in medium only was determined by ³H-thymidine uptake after stimulation with PHA and feeders. Combined data from four different donors with means \pm SEM are shown. B, suppressive capacities of the conditioned cells were examined by co-culture with autologous CD4⁺ responder T cells (R) at a ratio of 1:1. Two times responders (2 x R) was included as a negative control. Suppression mediated by TGF/ATRA-conditioned cells was observed in one donor (*upper panel*), but not in 3 other individuals (*lower panel*). Results were expressed as means \pm SEM of triplicate cultures and are representative of 3 experiments (*lower panel* in B). *, P < 0.05; ***, P < 0.001.

Differential effect of TGF- β and ATRA on naive vs. memory effector T cells in adult human peripheral blood

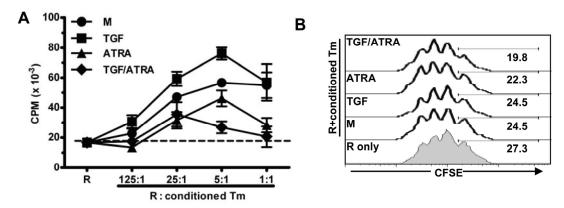

Given the recent data in mice showing that memory cells dampen the induction of Treg cells from naive cells (38), the inconsistent induction of Treg cells by ATRA and TGF-β prompted us to investigate whether ATRA has differential effects on naive *vs.* memory CD4⁺CD25⁻T cells. Therefore, naive and memory CD4⁺CD25⁻FOXP3⁻T cells were purified on the basis of surface CD45RA expression as depicted in Figure 2A. These cells were subsequently stimulated in the absence or presence of TGF-β, ATRA, or both. We observed that memory CD4⁺CD25⁻CD45RA⁻T cells are refractory to TGF-β-induced FOXP3 expression, even in the presence of ATRA (Figure 2B, *top panel*). In contrast, although ATRA alone only slightly increases activation-induced FOXP3 expression, together with TGF-β it induces the highest FOXP3 expression in activated naive T cells. This is reflected both in the percentage of FOXP3⁺ cells as well as in the expression levels per cell as measured by mean fluorescence intensity (MFI) of FOXP3⁺ cells (Figure 2B, *middle panel*).

Figure 2. Expression of FOXP3 in FACS-sorted subsets of human CD4⁺ **T cells. A**, CD4⁺ T cells were purified from adult peripheral blood and subsequently stained with anti-CD4^{Pacific Blue}, anti-CD25^{PE} and anti-CD45RA^{FITC} for 30 min at 4°C. CD4⁺CD25⁻CD45RA⁻ memory effector T cells (Tm) and CD4⁺CD25⁻CD45RA⁺ naive effector T cells (Tn) were sorted. CD4⁺CD25⁺⁺ Treg cells (top 5%) were sorted on the basis of high CD25 and lower CD4 expression (top box in the *upper panel*). CD25 or FOXP3 *vs.* CD45RA expression on the post-sorted cells is shown in the *middle two panels*. The overlays of FOXP3 (black line) *vs.* corresponding isotype (filled gray) stainings in post-sorted cells are shown in the *bottom panel*. Numbers indicate the percentage of positive cells in each quadrant. **B**, FACS-sorted Tm, Tn or Treg were activated with plate-bound anti-CD3, soluble anti-CD28, and IL-2, in the absence (M) or presence of TGF-β (TGF), ATRA (ATRA), or both (TGF/ATRA) for 5 days. After resting in IL-2 for an additional 4-6 days, cells were collected and processed for analysis of FOXP3/CD25 expression. Numbers in corners indicate the percentage of positive cells in each quadrant, and numbers in brackets represent the MFI of FOXP3⁺ cells in the upper two quadrants. Results are representative of 6 different donors.

Similar to unfractioned CD4⁺CD25⁻ cells (Figure 1A), both naive and memory CD4⁺CD25⁻ cells cultured with TGF-β and/or ATRA display reduced proliferative potential upon restimulation *in vitro* (data not shown). However, no suppression was

observed by the "conditioned" memory CD4⁺CD25⁻CD45RA⁻ T cell population (Figure 3A & B), whereas TGF- β /ATRA-conditioned naive CD4⁺CD25⁻CD45RA⁺ peripheral blood T cells displayed a significant suppression in all 6 donors tested (Figure 4). The average percent inhibition of these conditioned naive cells on the proliferation of autologous responder T cells was 55.6% (55.6 ± 9.5%, n=6) at a ratio of 1:1 (Figure 4C & D). Furthermore, addition of ATRA and/or TGF- β did not reduce the yield of cultured CD4⁺CD25⁻CD45RA⁺ naive cells after activation and expansion in the presence of exogenous IL-2 (cells cultured in medium, TGF- β , ATRA, and TGF- β /ATRA expanded on average 38.0 ± 7.78, 40.7 ± 5.98, 39.6 ± 5.81, and 41.7 ± 5.46 times, respectively; n = 6). Together, these data indicate that naive CD4⁺CD25⁻CD45RA⁺ peripheral blood T cells can be converted into Treg cells efficiently and consistently in the presence of both ATRA and TGF- β , whereas memory CD4⁺CD25⁻CD45RA⁻ T cells are resistant to such conversion under these conditions (Figure 2-4).

Figure 3. Memory effector T cells can not be converted into suppressors. FACS-purified CD4 $^+$ CD25 $^-$ CD45RA $^-$ memory effector cells (Tm) were activated with plate-bound anti-CD3, soluble anti-CD28, and IL-2, in the absence (M) or presence of TGF-β (TGF), ATRA (ATRA), or both (TGF/ATRA) for 5 days. These cells were subsequently rested in IL-2 for an additional 4-6 days. To analyze their suppressive abilities, autologous CD4 $^+$ responder T cells (R) were activated with PHA and feeders in the absence or presence of conditioned Tm at a ratio of 125:1, 25:1, 5:1, or 1:1 (responders to conditioned Tm). **A,** proliferation after 5 days was determined by 3 H-thymidine incorporation. Results are expressed as means \pm SEM of triplicate cultures and represent 6 different individuals. The dotted line indicates the CPM value of responder T cells only. **B,** in some parallel experiments, proliferation of CFSE-labeled autologous CD4 $^+$ responder T cells (R), cultured alone or in the presence of conditioned Tm at a ratio of 1:1, was analyzed by flow cytometry after 96 h. Numbers indicate the percentage of undivided cells. No inhibition on the division of CFSE-labeled responder cells was observed.

Memory cells inhibit ATRA/TGF-β induced FOXP3 expression in naive cells

The different susceptibility of CD4⁺CD25⁻ T cell populations from different donors to suppression induction (Figure 1) prompted us to investigate whether the presence of memory cells could influence the Treg conversion of naive cells. As adult human peripheral blood CD4⁺CD25⁻ T cells comprise 20-80% CD45RA⁺ naive T cells, depending on the age and immune status of the individuals, naive CD4⁺CD25⁻CD45RA⁺ cells were isolated, labeled with CFSE, and then mixed with memory CD4⁺CD25⁻CD45RA⁻ cells at different ratios (1:0, 4:1, 1:1, 1:4, and 0:1). Cells were subsequently stimulated with plate-bound anti-CD3, soluble anti-CD28, and IL-2 in the absence or presence of TGF-β and ATRA. As shown in Figure 5, addition of memory cells dose-dependently inhibited the FOXP3 expression in naive cells, both in the percentage and absolute numbers of FOXP3-expressing cells (Figure 5A-C). It is unlikely that the reduced levels of FOXP3 expression can be attributed to less cell activation / proliferation because 1) there is no significant difference in the CFSE profile of naive cells among different cultures (supplementary

Figure 3A); and 2) the expression of FOXP3 in undivided naive cells is already inhibited by cocultured memory cells (gate M0 in supplementary Figure 3B).

To gain some mechanistic insights underlying this phenomenon, we added neutralizing antibodies to cytokines that have been reported to dampen FOXP3 expression in mice (19, 38, 43-45). Although addition of antibodies, either separately or all together, to cultured naive cells alone does not further enhance TGF- β /ATRA-induced FOXP3 expression, neutralization of IL-4 in cocultures does reverse, albeit partially, the inhibitory effect of memory cells on TGF- β /ATRA-induced FOXP3 in naive cells (Figure 5D). Likewise, higher percentage of FOXP3 induced by anti-IL-4 is associated with more FOXP3-expressing cells as it does not alter the CFSE profile of naive cells in cocultures (data not shown). No effect was observed when TNF- α , IFN- γ , or IL-6 was blocked in cocultures, neither can they augment the effect of anti-IL-4 when used together (Figure 5D). As the blocking abilities of these antibodies were confirmed in other bioassays (data not shown), our results indicate that TNF- α , IFN- γ , and IL-6 are not involved in the regulation of FOXP3 expression in these co-cultures.

In summary, these data indicate that although naive CD4⁺CD25⁻CD45RA⁺ T cells in adult peripheral blood can be switched to become Treg cells by ATRA and TGF-β (Figure 4), the presence of "conversion-resistant" memory CD4⁺CD25⁻CD45RA⁻ cells within the CD4⁺CD25⁻ cell population not only dilutes the percentage of the induced Treg cells but also actively inhibits the conversion of naive T cells (Figure 3 & 5A-C). This inhibition can be partially reversed by neutralization of IL-4 (Figure 5D).

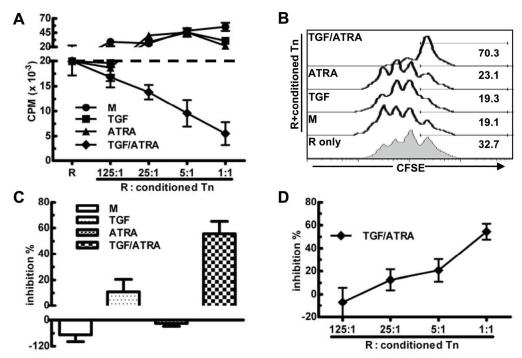


Figure 4. Consistent induction of Treg cells from naive effector T cells by ATRA and TGF- β . CD4⁺CD25⁻CD45RA⁺ naive effector cells (Tn) were purified from adult peripheral blood by FACS-sorting as depicted in Figure 2A and cultured as described in the legend to Figure 3 before analyses of their suppressive function. **A**, only cells cultured with both TGF- β and ATRA (TGF/ATRA) dose-dependently inhibited the proliferation of autologous CD4⁺ responder T cells (R). Results are expressed as means ± SEM of triplicate cultures and represent 6 different individuals. The dotted line indicates the CPM value of responder T cells only. **B**, CFSE profiles of cultured responders on day 4, alone or in the presence of conditioned Tn at a ratio of 1:1. **C** & **D**, percent inhibition on the proliferation of autologous responder T cells by conditioned Tn at a ratio of 1:1 (C) or indicated ratios (**D**). Results were expressed as means ± SEM of 6 different individuals.

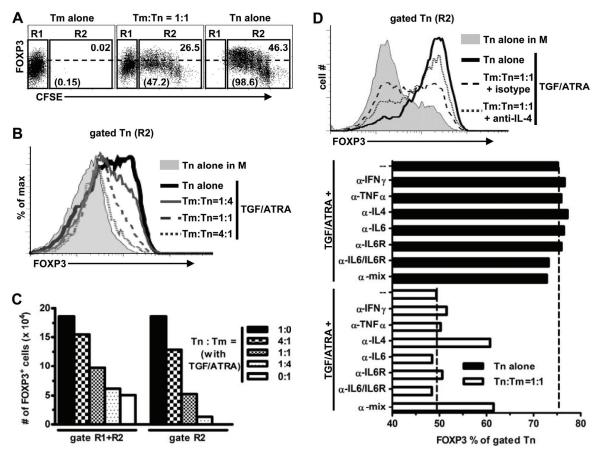
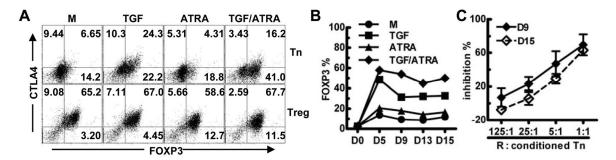



Figure 5. Memory cells inhibit ATRA/TGF-β induced FOXP3 expression in naive cells. CD4⁺CD25⁻ CD45RA memory (Tm) and CD4+CD25-CD45RA naive effector T cells (Tn) were purified from adult peripheral blood by FACS-sorting. To were labeled with CFSE, mixed with Tm at different ratios (total 1 x 10⁵ cells/condition), and then stimulated with plate-bound anti-CD3, soluble anti-CD28, and IL-2 in the absence (M, filled gray) or presence (TGF/ATRA, open lines) of exogenous TGF-β and ATRA. After 5 days, FOXP3 expression in activated Tm and Tn was analyzed by gating CFSE negative (R1) and positive (R2) cells, respectively. A, representative dot plots show CFSE vs. FOXP3 staining in Tm alone (left), Tm: Tn = 1:1 (middle) and Tn alone (right). Numbers in the upper right corner indicate the percentage of FOXP3⁺ cells within gate R2, while numbers in brackets represent the percent of Tn (gate R2). **B**, representative histograms show FOXP3 expression in gated Tn (gate R2) in different cultures. No significant differences were observed in gated Tm cells (gate R1) among different cultures (data not shown). C, absolute numbers of FOXP3⁺ cells in total (gate R1+R2) or derived from Tn (gate R2) in different conditions. D, representative histogram (upper panel) or bar graph (lower panel) shows the expression of FOXP3 in gated Tn cells cultured alone or together with Tm at the ratio of 1:1 in the absence or presence of 20 µg/ml of neutralizing Abs. No effect was observed with corresponding isotype Abs (data not shown). "Anti-mix" means the mixture of anti-IFN-y, TNF-α, IL-4, IL-6, and IL-6R (20 μg/ml of each). Similar results were obtained in three (A-C) or two (D) different experiments with different donors.

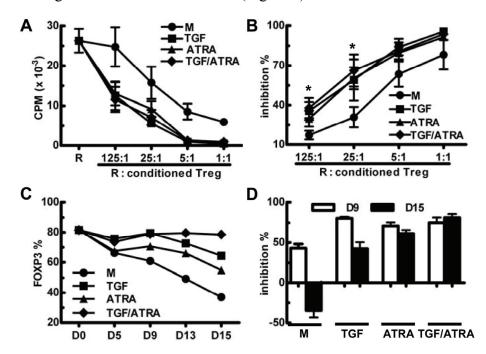
Phenotype and stability of ATRA/TGF-β induced Treg cells

As previously reported (40), ATRA reduces the surface expression of lymphoid-homing receptors CD62L, and to a lesser extent, CCR7, while TGF-β enhances their expressions on cultured T cells (data not shown). Although cells cultured with both ATRA and TGF-β express the highest levels of FOXP3 (Figure 2B), expression of FOXP3 *per se* does not necessarily associate with suppression in human activated cells (11, 12, 26, 28-30). Given that expression of CTLA-4 has been recently reported to correlate with the acquisition of suppressive function in human activated CD4⁺CD25⁻ T cells (41), we compared the expression of CTLA-4 in our cultured cells with or without suppressive function. Naive cells cultured with TGF-β express higher levels of CTLA-4 than those cultured in medium

or ATRA only; however, no significant difference was observed between cells cultured with TGF- β only or with both TGF- β and ATRA (Figure 6A, *upper panel*), albeit that only the latter cells bear suppressive function (Figure 4).

Figure 6. Phenotype and stability of ATRA/TGF-β induced Treg cells. FACS-sorted CD4⁺CD25⁻CD45RA⁺ naive (Tn) or CD4⁺CD25⁺⁺ regulatory (Treg) cells were stimulated with plate-bound anti-CD3, soluble anti-CD28, and IL-2 in the absence (M) or presence of TGF-β (TGF), ATRA (ATRA), or both (TGF/ATRA) for 5 days, after which cells were rested in medium supplemented with only IL-2. **A**, cells were collected and processed for analysis of CTLA4 (intracellular) *vs.* FOXP3 expression on day 9. Numbers indicate the percentage of positive cells in each quadrant. **B**, line graph shows percent of FOXP3⁺ cells at indicated days. **C**, graph shows the percent inhibition, expressed as mean ± SEM of triplicate cultures, of TGF/ATRA conditioned Tn cultured for 9 (filled diamond) or 15 (open diamond) days on the proliferation of autologous CD4⁺ T cells. No suppression was observed by cells conditioned with M, TGF, or ATRA on day 9 and 15 (data not shown). Results are representative of 3 experiments with different individuals.

As a stable phenotype is important for the application of cells in the clinic, we next wished to know whether Treg cells propagated by TGF- β /ATRA from naive T cells bear stable suppressive ability. To this end, we rested the cells for an additional week after the initial ~10 days' culture as described in the legends to Figure 4. Subsequently, FOXP3 expression and suppressive ability were reanalyzed. Our results show that addition of TGF- β /ATRA during the activation of naive cells leads to highest levels of FOXP3 expression, both in the percentage (Figure 6B) and the absolute numbers (supplementary Figure 4A). More importantly, these TGF- β /ATRA conditioned naive cells on day 15 inhibit the proliferation of autologous responder T cells to a comparable extent as those on day 9 (Figure 6C). No inhibition was detected on cells pre-activated with TGF- β or ATRA only (data not shown).


Together, these data indicate that Treg cells, propagated by ATRA and TGF-β from naive CD4⁺CD25⁻ T cells in adult peripheral blood, bear stable FOXP3 expression and suppressive function, at least within the 2-week *in vitro* culture period (Figure 6B & C).

ATRA and/or TGF-β enhance the suppression of cultured CD4⁺CD25⁺⁺ T cells Besides the *de novo* generation of Treg cells from CD4⁺CD25⁻ effector cells *in vitro*, *ex vivo* expansion of CD4⁺CD25⁺⁺ Treg cells isolated from peripheral blood, represents another important approach to obtain sufficient numbers of Treg cells suitable for Tregbased immunotherapy. Therefore, we wished to know whether addition of ATRA during culture could enhance the function of expanded CD4⁺CD25⁺⁺ T cells. FACS-sorted CD4⁺CD25⁺⁺ Treg cells (*right panel* in Figure 2A) were activated in the absence or presence of TGF-β and/or ATRA, after which their FOXP3 expression and suppressive ability were tested. Addition of ATRA and/or TGF-β increased the expression of FOXP3 (*lower panel* in Figure 2B), and more importantly, significantly enhanced the suppressive capacity of cultured CD4⁺CD25⁺⁺ Treg cells on day 9 (Figure 7A & B). In keeping with the results obtained from naive cells, this enhanced suppressive capacity was not

associated with elevated CTLA-4 expression (Figure 6A, *lower panel*), and moreover, ATRA alone or together with TGF- β did not reduce the expansion of cultured CD4⁺CD25⁺⁺ cells (the fold expansions of cells cultured in medium, TGF- β , ATRA, and TGF- β /ATRA on day 9 are 19.8 \pm 5.39, 22.4 \pm 5.80, 27.1 \pm 6.15, and 29.8 \pm 7.91, respectively; n = 8).

Given that isolated Treg cell populations may lose FOXP3 expression and suppressive function during the *in vitro* culture (6, 7, 16), we next investigated whether ATRA could preserve the suppressive ability of *in vitro* expanded CD4⁺CD25⁺⁺ T cells. As shown in Figure 7C & D, CD4⁺CD25⁺⁺ Treg cell populations, pre-activated with anti-CD3 and anti-CD28 without TGF-β or ATRA, gradually lost FOXP3 expression and suppressive capacity, whereas cells stimulated in the presence of TGF-β and ATRA maintained high levels of FOXP3. The latter was associated with more FOXP3⁺ cells (supplementary Figure 4B), and, more importantly, stronger suppressive capacity, at least within the 2-week *in vitro* culture analyzed (Figure 7C & D).

On the basis of these data, we conclude that in the presence of TGF-β, ATRA not only consistently induces Treg cells from naive CD4⁺CD25⁻CD45RA⁺ peripheral blood T cells with potent and stable suppressive function (Figure 4 & 6) but also enhances/preserves FOXP3 expression and suppressive function of isolated CD4⁺CD25⁺⁺ Treg cells during the 2-week *in vitro* culture (Figure 7).

Figure 7. Enhanced suppressive capacity of CD4⁺CD25⁺⁺ **Treg cells cultured with ATRA and/or TGF-**β. CD4⁺CD25⁺⁺ Treg cells were purified from adult peripheral blood by FACS-sorting as depicted in Figure 2A. The cells were subsequently activated with plate-bound anti-CD3, soluble anti-CD28 and IL-2, in the absence (M) or presence of TGF-β (TGF), ATRA (ATRA), or both (TGF/ATRA) for 5 days. After resting in IL-2 for additional 4-10 days, cells were collected and processed for the analysis of FOXP3 expression (**C**) or suppressive ability (**A**, **B**, & **D**). **A**, cells cultured with TGF-β and/or ATRA possess increased capacity to inhibit the proliferation of autologous CD4⁺ responder T cells (R) on day 9. **B**, graph shows the average percent inhibition of differently cultured CD4⁺CD25⁺⁺ Treg cells on day 9. Results were expressed as means ± SEM of 8 different individuals. *, significant difference (P < 0.05) between cells cultured with TGF, ATRA, and TGF/ATRA *vs.* M. **C**, graph shows percent of FOXP3⁺ cells at indicated days. **D**, bar graph shows the percent inhibition of conditioned CD4⁺CD25⁺⁺ Treg cells cultured for 9 (open bar) and 15 (black bar) days on the proliferation of autologous CD4⁺ responder T cells at a ratio of 25:1 (responder cells to conditioned Treg). Results are expressed as means ± SEM of triplicate cultures and represent 3 experiments with different donors.

Discussion

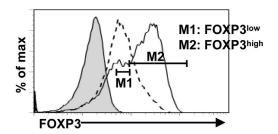
Immunoregulatory CD4⁺CD25⁺ Treg cells are of great interest for immunotherapy to prevent transplant rejection and on patients with immune-mediated diseases. Adoptive transfer of CD4⁺CD25⁺ Treg cells has been successfully used in several animal models (1-5). In humans, TGF-β-induced conversion of conventional T cells and the expansion of purified CD4⁺CD25⁺⁺ T cells represent two important strategies to generate FOXP3⁺ T cells suitable for immunotherapy in the clinic (9, 10, 27). However, contradicting data on the suppressive ability of these cells have been reported (6, 7, 30). In this study, we investigated the role of ATRA, a natural metabolite of vitamin A, on the de novo generation of Treg cells as well as on the function of in vitro expanded CD4⁺CD25⁺⁺ T cells in adult peripheral blood. Our results show that in the presence of exogenous TGF-B, ATRA efficiently and consistently induces Treg cells with potent and stable suppressive abilities from naive peripheral blood CD4⁺CD25⁻CD45RA⁺ cells. We also show that memory CD4⁺CD25⁻CD45RA⁻ cells are not only resistant to FOXP3 induction but also inhibit Treg conversion of naive cells induced by TGF-β and ATRA. Moreover, addition of TGF-β and ATRA during the expansion of isolated CD4⁺CD25⁺⁺ T cells not only preserves FOXP3 expression but, more importantly, also enhances their suppressive capacity. Taken together, these data indicate that ATRA is a useful supplement in the generation of large numbers of Treg cells in human settings.

Recently, it was demonstrated that ATRA on itself can induce FOXP3⁺ cells with regulatory function from human cord blood CD4⁺CD25⁻ cells (40). In contrast, we did not observe suppressive function of ATRA-cultured adult peripheral blood CD4⁺CD25⁻ cells, either unfractionated or separated into naive CD4⁺CD25⁻CD45RA⁺ and memory CD4⁺CD25⁻CD45RA⁻ T cell fractions (Figure 1, 3 & 4). Moreover, contrary to the report showing no direct effect of ATRA on murine naive T cells (38), we found that human naive cells, only after activation in the presence of both TGF-β and ATRA, dose-dependently inhibited the proliferation of autologous responder T cells (Figure 4). These data are relevant not only because they show that peripheral blood cells from adults can be converted into Treg cells, but also because they suggest that both TGF-β and ATRA are needed to achieve this in a consistent fashion across donors, presumably due to the enhanced Smad3 signaling (37, 39).

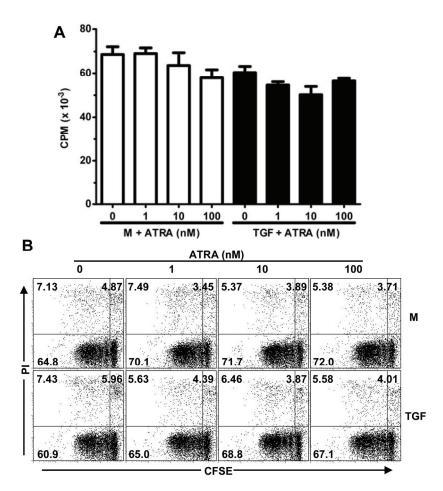
In line with the previous reports describing that memory cells are resistant to TGF- β -induced FOXP3 expression (30), we now show that memory T cells do not acquire regulatory function even in the presence of both TGF- β and ATRA (Figure 2B & 3). Moreover, when mixed with naive cells, they dose-dependently inhibited TGF- β and ATRA-induced FOXP3 expression in cocultured naive cells, which can be partially reversed by blocking the action of IL-4 (Figure 5). Therefore, our data indicate that the presence of large numbers of memory cells within the total CD4⁺CD25⁻ T cell population not only dilutes the percentage of converted FOXP3⁺ cells with regulatory function from naive cells, but also actively inhibits such conversion in naive cells. This could possibly explain the inconsistent results across donors (Figure 1). It would be interesting to study whether the number of memory T cells in peripheral blood, and/or their potential to produce IL-4, could serve as a marker to predict the ability of TGF- β /ATRA to convert total CD4⁺CD25⁻ T cells into Treg cells.

The reason why memory T cells can not be converted by TGF- β and ATRA into Treg cells is currently unknown. Given the fact that Th1/2 lineage transcription factors T-bet/GATA-3 antagonize Foxp3 induction in mice (43), it is conceivable that the precommitted Th1/2 cells present in the isolated memory cell population are resistant to Treg-conversion. Moreover, it has been shown recently in mice that memory cells can

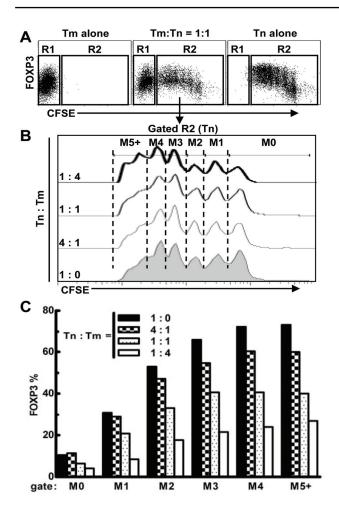
inhibit the conversion of naive cells into Treg cells by producing proinflammatory cytokines, such as IFN- γ and IL-4 (38). In this study, we show that in humans, blocking IL-4, but not IFN- γ /TNF- α /IL-6, partially reverses the inhibitory effect of memory cells on FOXP3 expression in cocultured naive cells (Figure 5). Given that almost all IL-4-producing cells bear a memory phenotype and exogenous IL-4 strongly decreases TGF- β /ATRA-induced FOXP3 expression in human naive cells (data not shown), our data indicate that the inhibitory effect of memory cells is mediated, at least partially, *via* IL-4 (Figure 5D). Indeed, IL-4 has been described to reduce FOXP3 expression through Stat6 activation (43, 45).

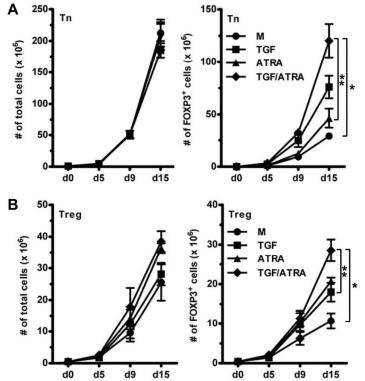

Although expression of FOXP3 itself does not necessarily associate with Treg function in humans (11, 12), it has been reported that ectopic expression of stable and high levels of FOXP3 confers a regulatory phenotype to human CD4⁺CD25⁻ cells, indicating that the levels of FOXP3 determine whether cells acquire Treg function (8, 46). This is in line with the suggestion that the balance between the NFAT-binding partners, FOXP3 and AP-1, determines the function of cells (47). As AP-1 is upregulated during cell activation and promotes the expression of activation-associated genes by cooperation with NFAT, it is conceivable that higher levels of FOXP3 are needed to convert effector cells into Treg cells. This could also contribute to the difficulty to convert memory cells into Treg cells. Our data reveal that ATRA alone only slightly increases activation-induced FOXP3 expression, but it significantly enhances TGF-β-induced FOXP3 expression in human naive peripheral blood CD4⁺CD25⁻CD45RA⁺ T cells (Figure 2B). Although this combined effect is still not sufficient to confer memory cells a regulatory phenotype (Figure 2B & 3), it is clearly sufficient to convert naive cells into regulatory cells (Figure 2B & 4).

Besides the *de novo* induction of Treg cells from conventional effector cells, *in vitro* expansion of isolated CD4⁺CD25⁺⁺ T cells represents another promising approach to obtain large numbers of Treg cells. However, as a result of the presence of contaminated effector cells, and/or the loss of function of "genuine" Treg cells during expansion, it is difficult to obtain, in a reproducible manner, a population with potent and stable suppressive capacity (6, 7, 16). Moreover, since the Treg function in patients with autoimmunity may already be compromised (18-21), an efficient approach to preserve/enhance the suppressive capacity during the expansion is highly desired. Our data indicate that the addition of TGF-β and ATRA during stimulation prevents the decline of FOXP3 levels without impeding cell expansions (Figure 7C and supplementary Figure 4B), and, more importantly, preserves and enhances their suppressive capacity (Figure 7A, B & D).


CTLA-4 has recently been shown to control the *in vivo* function of murine CD4⁺Foxp3⁺ Treg cells (48, 49) and to correlate with the acquisition of regulatory function of activated human T cells (41). However, TGF-β/ATRA-cultured naive or CD4⁺CD25⁺⁺ T cells do not express higher levels of CTLA-4 as compared with those cultured in other conditions (Figure 6A). As Treg cells induced by ectopic expression of FOXP3 also express low levels of CTLA-4, these results indicate that CTLA-4 is dispensable for the *in vitro* suppressive function of human Treg cells (8).

In conclusion, we have demonstrated that in the presence of TGF-β, ATRA consistently induces the *de novo* generation of CD4⁺FOXP3⁺ Treg cells with potent and stable suppressive function from adult peripheral blood CD4⁺CD25⁻CD45RA⁺ naive T cells. Moreover, CD4⁺CD25⁻CD45RA⁻ memory cells are not only resistant to Treg conversion but also actively inhibit the induction of Treg cells from cocultured naive cells. The latter can be partially reverted by anti-IL-4. Furthermore, addition of TGF-β and ATRA during the activation of isolated CD4⁺CD25⁺⁺ T cells preserves and enhances their repressor capacity during *in vitro* expansion. However, it will be intriguing to know


whether such Treg cell populations are effective *in vivo* to combat unwanted immune reactions such as in patients with transplant rejection and autoimmunity.


Supplementary Figure 1. Expression of FOXP3 in human activated effector cells. FACS-isolated CD4⁺CD25⁻CD45RA⁺ naive cells were stimulated with plate-bound anti-CD3, soluble anti-CD28, and IL-2, in the absence (dotted line) or presence of TGF-β (solid line) for 5 days. The expression of FOXP3 was analyzed by staining the cells with anti-FOXP3 (PCH101) and the corresponding isotype control Abs (filled gray). M1 and M2 indicate the FOXP3^{low} and FOXP3^{high} cells, respectively. Although identical results were obtained with other anti-FOXP3 Abs (236A/E7, data not shown), only FOXP3^{high} cells were designated as FOXP3⁺ cells in this study as it has been debated whether these FOXP3^{low} cells are genuine FOXP3⁺ cells.

Supplementary Figure 2. No effect of ATRA on the proliferation/survival of human CD4⁺ T cells in primary culture. CD4⁺ T cells, purified by Dynal-beads from adult human peripheral blood, were labeled with CFSE and activated with plate-bound anti-CD3, soluble anti-CD28, and different concentrations of ATRA in the absence (M) or presence of 5 ng/ml TGF- β (TGF). A, cell proliferation was determined by ³H-thymidine incorporation 5 days later. Results were expressed as means \pm SEM of triplicate cultures. B, proliferation and viability were detected based on CFSE dilution and propidium iodide (PI) staining by FACS. Numbers indicated the percentage of cells in each quadrant. One out of two experiments is shown.

Supplementary Figure 3. Memory cells inhibit ATRA/TGF-B induced FOXP3 conversion in cocultured naive cells. CD4⁺CD25⁻CD45RA⁻ memory (Tm) and CD4⁺CD25⁻CD45RA⁺ naive effector T cells (Tn) were purified from adult peripheral blood by FACS-sorting. Tn were labeled with CFSE, mixed with Tm at different ratios, and then stimulated with plate-bound anti-CD3, soluble anti-CD28, and IL-2, in the presence of exogenous TGF-β and ATRA. FOXP3 expression in activated Tn was analyzed by gating CFSE positive cells on day 5 (R2). A, representative dot plots show CFSE vs. FOXP3 staining in cultured cells. B, histograms show CFSE profiles of gated Tn (gate R2 in A) in different culture conditions as depicted. $M0 \sim M5+$ indicates daughter generations of divided Tn. No effect of Tm on the division of Tn was observed. C, percent FOXP3 expression in gated daughter generations of differently cultured Tn. Similar results were obtained in three different experiments with different donors.

Supplementary Figure 4. Addition of TGF-B and ATRA results in more FOXP3⁺ cells. FACS-sorted CD4⁺CD25⁻CD45RA⁺ naive effector T cells (Tn, 1 x 10^6 cells/condition) or CD4 $^+$ CD25 $^{++}$ Treg cells (Treg, 5 x 10^5 cells/condition) were stimulated with plate-bound anti-CD3, soluble anti-CD28, and IL-2, in the absence (M) or presence of TGF-β (TGF), ATRA (ATRA), or both (TGF/ATRA) for 5 days. Hereafter the cells were rested in medium supplemented with IL-2 only. Cells were collected and counted at indicated times. Absolute numbers of total cells (*left panel*) and FOXP3⁺ cells (right panel) were shown for cultured Tn (A) and Treg (B). No significant difference in cell viability (by trypan blue exclusion) was observed (data not shown). Results were expressed as means \pm SEM of 3 different individuals. *, P < 0.05; **, P < 0.01.

Acknowledgements

This work was supported by the European Community's FP6 funding Project 018661 Autocure and FP7 Project HEALTH-F2-2007-2.4.5-12 Masterswitch, the Dutch Arthritis Foundation (Grant 0801021), and the Netherlands Organization for Scientific Research VIDI and VICI grant (to R.E.M.T.). Copyright 2009. The American Association of Immunologists, Inc.

Abbreviations

Treg, T regulatory; ATRA, all-trans retinoic acid.

References

- 1. Golshayan, D., S. Jiang, J. Tsang, M. I. Garin, C. Mottet, and R. I. Lechler. 2007. *In vitro*-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. *Blood.* 109: 827-835.
- 2. Mottet, C., H. H. Uhlig, and F. Powrie. 2003. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. *J Immunol*. 170: 3939-3943.
- 3. Tang, Q., K. J. Henriksen, M. Bi, E. B. Finger, G. Szot, J. Ye, E. L. Masteller, H. McDevitt, M. Bonyhadi, and J. A. Bluestone. 2004. *In vitro*-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. *J Exp Med.* 199: 1455-1465.
- 4. Morgan, M. E., R. Flierman, L. M. van Duivenvoorde, H. J. Witteveen, W. van Ewijk, J. M. van Laar, R. R. de Vries, and R. E. Toes. 2005. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. *Arthritis Rheum*. 52: 2212-2221.
- 5. van Mierlo, G. J., H. U. Scherer, M. Hameetman, M. E. Morgan, R. Flierman, T. W. Huizinga, and R. E. Toes. 2008. Cutting edge: TNFR-shedding by CD4+CD25+ regulatory T cells inhibits the induction of inflammatory mediators. *J Immunol*. 180: 2747-2751.
- 6. Valmori, D., A. Merlo, N. E. Souleimanian, C. S. Hesdorffer, and M. Ayyoub. 2005. A peripheral circulating compartment of natural naive CD4 Tregs. *J Clin Invest*. 115: 1953-1962.
- 7. Hoffmann, P., R. Eder, T. J. Boeld, K. Doser, B. Piseshka, R. Andreesen, and M. Edinger. 2006. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon *in vitro* expansion. *Blood*. 108: 4260-4267.
- 8. Allan, S. E., A. N. Alstad, N. Merindol, N. K. Crellin, M. Amendola, R. Bacchetta, L. Naldini, M. G. Roncarolo, H. Soudeyns, and M. K. Levings. 2008. Generation of potent and stable human CD4+ T regulatory cells by activation independent expression of FOXP3. *Mol Ther*. 16: 194-202.
- 9. Hoffmann, P., R. Eder, L. A. Kunz-Schughart, R. Andreesen, and M. Edinger. 2004. Large-scale *in vitro* expansion of polyclonal human CD4(+)CD25high regulatory T cells. *Blood.* 104: 895-903.
- 10. Levings, M. K., R. Sangregorio, and M. G. Roncarolo. 2001. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded *in vitro* without loss of function. *J Exp Med.* 193: 1295-1302.
- 11. Ziegler, S. F. 2007. FOXP3: not just for regulatory T cells anymore. Eur J Immunol. 37: 21-23.
- 12. Roncarolo, M. G., and S. Gregori. 2008. Is FOXP3 a bona fide marker for human regulatory T cells? *Eur J Immunol.* 38: 925-927.
- 13. Liu, W., A. L. Putnam, Z. Xu-Yu, G. L. Szot, M. R. Lee, S. Zhu, P. A. Gottlieb, P. Kapranov, T. R. Gingeras, B. Fazekas de St Groth, C. Clayberger, D. M. Soper, S. F. Ziegler, and J. A. Bluestone. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4⁺ T reg cells. *J Exp Med.* 203: 1701-1711.
- 14. Peters, J. H., F. W. Preijers, R. Woestenenk, L. B. Hilbrands, H. J. Koenen, and I. Joosten. 2008. Clinical grade Treg: GMP isolation, improvement of purity by CD127 Depletion, Treg expansion, and Treg cryopreservation. *PLoS ONE*. 3(9): e3161.

- 15. Wang, J., H. van Dongen, H. U. Scherer, T. W. Huizinga, and R. E. Toes. 2008. Suppressor activity among CD4+,CD25++ T cells is discriminated by membrane-bound tumor necrosis factor alpha. *Arthritis Rheum.* 58: 1609-1618.
- 16. Chai, J. G., D. Coe, D. Chen, E. Simpson, J. Dyson, and D. Scott. 2008. *In vitro* expansion improves *in vivo* regulation by CD4+CD25+ regulatory T cells. *J Immunol*. 180: 858-869.
- 17. Koenen, H. J., R. L. Smeets, P. M. Vink, E. van Rijssen, A. M. Boots, and I. Joosten. 2008. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. *Blood*. 112: 2340-2352.
- 18. Ehrenstein, M. R., J. G. Evans, A. Singh, S. Moore, G. Warnes, D. A. Isenberg, and C. Mauri. 2004. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. *J Exp Med*. 200: 277-285.
- 19. Valencia, X., G. Stephens, R. Goldbach-Mansky, M. Wilson, E. M. Shevach, and P. E. Lipsky. 2006. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. *Blood.* 108: 253-261.
- Viglietta, V., C. Baecher-Allan, H. L. Weiner, and D. A. Hafler. 2004. Loss of functional suppression by CD4⁺CD25⁺ regulatory T cells in patients with multiple sclerosis. *J Exp Med.* 199: 971-979
- 21. Lindley, S., C. M. Dayan, A. Bishop, B. O. Roep, M. Peakman, and T. I. Tree. 2005. Defective suppressor function in CD4⁺CD25⁺ T-cells from patients with type 1 diabetes. *Diabetes*. 54: 92-99.
- 22. Yagi, H., T. Nomura, K. Nakamura, S. Yamazaki, T. Kitawaki, S. Hori, M. Maeda, M. Onodera, T. Uchiyama, S. Fujii, and S. Sakaguchi. 2004. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. *Int Immunol*. 16: 1643-1656.
- 23. Allan, S. E., L. Passerini, R. Bacchetta, N. Crellin, M. Dai, P. C. Orban, S. F. Ziegler, M. G. Roncarolo, and M. K. Levings. 2005. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. *J Clin Invest*. 115: 3276-3284.
- 24. Walker, M. R., D. J. Kasprowicz, V. H. Gersuk, A. Benard, M. van Landeghen, J. H. Buckner, and S. F. Ziegler. 2003. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. *J Clin Invest*. 112: 1437-1443.
- 25. Walker, M. R., B. D. Carson, G. T. Nepom, S. F. Ziegler, and J. H. Buckner. 2005. *De novo* generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. *Proc Natl Acad Sci U S A*. 102: 4103-4108.
- 26. Pillai, V., S. B. Ortega, C. K. Wang, and N. J. Karandikar. 2007. Transient regulatory T-cells: a state attained by all activated human T-cells. *Clin Immunol*. 123: 18-29.
- 27. Rao, P. E., A. L. Petrone, and P. D. Ponath. 2005. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{beta}. *J Immunol*. 174: 1446-1455.
- 28. Wang, J., A. Ioan-Facsinay, E. I. van der Voort, T. W. Huizinga, and R. E. Toes. 2007. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. *Eur J Immunol*. 37: 129-138.
- 29. Allan, S. E., S. Q. Crome, N. K. Crellin, L. Passerini, T. S. Steiner, R. Bacchetta, M. G. Roncarolo, and M. K. Levings. 2007. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. *Int Immunol.* 19: 345-354.
- 30. Tran, D. Q., H. Ramsey, and E. M. Shevach. 2007. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. *Blood*. 110: 2983-2990.
- Mucida, D., Y. Park, G. Kim, O. Turovskaya, I. Scott, M. Kronenberg, and H. Cheroutre. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. *Science*. 317: 256-260.
- 32. Coombes, J. L., K. R. Siddiqui, C. V. Arancibia-Cárcamo, J. Hall, C. M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells *via* a TGF-beta and retinoic acid-dependent mechanism. *J Exp Med.* 204: 1757-1764.
- 33. Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote *de novo* generation of Foxp3 T reg cells *via* retinoic acid. *J Exp Med*. 204: 1775-1785.

- 34. Benson, M. J., K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle. 2007. All-*trans* retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. *J Exp Med*. 204: 1765-1774.
- 35. Schambach, F., M. Schupp, M. A. Lazar, and S. L. Reiner. 2007. Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. *Eur J Immunol.* 37: 2396-2399.
- 36. Elias, K. M., A. Laurence, T. S. Davidson, G. Stephens, Y. Kanno, E. M. Shevach, and J. J. O'Shea. 2008. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. *Blood.* 111: 1013-1020.
- 37. Xiao, S., H. Jin, T. Korn, S. M. Liu, M. Oukka, B. Lim, and V. K. Kuchroo. 2008. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. *J Immunol*. 181: 2277-2284.
- 38. Hill, J. A., J. A. Hall, C. M. Sun, Q. Cai, N. Ghyselinck, P. Chambon, Y. Belkaid, D. Mathis, and C. Benoist. 2008. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. *Immunity*. 29: 758-770.
- 39. Mucida, D., K. Pino-Lagos, G. Kim, E. Nowak, M. J. Benson, M. Kronenberg, R. J. Noelle, and H. Cheroutre. 2009. Retinoic acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of naive T cells. *Immunity*. 30: 471-472.
- 40. Kang, S. G., H. W. Lim, O. M. Andrisani, H. E. Broxmeyer, and C. H. Kim. 2007. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. *J Immunol*. 179: 3724-3733.
- 41. Zheng, Y., C. N. Manzotti, F. Burke, L. Dussably, O. Qureshi, L. S. Walker, and D. M. Sansom. 2008. Acquisition of suppressive function by activated human CD4+CD25-T cells is associated with the expression of CTLA-4 not FoxP3. *J Immunol*. 181: 1683-1691.
- 42. Pillai, V., and N. J. Karandikar. 2008. Attack on the clones? Human FOXP3 detection by PCH101, 236A/E7, 206D, and 259D reveals 259D as the outlier with lower sensitivity. *Blood*. 111: 463-464.
- 43. Wei, J., O. Duramad, O. A. Perng, S. L. Reiner, Y. J. Liu, and F. X. Qin. 2007. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. *Proc Natl Acad Sci U S A.* 104: 18169-18174.
- 44. Dominitzki, S., M. C. Fantini, C. Neufert, A. Nikolaev, P. R. Galle, J. Scheller, G. Monteleone, S. Rose-John, M. F. Neurath, and C. Becker. 2007. Cutting edge: trans-signaling *via* the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+CD25- T cells. *J Immunol*. 179: 2041-2045.
- 45. Takaki, H., K. Ichiyama, K. Koga, T. Chinen, G. Takaesu, Y. Sugiyama, S. Kato, A. Yoshimura, and T. Kobayashi. 2008. STAT6 Inhibits TGF-beta1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. *J Biol Chem.* 283: 14955-14962.
- Allan, S. E., G. X. Song-Zhao, T. Abraham, A. N. McMurchy, and M. K. Levings. 2008. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3. Eur J Immunol. 38: 3282-3289.
- 47. Rudensky, A. Y., M. Gavin, and Y. Zheng. 2006. FOXP3 and NFAT: partners in tolerance. *Cell*. 126: 253-256.
- 48. Wing, K., Y. Onishi, P. Prieto-Martin, T. Yamaguchi, M. Miyara, Z. Fehervari, T. Nomura, and S. Sakaguchi. 2008. CTLA-4 control over Foxp3+ regulatory T cell function. *Science*. 322: 271-275.
- 49. Kolar, P., K. Knieke, J. K. Hegel, D. Quandt, G. R. Burmester, H. Hoff, and M. C. Brunner-Weinzierl. 2009. CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice. *Arthritis Rheum*. 60: 123-132.