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Summary 

Aim: Despite the continuous endeavour to achieve high standards in medical care through 

effectiveness measures, a quantitative framework for the assessment of the benefit-risk balance 

(BRB) is lacking prior to drug approval. The aim of this short review is to summarise the approaches 

currently available for benefit-risk assessment. In addition, we propose the use of pharmacokinetic-

pharmacodynamic (PKPD) modelling as the pharmacological basis for evidence synthesis and 

evaluation of novel therapeutic agents. 

Methods: A comprehensive literature search has been performed using MESH terms in Pubmed, in 

which articles describing benefit-risk assessment and modelling and simulation (M&S) were 

identified. In parallel, a critical review of multi-criteria decision analysis (MCDA) is presented as a tool 

for characterising a drug’s safety and efficacy profile.  

Results: A definition of benefits and risks has been proposed by the European Medicines Agency 

(EMA), in which qualitative and quantitative elements are included. However, in spite of the value of 

MCDA as a quantitative method, decisions about BRB continue to rely on subjective expert opinion. By 

contrast, a model-informed approach offers the opportunity for a more comprehensive evaluation of 

BRB before extensive evidence is generated in clinical practice. 

Conclusions: BRB should be an integral part of risk management and as such considered prior to drug 

approval. M&S can be incorporated into MCDA to support the evidence synthesis as well evidence 

generation taking into account the underlying correlations between favourable and unfavourable 

effects. In addition, it represents a valuable tool for the optimisation of protocol design in 

effectiveness trials. 
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1.1 Benefit-Risk Analysis: the current situation 
Despite the recognised implications of unmet medical needs and challenges in dealing with 

new diseases, the current regulatory framework in the European Union has made drug 

approval a demanding task. This situation is compounded by emerging safety findings, which 

have led to post-approval withdrawals of more than a dozen products with high therapeutic 

potential in the past decade (1,2). Such a landscape places regulators, clinical scientists and 

drug developers with yet another dilemma: how to balance rapid access to new drugs versus 

gathering comprehensive data on efficacy and safety? (3). Currently, regulators make these 

decisions in an isolated, fragmented, and to a large extent subjective manner.  

The decision to approve a new medicinal product is based on the assumption that a 

systematic review of all available data provides an accurate, unbiased picture of a drug’s 

efficacy and safety. This assumption may, however, not be true for the large majority of 

drugs; the evidence generated to support regulatory submission does not always account for 

the overall heterogeneity of the target population, the impact of treatment on disease 

progression or external confounding factors on treatment response. Moreover, one needs to 

acknowledge that the information gathered in the context of pivotal clinical trials may not 

provide evidence that dose selection, dosing regimen, and treatment duration are truly 

optimal. 

 

Undoubtedly, efficient gathering and use of data are required to answer the clinical 

questions that arise with new drugs or therapeutic interventions. Among other things one 

needs to distinguish effectiveness from clinical response. In addition, it is crucial to 

understand whether there is added value, as compared with other treatments. These are 

multidimensional questions which require clear understanding of how data will be 

generated and how benefit and risk will be quantified. Whereas different theoretical 

considerations and techniques have been used by health technology assessment agencies, a 

clear framework for benefit risk (BR) assessment is still lacking during drug development and 

subsequently for regulatory approval. Consequently, decision making at important 

milestones in R&D and at submission remain empirical, inconsistent and more often than 

not, non-transparent(1,4–8).  

 

In the past years awareness about the aforementioned issues has increased significantly. 

Several projects (9–13) have been funded to evaluate some of the available methodologies 

and better understand the requirements for a more systematic approach to BR analysis. In 

this context, the work of the Committee for Medicinal Products for Human Use (CHMP) of 

the European Medicines Agency (EMA) is particularly relevant. Starting in 2006, a working 

group was installed to examine the issue and provide recommendations about ways to 

improve BR assessment, including aspects such as transparency, consistency and 
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communication between stakeholders (9). Among the techniques evaluated by the working 

group, quality-adjusted life years (QALYs) and number needed to treat (NNT) were found to 

be the most used concepts in clinical practice, very likely due to their simplicity (9,14). 

However, these methods are qualitative in nature and as such lack some important features 

that allow one to make appropriate inferences about quantitative differences, especially 

when comparing treatment options. There is a clear need for more comprehensive 

methodologies, which enable better integration of data and facilitate the evaluation of 

complex clinical scenarios that arise in real life. 

Most of these complexities seem to have been addressed by the development of multi-

criteria decision analysis (MCDA), an integrative approach that has gained interest from the 

scientific and clinical community over the last few years. From 2009 to 2011, data can be 

found for nine products which have been evaluated by MCDA alone, or in combination with 

simulation, decision trees or Markov modelling (15).  

 

In this review, a brief overview of different techniques for the evaluation of benefit and risk 

is presented, with especial focus on the contribution of quantitative methodologies to the 

development and approval of novel medicines. Two main topics are discussed initially. First, 

the definition of benefit-risk balance and the impact of qualitative and quantitative 

methodologies on the measurement of benefit and risk during the drug development 

process (7). In addition, we consider further refinement of the approaches used for assessing 

BRB by integrating it with pharmacokinetic-pharmacodynamic (PKPD) modelling. It is 

envisaged that modelling and simulation may account for correlations between therapeutic 

response and adverse events, providing a biologically plausible basis for BRB. The availability 

of such an integrated approach may enable better choices regarding treatment selection and 

dose rationale in special groups or conditions involving small numbers of patients such as 

rare diseases.  

 

1.2 Methods 
Initially, an exploratory literature search was performed to retrieve relevant publications to 

identify current quantitative approaches for benefit risk assessment (BRA) to improve 

decision making in drug development. Seven documents (1,4,14,22,23,61,84) were available 

before the exploratory phase and were used to identify 58 articles, books and reports. Based 

on this pool of 65 documents 21 quantitative methodologies were identified (see Table S1). 

This result was used to integrate the available information with a systematic literature 

search within PubMed, in which the name of the methodology was combined with the term 

benefit risk assessment/analysis, which was replaced by benefit risk or risk assessment when 

the query lead to an outcome of 0 publications. This resulted in 253 publications, of which 

231 were rejected based on title and abstract information. The resulting 22 publications, 
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together with the 65 publications from the exploratory search were reviewed. Additionally, 

23 publications were added on external advice, for a total number of papers reviewed in the 

context of current approaches for benefit risk assessment equal to 110. The steps described 

in this paragraph are summarised in Figure 1. 

 

 
 

Figure 1. Flow diagram of the literature search. 

 

1.3 Definition of benefit and risk 
An important aspect of any BR analysis is the definition of both terms, and more 

importantly, how to measure or quantify them. Benefit is usually described as a potential 

effect that moves the condition of the patient from disease towards health, within a given 

(pre-defined) context (Table 1) (16–19). Risk is the opposite, a potential effect that moves 

the condition of the patient from health towards disease, also within a pre-defined context. 

To measure both possibilities, at least two concepts play an important role: the magnitude 

or severity of the effect, and its incidence or frequency. Benefit or risk is then estimated by 

the product of these concepts, possibly multiplied by the duration (17) or the reliability of 

the data (19). The BR assessment, in which the no-treatment option should not be overseen, 

is simply a ratio of the two components, for which pre-defined acceptance thresholds are 

stated. 

87 publications fully 
reviewed

7 publications available 
before exploratory 

search 

231 publications 
excluded based on title 

and abstract

23 publications 
suggested by external 

advise

110 publications 
selected for data 

extraction

253 publications 
identified in PubMed

58 publications 
resulting from 

exploratory search 
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Table 1. Glossary of terms. 

Term Definition 

ADE Adverse Drug Effects 

Bayesian statistics Probability-based statistics, concerning parameter values derived 

from distributions 

Benefit Favourable effect, accounting for uncertainty of that effect [as 

defined by the EMA] 

BILAG-index British Isles Lupus Assessment Group, a measure for severity of 

SLE 

BR Benefit Risk 

BRAT Benefit Risk Action Team, operating under PhRMA 

CHMP Committee for Medicinal Products in Human Use, operating under 

the EMA 

Decision tree Method to aid decision making by visualizing different scenarios as 

a series of events, and by calculating outcome based on assigned 

probabilities of the events 

DSD Death or serious disabled, measure of estimated outcome in the 

swine flu case study 

EMA European Medicines Agency 

FDA Food and Drug Administration [USA] 

H1N1 Influenza virus categorized by surface proteins hemagglutinin and 

neuraminidase (in this case swine flu) 

In silico Experiment in a computer, virtually 

In vitro Experiments in cell cultures 

In vivo Experiment in animals (preclinical) 

IPRED Individual prediction, possible outcome of PKPD modelling 

prediction variables and parameter values of an individual patient 

M&S Modelling and Simulation, in pharmacology a way of describing 

data by constructing a validate model and simulate new data, as a 

virtual experiment 

Markov model Quantitative method of modelling states and transitions between 

states 

MCDA Multi criteria decision analysis, quantitative method analysing 

single weighted components of a problem before reassembling it 

to aid a final decision 

NDA New drug application, to be submitted to the FDA for approval 

before market access 
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NNH Number needed to harm, measure of the number of patients that 

has to be treated to present a single adverse effect 

NNT Number needed to treat, measure of the number of patients that 

has to be treated to prevent a single occurrence  

PhRMA Pharmaceutical Research and Manufacturers of America 

PKPD Pharmacokinetics and pharmacodynamics, two disciplines within 

pharmacology concerning what the body does to the drug and 

what the drug does to the body, respectively  

PrOACT-URL Qualitative framework by Hammond, Keeney and Raiffa, 

consisting of Problem, Objective, Alternatives, Consequences, 

Trade-offs, Uncertainty, Risk tolerance and Linked decisions 

QALY Quality-adjusted life year, measuring the outcome of therapy by 

the adjustment of a quality life year, in which the patient can fully 

function (economically) 

Risk Unfavourable effect, accounting for uncertainty of that effect [as 

defined by the EMA] 

RV-NNT Relative Value adjusted number needed to treat, a type of NNT 

accounting for patient preference as value function 

SLE Systemic Lupus Erythematosus, an autoimmune disease 

SLEDAI DLE Disease Activity Index, a measure of severity of SLE 

TURBO Transparent Uniform Risk-Benefit Overview 

 

Currently a slightly different definition of benefit and risk has been adopted by the EMA. 

They are defined respectively, as favourable and unfavourable effects and are at the same 

time coupled to the uncertainty of both effects (Figure 2) (14). Whereas the reasoning seems 

intuitive, this situation represents a mathematical challenge, i.e., integrating terms or factors 

that are measured in incommensurable units and in different time scales. Any reliable 

product of these factors imposes data manipulation or transformation to ensure that all 

terms are expressed in the same unit and time scale. However, the illusion of this 

mathematical precision tends to hide another important conceptual challenge: what is 

acceptable? (18). This depends on the perception and values of the stakeholders, i.e., the 

regulator, the clinical experts, and the patients. Procedures have been devised to ensure 

that perceived benefits and risks are quantified in a systematic manner. This process is 

known as prior elicitation and involves expert judgment. It is aimed at making subjective 

opinions more consistent, comprehensive and transparent (16,19,20). 
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Favourable effects 
Uncertainty of 

favourable effects 

Unfavourable effects 
Uncertainty of 

unfavourable effects 

 

Figure 2. EMA's definition of benefit and risk, where favourable effects are beneficial to the 

population and unfavourable effects are undesirable for the population. Uncertainty is caused by 

variation, biased data, limitations of data or methodology etc. Based on [14]. 

 

1.4 Current approaches 
The assessment of benefit and risk has evolved in a rather empirical manner and still relies 

on subjective criteria, in that perceived benefits and risks depend on the context in which 

the treatment is used, i.e., which standard of care is set as reference and whether short and 

long term consequences of the intervention are considered against the progression of 

disease and any correlated co-morbidities or complications. Irrespective of the lack of 

consensus on how to assess and weight any measures associated with benefit and risk, one 

needs to consider two different dimensions of the problem. First, a qualitative approach is 

required to allow for explicit contextualisation of the problem. It is crucial to fully 

understand the main issues before any quantitative analysis starts, i.e., to identify the 

factors that contribute and/or determine benefit and risk as well as capture the views and 

differences of opinion from different stakeholders, especially with regard to the perception 

of risk, in terms of its incidence, severity, chronicity and reversibility. Second, a quantitative 

approach is needed in which results from the initial (qualitative) evaluation are normalised 

by means of mathematical and statistical procedures. Such a normalisation implies the 

availability of sufficient data for those endpoints and measures which have higher weights. It 

also imposes clear understanding of the trade-offs between benefit and risk, especially of 

the correlations between outcomes. Whereas these requirements seem obvious, little 

attention has been paid to the biological or pharmacological basis that determines 

treatment outcome, i.e. how exposure-response (PKPD) relationships underpin favourable 

and unfavourable events. 

The next paragraphs will provide an overview of the available techniques, including recent 

examples in which benefit and risk have been evaluated in the context of regulatory 
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approval and treatment optimisation. Additional details of the methodologies can be found 

in the supplementary material (Supplementary Figure 1 and 2 and supplementary Table 1 

and 2, see Appendix).  

 

Qualitative approaches 

A qualitative framework is essential for characterising benefit and risk, as it structures the 

problem and its context, before any actual assessments are made. It provides clarity about 

the possible outcomes of the assessment, as well as the input and the process in between, 

for example by defining which decision criteria are to be used. This framework ensures that 

no alternative measures or trade-offs are overlooked during the subsequent steps, i.e., 

during which quantitative methods are applied. 

 

PhRMA BRAT 

The Pharmaceutical Research and Manufacturers of America (PhRMA) assigned a Benefit 

Risk Action Team (BRAT) to create a decision framework. Their framework consists of six 

steps which are developed and implemented prior to drug approval. Before phase III, focus is 

given to the definition of a decision frame, identification of relevant outcomes, identification 

of the data sources, and customisation of the framework for BR analysis. At the time of filing 

and NDA review, attention is paid to the outcome itself as well as to the quantification and 

interpretation of key BR metrics (13,14). It should be noted that this framework seems to 

end with the decision and defence after which a drug is approved or rejected. It does not 

involve post marketing data, which are known to potentially change BR balance. 

 

EMA PrOACT 

The qualitative framework suggested by the EMA is based on Hammond’s, Keeney’s and 

Raiffa’s PrOACT approach (21), combined with the less known addition of the so-called URL: 

Problem, Objective, Alternatives, Consequences, Trade-offs, Uncertainty, Risk tolerance and 

Linked decisions. In this way, the problem is clearly structured and information can be 

gathered in a consistent way to assist the decision-making process (14). Despite its general 

nature, the use of PrOACT-URL has proven its success since 1999. In contrast to PhRMA 

BRAT, the inclusion of uncertainty paves the way for a more statistically sound 

implementation. 

 

Quantitative approaches 

The use of a qualitative framework for assessing benefit and risk may be sufficient when 

complexity is minimal. This is however not the case in drug development where very 

complex scenarios arise. To include all data and present a sound overview of all alternatives, 

consequences and trade-offs, as well as differentiate between objectives otherwise 
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considered comparable, one or more quantitative techniques are required 

(1,4,11,14,17,19,22,23). A qualitative framework will still be essential to define the problem 

and the objectives of the analysis and as such will precede the implementation of a 

quantitative BR analysis. 

In the past decades several methodologies have been developed and used to evaluate the 

BR balance of a number of drugs. These methodologies present completely different 

features and their use has been tailored for very specific cases, contributing to an increase in 

the number of options available when starting an analysis. These specificities have however 

made them unsuitable for subsequent application in a general BR framework. An overview 

of these methods (1,4,17,19,22–102, 120-124), including advantages and limitations is 

provided in Supplementary table 1. By contrast, multi criteria decision analysis (MCDA) in 

combination with decision trees has been suggested as a plausible quantitative approach 

that embeds the needed features for a generalised and structured framework for BR 

evaluation. 

 

MCDA presents several advantages compared to other methodologies: the main one is the 

simplification of a complex problem by breaking it into smaller pieces and making them 

comparable by weighting their scores on a single scale; normalizing the different criteria 

allows comparison on the same ground. In addition, the uncertainty carried by the subjective 

component, is further reduced by the possibility of performing sensitivity analysis, in which 

the model provides different outcomes depending on weights variation. There are, however, 

still limitations. Given the complexity of the scenarios analyzed, it is often expected to 

observe correlations between the endpoints considered. This is not yet taken into account 

within the methodology, where each endpoint is analyzed in an independent manner. In the 

SLE-case, which is discussed in the supplementary material, the immunosuppressive effect of 

Benlysta and the incidence of infection might very well be correlated in a nonlinear way. This 

might influence the outcome, leading to biased results. Furthermore, it is a matter of 

concern how the input data for the decision model is provided. This is not a direct limitation 

of the methodology, but of how the analysis is implemented. Many quantitative methods 

are limited by statistics and inclusion of uncertainty, confounding factors, or limited data. 

The latter concerns both the experimental data, as well as preference values of different 

stakeholders required for weighting criteria (1). MCDA offers a statistical sound method, 

where probability and uncertainty are combined with preference. Its limitation lies in the 

complexity of data required, which is often unavailable, as well as in the subjective 

judgement that is required and the dependence on risk perception differences. Besides, 

sequential decisions require data gathering over a longer time period, especially in 

conditional approval (103). 
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Despite the aforementioned advantages, MCDA, like any other quantitative method, still 

relies on subjectivity. This is partly overcome by structuring the analysis in a  transparent, 

consistent manner and by incorporating communication with different stakeholders as a 

critical step (14,15). In fact, communication with different stakeholders is also accounted for 

in NNT/NNH. Although applicability of the former to BR assessment in general is very limited 

because of the lack of preference data, as well as the limited statistical power (57,58), it 

shows an important issue in communication. Individual patients seem unable to objectively 

estimate their own chances. In a distribution of 1 out of 20, all 20 patients expect to be the 

exception, when it comes to a beneficial effect, but not in case of an adverse effect. As a 

result, the magnitude of risk is misperceived, as the chances of common consequences are 

underestimated and those of rare consequences are overestimated (8). This problem of risk 

perception is essential when considering including different stakeholders. Although MCDA 

does present data in a transparent and consistent way, it is not a technical process, but an 

effective design of the social processes required for subjective weighting (41).  

 

1.5 Integration of PKPD modelling into BR analysis 
Modelling and Simulation (M&S) techniques represent an invaluable resource for drug 

development. Of relevance for BR analysis is the opportunity that PKPD modelling offers in 

terms of describing variability in a parametric manner. This allows the characterization and 

prediction of the time course of treatment response at individual level under physiological 

and pathological conditions (104,105). The current emphasis on mechanism-based modelling 

has also the advantages of increased understanding about drug-specific and system-specific 

properties such as, target site distribution, binding, pharmacokinetic interactions, 

transduction of signals, pharmacodynamic interactions, homeostatic feedback, tolerance 

and disease progression (106–108). In addition, model-based simulations can provide insight 

into conditions that may not have been tested experimentally, unravelling patterns or 

responses that may represent clinically relevant changes in the BR balance. 

From a technical, scientific point of view, M&S ensures for integration of data and 

knowledge in a continuous, objective and reproducible manner, thereby enhancing the 

quality of decision making (105). Over the last decade, regulatory perception and role of 

M&S in drug development has changed. Its relevance in clinical development has been 

acknowledged and processes are in place to support a more structured use of M&S 

(106,109).  

 

In the next paragraphs we evaluate how the integration of M&S can be advantageous to 

further improve the existing framework for the evaluation of benefit-risk balance, as 

suggested by the EMA. To this purpose, we consider three main aspects, namely, the 

optimisation of evidence that is generated by clinical trials, evaluation of virtual scenarios 
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and mechanism-based multivariate analysis. The optimisation of the input data available for 

decision making entails not only the integration of data from different trials, but also the use 

of optimality concepts for the design of prospective clinical studies. The availability of an 

integrated model allows for the creation of virtual experiments, which provide a more 

coherent, biologically plausible basis for performing interpolations and extrapolations. In 

contrast to current practice, multivariate modelling allows one to establish correlations 

between therapeutic and adverse events of interest, which are often linked by the very 

pharmacological nature of the treatment. This overview is complemented by a brief 

discussion of the issues associated with prior elicitation, which could be better guided by the 

use of models, rather than empirical distributions.  As such, a model-based approach could 

provide somewhat less subjective weighting and preferences.   

 

Optimizing input data: M&S techniques can be used to optimize the input data available for 

the BR analysis. PKPD modelling allows the creation of a framework that can be refined and 

improved throughout the development process, by integrating data from different sources 

as well as by pooling the information gathered across different phases of development. This 

iterative process allows one to understand and distinguish drug from system-specific 

properties. Most importantly, it allows one to identify sources of variation and assess the 

clinical implications thereof. Among other things, BR analysis could be performed with and 

without the residual variability or in by inclusion of variability in a stepwise manner. In other 

words, these procedures increase the value of data whilst decreasing uncertainty (106). On 

the other hand, M&S can also be used to optimise the design of prospective clinical trials. 

The quality of the information collected can be considerably improved through optimal 

design (110–112), enabling the generation of more informative data input for the decision 

analysis. This is particularly important in special populations where limited evidence is 

generated, such as in paediatric diseases (106,113,114). The assumptions about the 

informative value of data obtained from randomised clinical trials are often overlooked. It is 

assumed that the output or results from a trial are consequence of the drug treatment, 

rather than the consequence of the interaction between drug properties, disease processes, 

patient characteristics and experimental protocol. 

 

Evidence from virtual scenarios: A second aspect that could be beneficial for the BR 

assessment is the use of PKPD modelling for simulation purposes. The availability of a 

qualified or validated model may provide the opportunity to perform virtual experiments. 

This allows one to explore scenarios that have not been evaluated during clinical 

development. Not only efficacy and safety data can be considered, but also the influence of 

covariates such as disease severity, co-medications, co-morbidities and drug compliance can 

be evaluated. By inter- or extrapolating, new input data can be generated for a different 
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population or different dosing regimens. As such these simulated results can be 

subsequently used as input for BR analysis. As mentioned previously, PKPD modelling may 

have an even larger impact when considering special populations (114–117).  

 

Correlating multiple endpoints: Thus far we have highlighted the fact that PKPD modelling 

may reduce the uncertainty in a BR analysis by optimising the information used as input. 

M&S techniques may overcome another important limitation of BR methodologies, namely 

the assumption that favourable and unfavourable events are clinically, pharmacologically 

and statistically independent from each other. This assumption violates our current 

understanding of the nature and cause of adverse events. Hence, any analysis involving 

multiple endpoints in a multidimensional system will have to account for the correlations 

between them. Moreover, we believe that these correlations are often non-linear, requiring 

some advanced statistical techniques to ensure that interactions between variables and 

covariate factors are captured accordingly. Multidimensional models can be used to assess 

quantitatively how endpoints are linked together and how response changes with changes in 

drug exposure (24). 

 

Advantages from the integration of M&S techniques to BR analysis are not only conceptual. 

From a technical perspective, PKPD models may contribute to bias reduction during prior 

elicitation. In addition, it may provide a stronger basis for sensitivity analysis. Although 

weighting is a subjective procedure, expert opinions can be modelled using prior elicitation. 

Moreover, if the uncertainty associated with the weights is assessed, it is possible to factor 

in the impact of each expert’s opinion on the overall analysis. Other possibilities exist to 

weight the experts input, by scaling their precision based on training and experience, or by 

assigning them to groups of thought that are more or less representative of the common 

opinion (26,63). PKPD models describing the underlying disease processes as well as the 

impact of treatment over time through virtual scenarios may facilitate prior elicitation, 

providing systematic, consistent input for the evaluation of weights and uncertainties. 

An example of the impact of M&S concepts on BR analysis is given in Table 2.  
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Table 2. Impact of M&S on the MCDA approach is visualised and further elucidated by the example 

of Benlysta. It shows clearly the emphasis on the first part of the methodology; the input data and 

earlier data evaluation for correlations between parameters and outcomes. 

 

MCDA Modelling & Simulation Example: Benlysta 

Step 0: Input 
data gathering 

Step 0.1: Explore and refine the 
informative contents of data, accounting 
for variability and uncertainty. 
Step 0.2: Incorporation of virtual 
measurements (samples), by evidence 
generation through simulations. 

Step 0.1: Distinguish between-
subject variability in relevant 
parameters from residual error. 
Step 0.2: Evaluate parameter 
uncertainty by exploring the 
implications of different 
experimental protocol 
conditions.  

Step 1: Defining 
decision context 

Step 1.1: Prioritising elements which 
affect variability and /or uncertainty. 

 

Step 2: 
Identifying 
options 
 

Step 2.1: Inference by extrapolation, e.g., 
an additional arm that has not been 
tested clinically. 

Step 2.1: Assess treatment 
response for alternative dosing 
regimens than the actual 
treatment arms in the trial (i.e., 
1 and 10 mg doses) 

Step 3: 
Identifying 
objectives and 
criteria 

Step 3.1: Assess outcomes taking into 
account the correlation between events. 
 

Step 3.1: The correlation 
between immunosuppressive 
effects and incidence of 
infection can be incorporated 
into the model, enabling 
accurate evaluation of the 
impact of different dose levels 
on outcome. 

Step 4: Scoring Step 4.1: Estimation of the correlation 
between events in a parametric manner, 
thereby avoiding biased scoring of the 
data. 

Step 4.1: Estimation of the 
parameters describing the 
nonlinear relationship between 
immunosuppressive effects and 
incidence of infection in 
patients undergoing long term 
treatment. 

Step 5: 
Weighting 
factors for 
differences of 
opinion 

Step 5.1: Prior elicitation of expert 
opinions can be translated into 
consistent weighting, including 
distributions describing differences of 
opinion (e.g., priors in parameter 
distributions). 

Step 5.1: Simulate outcomes for 
Benlysta-treated patients taking 
into account different weighting 
factors. 

Step 6: 
Combining data  

Step 6.1: Simulated scenarios increase 
the quality of the data and therefore the 
quality of the overall value, by increasing 

Step 6.1: Simulation of different 
treatment arms to explore the 
implications of dose selection. 
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granularity. 

Step 7: 
Examining data 

Step 6.1: Outcome evaluation is not 
limited to the data, but to evidence 
arising from virtual clinical trials, 
including  patients who belong to risk 
groups  
(e.g., those who meet exclusion criteria) 

 

Step 8: 
Sensitivity 
analysis 

Step 8.1: Irrespective of the decision 
criteria, model parameters on which the 
data are based can also be analysed. 

Step 8.1: The PKPD model of 
Benlysta has been evaluated by 
sensitivity analysis. 

 

1.6 Discussion and conclusion 
In this short review, an overview was given of the methodologies currently used for the 

evaluation of BR balance. Growing consensus suggests that a combined approach involving 

qualitative and quantitative methods is required to ensure meaningful evaluation and 

interpretation of benefit and risk data. In fact, this is recommended by the EMA, which 

suggests the use of PrOACT-URL and MCDA. 

Even though a more structured approach is still lacking for BR analysis, MCDA seems to 

address the need for a multidimensional characterisation of the scenarios that arise in drug 

development and in the clinical practice. One of its limitations is the way uncertainty is 

handled; there is the need to further reduce the uncertainty or preferably to capture it 

accordingly. Attempts have been made to construct stochastic multi-attribute models, also 

known as stochastic multi-criteria acceptability analysis (SMAA), which incorporates 

uncertainty regarding the criteria measurements. SMAA provides the possibility to include 

the sampling variation and to characterize typical trade-offs supporting a drug BR profile 

without knowing or eliciting the (exact numerical) preferences beforehand (119). An analysis 

without preference information is valuable when preferences cannot be elicited or when the 

potential benefits of a drug have to be assessed across a wide range of preferences. This 

latter situation occurs, for example, when different subgroups of patients are considered. 

However, stochastic methods do not eliminate discrepancies between perceived risk or 

benefit and their biological and pharmacological plausibility.  Undoubtedly, integration of 

mechanism-based modelling to multi-criteria decision methods will enhance our ability to 

characterise benefit-risk balance. It will provide indirect evidence from virtual scenarios in a 

more effective manner than sensitivity analysis and other statistical techniques have allowed 

for. Such an integrated approach will also represent an advancement for the field of 

modelling and simulation, which is often restricted to single endpoints, facilitating the 

assessment of causality and correlation between favourable and unfavourable events (118). 

Unfortunately, in literature there are very few examples that present in a clear manner the 

concepts discussed throughout this manuscript. Among them though, two publications 
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provide an excellent illustration of these concepts: the work carried out by Bender et al (125) 

shows how exposure-response relationships quantified through model-based approach for 

multiple endpoints can be used to explore and assess BR across different dosing regimens in 

the context of oncology trials. In the same way, the work by Pink et al (126) shows the 

feasibility of integrating M&S with pharmacoeconomic analysis to inform decision making 

throughout the whole drug development process and possibly achieve personalised 

evaluations. Both examples support the fact that PKPD relationships are crucial in the 

assessment of a drug efficacy and safety and should not be omitted when performing a BR 

appraisal. 

In addition, we propose here the use of PKPD modelling as the pharmacological basis for 

evidence synthesis and evaluation of novel therapeutic agents. Various methodologies are 

available for evidence synthesis, and among them network meta-analysis (NMA) has been 

widely used in BR analyses to combine all available evidence (127-128). These approaches 

though, rely on very large amount of information and as discussed in this manuscript depend 

only on the evidence generated. As opposite to a model-based approach, they are not able 

to provide an understanding or a quantification of the underlying PKPD mechanisms and 

subsequently cannot be used to anticipate and explore virtual scenarios through Clinical Trial 

Simulations and/or Not-in-trial Simulations (129). In a post-marketing phase the contribute 

of NMA is indeed invaluable but in a pre-marketing evaluation where limited data is 

available PKPD cannot be ignored and to our understanding may be crucial for a 

comprehensive BR evaluation.  

 

In conclusion, it should be highlighted that models do not make decisions, people do. 

Ultimately, patients, clinicians, drug developers and regulators need to acknowledge that 

decisions are better made when data are presented and communicated in a clear, 

systematic manner. PKPD modelling can complement evidence generation by providing 

stakeholders the opportunity to explore conditions that have not been experimentally tested 

at the time of BR analysis. Regardless of the limitations models and simulation scenarios may 

have, model-based evaluation is likely to outperform gut feeling, which often prevails in 

clinical decision-making. 
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Appendix 
Decision tree 
The theory underlying the use of decision trees is based on visualisation of the decision 

making process by a branching structure with decisions as roots, and possible outcomes as 

branches. In this way, decisions, subsequent uncertain events, consequences and multiple 

criteria are described (14). Complexity arises with addition of extra nodes. In the EMA 

framework for benefit-risk assessment, this technique has been used as a link between 

qualitative and quantitative approaches, as it encompasses objectives and possible 

outcomes, combined with numerical data on frequencies and uncertainties, with which 

benefit-risk balance can be calculated for each outcome or decision. Figure S1 shows an 

example of a decision tree. The decision (square node) consists of two alternatives: 

approving the vaccine against H1N1 swine flu by the end of September, or waiting until 

October, so more data can be gathered on efficacy and safety. The remaining uncertainties 

are modelled as events (round nodes), for which consequences the working group 

determined the probability, mostly based on earlier experience. Disease seriousness for 

example has a probability of 20% to become severe, based on the historical observation that 

one in five pandemics becomes catastrophic (Spanish flue). For the delay, this probability 

increases, as early vaccination can prevent escalation. All other probabilities are determined 

and the estimated deaths or serious disabled (DSDs) are stated for all 24 outcomes (triangle 

nodes). The decision tree itself enables back calculation to the actual decision, providing the 

consequence of each alternative would be. This is achieved by multiplying outcomes with 

the probabilities as weight. Taking the best case scenario, the working group determined 

that in the case of early approval, moderate disease seriousness probability is 0.8, 

probability of efficacy of 75% is 0.3, with probabilities of safety events rate of 1/100,000 and 

1/10,000 at 0.9 and 0.1, respectively. The latter outcomes are stated to be 42500 and 87500 

DSDs, so calculating back, the average DSD-value of the vaccine in early approval in case of a 

moderate disease with an efficacy of 75% is 47000 DSDs. Applying these steps for all 

outcomes and events results in an average DSDs for the two alternative options, in this case 

216,500 for September and 291,547 for October, showing that earlier approval is the better 

option, a decision made after completion of a sensitivity analysis of the chosen probabilities 

(86). A reconstruction of the complete decision tree can be found in (120). This concept 

alone is valuable when cases remain relatively simple. Although the tree itself might be too 

complex in advanced cases, it remains an important building block for more evolved 

techniques, such as MCDA. 
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MCDA and the EMA’s BR framework 
When evaluating very complex scenarios with multiple endpoints and objectives, it becomes 

crucial to have a clear understanding of the context structure. In very simple words, MCDA 

allows breaking up the problem and analyzing individual factors, before reassembling each 

component to provide a thorough overview of the analysis and making a final decision (102). 

In this structure, it combines the decision tree theory with value functions. In other words, it 

converts the different inputs for the decision model into preference values, allowing 

comparing the different endpoints on a common ground. The preference value scale 

requires probability, utility and the preference of the alternative associated with the highest 

expected utility. Multiple objectives are evaluated together on different identified criteria 

and a balance is made after scoring and weighting these criteria, with uncertainty taken into 

account (14). As highlighted by the EMA BR project, the use of the PrOACT-URL approach in 

combination with decision tree and MCDA represents a more transparent and consistent 

assessment of the BR balance (44). The technique consists of eight steps that will be briefly 

discussed in the following paragraphs. In the next section, these steps are illustrated using 

Benlysta (belimumab), a drug against Systemic Lupus Erythematosus (SLE), as a paradigm 

compound (121). 

Step 1 to 3: defining decision context; identifying options, eg. study arms; identifying 

objectives and criteria, eg. maximising benefit and minimising risk, more specified in a 

decision tree. This part of MCDA overlaps with the PrOACT-URL approach: creating a 

qualitative framework of objectives and context, as well as with the decision tree, as 

mentioned earlier (120). Benlysta has been proposed for the treatment of adults with high 

disease activity, with autoantibody-positive SLE. It should be added to the standard 

treatment, which consists of hydroxychloroquine and corticosteroids (step 1). The available 

studies include two randomised, placebo-controlled clinical trials and three open-label 

continuation safety trials. The dosing regimens used in these trials include either 1 or 10 mg 

(step 2). There is a medical need for newer, more effective and better tolerated therapies. 

To specify these criteria, an effect tree is composed, as visualised in Figure S2 (step 3).  

 

Step 4 and 5: scoring; weighting. Scoring and weighting are the most important steps as their 

aim is to normalise the raw input data for the decision model by translating them into 

preference values. Scoring means scaling each criterion (input data characterised by 

different units and time scales) by assigning a new range, which is usually set between 0 and 

100. Within this range, different outcomes are directly or indirectly scored, where the ratio 

of difference is the most important. Scoring for Benlysta, as visualised in Table S2, is 

performed following defined clinical scales, like SLE Disease Activity Index (SLEDAI). First, the 

two extremes are evaluated, best and worst with corresponding units, after which the three 

options are considered within this range.  
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The weighting step normalise all measures into one preference scale, judging which criteria 

is more important and allowing comparing the different options into one common level 

(103). This procedure allows translating the scoring into preference values, which carries the 

subjective component. Weighting can be done linear, direct or inverse, or non-linear. Finally, 

swing weights are assigned, based on trade-offs among favourable or unfavourable effects, 

or between the most important favourable and unfavourable effects. In other words, if 

objective A is twice as important as objective B, the score doubles on that scale. These swing 

weights depend on the subjective choice considering the relative difference in original scale 

and the importance of the corresponding objective to the whole. Considering as an example 

buying a car, limiting costs is an objective of importance. If, however the difference between 

alternatives in this criterion is only small, the impact of that objective becomes limited (79). 

It is also important to take into account the possibility of single events that are multiple 

times considered. In this specific case, the SLE assessment scores SLEDAI and BILAG-index 

have similar criteria, like psychosis or vasculitis. If this is not corrected by the assignments of 

weights, these events have double impact on in this case the unfavourable effects (122). 

 

Step 6 and 7: combining data to overall value; examining results. The overall score is simply 

the sum of the product of the score and weight per criterion, as stated in equation 1, where 

Si is the overall score per option i on criterion j, with sij as preference score of the option and 

wi as the weight of the criterion (41). 

 

 Si = w1si1 + w2si2 + … + wnsin = nj=1 ∑ wjsij    eq.1 

 

This aggregation is performed by software; several are currently available for this 

methodology (e.g., HiView, V.I.S.A., Web-Hipre, Expert Choice, Logical Decisions) (123). 

Cumulative weights are calculated based on the normalized weight; overall weighted scores 

per options are visualized graphically (Figure S3).  

 

Step 8: perform sensitivity analysis. The sensitivity analysis is important to identify possible 

judgments of serious impact, thus reducing uncertainty. Displaying the variation of weights 

on each criterion allows identifying possible crossovers at which a change in the relationship 

between weight and criterion might be observed for the different options. 
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Table S1. Overview of quantitative methodologies to assess benefit-risk balance, as given by the CHMP [14].  

 

Method Advantages Limitations References 

Bayesian beliefs 
networks 

Network of nodes representing risks, 
benefits, observations and 
assessments, connected by 
conditional arrows, which input 
probabilities result in probability 
distribution for all nodes. Inclusion of 
both objective data and subjective 
expert opinion. Visualisation of effect 
of factors on each other. 

Requires structural similarity across 
cases, which in BR might only be 
appropriate for similar indications. 
Probability input as a subjective 
element remains unsupported. 
Uncertainty of indirect effects 
introduces bias in their impact on the 
outcome. 

(14,29,82,96,101) 

Bayesian statistics Prior and posterior probabilities 
based on available evidence. Tgether 
describe the likelihood of an effect 
and its uncertainty, combined with 
utility function in the Bayesian 
approach. Methodology improves as 
more data are gathered, as it 
involves iterative learning.  

Significance levels state something 
about data, not hypotheses, so cannot 
directly be included into a formal BR 
assessment. The model itself doesn’t 
include multiple criteria. Mathematical 
models can get complex. 

(14,27,53,64,81,89) 

Clinical Utility Index Multi-attribute utility analysis with 
weighted trade-offs. Utility function 
introduces clinical meaning to the 
assessment. CUI is flexible over 
different indications and endpoints. 
Transparent method with possibility 
of sensitivity analysis.  

In case of limited applicable data, 
complex modelling with high 
variability and uncertainty is required. 
Subjective discussion on clinically 
relevant factors remains unsupported. 
More useful for a no-go than for a go-
decision 

(45,56,62,65,68,83,84,87,95) 

Conjoint analysis Covers preferences of different 
stakeholders, utility weight is based 

Labour intensive if all stakeholders are 
included. Weight might not be 

(14,54,60,88) 
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on preferred trade-offs. Realistic 
method helpful in weighting.  

independent from methodological 
decisions. Does not account for 
uncertainty. 

Contingent 
valuation 

Benefits are translated to financial 
values by enquiring the prize patients 
are willing to pay for it.  

Not focused on BR assessment (14) 

Decision tree Overview of all possible outcomes 
with their probabilities, calculated 
using the branches and nodes 
leading to said outcome. The 
decision tree is a useful framework. 

Too simple for complex cases. 
Uncertainties are only limited covered, 
as probabilities are often empirically 
determined. 

(14,30,74,80,86,97,124) 

Discrete event 
simulation 

Detailed simulation based on 
differential equations and 
continuous variables. Ability to 
handle multiple assumed 
characteristics and simultaneously 
assess impact of multiple effects on 
health economics. 

Complexity, complicate adaptability, 
lack of transparency and validation. 
Risk of underestimation in case of 
prediction limited to short term 
effects. No clear assessment of 
unfavourable effects. 

(14,28,31,51,66,71,85,99) 

Evidence-based BR 
model 

Model visualised as a set of scales, 
including the benefit ‘box’ with 
efficacy, including responder rate 
and evidence and the risk ‘boxes’, for 
each ADE, with seriousness, 
frequency and evidence. The method 
correlate to EMA’s definition, as the 
first two criteria of either box are 
(un)favourable effects and the third 
includes uncertainty of effects. 

Simplified multi-criteria model with 
limited (three) criteria each. There is 
no application supporting the 
translation of effects into one unit. 
Preference weights are not accounted 
for. 

(14,19) 

Incremental net Incremental net health benefit is the Although this is a version of a multi- (1,14,23,32,33,72,90) 
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health benefit difference between unfavourable 
effects and favourable effects 
derived from the treatment options, 
where all effects are normalised into 
one unit. The method is transparent 
and theoretically sound, including 
uncertainty and extrapolation in 
time.  

criteria model, such as MCDA, 
translation to a single unit requires 
another methodology (e.g., value-
adjusted life years, or QALY). QALY can 
only be transferred to health benefit 
when costs are not considered, in 
other words the willingness to pay is 
infinite. Weighting of effects is also 
dependent on another methodology, 
like conjoint analysis. This 
methodology on itself is incomplete. 
Subject to bias by confounders. 

Kaplan-Meier 
estimation 

Function of survival over time, 
impact measured in ratio of 
differences, useful in Markov 
models. 

Limited representation of 
(un)favourable effects, for example in 
non-fatal indications. It does not 
account for uncertainty and 
cumulative probabilities can be 
misleading due to lack of correlation 
structure (e.g., competing events). 

(14,49,100) 

Markov model Describes time-dependent dynamic 
processes, using transitions between 
health states and their probability 
distributions. 

Probability data might be sparse 
before approval. Complex health 
states might be oversimplified. 

(14,42,43,52,98) 

Minimum Clinical 
Efficacy 

The method allows incorporating 
risks and benefits into one single 
metric. In addition, relative utilities 
can be considered during the 
analysis. 

The statistical properties are not yet 
fully understood and the methodology 
does not allow characterising the 
uncertainty around the benefit-risk 
measurements. 

(1,40,57,58) 

MCDA Multi-criteria method breaking up Might be too comprehensive for (1,12,14,22–
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the problem, followed by scoring and 
weighted assessment of benefits and 
risks as most representative 
presentation of data. Sensitivity 
analysis prevents unwanted impact. 
Incorporates uncertainty. 

simple analysis. Does not account for 
possible correlations between 
endpoints. Preference value 
determination is accounted for in the 
weighting step. 

24,26,34,44,47,63,79,80,102,103) 

NNT Easy understandable measure used 
in the clinic, stating the number of 
patients required to treat one 
occurrence of the disease (or to have 
one more ADE in NNH). Patient 
preferences can be included using 
Relative Value Adjusted NNT (RV-
NNT). 

Limited statistical power and because 
of lack of preference data, 
misinterpretation by different risk 
perceptions, as well as by using the 
same scale without proper weighting 
effects. Ratio of NNT/NNH assumes 
independence and similar timescale.  

(1,4,14,22,23,36,46,48,57,58,67,69) 

Principle of threes Simplified method in which only 
three criteria per risk/benefit are 
scaled with three possible outcomes 
(e.g., low, medium, high), benefit 
and risk are summed up.  

Very limited in number of criteria. No 
weighting of the criteria. 

(14,17,35,76) 

Probabilistic 
simulation 

Complementary to point estimate 
statistics, as it states the impact of 
risk and benefit as a probability 
distributions based on simulated 
random draws from study data. 
More precise, accounts for 
uncertainty in trade-offs. Can 
account for correlation, if suitable 
data is available. 

Limited if using non-validated or non-
representative probability 
distributions for simulation. Benefits 
or risks are not weighted, shown by 
the fatal adverse event in the 
adalimumab-study, which did not 
seem to affect the simulation analysis. 

(1,14,23,70,72,73,78,91) 

QALY Multiple dimensions are scored and Limited in uncertainty and unique (14,25,92) 
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weighted for preference, outcome 
measured in life years on population 
level. 

(disease/patient) data representation, 
more focussed on health- and 
pharmacoeconomics. Threshold is 
debatable. 

Q-TWiST The method is used to convert time 
into QALYs; time lost due to an ADR 
is subtracted to time gained from 
receiving the treatment. Q-TWiST 
allows comparing benefits and risks 
into a single metrics. Furthermore, 
allowing the inclusion of patients’ 
preferences is considered a valid tool 
for individual BR assessment. 

Although valid for individual 
assessments, it gives more difficulties 
to evaluate BR on a population level. 
Does not allow measuring uncertainty 
around QALYs. The data needed for 
the analysis might be difficult to 
acquire. In addition QALYs might have 
a major influence on the BR outcome. 

(1,22,37,39,49,50,59,75,77,93,94) 

Stated preferences Collection of methods using 
preference values to determine 
utility functions of different 
stakeholders. Measures e.g., the 
extent patients are willing to 
experience unfavourable effects to 
achieve favourable effects. 

Empirical method that does not 
account for uncertainty or weighting. 
Overlaps with conjoint analysis. 
Gathering of individual patient data is 
time consuming.   

(1,14,23,38) 

System dynamics Account for non-linearity using 
feedback and time-delays, both short 
and long term. Possibility of input 
data from different sources. 

No recorded use in drug development. 
Focus on pharmacoeconomics. No 
consideration of (weighted) 
unfavourable effects, such as ADEs. 

(14,55) 

TURBO Simplified method in which only two 
criteria per risk/benefit are scaled up 
with five possible outcomes. Pairs of 
outcomes are weighted and 
assessed. Frequency, probability, 

Very limited in terms of the number of 
criteria. There is no way of knowing 
prior to assessment which criteria to 
choose. Choice might be arbitrary. No 
theoretical basis.  

(14,23) 
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severity and extent are included into 
the choices of criteria. 

 

Table S2. Scoring of Benlysta according to the different criteria, as visualised in the decision tree. FE and UFE are favourable and unfavourable 

effects, respectively. SRI is SLE Response Index, SLEDAI is SLE Disease Activity Index, PGA is Physician’s Global Assessment, BILAG is British Isles 

Lupus Assessment Group, where A indicates severe disease and B less active disease. Secondary favourable endpoints are CS, corticosteroids, 

Flare rate meaning number of new BILAG A cases and QoL measured as mean change in the total score of Short Form 36. SAE are serious adverse 

events, such as tumour development, opportunistic infections or progressive multifocal leukoencephalopathy (PML). *> 25% and to less than 7.5 

mg/day, ** per patient year. Based on (15). 

 

Effects Name Description Best Worst Units Placebo 10 mg  1 mg 

Favourable SRI SLEDAI Improved ≥ 4 100 0 % 41 53 48 

PGA No worsening 100 0 % 66 75 76 

PGA Mean change 1 0 Difference 0,44 0,48 0,45 

BILAG No new A/2B 100 0 % 69 75,2 70,1 

Secondary 
endpoints 

CS sparing Dose reduction*  100 0 % 12,3 17,5 20 

Flare rate New BILAG A cases** 0 5 Frequency 3,51 2,88 2,9 

QoL Mean change SF36 0 100 Difference 3,5 3,4 3,7 

Unfavourable  SAE Potential  100 0  100 0 90 

Infections Life-threatening infections 0 10 % 5,2 5,2 6,8 

Sensitivity 
reaction 

Hypersensitivity reactions 0 2 % 0,1 0,4 0,3 
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Figure S1. Example of decision tree concerning approval of swine flu vaccine in 2009, where decision 

of approval planning is followed by the consequences for disease seriousness. Efficacy branches 

attach to A through D, whereas safety branches to E through G resulting in 24 scenarios with 

calculable event outcomes. Based on (116). 

 

Approve by end Sep

Delay to end Oct

A

B

C

D

Moderate
0.8

Severe
0.2

Moderate
0.75

Severe
0.25

E

G

p
>75%

1 – (p+q)
<25%

p
good
1/100,000

q
poor
1/10,000

F

q
50%

Options Disease seriousness Efficacy Safety
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Figure S2. Outcomes tree based on identified criteria used for the Benlysta example. FE and UFE are 

favourable and unfavourable effects, respectively. SRI is SLE Response Index, SLEDAI is SLE Disease 

Activity Index, PGA is Physician’s Global Assessment, BILAG is British Isles Lupus Assessment Group, 

where A indicates severe disease and B less active disease. Secondary favourable endpoints are CS, 

corticosteroids, Flare rate meaning number of new BILAG A cases and QoL measured as mean change 

in the total score of Short Form 36. SAE are serious adverse events, such as tumour development, 

opportunistic infections or progressive multifocal leukoencephalopathy (PML). Based on (15). 

 

BR balance
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UFE

SRI
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PGA

% improved 4

% improved 6

% no worse
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Mean score

CS sparing
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QoL

Potential SAEs
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Sensitivity reaction



INTEGRATION OF PKPD RELATIONSHIPS INTO BENEFIT-RISK ANALYSIS 

47 
 

 

Figure S3. Different data presentations to evaluate benefit risk balance, in which the cumulative 

weight is calculated and the overall weighted scores are visualised. Left, impact of favourable effects 

(FE) and unfavourable effects (UFE) are shown in green and red, respectively. On the right, all 

different criteria are shown with their impact, which results in a more informative presentation of 

the data. For example, sensitivity reaction to 1mg has decreased impact as compared to placebo or 

10mg. Based on (15). 

BR Balance
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CHAPTER 2 

Model-informed benefit-risk assessment of 
iron chelation in transfusion-dependent 
haemoglobinopathies  
 

Scope and intent of the investigation 
 

 

2.1 General introduction 
Drug approval by regulatory agencies is granted on the basis of the evidence on the safety 

and efficacy profile of a drug, which has been generated throughout the drug development 

phases (1–4). At this stage, decisions about the benefit-risk balance rely on the assumption 

that the data collected are sufficient to allow an unbiased evaluation of the safety and 

efficacy of a given intervention. This assumption may not be valid for all drugs, with a vast 

number of conditions and diseases in which numerous clinical questions cannot be fully 

addressed at the time of approval.  In fact, the use of a question-based approach for the 

review of regulatory submissions by some regulatory agencies has highlighted the relevance 

of understanding which clinical and scientific questions need to be considered for the 

approval of a new drug.  To be effective, such a regulatory process requires sponsors, 

researchers and clinicians to reflect on which data need to be generated, what is already 

known and how both existing and new data are integrated and processed. Moreover, as 

widely recognised by different stakeholders, including regulatory authorities, industry and 

patients (5–7), a clear framework for the assessment of benefit-risk balance (BRB) in which 

quantitative methods are used to translate findings obtained during the development 

process into measures that summarise favourable and unfavourable effects of treatment, is 

still lacking. This situation has resulted in undefined, inconsistent and non-transparent 

decision making (8–10).  

 

Clarity about which clinical and scientific questions need to be addressed as well as the 

availability of quantitative methods to translate findings into summaries of favourable and 

unfavourable effects are requirements that apply to all drugs, but they become even more 

relevant when dealing with special populations, such as the paediatric population, where 

practical and ethical constraints make the process of generating evidence extremely 
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challenging (11–14). These hurdles limit the level of evidence available at the time of the 

first-marketing authorisation, as compared to other populations. In this thesis we focus on 

the current challenges in evidence generation during paediatric drug development. We 

demonstrate how modelling and simulation (M&S) can be applied for evidence synthesis and 

decision making; by the integration of existing and new data, to address essential clinical and 

scientific questions and to support a more comprehensive evaluation of the benefit-risk 

balance of a medicinal product prior to its approval. In addition, the implementation of such 

a framework will allow for better understanding of consequences of an intervention, and 

consequently improve risk management and therapeutic use of medicinal products. The 

examples provided in the following chapters were developed in the context of paediatric 

diseases, but the concepts underpinning the proposed framework can be extrapolated to a 

broader range of diseases and conditions across any patient population. 

 

In order to demonstrate the contribution of modelling and simulation as a tool for more 

effective data generation, evidence synthesis and better decision making, the work 

presented in this thesis will be divided into three main sections, namely: 

1. Optimisation of study protocol design and data generation in children ;  

2. Integration of existing knowledge and mechanism-based parameterisation of drug-

and disease-specific properties; 

3. Use of clinical trial and not-in-trial simulations to complement data generation and 

improve benefit-risk assessment. 

 

An outline of the scope of the research and details on the implementation of the different 

sections are presented in the next paragraphs.   

 

In chapter 1, an overview of the different methodologies currently available for benefit-risk 

assessment (BRA) is presented. Focus is given to differences between qualitative and 

quantitative approaches and the relevance of the latter for accurate decision making about 

the benefit-risk profile of a medicinal product. As recently suggested by EMA, amongst the 

available approaches the use of Multi Criteria Decision Analysis (MCDA) appears to have the 

right features to address the lack of transparency in the way benefit-risk balance is assessed, 

enabling integration of different dimensions or levels of clinical concern during the process 

(15).  

Our review highlights how MCDA can benefit from the use of M&S in order to better define 

the BR balance of a given drug and vice versa, i.e. how concentration-effect relationships can 

provide a stronger basis for understanding benefit and risk, and how pharmacologists can 

gain insight into the therapeutic value of an intervention by jointly evaluating multiple 



SCOPE AND INTENT OF THE INVESTIGATION 

 

51 
 

endpoints. The advantages of such an integrated approach are illustrated by the few 

available examples in the published literature. 

 

The theoretical concepts presented in chapter 1 form the basis for the experimental work 

proposed in this thesis, which will be described in the subsequent paragraphs in this chapter. 

We will make use of chronic iron overload by transfusion-dependent haemoglobinopathies 

as a case study. Iron overload provides all the necessary elements, i.e., a complex 

multidimensional disease condition with short- and long-term complications that can lead to 

different clinical presentations over time. Moreover, it has a sufficiently low incidence to 

allow lessons learned to be applied in other rare paediatric diseases.  

 

2.2 Transfusion-dependent haemoglobinopathies 
Among the transfusion-dependent diseases, -thalassaemia major is one of the most 

common disorders. It belongs to a group of hereditary blood disorders characterised by 

reduced or absent beta-globin chain synthesis. As a result, patients suffer from reduced 

haemoglobin (Hb) levels in red blood cells (RBC) and decreased RBC production followed by 

anaemia (16).  

 

Historically, the majority of thalassaemia patients are located in the Mediterranean 

countries, in the Middle East and Asia. According to the Thalassaemia International 

Federation (TIF), around the world only about 200.000 patients are alive and registered as 

receiving regular treatment (17). Children are usually diagnosed between 6 and 24 months 

after birth. Early clinical symptoms include feeding problems, diarrhoea and progressive 

enlargement of the abdomen caused by spleen and liver enlargement. In some developing 

countries, patients also suffer from growth retardation, poor musculature and skeletal 

changes (18). Individuals affected by -thalassaemia major require regular RBC transfusions 

to survive. Without transfusions or in the presence of poor management of the disease, 

patients often die before the third decade of life. According to the guidelines for the clinical 

management of thalassaemia (17) transfusion intervals should aim to maintain a pre-

transfusion Hb level between 9 and 10 g/dl and a post-transfusion level of 14 to 15 g/dl.  This 

requirement implies the need for frequent blood transfusions, with the most common 

transfusion interval being once every two to four weeks (equal to two to three blood units 

per three weeks). 

A graphical overview of iron distribution and storage is provided in figure 1. In the context of 

transfusion-dependent diseases, it worth mentioning that there is no innate mechanism that 

is able to clear any iron excess from the body. Under normal physiological conditions, iron is 

almost completely recycled within the body.  
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Figure 1. Iron homeostasis. In a balanced state, 1 to 2 mg of iron enters and leaves the body each 

day. Dietary iron is absorbed by duodenal enterocytes. It circulates in plasma bound to transferrin. 

Most of the iron in the body is incorporated into haemoglobin in erythroid precursors and mature 

red cells. Approximately 10 to 15 percent is present in muscle fibres (in myoglobin) and other tissues 

(in enzymes and cytochromes). Iron is stored in parenchymal cells of the liver and reticuloendothelial 

macrophages. These macrophages provide most of the usable iron by degrading haemoglobin in 

senescent erythrocytes and reloading ferric iron onto transferrin for delivery to cells. Adapted from: 

Andrews et al, N Engl J Med. 1999 (19). 
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Iron entry into the cells is regulated by the uptake of iron-transport protein transferrin from 

the plasma. Once chronic RBC transfusion therapy has started, iron exposure in 

macrophages increases, which results in the saturation of transferrin transport capacity. This 

leads to the release of non-transferrin bound iron (NTBI) in plasma.  NBTI can then enter 

important tissues (e.g., in heart and liver) and accumulate over time. As iron is stored in 

tissues mainly as ferritin complexes, once ferritin storage capacity has saturated small 

clusters of ferritin particles will be formed and degraded by lysosomes leading to the 

formation of insoluble masses of hemosiderin (20–26). Over time these masses can cause 

severe organ damage (19,27–31). 

 

Iron overload and chelation therapy 

Even though significant improvements have been achieved in the management of the 

chronic transfusion regimens in the past decades, RBC therapy will eventually lead to a series 

of complications. Iron overload is the most common and relevant one and it is associated 

with several (lethal) co-morbidities such as cardiac dysfunction, liver fibrosis, hypogonadism, 

hypothyroidism, hypoparathyroidism and diabetes mellitus (28,30). Cardiac disease caused 

by myocardial siderosis is the most relevant complication, causing death in 71% of the 

patients affected by transfusion-dependent diseases (27). In the absence of an innate 

mechanism that allows removing iron excess from the body,  treatment with iron chelators is 

essential to prevent iron accumulation and related complications (32–35). An overview of 

iron chelators currently approved for the treatment of iron overload is shown in table 1 (33).  
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Table 1. Summary of the available iron chelators. Adapted with permission from: Kwiatkowski JL. 

Pediatr Clin N Am. 2008; 55:461-82 (33) 

Property Deferoxamine Deferiprone Deferasirox 

Chelator:iron 
binding 

1:1 
 

3:1 2:1 

Route of 
administration 

Subcutaneous or 
intravenous 
 

Oral Oral 

Usual dosage 25-50 mg/kg per 
day 

75 mg/kg per day 20-30 mg/kg per 
day 

Schedule Administered 
over 8-24 hours, 
5-7 days per 
Week 

Three times a day Daily 

Adverse events Local reactions 
Ophthalmologic 
Auditory 
Pulmonary 
Neurologic 
Infectious 

Agranuloctyosis/neutropenia 
Arthralgias/Arthritis 

Gastrointestinal 
disturbances 
Renal 
Insufficiency 

Advantages Long-term data 
Available 

May be superior in removal 
of cardiac iron 

Once daily 
administration 
Only oral 
chelator licensed 
for use in US 

Disadvantages Toxicity 
Compliance 
Problems 

Not licensed for use in 
United States. 
Frequent blood count 
monitoring required 

Long-term data 
lacking 

Drug cost $ $$ $$$ 
 

Iron chelators possess a similar mechanism of action. They act by 1) preventing the uptake of 

NTBI into organs, such as liver and heart; 2) chelating intracellular iron and thus preventing 

its incorporation into ferritin; or 3) intercepting iron released from degraded ferritin (36).   
 

Clinical assessment of iron overload 

The symptoms and signs associated with iron overload can be initially diagnosed and 

assessed by different clinical biochemistry parameters. The most common marker of iron 

imbalance is serum ferritin, which indirectly reflects the correlation between circulating 

levels and total body iron stores (37). The use of serum ferritin alone, as a single clinical 

marker however is not always sufficiently robust to detect iron overload. Ferritin levels are 

also be influenced by other factors such as inflammatory disorders and liver disease (38). 
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Therefore, serial measurements of serum ferritin are still the easiest and least invasive 

method to evaluate iron overload and efficacy of chelation therapy.  

Other methods for the assessment of iron overload focus more on tissue specific 

accumulation. Liver iron concentration (LIC) is considered as the gold standard for the 

evaluation of iron overload. LIC has been shown to correlate well with total body iron 

accumulation (39). The measurement  of liver iron concentration requires,   however,  an 

invasive technique, which may lead to potential clinical complications and bias, such as in 

the case of false negative results (40). Magnetic bio-susceptometry (SQUID) is another 

option for measurement of liver iron accumulation (41). However, it is only available in a 

limited number of centres worldwide. Furthermore, cardiac complications due to iron 

accumulation in the heart have been associated with 50-70% of deaths in thalassaemia 

major patients, mainly at young age (42). Methods for cardiac monitoring were developed 

under the assumption that keeping serum ferritin and LIC level below a certain threshold 

(<2500 μg/L and <7 mg/kg dwt respectively) would lead to decreased cardiac risks. However, 

cardiac dysfunctions were often identified at relative late stage of treatment, suggesting that 

this method was not sufficient for effective intervention. In recent years, magnetic 

resonance imaging (MRI) techniques for assessing iron loading in the liver and heart have 

been introduced and validated for the evaluation of tissue specific accumulation (43). 

 

Clearly, understanding and integration of knowledge about the short and long term 

mechanisms underlying iron overload are lacking. The ability to predict iron organ 

accumulation based on systemic, non-invasive markers such as ferritin will depend on 

further characterisation of dynamic, homeostatic processes.  In this context, accurate details 

of the transfusion history and assessment of the effects of chelation therapy are equally 

important.  

 

 In the next sections we present details of the investigations, which will provide the basis not 

only for the characterisation of the disease, but also for the design and optimisation of 

clinical protocols in children.  These concepts are followed by the introduction to methods 

supporting evidence synthesis as a means to better understand the safety and efficacy 

profile of a drug.  Two important aspects reflect the novelty in the approach described here. 

First the use of a multi-model analysis in which different measures of efficacy and safety are 

derived according to underlying biological or pharmacological correlations, where applicable. 

Second, the integration of clinical data from real and virtual patients, whose responses are 

simulated from the aforementioned models, to improve the assessment of benefit-risk 

profile by multi-criteria decision analysis (MCDA). 
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2.3 Optimising evidence generation in paediatric trials 
Practical and ethical constraints to the implementation of clinical trials in the paediatric 

population (11,12,14), make evidence generation in most paediatric diseases extremely 

challenging. The value of the new data is tremendously higher than in a standard protocol 

involving adults. Yet, little attention has been paid to the opportunities to ensure that high 

quality data are obtained whilst keeping the burden for the children to a minimum.  

As indicated previously, the approval of a medicinal product relies on the ability of a sponsor 

to address clinical and scientific questions regarding the efficacy and safety profile of the 

drug under investigation.  Here factors such as how knowledge is generated in this 

population and which type of data is needed to approve a given therapeutic intervention 

ultimately underpin the validity of the experimental evidence provided in a regulatory 

submission.  In a very simplistic manner, it can be said that three scenarios have been used 

to determine the rationale for paediatric programs, while relying on adults as a reference 

population: 1) if the disease has different features in adults and children, then both 

pharmacokinetic and efficacy/safety data must be generated; 2) if the disease and its 

progression  as well as the main endpoints of interest are similar in the two populations 

bridging concepts can be applied and pharmacokinetic and eventually pharmacodynamic 

data should be sufficient to prove comparable efficacy; 3) in some cases it is also conceivable 

that pathophysiogical processes  and pharmacological mechanisms are sufficiently 

understood to allow extrapolation of efficacy findings from the adult population without the 

need of generating new evidence in children. In all three cases the quality of the data 

collected is crucial to establish not only the effect size of a treatment, but also to define the 

actual benefit-risk profile of the intervention.   

From a clinical and scientific point of view, this implies that high accuracy and precision are 

desirable, irrespective of the nature of the trial. 

 

Whilst the aforementioned scenarios are valuable steps to mitigate the burden of evidence 

generation in children, they also imply the need for generating evidence prior to approval as 

a key requirement. None of these scenarios formally considers how current understanding 

of a drug, disease or patient population in adults can contribute to the decision making 

process for children.  We foresee the integration of available knowledge with clinical data 

can significantly improve one’s ability to assess the benefit-risk profile of a treatment and 

reduce the uncertainty associated with gaps in the data available at the time of submission. 

From a clinical pharmacology perspective, this implies that the concept of bridging could be 

expanded to situations where the disease is different in children and adults. If, such 

differences are simply due to the natural course of the disease, then these differences may 

be predicted by parametric (mathematical) representation of the underlying processes in a 

drug-disease model. This is the situation that we deal with throughout this thesis, i.e., 
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haemoglobinopathies, in which long-term complications, which are the primary 

consequence of iron overload, clearly mark the difference between adults and children and 

can be anticipated using prior knowledge. 

 

Amongst the opportunities for increasing the informative value of data collected in children 

is the possibility of using population pharmacokinetic or pharmacokinetic-pharmacodynamic 

modelling in conjunction with optimal design concepts to reduce sample size and frequency 

in the so-called bridging studies.  

 

Despite the wide clinical experience with iron chelators, and more specifically with 

deferiprone, there is no pharmacokinetic data in children below 6 years of age. Given the 

nature of the disease and its progression, a model-based approach can be used to optimise a 

prospective pharmacokinetic study in children and consequently define the dosing 

requirements in this subgroup. First, we demonstrate in chapter 3 how available 

pharmacokinetic data from adults and adolescents can be characterised by means of a 

population pharmacokinetic model. We then explore how uncertainty about the changes in 

pharmacokinetic properties of deferiprone can be evaluated in conjunction with optimal 

design theory. A proposal for sampling schedule and group size is presented in chapter 4, 

where ED-optimality concepts are used to identify the most suitable sampling scheme in the 

absence of data in the population under investigation. This information will be used to 

support the design of a prospective bridging study in children with less than 6 years of age. 

Subsequently, we show how modelling and simulation enables the evaluation of the 

pharmacokinetics of deferiprone based on sparse data. Dosing recommendations are 

proposed based on the predicted exposure to deferiprone taking into account the parameter 

distributions in the target patient population.  In this investigation, it is worth mentioning 

that dosing recommendations involve more than simply the data obtained in a small group 

of children: it encompasses parameter-covariate interactions, which may not be well 

represented in the trial population. 

Whereas these concepts have been implemented for a specific drug, a similar approach can 

be applied for the evaluation of biomarkers or clinical response.  

 

2.4 Integrated evaluation of efficacy and safety by modelling and 

simulation 
The concepts underpinning the optimisation of pharmacokinetic data collected in 

prospective clinical trials are also extremely important in the evaluation of the 

pharmacodynamics of a drug. In this sense, population PKPD modelling can be applied as a 

tool for evidence synthesis. In addition to the opportunities to increase the informative 

value of data collection in prospective studies, PKPD modelling also address a critical aspect 
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of clinical pharmacology research, i.e., the integration of information  as the basis for the 

evaluation of treatment response when complex and multiple factors  are involved. 

Moreover, the approach enables one to account for multidimensionality, i.e., to evaluate in 

an integrated manner multiple endpoints. The correlation or interdependency between 

endpoints or measures of drug response is currently overlooked when quantitative BR 

analyses are performed. Experimental evidence from clinical trials is handled in empirical 

manner, which disregards the (pathophysiological or pharmacological) mechanisms 

associated with the underlying correlations or interdependencies. PKPD models provide an 

opportunity to quantify such correlations and account for them when performing BR analysis 

and drawing conclusions about the benefit-risk profile of an intervention. It is also worth 

mentioning that understanding of the dynamics of disease and its progression is critical to 

assess the long-term implications of a therapeutic intervention. Such an integrated approach 

will be illustrated by combining clinical data with available knowledge (e.g. epidemiological 

data on background rates of expected co-morbidities; or knowledge acquired on a different 

disease, population or drug of the same class).  

 

More specifically, in the context of chronic iron overload serum ferritin levels are often used 

as markers of total body iron accumulation. Despite known limitations of instantaneous  

serum ferritin levels as a predictor of iron organ accumulation, model-based approaches can 

be developed which incorporate MRI data as well as other measurements (e.g., SQUID or 

LIC) to better describe tissue specific accumulation (see paragraph 2.2.2). However, a 

challenge remains in that such measurements may not be easily performed or feasible in 

young patients.  Therefore, situations exist in which decision-making will have to be guided 

by evidence arising from endpoints which do not reflect drug-disease interaction in the 

target population. An attempt will be made to demonstrate how evidence synthesis by 

modelling and simulation may provide a more robust basis for extrapolating findings from 

adults to children and for translating short-term results into long-term predictions. 

 

In chapter 6 we develop a disease model based on available literature data, in which 

changes in serum ferritin levels are correlated with RBC transfusion regimen. The approach 

is developed in a stepwise manner; first we evaluate basal, physiological changes in serum 

ferritin in healthy individuals by means of a turnover model. Then, the effect of RBC 

transfusions is added into the model to quantify changes in the production rate of ferritin. 

Our investigation provides for the first time in a parametric way, evidence of the relationship 

between blood transfusions and serum ferritin levels. This physiological turnover model 

forms the basis for a more structured evaluation of chelation therapy in transfusion-

dependent iron overload. The approach is subsequently validated in chapter 7, where data 
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from 27 patients affected by transfusion-dependent diseases are used to predict the effects 

of deferoxamine on ferritin levels.  

 

The scope of the drug-disease model for iron overload is not only to establish the relevance 

of ferritin levels as a measure of effective chelation therapy. The ultimate goal will be to 

demonstrate its value as a tool to support decision making in benefit-risk analysis. Of note is 

the opportunity to explore different scenarios in addition to available clinical evidence. Such 

scenarios may provide further insight into the role of differences in patient population 

characteristics and dosing regimens on treatment response as well as enable one to predict 

potential long-term complications based on short-term effects. Given the multidimensional 

nature of benefit-risk profile, our approach involves not only the integration and 

parameterisation of a drug-disease model for efficacy measures, but also for safety 

endpoints. Therefore, in chapter 8, we evaluate the acute and long-term complications of 

iron chelation therapy using the data obtained from patients undergoing chelation with 

deferoxamine. Different adverse events are considered, which reflect typical features of 

adverse drug reactions, including short and long term events, as well as dose-dependent and 

dose-independent effects.  Such a comprehensive analysis is proposed by integrating 

epidemiological (literature) and pharmacological data. In doing so, we also ensure that 

interdependencies and correlations between the different endpoints under evaluation are 

taken into account in a quantitative manner.  

As in many other chronic diseases, compliance to the prescribed dose and dosing regimen is 

an important factor in chelation therapy. We illustrate how patient behaviour regarding 

compliance to treatment contributes to changes in ferritin levels and consequently affect the 

overall benefit-risk profile of an intervention. Simulation scenarios are evaluated in which 

different compliance patterns are used to assess changes in the magnitude and incidence of 

acute and long-term complications.  

 

2.5 Clinical trial and not-in-trial simulations: accounting for 

exposure, disease progression and uncertainty in benefit-risk 

analysis 
Throughout this thesis we have hypothesised that model-guided evidence generation and 

subsequent integration of new clinical data with available knowledge (i.e., evidence 

synthesis) provides a robust framework for characterising the benefit-risk profile of any 

intervention. We also highlight the limitations of current practice in that any attempt to 

establish the benefit-risk profile at the moment of drug approval relies only on the evidence 

generated (e.g. treatment arms tested throughout the drug development phases). Such an 

approach presupposes that the available data are representative of the response profile in 
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target population and suffice to support key decisions about the favourable benefit-risk 

profile and suitability of the recommended dose and dosing regimens. The underlying 

assumptions appear to overlook the fact that in children the natural time course of disease 

occurs in parallel to developmental (physiological) growth and maturation processes. The 

interaction between these processes may lead to significant changes in the benefit-risk 

profile over time and such changes are not evident at the time of approval, nor necessarily 

well captured by long term safety monitoring, as implemented in pharmacovigilance plans. 

Once more we show that a model-based approach can be used in which virtual scenarios are 

created taking into account clinical trial design features, as well as real life factors which are 

known to play a role in clinical practice, such as variable compliance patterns. By performing 

clinical trial simulations and not-in-trial simulations, intrinsic and extrinsic sources of 

variation as well as confounding factors can be appropriately evaluated and incorporated 

into the decision process.  

 

Clearly, most of the points-to-consider described in the previous paragraph are currently 

overlooked or excluded from quantitative BR analysis, independent of the methodology 

used. The highlight of this thesis is therefore presented in chapter 9.,  where we illustrate 

how new evidence (from typical clinical programmes) can be integrated with existing 

knowledge in a parametric manner, using drug-disease models in the context of clinical trial 

protocols or real-life use of the drug. This simulation framework provides a more robust 

basis for establishing the benefit-risk profile of treatment in children.  In fact, clinical trial 

and not-in-trial simulations offer the opportunity to explore scenarios in which the impact of 

covariate factors can be assessed without being limited only to the data available.  

Moreover, we propose the use of Multi Criteria Decision Analysis (MCDA) as the method of 

choice for evaluating real and virtual data together. As discussed in the introduction of this 

thesis, MCDA appears to have the necessary features to characterise and summarise the BR 

profile of a treatment in a systematic and transparent manner. In chapter 9, we perform 

MCDA to establish the benefit-risk profile of iron chelation therapy with deferoxamine in 

thalassaemic patients undergoing frequent transfusions. The drug-disease models developed 

in the previous chapters are used to simulate a range of scenarios; describing typical clinical 

trials and long term follow up. During the analysis the same relative weight is given to both 

types of data, i.e., the available data from clinical trials and the predicted profiles inferred 

from the models. A standard phase III trial (“real data”) is used as a reference scenario and a 

number of alternative dosing algorithms are proposed and compared (“virtual data”). For 

the sake of clarity, here we only look at the optimisation of the dosing regimen and how the 

different options proposed can influence the BR profile. The intent of these scenarios is to 

illustrate how drug-disease models in conjunction with simulations can better support 

regulatory and clinical decision making. A range of applications can be considered, in that 
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the proposed simulation framework could also be used to optimise study design before the 

implementation of clinical trials. But most importantly, it could form the basis for 

personalised medicines. Clinical trial and not-in-trial simulations allow us to quantify the 

impact of relevant covariate factors on treatment outcome, thereby demonstrating the 

implications of treatment and population stratification. 

 

2.6 Conclusions and perspectives 
The results and conclusions drawn from our research are summarised and discussed in 

chapter 10. In this concluding chapter, we revisit the different examples presented in this 

thesis and we attempt to shed light on the issues currently faced by clinicians, sponsors and 

regulators involved with the evaluation of the benefit risk profile of a treatment. We make 

clear that evidence generation has been the paradigm for the development and approval of 

new drugs. This paradigm is inefficient and should be questioned for a number of reasons. 

The assumption that arising evidence from clinical trials discriminates drug-specific 

properties from the underlying progression of disease overlooks shortcomings such as 

limited accuracy and precision of the estimates for endpoints, which will be subsequently 

used for BR assessment.  

We defend the need for a development and approval paradigm which relies on a framework 

which supports evidence generation and evidence synthesis as the basis for approval.  

Clinical events or the absence thereof are not spurious, random features of an intervention. 

They are greatly determined by the patient population, the context in which the treatment is 

assessed and by the dose rationale. In addition, we emphasise in this last section, how 

clinical trial and not-in-trial simulations can be used to complement clinical evidence. We 

envisage that such a framework will provide a more structured basis for BR analysis, 

reducing uncertainties about the changes in benefit-risk profile, which are intrinsic to the 

progression of disease and take place in parallel to maturation developmental growth in 

children.  

 

We conclude this thesis with a set of answers to longstanding clinical questions regarding 

the use of iron chelators in chronic iron overload. The approach used to address those 

questions also highlights opportunities for future research in quantitative pharmacology, 

especially with regard to the development of multidimensional models and the relevance of 

Bayesian statistical inference for the implementation of such models. In our final remarks we 

include suggestions regarding the requirements for the prospective implementation of this 

framework as a tool for regulatory approval and risk management for paediatric medicines. 
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Summary 

Aims: To characterise the pharmacokinetics of deferiprone in healthy subjects using a model-based 

approach and assess the effect of demographic and physiological factors on drug exposure. 

Methods: Data from 55 adult healthy subjects receiving deferiprone (solution 100 mg/ml) were used 

for model building purposes. A population pharmacokinetic analysis was performed using NONMEM 

VII. The contribution of gender, age, weight, and creatinine clearance (CLCR) on drug disposition was 

evaluated according to standard forward inclusion, backward deletion procedures. Model selection 

criteria were based on graphical and statistical summaries.  

Results: A one-compartment model with first order oral absorption was found to best describe the 

pharmacokinetics of deferiprone. Simulated AUC and Cmax (respectively mean of 45.80 mg*h/L and 

17.67 mg/L after 25 mg/kg single dose and 137.40 mg*h/L and 26.50 mg/L after 75 mg/kg b.i.d.) 

were comparable with literature references. Gender differences in the apparent volume of 

distribution (20%) have been identified, which may contribute to an increase in peak concentrations in 

females. Furthermore, simulation scenarios reveal that dose adjustment is required for patients with 

reduced CLCR. Doses of 60, 40 and 25 mg/kg for patients showing mild, moderate and severe renal 

impairment are proposed based on CLCR values of 60-89, 30-59 and 15-29 ml/min, respectively. 

Conclusions: Our analysis has enabled the assessment of the impact of gender and CLCR on the 

pharmacokinetics of deferiprone. Moreover, it provides the basis for dosing recommendations in renal 

impairment. The implication of these covariates on systemic exposure is currently not available in the 

prescribing information of deferiprone. 
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3.1 Introduction 
Patients with β-thalassaemia and other transfusion-dependent diseases develop iron 

overload from chronic blood transfusions and require regular continuous iron chelation to 

prevent potentially fatal iron-related complications (1–5). Deferiprone (DFP) is the most 

extensively studied oral iron chelator to date. DFP is a hydroxypyridone derivative, which 

was authorised in Europe in 1999 for the treatment of iron overload in patients with β-

thalassaemia major when deferoxamine (DFO) is contraindicated or inadequate.  

 

Despite the wide clinical experience with DFP, its pharmacokinetics has not been fully 

characterised in patients. In addition, there are still limited experimental data available on 

DFP in children and no data in children under 6 years of age, where the drug is still used off-

label. Thus far, it has been established that when administered orally, DFP is rapidly and 

completely absorbed. Plasma levels show peak concentrations (Cmax) within 1 hour of 

administration. Food reduces its absorption rate without affecting the overall exposure to 

the drug. In patients with -thalassaemia, the administration of deferiprone at doses of 75 

mg/kg/day as a twice-daily regimen yields Cmax of 34.6 mg/L and area under the plasma 

concentration-time curve (AUC) of 137.5 mg/L • h (6,7). On the other hand,  peak serum 

concentrations were 17.53 mg/L and 11.82 mg/L in fasting and fed state, respectively after a 

dose of 25 mg/kg (8). DFP is for the most part inactivated by glucuronidation (>85%) and 

more than 90% of the drug is removed from plasma within 6 hours of ingestion, with an 

elimination half-life of 1 to 2.5 hours in patients affected by β-thalassaemia (5,6,9–14). DFP 

forms a 3:1 complex with iron, which is removed mainly through the kidneys in a similar 

manner as for the free parent drug. The area under the curve (AUC) of free deferiprone in 

patients shows high inter-individual variability, which may be related to the variation in the 

therapeutic response (5,10–12).  

 

The impact of demographic and other physiological factors on the exposure of DFP has not 

been assessed thus far. In addition, the consequences of such factors for the dosing regimen 

have not been described in the published literature or on the SmPC (Summary of Product 

Characteristics) of the drug. Moreover, no information on dose adjustment requirements is 

provided for patients with hepatic or renal impairment. Given the fast renal elimination of 

the glucuronide metabolite, renal function is expected to play a major role in affecting the 

overall exposure to the parent drug. 

 

The aim of this analysis is to characterise the DFP pharmacokinetics in healthy subjects using 

a model-based approach and assess the effect of demographic and physiological factors on 

drug exposure. Furthermore, it is our endeavour to show the clinical relevance of simulation 

scenarios to evaluate the impact of renal impairment on drug disposition and consequently, 
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for the optimisation of the dosing regimen in special populations. Moreover, we anticipate 

that the availability of population pharmacokinetic model for deferiprone will facilitate the 

evaluation of extrapolation of pharmacokinetic data from adults to children. More 

specifically, it will provide the basis for pharmacokinetic bridging of the dosing regimen for 

the paediatric population. 

 

3.2 Methods 
Data 

The pharmacokinetics of deferiprone was evaluated using data collected from two clinical 

studies: LA20-BA and LA21-BE (15,16), in which healthy subjects received a single dose of 

1500 mg of DFP as a 100 mg/ml solution. The studies have been conducted in full 

conformance with the principles of the Declaration of Helsinki and with the local laws and 

regulations concerning clinical trials. The protocol and the informed consent documents for 

each study have been formally approved by the relevant research ethics committee of each 

clinical site. The data was supplied by ApoPharma Inc, Canada and shared within the DEEP 

consortium (www.deep.cvbf.net). The DEEP consortium addresses an EU call with the 

objective of increasing the knowledge of deferiprone chelation therapy in the paediatric 

population.  

Both study protocols were approved by Ethics Committee and all experimental procedures 

performed according to good clinical practice guidelines. In brief, 55 adult healthy subjects 

(39 males and 16 females) who had received the active medication were included in the 

analysis. Blood samples for the evaluation of deferiprone concentrations were taken before 

and at the following sampling times after dosing: 0.167, 0.333, 0.5, 0.75, 1, 1.333, 1.5, 1.667, 

2, 2.5, 3, 4, 5, 6, 8, 10, and 14 hours. On average, 15 samples were collected per subject. 

Median (range) age (years) and body weight (kg) of the adult population were 39 (19-55) and 

72 (52-92) respectively.  

 

Bioanalysis 

Deferiprone plasma concentrations were analysed by a validated method previously 

developed by ApoPharma (Toronto, Canada) using high performance liquid chromatography 

with UV detection (HPLC-UV). Extraction of deferiprone from supernatant was performed 

after precipitation of plasma proteins by trichloroacetic acid (TCA - 15%) and centrifugation 

at 10,000 g for 20 minutes at 4 ºC.  The analytical column used for the analysis was a 

Hamilton PRP-1 and separation of the chromatogram of interest was achieved using an 

isocratic mobile phase (pH 7.0). The UV detector was set at 280 nm. In a recent review of the 

method, calibration, accuracy and precision estimates have been revisited by our group. The 

analytical range was between 3.13 and 800 µM (equivalent to 0.43 to 111 g/ml); and an R2 

value greater than 0.98 was required to accept the standard curve. The lower limit of 

http://www.deep.cvbf.net/
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quantification (LLOQ) was 1 µM (equivalent to 0.14 g/ml). Inter- and Intra-day accuracy and 

precision were found to be always below 10%, subsequently matching the GLP validation 

criteria (17). 

 

Pharmacokinetic Modelling 

Nonlinear mixed effects modelling was performed in NONMEM version 7.2 (Icon 

Development Solutions, USA). Model building criteria included: (i) successful minimisation, 

(ii) standard error of estimates, (iii) number of significant digits, (iv) termination of the 

covariance step, (v) correlation between model parameters and (vi) acceptable gradients at 

the last iteration.  

Fixed and random effects were introduced into the model in a stepwise manner. Inter-

individual variability in pharmacokinetic parameters was assumed to be log-normally 

distributed. A parameter value of an individual i (post hoc value) is therefore given by the 

following equation: 

θi = θTV * eηi 

in which θTV is the typical value of the parameter in the population and ηi is assumed to be 

random variable with zero mean and variance ω2. Residual variability, which comprises 

measurement and model error, was described with a proportional error model. This means 

for the jth observed concentration of the ith individual, the relation Yij: 

Yij = Fij + εij * W 

where Fij is the predicted concentration and εij the random variable with mean zero and 

variance σ2. W is a proportional weighing factor for ε. 

Goodness of fit was assessed by graphical methods, including population and individual 

predicted vs. observed concentrations, conditional weighted residual vs. observed 

concentrations and time, correlation matrix for fixed vs. random effects, correlation matrix 

between parameters and covariates and normalised predictive distribution error (NPDE) 

(18,19).  Comparison of hierarchical models was based on the likelihood ratio test. A 

superior model was also expected to reduce inter-subject variability terms and/or residual 

error terms.  

 

Covariate analysis 

Continuous and categorical covariates were tested during the analysis. The relationship 

between individual PK parameters (post-hoc or conditional estimates) and covariates was 

explored by graphical methods (plot of each covariate vs. each individual parameter). 

Relevant demographic covariates (body weight, age, gender, creatinine clearance) were 

entered one by one into the population model (univariate analysis). After all significant 

covariates had been entered into the model (forward selection), each covariate was 

removed (backward elimination), one at a time. The model was run again and the objective 
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function recorded. The likelihood ratio test was used to assess whether the difference in the 

objective function between the base model and the full (more complex) model was 

significant. The difference in – 2Log likelihood (DOBJF) between the base and the full model 

is approximately χ2 distributed, with degrees of freedom equal to the difference in number 

of parameters between the two hierarchical models. Because of the exploratory nature of 

this investigation, for univariate analyses, additional parameters leading to a decrease in the 

objective function of 3.84 was considered significant (p<0.05). During the final steps of the 

model building, only the covariates which resulted in a difference of objective function of at 

least 7.88 (p<0.005) were kept in the final model. 

 

Model validation 

The validation of the final pharmacokinetic model was based on graphical and statistical 

methods, including visual predictive checks (15). Given the importance of the validation 

procedures for the subsequent use of a model for simulation purposes, in this study we have 

included a wide range of diagnostic methods to assess the accuracy of the parameter 

estimates and the predictive performance of the model (16). Bootstrap was used to identify 

bias, stability and accuracy of the parameter estimates (standard errors and confidence 

intervals). The bootstrap procedures were performed in PsN v3.5.3 (University of Uppsala, 

Sweden) (20), which automatically generates a series of new data sets by sampling 

individuals with replacement from the original data pool, fitting the model to each new data 

set. Subsequently, parameter estimates were used to simulate plasma concentrations in 

subjects with similar demographic characteristics, dosing regimens and sampling scheme as 

in the original clinical studies. Mirror plots were also generated to evaluate the variance-

covariance structure of the parameters in the model, which is reflected by the degree of 

similarity between the original fit and the pattern obtained from the fitting of the simulated 

data sets using the final pharmacokinetic model. 

In addition to the graphical analysis, posterior predictive check was performed using AUC 

(area under the plasma concentration vs. time curve) and Cmax (peak plasma concentration) 

as a measure of model performance. AUC and Cmax values were calculated non-

compartmentally by trapezoidal method from simulations of 1000 data sets with the same 

demographic characteristics, dosing regimens and sampling scheme as in the original clinical 

studies. 

The distribution of model-predicted AUC and Cmax values were presented for geometric 

mean, lower and upper boundaries of the 95% confidence intervals and compared to the 

findings from non-compartmental analysis in the two clinical studies. Model performance 

was demonstrated by the location of the original estimates across the predicted distribution 

(histograms). 
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Simulation scenarios 

Simulations were performed using the final model to assess whether predicted secondary PK 

parameters, such as AUC and CMAX would be in line with literature references (7,14,21). 30 

simulated patients (15 males and 15 females) with a mean body weight of 55 kg (sd 8.4) 

received DFP under the following dosing recommendations: 25 and 75 mg/kg/day. 

Furthermore, additional simulation scenarios were evaluated to assess the implications of 

renal impairment for the pharmacokinetics of deferiprone in a group of patients with similar 

demographic characteristics, as described above. Taking into account the correlation 

between the reduction in creatinine clearance and the severity of renal impairment, three 

scenarios were considered, including 80, 50 and 25% of the normal clearance values. They 

were meant to reflect the changes in renal function in mild, moderate and severe 

impairment, respectively.  Simulated patients received 75 mg/kg/day DFP and their exposure 

was compared to healthy subjects (reference population). Dosing regimens were adjusted to 

ensure that deferiprone exposure similar to the levels observed in the reference population 

is achieved and maintained irrespective of the degree of renal impairment.   

 

3.3 Results 
Population Pharmacokinetic Modelling 

The pharmacokinetics of DFP was best described by a one-compartment model with first-

order absorption, lag-time to central compartment, and first-order elimination. Inter-

individual variability (IIV) could be estimated for apparent clearance (CL/F), apparent volume 

of distribution (V/F), and absorption rate constant (Ka). Residual variability was 

characterised by a proportional error model with a weighting factor. 

During covariate model selection, the effect of age, gender and body weight was tested on 

relevant pharmacokinetic parameters. Initially when tested separately, significant effects of 

gender on V/F and body weight on CL/F and V/F were identified and described according to 

a linear model. However, despite statistical significance and improvement in the goodness-

of-fit,  the inclusion of body weight on either CL/F or V/F also led to an important reduction 

in model stability during bootstrapping procedures, which is likely caused by the limited 

range of the covariate values in the study population. Therefore, only gender on V/F was 

retained in the final model. This resulted in a better description of the data, subsequently 

increasing the model performance. An overview of the parameter estimates is presented in 

Table 1. 

 



POPULATION PHARMACOKINETICS OF DEFERIPRONE IN HEALTHY SUBJECTS 

73 

 

Table 1. Population pharmacokinetic parameters of deferiprone and bootstrap results. 

 Final model Bootstrap = 500 runs 

Parameters Estimate Median CV (%) 

CL/F (L/h) 30.8 30.9 3.12 

V/F males (L) 78.4 78.53 2.39 

Ka (h-1) 8.2 8.73 29.2 

Lagtime (h-1) 0.146 0.145 3.93 

Error: weighting factor 2.4 2.41 15.26 

V/F females (L) 65.3 65.3 3.88 

Eta CL/F (%) 0.057 (23.87 %) 0.0557 (23.6 %) 17.59 

Eta V/F (%) 0.0278 (16.67 %) 0.0267 (16.34 %) 20.22 

Block CL-V 0.0345  0.0335 20 

Eta Ka (%) 0.991 (99.54 %) 1.00 (100 %) 23.8 

Sigma (%) 0.00566 (7.52 %) 0.00568 (7.53 %) 25.88 

 

 

Internal model validation diagnostics were satisfactory. Individual predicted profiles and 

goodness-of-fit plots reveal that the model provides an adequate and non-biased description 

of the data, as shown in Figure 1 and 1S (see supplemental material in appendix).  In 

addition, despite a small deviation at the tails of the distribution, NPDE summaries (Figure 

2S, see supplemental material in appendix) show that the discrepancy between predicted 

and observed values can be assumed to be normally distributed.  
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Figure 1. Visual Predictive Check and a random selection of individual plots. VPC on the left panel: 

observed data are plotted using blue circles; the black solid line represents the median of the 

simulated data; the red solid lines represent the 5th and 95th percentiles of the simulated data. 

Individual plots of 4 randomly selected patients: observed data are plotted using blue circles; the 

black solid line represents the population prediction (Pred) and the red solid line represents the 

individual predictions (IPred). 

 

The predictive performance of the model in subsequent simulations was deemed critical to 

achieve the objective of our analysis. To this purpose, mirror plots were therefore used to 

assess whether the variance and covariance structures have been well characterised. Lastly, 

the median parameter estimates from the bootstrap analysis were found to be in close 

agreement with the results observed during the original fitting. Results from the bootstrap 

analysis are presented in Table 1. Overall these diagnostic techniques confirm that the final 

model is suitable for the purposes of data simulation. 

 

Simulation scenarios 

First an attempt was made to perform external validation of the model by deriving 

secondary parameters (AUC and Cmax) and comparing model-predicted estimates literature 

references (7,14,21). As shown in Figure 2, reference values lie within the distribution of 
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simulated AUC and Cmax, for which the  mean and 90% CI were 45.80 (44.42-47.17) mg*h/L 

and 17.67 (17.13-18.20) mg/L,  respectively after administration of a single oral dose of 25 

mg/kg deferiprone and 137.40 (133.27-141.52) mg*h/L and 26.50 (25.70-27.29) mg/L, 

respectively after administration of 75 mg/kg/day dose as a twice-daily regimen. Despite the 

gender differences in the volume of distribution, no signifcant differences observed when 

comparing Cmax values. This may be explained by the limited number of females in our 

analysis as well as by the differences in deferiprone formulation used in past protocols. 

 

 
Figure 2. Comparison of secondary PK parameters (Cmax and AUC) with literature references. 

Predicted DFP exposure expressed as CMAX and AUC for adult patients receiving 25 mg/kg as a single 

dose and 75 mg/kg/day b.i.d. The dashed black lines depict the mean simulated values, whereas the 

solid coloured lines depict published results (7, 14, 17). Percent of total indicates the percentage of 

cases for each beam of 100 simulations with 55 patients in each simulated trial. 

 

As the population available for the analysis was limited to healthy volunteers, the impact of 

another important covariate could not be estimated during the fitting procedures, namely, 

the role of glomerular filtration as determined by changes in creatinine clearance. Therefore 
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a simulation-based approach was used to quantify the implications of renal impairment for 

the disposition of deferiprone. Systemic exposure expressed as AUC was simulated for three 

scenarios representing mild, moderate and severe impairment and compared to the 

estimates obtained for healthy subjects.  It is evident from Figure 3 that over-exposure 

occurs when comparing the three sub-populations receiving 75 mg/kg/day DFP with the 

reference data, particularly in the case of moderate and severe impairment. Given the 

magnitude of the increase in systemic exposure, dose adjustment should be recommended 

for patients with renal impairment.  

 

 
Figure 3. AUC distributions: 80, 50 and 25% of total clearance (DFP 75 mg/kg/day). Predicted DFP 

exposure expressed as AUC for adult patients receiving 75 mg/kg/day and presenting 80%, 50% and 

25% of the total clearance respectively. The black line represents the median of the reference 

population which presents normal renal function, whereas the red lines represent 5th and 95th 

percentiles of the same reference population. Percent of total indicates the percentage of cases for 

each beam of 100 simulations with 55 patients in each simulated trial. 
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As shown in Figure 4, dose adjustments can be considered that allow for deferiprone 

exposure to be maintained at the desired levels for all three scenarios.  In addition, Figure 5 

depicts the consequence of reduced clearance for the systemic exposure of deferiprone 

assuming first-order pharmacokinetics in this population. Doses of 60, 40 and 25 mg/kg for 

patients showing mild, moderate and severe renal impairment are proposed based on 

creatinine clearance values of 60-89, 30-59 and 15-29 ml/min, respectively. An overview of 

these recommendations is summarised in Table 2. 

 

 
Figure 4. AUC distributions: 80, 50 and 25% of total clearance (new dosing recommendations). 

Predicted DFP exposure expressed as AUC for adult patients receiving the adjusted dosing 

recommendation based on the severity of renal impairment. The three populations present 80%, 

50% and 25% of the total clearance respectively. The black line represents the median of the 

reference population which presents normal renal function, whereas the red lines represent 5th and 

95th percentiles of the same reference population. Percent of total indicates the percentage of cases 

for each beam of 100 simulations with 55 patients in each simulated trial. 
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Figure 5. AUC – Dose relationship: 80, 50 and 25% of total clearance. AUC – Dose relationship in the 

presence of renal impairment. The open circles represent the reference population with normal renal 

function. The open triangles, filled circles and filled triangles represent mild (80%), moderate (50%) 

and severe (25%) renal impairment respectively. 
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Table 2. New dosing recommendations for renal impairment. 

Scenarios Degree of 

impairment 

CrCL 

 (ml/min) 

Standard dosing 

recommendations 

Proposed dosing 

recommendations 

80% of total 

Clearance 

Mild 60-89 75 mg/kg/day 60 mg/kg/day 

50% of total 

Clearance 

Moderate 30-59 75 mg/kg/day 40 mg/kg/day 

25% of total 

Clearance 

Severe 15-29 75 mg/kg/day 25 mg/kg/day 

 

3.4 Discussion and Conclusion 
As generally known, inter-individual variability in PK can significantly affect the outcome of a 

given therapeutic intervention. Therefore, full optimisation of the therapeutic regimen 

cannot be achieved without taking variability into account. The use of model-based 

approaches for the evaluation of the dose rationale and personalisation of dosing regimens 

for subgroups of patients and special populations has become an invaluable tool as it allows 

characterisation and quantification of the contribution of different sources of variability to 

the overall pharmacokinetic properties. This has an even larger impact when considering 

special populations and rare diseases, as is the case of transfusion dependent diseases and 

other pathologies associated with renal and hepatic impairment. Despite the continuous 

emphasis on the need for evidence-based clinical and regulatory decisions, modelling and 

simulation is becoming an essential component of evidence synthesis, which ultimately 

underpins decisions and  recommendations (22–24).  

 

Deferiprone Pharmacokinetics 

With this analysis we show how population pharmacokinetics can be used to explore the 

implications of different sources of variability on the exposure of the oral iron chelator 

deferiprone. The estimates of the main parameters of interest (table 1) were in line with 

previously published results (6,7,10–13,21,25–27). As shown in figure 2, similar agreement 

was also observed for the secondary PK parameters (AUC and Cmax). By contrast, no gender 

differences have been identified in previous studies. In this respect, our analysis illustrates 

the importance of parametric methods for accurate evaluation of covariate effects. We have 

quantified gender differences in the apparent volume of distribution, where V/F was 

estimated to be 78.4 and 65.3 L in males and females, respectively (i.e., a 20% difference 

between the two groups). Assuming that overall exposure (AUC) rather than Cmax is the 

primary determinant of response, these differences are likely to have minor clinical 

implications. 
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Dosing recommendations in patients with renal impairment 

Considering the lack of details in the label of DFP regarding the dose rationale for special 

populations, it was our interest to provide insights on dosing recommendations for patients 

with renal impairment, which occurs as co-morbidity in thalassaemia. Given that, 

independently of the metabolic rate, 90% of the total drug (free, metabolised and iron-

complex) is excreted in the urine within 5 to 6 hours of ingestion, we have assumed that 

renal impairment would be clinically more relevant, as compared to hepatic impairment. We 

have selected a discrete number of scenarios to describe different levels of impairment 

(mild, moderate and severe). As could be anticipated for any drug with primary renal 

elimination (28,29), use of the standard recommended dose of 75 mg/kg/day leads to 

overexposure to deferiprone; especially when clearance is reduced beyond 50% of the 

normal range. Taking into account the deferiprone levels associated with effective response, 

dosing regimens are proposed for the three sub-populations allowing exposure to remain 

comparable to values observed in patients with normal renal function. 

 

A look into the future: rare diseases and special populations 

As discussed above, model-based approaches can be critical for therapeutic decisions when 

limited evidence is available. This is certainly the case for transfusion dependent diseases, 

especially when considering young paediatric patients, for whom limited data or no data 

exist and the use of DFP is still off label.  

Our analysis represents the first attempt to synthesise current knowledge on the 

pharmacokinetics of deferiprone and subsequently optimise the dosing regimen in special 

populations. In addition to renal impairment, we envisage the use of this model for the 

optimisation of clinical trial design in children. It is worth mentioning that  optimisation of 

protocol design may enable the use of smaller cohorts as well as a considerable reduction in  

the burden associated with sampling procedures thanks to the use of sparse sampling 

techniques.  

 

Limitations and Assumptions 

Given that the model has been developed on data collected in healthy subjects, questions 

arise about the relevance of the parameter estimates for the target patient population. No 

differences have been found in previous analyses between healthy individuals and patients. 

In the work carried out by Stobie et al. (21), who compared the pharmacokinetics of DFP in 

healthy individuals with patients affected by β-thalassaemia, only a slight difference in the 

apparent volume of distribution was observed, but the results were found not to be 

statistically significant (6,21). Most importantly, the authors did not find any differences in 

the drug clearance between the two groups. Moreover, AUC and Cmax values simulated by 

our model (figure 2) were comparable with published data obtained in patients treated with 
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DFP. We have to acknowledge that a lower mean Cmax is observed when comparing 

simulated data and reference data at 75 mg/kg/day b.i.d. This could be the consequence of a 

difference in the Vd observed in patients and/or differences in the formulation. Having said 

that, we anticipate that such a change should have limited clinical implications for the 

following reasons: overall exposure is the determinant of the response and AUC values were 

comparable between the two groups; an increase in Cmax is not expected to have 

consequences from a safety perspective, as discussed also for gender differences; and 

additionally the recommended dosing regimen is given as a three times daily administration 

which further reduces the impact of Cmax changes. We believe therefore that eventual 

differences in haemodynamics in patient affected by transfusion dependent diseases will not 

be relevant for the overall disposition properties of deferiprone. 

 

Conclusion 

In conclusion, our analysis has allowed the identification of the effect of gender on the 

volume of distribution of DFP and enabled the evaluation of the dosing requirements for 

patients with renal impairment. The changes in dose regimen proposed for this special 

population should be considered when prescribing DFP to this population. 
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 Appendix 

 
Figure 1S: Goodness-of-fit Plots. Upper panels show the observed data (Obs) vs. population 

predictions (Pred) (left) and the observed data vs. individual predictions (IPred) (right). Lower panels 

show the conditional weighted residuals (CWRES) vs. population predictions (left) and the CWRES vs 

time (left). 
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Figure 2S: Model validation: normalised prediction distribution errors. Upper panels show the QQ-

plot of the distribution of the NPDEs for a theoretical N (0, 1) distribution (left) and the histogram of 

the distribution of the NPDE together with the density of the standard normal distribution (right). 

Lower panels show the NPDEs vs. time (left) and NPDEs vs. individual predictions (right). 
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Summary 

Despite a wide experience with deferiprone, the optimum dosage in children aged less than 6 years 

remains to be established. This analysis is aimed at optimizing the design of a prospective clinical 

investigation for the evaluation of deferiprone pharmacokinetics in children. A one-compartment 

model with first order oral absorption was used for the design optimization. Different sampling 

schemes were evaluated under the assumption of a constrained population size. A sampling scheme 

with 5 samples post-dose per subject was found to be sufficient to ensure accurate characterization of 

the pharmacokinetics of deferiprone. Whereas the accuracy of parameters estimates was high, 

precision was slightly reduced due to the small sample size (> 30% for Vd/F and KA). AUC values 

(mean and SD) were found to be 33.37 (19.24) and 35.61 (20.22) μg/ml.h and Cmax values 10.17 

(6.05) and 10.94 (6.68) μg/ml in sparse and frequent sampling respectively. The results illustrate how 

ED-optimality concepts can be used to support PK bridging. Predefined sampling schemes and sample 

sizes do not warrant accurate model structure and parameter identifiability. Of importance is the 

accurate estimation of the magnitude of the covariate effects, as they may determine the dose 

recommendation for the population of interest. 
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4.1 Introduction 
Patients with β-thalassaemia and other transfusion-dependent diseases develop iron 

overload from chronic blood transfusions and require regular iron chelation to prevent 

potentially fatal iron-related complications 1–5. Deferiprone (DFP) is the most extensively 

studied oral iron chelator to date. It has been authorized in Europe in 1999 for the treatment 

of iron overload in patients with β -thalassaemia major when deferoxamine (DFO) is 

contraindicated or inadequate. Despite a wide experience of DFP there are limited 

experimental data available on DFP in children and no data in children under 6 years of age.  

 

Clinical studies, mostly in patients with beta-thalassaemia, have demonstrated that 

deferiprone at 75 to 100 mg/kg/day is capable of reducing iron burden in regularly 

transfused iron-overloaded patients 5–10. The degree of iron loading is directly related to the 

level of iron intake from transfusions. Iron excretion with DFP, like with any chelator, was 

found to be dose-related. However, factors affecting response to deferiprone appear to 

include the degree of iron overload and duration, dosage and compliance with therapy. 

Although few long term comparative data are available, DFP at the recommended dosage of 

75 mg/kg/day appears to be non-inferior to deferoxamine in the adult population. However, 

compliance is superior with DFP 5,11. 

The optimum dosage of DFP in children less than 6 years of age remains to be established. 

Given that dose adjustment may be required in children, the aforementioned findings 

highlight the need for optimizing the dosing regimen and gathering supporting evidence for 

the dose rationale for subsequent assessment of efficacy in the pediatric population. 

 

The information available so far in the adult population can be used to integrate the lack of 

knowledge in the pediatric population. The E11 guideline of the International Conference on 

Harmonization (ICH) supports the use of PK bridging concepts for the development of drugs 

in the pediatric population. Nevertheless, bridging studies can be implemented only if the 

following criteria are met: in the populations of interest the medicinal product should have 

the same indication, the disease process should be similar and the outcome of therapy 

should comparable 12. This is true and applicable to patients affected by β-thalassaemia or 

other transfusion-dependent diseases.  

 

Practical and ethical constraints impose special requirements for clinical trials in children 12–

15. The application of population pharmacokinetic (PK) analysis and PK bridging to sparse 

data allows reducing the burden in such a vulnerable population; yet it is important to 

optimize the quality of the information gathered.  

The quality of the study can be dramatically improved through design optimization analysis. 

However, a PK model is needed to apply this methodology. When extrapolating information 
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from adults to children we have to make use of a hypothetical model which is derived from a 

different population than the population of interest. ED-optimality concepts can be applied 

to handle the uncertainty during the optimization procedure. Several studies have already 

shown how ED-optimization can be successfully applied to the design of clinical studies in 

children when extrapolating information from the adult population 16–21.  

 

Based on simulation scenarios that take into account the impact of developmental growth, 

the aim of this analysis is to optimize the sampling times for the evaluation of the 

pharmacokinetics of deferiprone in a prospective clinical investigation in children younger 

than 6 years of age. The results of this trial will be subsequently used to define the most 

appropriate dosing regimen for this population.  

 

4.2 Methods 
Prospective Clinical Study: Design 

A prospective study has been proposed to establish the pharmacokinetics of deferiprone in 

children. This will be investigated in a prospective multi-centre, randomized, single blind, 

and single dose study in patients affected by transfusion dependent heamoglobinopathies 

aged less than 6 years. Sample size of the study will range between a minimum of 18 up to a 

maximum of 30 evaluable pediatric patients. Patients will be randomized to three dose 

levels (8.3, 16.7 and 33.3 mg/kg) and will be exposed to a single dose of deferiprone. A 

maximum of 5 samples will be collected per patient. An optimization algorithm will be 

applied to evaluate the best sampling times in order to ensure high precision in parameter 

estimates and PK model identifiability.  

 

Sampling Times Optimization 

Several actions have been taken throughout the analysis that can be summarized in 6 major 

steps as depicted in the following flow-chart (Figure 1). Each step will be briefly discussed in 

the following paragraphs. 
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Figure 1. Data analysis flowchart. 

 

Hypothetical PK Model  

A one-compartment PK model with first-order absorption, lag-time to central compartment, 

and first-order elimination was used for the optimization of the sampling scheme 22. 

Between-subject variability (BSV) was estimated for apparent clearance (CL/F), apparent 

volume of distribution (V/F), and absorption rate constant (Ka). Residual variability was 

characterized by a proportional error model with a weighting factor.  

 

Competing Models: extrapolation to the pediatric population  

The reference model was previously developed by our group to explore DFP exposure in 

adults 22. With the purpose of optimizing the design of a prospective pediatric trial, the 

original model has been modified with the inclusion of two different covariate models, 

namely M1 (body weight linearly correlated with CL/F and V/F), and M2 (fixed allometric 

scaling: exponent of 0.75 on CL/F and 1.00 on V/F), in order to extrapolate deferiprone 

exposure to children.  

 

Bearing in mind the objective of extrapolation across populations, focus was given to the 

model validation steps, which yield information about the variance structure and variance-

covariance matrix. Visual predictive check (VPC) and NPDE summaries have been used to 

validate the model and to assess the suitability for simulation purposes. The software 

NONMEM (non-linear mixed effect modeling; release version 7.2.0) has been used for the 

procedure.  

 

M1: the inclusion of body weight as a covariate on CL/F and V/F according to linear models 

was found to give the highest improvement in model performance in the previous 

investigation. The covariates were not included due to increase in model instability. In this 

case, given the different objective, we have considered including weight on CL/F and V/F 

into the final covariate model.  
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M2: Since the purpose of the analysis is to extrapolate information to the pediatric 

population, the use of allometric scaling (one of the current standard approach to 

extrapolate across populations) has been considered to evaluate possible discrepancies in 

optimizing the sampling schedule with two different approaches. Model parameters have 

been re-estimated with the new covariate relationships and the model has been tested for 

simulation purposes.  

 

Diagnostic criteria, such as visual predictive checks and NPDE summaries have been used to 

assess model performance before the optimization of the study design (ED optimality) would 

be implemented. For both M1 and M2, Visual predictive check (VPC) plots indicate that 

model is not biased and is suitable for simulation purposes. In addition, NPDE summaries 

indicate that the discrepancy between predicted and observed values can be assumed to be 

normally distributed. VPC and NPDE for both models are provided in Figures S2 to S5 (see 

Appendix). 

 

Optimization steps (and criteria) 

The two hypothetical models have been used to identify the optimal sampling schedule in 

children after single dose deferiprone. The software for population experimental design 

“PopED” (release version 2.12) has been used to optimize sampling times and to assess 

precision in parameter estimates by evaluating the coefficient of variation (CV) for each 

parameter 23–27. Subsequently, the software NONMEM (non-linear mixed effect modeling; 

release version 7.2.0), has been used after sampling times optimization in order to assess 

model stability, and accuracy (RE: relative error) and bias (SME: standard mean error) in 

parameters estimates.  

The following 4 scenarios have been evaluated in PopED to account for possible 

discrepancies between the two covariate models and differences in sample size: 

a) M1 with 18 subjects;  

b) M1 with 30 subjects;  

c) M2 with 18 subjects; and  

d) M2 with 30 subjects.  

Sampling times have been optimized in the 4 scenarios for a simulated pediatric population 

which presented the following demographic characteristics: 50% males and females, and 

mean body weight of 20.5 kg (SD: 5.4). Subjects have been randomized to 3 dose levels as in 

the study design described above. 

 

Information gathered through the optimization of the sampling times in PopED has then 

been used to create seven new realistic scenarios (each consisting of 3 sampling schemes) as 
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a result of a compromise between full optimization and feasibility in a real clinical trial. The 

seven scenarios have been compared and evaluated in order to define the final sampling 

schedule for the PK study. Furthermore, an extra scenario, consisting of an empirical, non-

optimized sampling scheme has been evaluated along with the previous seven.  

Given that no significant differences have been observed between the original four scenarios 

in PopED, scenario “a” (M1 with 18 subjects) has been selected and used for the final 

optimization step; this allowed also reducing significantly the computational effort of the 

analysis.  

 

4.3 Results 
Sampling times optimization in PopED 

The results of the optimization of the sampling times is summarized in Figure 2, where the 

actual sampling times obtained in the 4 scenarios (“a”, “b”, “c”, “d”) are plotted. Each bar 

represents a sampling time selected during the optimization procedure, whereas each color 

indicates the contribution (in percentage) of the different scenarios.  

 
Figure 2. Sampling times obtained by ED-optimality. Sampling times selected during the optimization 

steps using ED-optimality: in red, green, dark blue and light blue are shown the time selected for 

scenarios a, b, c and d respectively. Percent of total indicates the percentage of cases for each set of 

optimized sampling times generated by PopED. 
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The data suggest that, independently of model and number of subjects, approximately 92% 

of sampling times should be collected within three intervals, namely:  

- time window A: 32% in the range 10 to 20 minutes; 

- time window B: 37% between 40 and 80 minutes; 

- time window C: 23.75% after 200 minutes; 

 

Based on the information collected in the previous step, and bearing in mind the 

compromise between full optimization and feasibility in a real clinical trial, seven sampling 

schemes (shown in Table 1 as scheme 1 to 7) have been generated and subsequently 

evaluated in PopED and NONMEM. 

 

Table 1. Scenarios evaluated for sampling scheme selection. 

Scenario Sampling schemes Scenario Sampling schemes 

0 Optimal Design 5 a: 10, 25, 50, 70, 360 
b: 15, 45, 60, 270, 420 
c: 20, 55, 75, 330, 480 

 
1 

a: 10, 25, 45, 70, 360 
b: 15, 40, 60, 180, 420 
c: 20, 55, 75, 240, 480 

 
6 

a: 10, 40, 65, 85, 360 
b: 15, 45, 60, 270, 420 
c: 20, 55, 75, 330, 480 

 
2 

a: 10, 30, 45, 180, 360 
b: 15, 40, 60, 240, 420 
c: 20, 50, 75, 300, 480 

 
7 

a: 10, 40, 65, 85, 360 
b: 15, 50, 70, 270, 420 
c: 20, 55, 75, 330, 480 

 
3 

a: 10, 40, 70, 180, 360 
b: 15, 50, 80, 240, 420 
c: 20, 60, 90, 300, 480 

8* 30, 60, 120, 240, 480 

 
4 

a: 10, 25, 50, 75, 330 
b: 15, 45, 60, 240, 360 
c: 20, 55, 75, 270, 420 

/ / 

* Empirical sampling scheme reflecting the current practice, i.e., non-optimised design. 

 

Evaluation of seven realistic sampling schemes 

As previously mentioned in the methods section, given that no major differences have been 

observed in the previous step between the two different models (M1 and M2) and different 

number of subjects (18 vs. 30), only model M1 with a total number of 18 subjects was used 

for the second part of the optimization. 

Table S1 (see Appendix) shows the coefficient of variation (CV) for the different scenarios 

compared to the optimal sampling scheme. No major differences can be observed between 

the different scenarios, except for the non-optimized scheme (number 8) in which a 

remarkably higher uncertainty for the following parameters can be observed: CL slope, V 
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slope, and Ka. Furthermore, results clearly highlight the poor performance of the model if an 

empirical (non-optimized) pharmacokinetic sampling scheme is used. 

Table S2 (see Appendix) shows model stability results based on NONMEM stochastic 

simulation and estimation (SSE). In this overview, schemes 3 and 7 show higher stability, as 

compared to the other sampling schemes. On the other hand, scheme 8 shows the worst 

result out of the 9 scenarios. Finally, Figures 3, 4 and S1 (for Figure S1 see Appendix) show 

measures of accuracy (RE) and bias (SME) for the main parameters of interest for the 

different sampling schemes. 

Altogether, scheme 7 was the closest one to the fully optimized sampling scheme, providing 

the best combination of results in terms of bias (SME) and accuracy (RE) of parameters 

estimates. This was also true in terms of model robustness, with only 1 failed minimization 

and 435 successful covariate steps out of 500 runs (Table S2; see Appendix).  
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Figure 3. SME and RE for the slope parameters describing the effect of body weight on clearance and 

volume of distribution. Standard Mean Error (SME) and Relative Error (RE) estimates indicate, 

respectively, the bias and accuracy in parameter estimates for the different sampling schemes. Top 

panels: summary for the slope parameter describing the effect of body weight on clearance. Bottom 

panels: summary for the slope parameter describing the effect of body weight on volume of 

distribution.  

 

 
Figure 4. SME and RE for the volume of distribution in males and females. Standard Mean Error 

(SME) and Relative Error (RE) estimates indicate, respectively, the bias and accuracy in parameter 

estimates for the different sampling schemes. Top panels: summary for volume of distribution in 

males Bottom panels: summary for volume of distribution in females. 
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Secondary PK parameters: sparse sampling vs. rich sampling 

To further assess the suitability of scheme seven for the prospective PK study, focus was 

given to the ability of the model to predict secondary PK parameters. Model-predicted AUC 

and Cmax based on the sparse sampling scheme were compared with estimates obtained 

according to a rich sampling scheme (12 samples per subject). AUC has been calculated with 

the trapezoidal rule.   

 
Figure 5. AUC and CMAX estimation using sparse (5) vs. frequent (12) sampling. Model predicted 

deferiprone systemic exposure expressed as AUC and Cmax. The final scheme selected during the 

optimization procedure (scheme 7) with sparse sampling (5 samples) is compared with rich sampling 

(12 samples). Top panels: histogram and boxplot describing the distribution of Cmax. Bottom panels: 

histogram of the distribution of AUC. Percent of total represents the percentage of cases for each set 

of 500 simulations with 18 patients in each simulated trial. Red: sparse sampling; Blue: rich sampling; 

Green: overlapping area. 
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As shown by the distributions and box-plots of AUC and Cmax (Figure 5), no significant 

differences were detected for sparse and frequent sampling. AUC values (mean and 

standard deviation) were found to be 33.37 (19.24) and 35.61 (20.22) μg/ml.h and Cmax 

values 10.17 (6.05) and 10.94 (6.68) μg/ml in sparse and frequent sampling respectively. 

 

4.4 Discussion and Conclusion 
Clinical trials in children represent a very challenging phase in drug development. Given the 

ethical and practical constraints imposed to experimental protocols in this vulnerable 

population 12–15, the information gathered per subject becomes significantly more 

important, as compared to the adult population. In addition, increasing evidence suggests 

the lack of suitability of empirical protocols in pediatric research. This limitation has 

therefore prompted clinical scientists and drug developers to  consider the use of alternative 

approaches for the evaluation of pharmacokinetics, efficacy and safety in children 28–34. 

 

Our results show that highly informative data can be generated whilst reducing the burden 

of clinical trials in children. From a methodological perspective, these data also reinforce the 

benefits associated with the use of ED-optimality concepts for the design of pediatric clinical 

studies 16–21.  In fact, it should be noted that whereas optimal design is normally based on a 

model representative of the population of interest, our analysis was aimed at an 

extrapolation model derived from data available in adult patients, i.e., we have used a 

hypothetical model. Consequently, the optimization procedures carry a certain degree of 

uncertainty.  

Nevertheless, the major advantage of using ED-optimization is that this methodology 

accounts for the uncertainty parameter estimates and in the effect of covariates during the 

optimization procedure. More specifically, two scenarios with 20% and 40% uncertainty on 

the main parameters of interest (clearance and volume of distribution) were evaluated. The 

data shown throughout this report reflect the first case only. Increased uncertainty in 

parameter distributions had no significant impact on the optimization and selection of 

sampling times. Lastly, to ensure a comprehensive evaluation of the assumptions underlying 

the nature and magnitude of the covariate effects on the systemic exposure in children, we 

have resorted to two competing models (M1 and M2). These models enabled the 

identification of the best sampling scheme for the prospective pharmacokinetic study taking 

into account potential differences in the disposition of deferiprone in children younger than 

6 years of age.   

 

Based on our experience in pediatric clinical pharmacology, fully optimized designs (i.e., 

individually optimized) are not realistically applicable to pediatric trials. Our objective in this 

regard was to identify a final sampling scheme that resulted from a compromise between 
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full optimization and feasibility in a real setting. The three time windows selected during the 

optimization procedures were found to be independent of model specification and sample 

size. Moreover, they reflect the requirements for estimating specific pharmacokinetic 

parameters, i.e., lag-time and Ka (time window A), V/F (time window B), and CL/F (time 

window C) respectively.  

 

Finally, it should be noted that our analysis clearly highlights the poor performance of an 

empirical (i.e., non-optimized) sampling scheme (scheme 8), especially when dealing with 

sparse sampling. By contrast, scenario 7 showed the best option in terms of coefficient of 

variation, relative errors and standard mean errors as well as for what concerns model 

stability. In addition, it allowed for correct predictions of AUC and Cmax. 

 

Potential limitations 

The final decision on the sampling scheme to be used in the prospective study had to take 

another unknown factor into account, namely the uncertainty around the time at which the 

peak concentration occurs (Tmax). Keeping in mind that this exercise is based on a model 

derived from pharmacokinetic data in adult patients, there might be some differences in 

children below 6 years of age. Such differences may occur despite the quick absorption after 

administration of the drug as an oral solution. They may also be caused by difficulties in the 

administration of the drug to the very young children. We have therefore included these 

considerations in scenarios 3, 6 and 7, but there are no data available at the moment to 

confirm the assumptions regarding the possible shift of Tmax.  

 

In conclusion, our analysis illustrates and confirms that despite feasibility issues, ED-

optimality concepts can be used to optimize study design, particularly with regard to the 

pediatric population. Predefined sampling schemes and sample sizes do not warrant 

accurate model structure and parameter identifiability. In addition, it shows that the 

optimization of study design does not require necessarily the use of the final model for the 

population of interest; the combination between ED-optimization and the information 

carried by a hypothetical model is sufficient to significantly increase the quality of the 

information collected in a prospective clinical trial. Nevertheless, remains of particular 

importance the accurate estimation of the magnitude of the covariate effects, as they may 

determine the final dose recommendation for the population of interest. 
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Appendix 
 

Table S1. Coefficient of variation for pharmacokinetic parameters of the model assuming a linear 

relationship between body weight and CL and Vd. Estimates calculated according to study design 

including 18 patients and 20% uncertainty in the parameter estimates for CL and V. 

 CV (%) 

 SAMPLING SCHEMES 

PARAMETERS 0 1 2 3 4 5 6 7 8 

CL intercept* / / / / / / / / / 

CL slope 7.4 7.2 6.9 6.9 7.0 7.0 7.0 7.0 29.4 

BSV CL 59.7 57.3 53.9 53.2 55.2 55.4 55.0 54.8 52.7 

V Males 22.5 23.4 24.1 24.1 23.6 23.4 23.2 23.3 23.8 

V Females 43.8 44.6 45.8 45.8 44.9 44.5 44.2 44.3 45.5 

V slope 48.9 49.7 50.8 51.1 49.9 49.6 49.4 49.6 77.4 

BSV V 57.8 59.5 61.6 62.8 60.3 59.5 59.0 59.4 59.9 

Ka 26.9 29.7 33.3 37.3 29.7 29.5 37.0 38.1 379.2 

BSV Ka 37.4 39.2 40.1 40.4 39.2 39.2 40.4 40.4 72.2 

*The parameter describing the intercept for the linear function between body weight and clearance 

has been fixed during the analysis. Therefore no CV values are reported. 

 

Table S2. Evaluation of model stability and parameter identifiability based on different sampling 

schemes. Values represent the results of 500 runs. 

SAMPLING SCHEME Minimisation 

successful 

Covariate Step 

Successful 

Estimate near 

boundary 

0 496 391 108 

1 409 306 118 

2 476 398 82 

3 490 443 47 

4 454 362 101 

5 446 419 28 

6 471 419 33 

7 499 435 63 

8 283 217 100 
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Figure S1. SME and RE for the slope parameters describing the effect of body weight on clearance 

and volume of distribution. Standard Mean Error (SME) and Relative Error (RE) estimates indicate, 

respectively, the bias and accuracy in parameter estimates for the different sampling schemes. Top 

panels: summary for absorption rate constant (Ka). Bottom panels: summary for lag time.  

  



CHAPTER 4 

104 

 

 
 

Figure S2. Visual Predictive Check for model M1. Simulated concentration vs. time course profile of 

deferiprone according to a pharmacokinetic model in which weight is correlated with clearance and 

volume according to a linear function. Observed data are plotted using open circles; the solid line 

represents the median of the simulated data; the dashed lines represent the 5th and 95th percentiles 

of the simulated data.  
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Figure S3. Normalised prediction distribution errors (NPDE) for model M1. Given that the accuracy of 

model predictions also depends on the variance structure, special attention was paid to the 

evaluation of model misspecifications for the random effects. The normalised prediction distribution 

errors (NPDE) method was applied for an in-depth diagnosis of potentially poor behaviour. Top left: 

QQ-plot of the distribution of the NPDE versus the theoretical N (0,1) distribution; Top right: 

Histogram of the distribution of the NPDE, with the density of the standard Gaussian distribution 

overlaid; Bottom left: NPDE versus time and Bottom right: NPDE versus PRED.  
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Figure S4. Visual Predictive Check for model M2. Simulated concentration vs. time course profile of 

deferiprone according to a pharmacokinetic model in which weight is correlated with clearance and 

volume according to an allometric function. Observed data are plotted using open circles; the solid 

line represents the median of the simulated data; the dashed lines represent the 5th and 95th 

percentiles of the simulated data.  
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Figure S5. Normalised prediction distribution errors (NPDE) for model M2. Given that the accuracy of 

model predictions also depends on the variance structure, special attention was paid to the 

evaluation of model misspecifications for the random effects. The normalised prediction distribution 

errors (NPDE) method was applied for an in-depth diagnosis of potentially poor behaviour. Top left: 

QQ-plot of the distribution of the NPDE versus the theoretical N (0,1) distribution; Top right: 

Histogram of the distribution of the NPDE, with the density of the standard Gaussian distribution 

overlaid; Bottom left: NPDE versus time and Bottom right: NPDE versus PRED. 

 



 



109 

 

CHAPTER 5 

Model-based dosing recommendations for 
the use of deferiprone in children affected by 
transfusional iron overload younger than 6 
years of age 

 

 

F. Bellanti, G.C. Del Vecchio, M.C. Putti,  A. Maggio, A. Filosa, C. Cosmi, L. Mangiarini, M. 

Spino, J. Connelly, A. Ceci and O. Della Pasqua 

 

 

Submitted for publication 

 

 

 

 

 

 

 

Summary 

Despite long clinical experience with deferiprone, there is still limited information on its 

pharmacokinetics in children and essentially none in children below 6 years of age. The objective of 

this analysis is to characterise the pharmacokinetics of deferiprone in the target population using a 

model-based approach and to assess the effect of demographic and physiological factors on drug 

exposure. Furthermore, it is our aim to ascertain whether equivalent doses on a mg/kg basis produce 

PK in children consistent with that in adults. Data from 18 paediatric patients receiving deferiprone 

orally (solution 80 mg/ml) were used for model building purposes. A one-compartment model with 

first order oral absorption was found to best describe the pharmacokinetics of deferiprone. Goodness-

of-fit plots, visual predictive check (VPC) and NPDE summaries indicated that the model provides an 

unbiased description of the data. Simulation scenarios revealed that similar mg/kg dose levels yield 

comparable exposure in children and adults, with median AUC values respectively of 340.6 and 318.5 

µmol/L*h at 75 mg/kg/day and 453.7 and 424.2 at 100 mg/kg/day t.i.d. doses evenly spaced. Based 

on these findings, a dosing regimen of 25 mg/kg t.i.d. is recommended in children below 6 years of 

age, with the possibility of titration up to 33.3 mg/kg t.i.d. 



CHAPTER 5 

110 

 

5.1 Introduction 
Patients with hemoglobinopathies and certain other conditions affecting the ability to 

synthesize haemoglobin may require life-long blood transfusion therapy to survive. This 

chronic intervention results in a series of potential complications, with iron overload being 

an inevitable consequence within a few years.  Chelation therapy is therefore required to 

prevent potentially fatal iron-related complications 1–5. Deferiprone (DFP) is a 

hydroxypyridinone, which was authorised in Europe in 1999 for the treatment of iron 

overload in patients with β-thalassaemia major when deferoxamine (DFO) is contraindicated 

or inadequate. When administered orally, DFP is rapidly and well absorbed. Plasma levels 

show peak concentrations (Cmax) within 1 hour of administration. Food reduces its 

absorption rate without affecting the overall exposure to the drug. In patients with -

thalassaemia, the administration of deferiprone at doses of 75 mg/kg/day as a twice-daily 

regimen yields Cmax of 34.6 mg/L and area under the plasma concentration-time curve 

(AUC) of 137.5 mg/L • h 6,7. On the other hand,  peak serum concentrations were 17.53 mg/L 

and 11.82 mg/L in fasting and fed states, respectively after a dose of 25 mg/kg 8. DFP is for 

the most part inactivated by glucuronidation (>85%) and more than 90% of the drug is 

removed from plasma within 6 hours of ingestion, with an elimination half-life of 1 to 2.5 

hours in patients affected by β-thalassaemia 5,6,9–16. DFP forms a 3:1 complex with iron, 

which is removed mainly through the kidneys, as is the free parent drug.  

Despite the extensive clinical experience with DFP, there are few PK data in children, and 

effectively none in children under 6 years of age. To cover this gap Deferiprone was included 

in the list of priority prepared by the PDCO-EMA. The main objective of this analysis is to 

appropriately characterise the systemic exposure of DFP in paediatric patients aged less than 

6 years using a model-based approach and to assess the effect of demographic and 

physiological factors on the drug’s pharmacokinetics. Furthermore, it is our endeavour to 

identify the dose levels yielding DFP exposures comparable to those in adults.  

 

 

5.2 Methods 
Clinical Study 

This experimental and modelling study is a multi-centre, randomised, single blind, single 

dose PK study to evaluate the pharmacokinetics of DFP in children aged from one month to 

less than 6 years affected by transfusion-dependent haemoglobinopathies.  

The pharmacokinetics of deferiprone was evaluated using data collected from the clinical 

study: DEEP-1 PK Study (EudraCT, 2012-000658-67), in which paediatric patients affected by 

transfusion-dependent haemoglobinopathies received a single oral dose of DFP as an 80 

mg/ml solution. Patients undergoing a chronic transfusion program (receiving at least 150 

ml/kg/year of packed red blood cells) and, if naïve to any chelation therapy, having ferritin 
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levels above 800 ng/ml were considered eligible for the study. In addition, amongst other 

criteria, patients with Hb levels less than 8 g/dl, abnormal liver function, and severe heart 

dysfunction secondary to iron overload or serum creatinine levels above the upper normal 

level were not considered eligible for inclusion in the study. Patients were randomised to 

three dose levels: 8.3, 16.7 and 33.3 mg/kg. The study was performed within the DEEP 

Consortium (www.deep.cvbf.net) according to an approved PIP (EMEA-001126-PIP01-10). 

The study protocol was approved by concerned Ethics Committees and all experimental 

procedures performed according to good clinical practice guidelines. In brief, 18 children 

aged from 1 month to less than 6 years (9 males and 9 females) who had received the active 

medication were included in the analysis. Recruitment of up to 30 patients was provided for 

by protocol to ensure a minimum sample size of 18 evaluable subjects. In practice, the use of 

nonlinear mixed-effects modelling allowed completing the study with the data of the first 18 

evaluable subjects by providing accurate and precise estimates of the main parameters of 

interest. Blood samples for the evaluation of deferiprone concentrations were taken before 

(one pre-dose sample) and at the following sampling times after dosing: 0.167, 0.25, 0.333, 

0.67, 0.83, 0.916, 1.083, 1.167, 1.25, 1.416, 4.5, 5.5, 6, 7 and 8 hours. A maximum of 5 post-

dose samples were collected per subject according to 3 sampling schemes selected based on 

an optimal design analysis previously performed by our group (unpublished results). Blood 

samples were drawn by peripheral venous catheter following discard of 2 ml of blood; 

catheters were filled with saline (i.e., saline lock) between sampling times. Mean (sd) age 

(years), body weight (kg) and height (cm) of the patient population were 3.62 (1.33), 16.08 

(3.18) and 98.95 (9.16) respectively.  

 

Bioanalysis 

Deferiprone plasma concentrations were analysed by the laboratory of the Division of 

Pharmacology (Leiden, the Netherlands) using a validated method previously developed by 

ApoPharma (Toronto, Canada) consisting of high performance liquid chromatography with 

UV detection (HPLC-UV). Extraction of deferiprone from supernatant was performed after 

precipitation of plasma proteins by trichloroacetic acid (TCA - 15%) and centrifugation at 

10,000 g for 20 minutes at 4 ºC.  The analytical column used for the analysis was a Hamilton 

PRP-1 and separation of the chromatogram of interest was achieved using an isocratic 

mobile phase (pH 7.0). The analytical range was between 3.13 and 800 µM (equivalent to 

0.43 to 111 g/ml); and an R2 value greater than 0.98 was required to accept the standard 

curve. The lower limit of quantification (LLOQ) was 0.238 µM (equivalent to 0.033 g/ml). 

Inter- and Intra-day accuracy and precision were always below 6 %, except for the inter-day 

precision at 3.13 M which was found to be 10.7 %.  

 

 

http://www.deep.cvbf.net/
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Pharmacokinetic Modelling 

Nonlinear mixed effects modelling was performed in NONMEM version 7.2 (Icon 

Development Solutions, USA). Model building criteria included: (i) successful minimisation, 

(ii) standard error of estimates, (iii) number of significant digits, (iv) termination of the 

covariance step, (v) correlation between model parameters and (vi) acceptable gradients at 

the last iteration.  

Fixed and random effects were introduced into the model in a stepwise manner. Inter-

individual variability in pharmacokinetic parameters was assumed to be log-normally 

distributed. A parameter value of an individual i (post hoc value) is therefore given by the 

following equation: 

θi = θTV * eηi 

in which θTV is the typical value of the parameter in the population and ηi is assumed to be a 

random variable with zero mean and variance ω2. Residual variability, which comprises 

measurement and model error, was described with a proportional error model. This means 

for the jth observed concentration of the ith individual, the relation Yij: 

Yij = Fij + εij * W 

where Fij is the predicted concentration and εij the random variable with mean zero and 

variance σ2. W is a proportional weighing factor for ε. 

Goodness of fit was assessed by graphical methods, including population and individual 

predicted vs. observed concentrations, conditional weighted residual vs. observed 

concentrations and time, correlation matrix for fixed vs. random effects, correlation matrix 

between parameters and covariates and normalised predictive distribution error (NPDE) 
17,18.  Comparison of hierarchical models was based on the likelihood ratio test. A superior 

model was also expected to reduce inter-subject variability terms and/or residual error 

terms.  

With the objective of increasing the stability of the model and reducing the uncertainty 

around the parameters of interest, the use of the Normal-Inverse Wishart Prior (NWPRI) 

approach was used in NONMEM 19 to test the impact on the estimates of the fixed and 

random effects in the pharmacokinetic model under development. Primary PK parameters 

estimated with a previously developed model in adults 20 were used as prior information for 

the pharmacokinetic analysis of DFP in the target population. 

 

Covariate analysis 

Continuous and categorical covariates were tested during the analysis. The relationship 

between individual PK parameters (post-hoc or conditional estimates) and covariates was 

explored by graphical methods (plot of each covariate vs. each individual parameter). 

Relevant demographic covariates (body weight, height, age and gender) were entered one 
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by one into the population model (univariate analysis). After all significant covariates had 

been entered into the model (forward selection), each covariate was removed (backward 

elimination), one at a time. The model was run again and the objective function recorded. 

The likelihood ratio test was used to assess whether the difference in the objective function 

between the base model and the full (more complex) model was significant. The difference 

in – 2Log likelihood (DOBJF) between the base and the full model is approximately χ2 

distributed, with degrees of freedom equal to the difference in number of parameters 

between the two hierarchical models. Because of the exploratory nature of this 

investigation, for univariate analyses, additional parameters leading to a decrease in the 

objective function of 3.84 was considered significant (p<0.05). During the final steps of the 

model building, only the covariates which resulted in a difference of objective function of at 

least 7.88 (p<0.005) were kept in the final model. 

 

Model validation 

The validation of the final pharmacokinetic model was based on graphical and statistical 

methods, including visual predictive checks 17. Given the importance of the validation 

procedures for the subsequent use of a model for simulation purposes, in this study we have 

included a wide range of diagnostic methods to assess the accuracy of the parameter 

estimates and the predictive performance of the model 18. Bootstrap was used to identify 

bias, stability and accuracy of the parameter estimates (standard errors and confidence 

intervals). The bootstrap procedures were performed in PsN v3.5.3 (University of Uppsala, 

Sweden) 21, which automatically generates a series of new data sets by sampling individuals 

with replacement from the original data pool, fitting the model to each new data set. 

Subsequently, parameter estimates were used to simulate plasma concentrations in subjects 

with similar demographic characteristics, dosing regimens and sampling scheme as in the 

original clinical studies. Mirror plots were also generated to evaluate the variance-

covariance structure of the parameters in the model, which is reflected by the degree of 

similarity between the original fit and the pattern obtained from the fitting of the simulated 

data sets using the final pharmacokinetic model. 

 

PK bridging and dosing recommendations 

To optimise the deferiprone dosing regimen in the target population, simulations were 

performed to achieve systemic exposure values similar to the adult reference population 20. 

Simulations were carried out to explore how differences in demographic covariates might 

affect steady-state exposure to deferiprone treatment. Sampling frequency and times were 

based on a serial sampling scheme for the purposes of estimating AUC, Cmax and Css over 

the dosing interval. Integration of the concentration time data was applied according to the 

trapezoidal rule to ensure realistic estimates of variability.  The adequacy of the simulated 
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dosing regimens was assessed graphically by determining the fraction of the paediatric 

population reaching systemic exposure comparable to the target value based on PKPD 

reference in adults. 

A study duration of one week was chosen for the simulation. Each scenario consisted of 

1000 simulations. Two dosing regimens were simulated in both populations: 75 and 100 

mg/kg/day as three daily doses of 25 and 33.3 mg/kg respectively. The pharmacokinetic 

parameters of interest (AUC, Cmax and Css) were measured after administration of the first 

dose on day 7. 

A pharmacokinetic model developed in adult healthy volunteers 20 was used to simulate 

deferiprone exposure in the reference population. A population of 100 subjects (50 males 

and 50 females) with a body weight distribution of mean 55 and sd 7.5 kg was used to 

characterise a standard adult thalassaemic population. 

The final PK model developed during this analysis was used to simulate deferiprone 

exposure in the population of interest. A population of 100 subjects (50 males and 50 

females) with a body weight distribution of mean 16 and sd 2.0 kg was used to characterise a 

standard thalassaemic population of children below 6 years of age. 

 

5.3 Results 
Population Pharmacokinetic Modelling 

Data from 18 evaluable children (9 males and 9 females) were used for the pharmacokinetic 

analysis. Patients were randomised to 3 dose levels (8.3, 16.7 and 33.3 mg/kg) with 6 

patients assigned to each group. 16 patients were diagnosed with β-thalassaemia major and 

2 with thalassodrepanocytosis. Mean (and sd) body weight, height and age of the children 

were respectively 16.08 (3.18) Kg, 98.95 (9.16) cm and 3.62 (1.33) years. 

The pharmacokinetics of deferiprone after oral administration to paediatric patients was 

described by a one-compartment open model with first-order absorption and elimination 

processes. The absorption rate constant (Ka) represents a first order process. The disposition 

processes includes (apparent) clearance (CL/F) and (apparent) volume of distribution (V/F).  

Between subject variability (BSV) was tested on each parameter, and was included in the 

final model on CL/F and V/F. An omega block was implemented in the estimation of BSV for 

CL/F and V/F, accounting for the expected correlation between these two parameters. The 

inclusion of the omega block significantly decreased the OBJF. 

Different error models were tested to characterise residual variability; e.g., additive, 

proportional, exponential, combined, etc. The proportional error model provided the best 

results and was kept to describe the residual variability. 

The use of the Normal-Inverse Wishart Prior (NWPRI) approach was used in NONMEM to 

estimate the fixed effect on the PK parameter Ka and the BSV for CL/F and V/F. The use of a 

prior allowed a better description of the data, reducing significantly the uncertainty around 
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the parameters above mentioned. The prior information was derived from a population PK 

analysis performed in healthy adults receiving deferiprone as a 100 mg/ml solution 20. The 

following values were used for the different parameters: 8.2 h-1 for Ka with an uncertainty of 

4.02; 0.057 (23.87%) variation on CL/F and 0.0278 (16.67%) variation on V/F with an omega 

block of 0.0345. 54 degrees of freedom were chosen for the prior on the BSV parameters 

given that 55 individuals were used for the final population PK model in the healthy adults.  

During covariate model selection, after a visual explorative analysis of the correlations 

between covariates and model parameters, the effect of weight, height, gender, and age 

was tested on the different parameters. The inclusion of body weight on CL/F and V/F 

according to fixed allometric scaling 22 led to the highest improvement in the model fitting 

and allowed a better description of the data, increasing the model performance. The 

exponent was fixed to 0.75 and 1 for CL/F and V/F respectively. An overview of the final 

parameter estimates is provided in Table 1. 

 

Table 1. Population pharmacokinetic parameters of deferiprone in children below 6 years of age and 

bootstrap results 

Model predicted primary PK parameters 

 Estimate SE Bootstrapa 
(mean) 

CV (%) 

CL/F (L/h) 8.3 0.569 8.30 8.07 

V/F (L) 18.7 1.16 18.74 7.95 

Ka (h-1) 9.13 1.41 8.91 10.54 

WT on V/F 
Fix allom. 

1 FIX / 1 FIX / 

WT on CL/F 
Fix allom. 

0.75 FIX / 0.75 FIX / 

Error (prop) 0.0953 0.0182 0.0916 39.3 

IIV CL/Fb 0.0644 0.0115 0.0642 11.37 

IIV V/Fb 0.0392 0.0077 0.0393 13.23 

Block CL-V 0.031 0.0058 0.0313 12.14 

Model predicted secondary PK parameters stratified per dose level 

 Median (5th and 95th quantiles) 

 Dose 1c Dose 2d Dose 3e 

AUC0-8 
(μmol/L*h) 

116.7 (90.6-129.0) 210.0 (173.1-266.6) 428.8 (291.4-547.8) 

Cmax (μmol/L) 61.7 (45.1-80.7) 119.8 (106.0-154.0) 229.5 (179.7-278.1) 

Tmax (h) 0.33 (0.19-0.92) 0.33 (0.21-0.63) 0.37 (0.27-0.42) 

Css (μmol/L) 2.1 (1.6-2.3) 3.7 (3.1-4.9) 7.7 (5.1-10.0) 

Cmin (μmol/L) 1.5 (0.92-2.6) 1.9 (0.79-5.5) 6.8 (3.1-13.9) 
a 0 minimisation terminated out of 500; b Eta shrinkage was -11% and 0% for CL/F and V/F 

respectively; c 8.3 mg/kg; d 16.7 mg/kg; e 33.3 mg/kg 
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A bootstrap analysis was performed to assess model stability. The mean parameter 

estimates from the bootstrap analysis were found to be in close agreement with the final 

model estimates, and the CV values were found to be all below 15%, indicating that the final 

estimates are indeed reliable. Results of the bootstrap analysis can be found in Table 1. 

Internal model validation diagnostics were satisfactory. Individual predicted profiles and 

goodness-of-fit plots revealed that the model provides an adequate and non-biased 

description of the data, as shown in Figures 1 and 2.  

Figure 1. Goodness-of-fit plots. Upper panels show the observed data (Obs) vs. individual predictions 

(IPred) (left) and the observed data vs. population predictions (Pred) (right). Lower panels show the 

conditional weighted residuals (CWRES) vs. population predictions (left) and the CWRES vs time (left). 
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Figure 2. Individual plots: observed data are plotted using blue circles; the black solid line represents 

the population prediction (Pred) and the red solid line represents the individual predictions (IPred). 

Panel A shows patients in dose group 1 (8.3 mg/kg); panel B shows patients in dose group 2 (16.7 

mg/kg); and panel C shows patients in dose group 3 (33.3 mg/kg). 

 

In addition, NPDE summaries (Figure 3) show that the discrepancy between predicted and 

observed values can be assumed to be normally distributed. The predictive performance of 

the model in subsequent simulations was deemed critical to achieve the objective of our 

analysis. To this purpose, visual predictive checks were therefore used to assess whether the 

variance and covariance structures have been well characterised (Figure 4). Overall these 

diagnostic techniques confirm that the final model is suitable for the purposes of data 

simulation.  
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Figure 3. Normalised prediction distribution errors: upper panels show the QQ-plot of the 

distribution of the NPDEs for a theoretical N (0, 1) distribution (left) and the histogram of the 

distribution of the NPDE together with the density of the standard normal distribution (right). Lower 

panels show the NPDEs vs. time (left) and NPDEs vs. individual predictions (right). 
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Figure 4. Visual Predictive Check (VPC): observed data are plotted using open circles; the black solid 

line represents the median of the simulated data; the dashed lines represent the 5th and 95th 

quantiles of the simulated data. The left, mid and right panels show respectively dose group 1 (8.3 

mg/kg), 2 (16.7 mg/kg) and 3 (33.3 mg/kg). 

 

 

PK bridging and dosing recommendations 

The results of the simulations are shown in Figures 6 and 7 and Table 2. A similar exposure is 

achieved in adults and children in terms of AUC and Css when receiving the current 

recommended dosing regimen both at 75 and 100 mg/kg/day. The simulation generated a 

29% increase in Cmax in children when compared to the adult population.  

The performance of an individualised dosing regimen was tested on the target population, 

but the results show that it does not change significantly the exposure in children when 

compared to the non-individualised one (at 75 mg/kg/day); not shown here.  

Results suggest that the currently approved dosing regimen for the adult population is 

suitable also for children below 6 years of age in order to achieve a similar and effective 

exposure. 
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Figure 5. Predicted deferiprone exposure expressed as AUC 0-8 (upper panel), Cmax (mid panel) and 

Css (lower panel) for children below 6 years of age receiving 75 mg/kg/day. The black line represents 

the median of the reference population (adult thalassaemic population), whereas the orange lines 

represent 1st and 3rd quartiles and the red lines represent 5th and 95th percentiles of the same 

reference population. Percent of total indicates the percentage of cases for each beam of 1000 

simulations with 100 patients in each simulated trial. 
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Figure 6. Predicted deferiprone exposure expressed as AUC 0-8 (upper panel), Cmax (mid panel) and 

Css (lower panel) for children below 6 years of age receiving 100 mg/kg/day. The black line 

represents the median of the reference population (adult thalassaemic population), whereas the 

orange lines represent 1st and 3rd quartiles and the red lines represent 5th and 95th percentiles of the 

same reference population. Percent of total indicates the percentage of cases for each beam of 1000 

simulations with 100 patients in each simulated trial. 
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Table 2. Summary statistics of the simulation scenarios for the PK bridging study.  

 75 mg/kg/day 100 mg/kg/day 

 Adults Children Adults Children 

 AUC Cmax Css AUC Cmax Css AUC Cmax Css AUC Cmax Css 

Median 318.5 132.2 5.5 340.6 170.7 5.9 424.2 176.0 7.4 453.7 227.4 7.9 

1st quartile 263.9 109.2 4.6 286.6 145.0 5.0 351.5 145.4 6.1 381.8 193.2 6.6 

3rd quartile 383.0 159.0 6.7 404.7 200.5 7.0 510.0 211.9 8.8 539.0 267.1 9.4 

5th quantile 200.4 81.6 3.5 223.2 114.9 3.9 266.9 108.7 4.6 297.3 153.1 5.2 

95th quantile 499.0 205.6 8.7 520.0 253.0 9.0 664.0 273.9 11.5 693.0 337.0 12.0 

 

AUC: µmol/L*h; Cmax: µmol/L; Css: µmol/L 

 

5.4 Discussion and Conclusion 
Model-based approaches can be critical for therapeutic decisions when limited evidence is 

available. This is certainly the case for rare diseases such as haemoglobinopathies, especially 

when considering young paediatric patients, where practical and ethical constraints wisely 

imposed by regulatory authorities, make paediatric clinical investigation a true challenge 
23,24. The lack of exhaustive experimental data available on the use of deferiprone in children 

including deferiprone pharmacokinetic data in children below 6 years of age hampered the 

ability to assess whether doses, used in adults, adjusted for weight, would produce 

comparable exposure in young children. The need for a better understanding of DFP 

behaviour in the paediatric population led to the establishment of the DEEP consortium 

(www.deep.cvbf.net). Within this project, a model-based approach has been used to 

overcome the specific challenge to better understanding DFP behaviour and allowing 

adequate dosage in the <6 years of age group, reducing at the same time the sampling 

burden on such a vulnerable population (i.e., by the use of optimal design techniques to 

increase the quality of the information gathered and by the use of population PK analysis in 

the presence of sparse sampling). Modelling and Simulations (M&S) techniques have 

become an invaluable tool for the evaluation of the dose rationale and personalisation of 

dosing regimens for subgroups of patients and special populations, allowing the 

characterisation and quantification of the contribution of different sources of variability to 

an agent’s overall pharmacokinetic properties. Furthermore, continuous emphasis has been 

placed on the need for evidence-based clinical and regulatory decisions, where modelling 

and simulation is becoming more and more an essential component 25–27.  

 

Pharmacokinetic modelling 

The pharmacokinetics of deferiprone after oral administration to paediatric patients was 

successfully characterised by a model-based approach. As shown in the results section a 

one-compartment open model with first-order absorption and elimination processes 

http://www.deep.cvbf.net/
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described satisfactorily the PK profile of the drug under investigation, allowing precise and 

accurate characterisation of the main PK parameters of interest (Table 1). Body weight was 

found to be a significant predictor of changes in the distribution and elimination processes of 

the drug; the relationship with CL/F and V/F was described by fixed allometric scaling. 

Furthermore, the use of prior information in the adult population allowed a more stable 

characterisation of the absorption profile, showing once more how M&S can overcome the 

limited evidence generated in the clinical study. 

 

Dosing recommendations 

Bridging concepts are applied in this context to evaluate the exposure in the paediatric 

population as compared to efficacious exposure in adults. Using the model developed for 

this population, and a previously developed model in the adult population 20, simulations 

were performed to compare PK exposure between children below 6 years of age and a 

standard thalassaemic adult population. As shown in Figures 6 and 7, AUC and Css 

distributions are comparable at 75 mg/kg/day and 100 mg/kg/day respectively, whereas an 

increase in peak concentrations (Cmax) is predi ted in children. This increase is most 

probably due to differences in the volume of distribution between the two groups, and is 

expected to have limited clinical implications. Overall exposure (AUC and Css) is the 

determinant of the response, and changes in Cmax are not expected to modify the safety 

profile of the drug. This is confirmed in literature where previous studies in children exposed 

to a 100 mg/kg/day dosing regimen have safety profiles similar to those reported in adults 
28–30. 

In conclusion, based on these findings, a dosing regimen of 25 mg/kg t.i.d. (75 mg/kg/day) is 

recommended for children aged from 1 month to < 6 years, with the possibility of titration 

up to 33.3 mg/kg t.i.d. (100 mg/kg/day), if necessary. Noticeable, this dosage will be used to 

conduct further efficacy-safety comparative phase III study and will be also adopted in any 

SmPC possible modifications. 
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Summary 

The understanding of iron overload dynamics and its progression is essential to establish an adequate 

therapeutic intervention in patients affected by transfusion-dependent diseases. The main objective 

of this analysis is to develop a disease model for iron overload on the basis of available literature 

data. A thorough literature search was performed in Pubmed to retrieve all pertinent publications 

that would allow characterising the different aspects of the disease. At first, the turnover of serum 

ferritin in healthy individuals was described by an indirect response model. Subsequently, the effect of 

blood transfusions on serum ferritin levels was quantified according to an Emax model that depicts 

the non-linearity of the relationship. Finally, the relationship has been integrated as an additive 

conversion rate in the turnover model to account for disease progression. Internal model validation 

diagnostics were satisfactory and visual predictive checks reveal that the model provides an adequate 

and non biased description of the data. In conclusion, a disease model for iron overload was 

successfully developed. The relationship between blood transfusions and serum ferritin levels was 

quantified for the first time through a model-based approach. This model puts the basis for a more 

structured evaluation of therapeutic intervention in this patient population. 
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6.1 Introduction 
Patients affected by transfusion-dependent diseases, such as beta-thalassaemia major or 

sickle cell disease, require regular red blood cell (RBC) transfusions to survive 1–7. Without 

the chronic transfusion regimen, patients would die before the third decade of life. Based on 

the Guidelines for the Clinical Management of Thalassaemia 7, transfusions should aim at 

maintaining a pre-transfusion haemoglobin (Hb) level between 9 and 10 g/dl and a post-

transfusion level of 14 to 15 g/dl.  The most common transfusion interval in  these patients is 

once every two to four weeks (equal to two to three blood units per three weeks) 2,4,5,7,8. 

 

Iron overload in patients affected by transfusion-dependent diseases 

As generally known, iron is recycled within the body and the body itself does not have the 

capacity to remove the excess of iron that is introduced from continuous blood transfusions. 

In normal conditions (Figure 1), iron entry into the cells is regulated by the uptake of iron-

transport protein transferrin from the plasma. Chronic blood transfusions induce an 

increased iron exposure from macrophages, resulting into saturation of transferrin transport 

capacity. This leads to the release of Non-Transferrin Bound Iron (NTBI) in the plasma which 

can enter important cells (e.g., heart and liver cells) resulting over time into tissue 

accumulation. Iron is stored in tissues mainly into ferritin complexes. Once ferritin storage 

capacity is overwhelmed, small clusters of ferritin particles are formed and are degraded by 

the lysosomes leading to the formation of insoluble masses of hemosiderin 9–15. Over time 

this accumulation would cause severe organ damage 16–21. 

Even though a significant improvement has been achieved in the management of the chronic 

transfusion regimen in the past decades, the therapy will eventually lead to a series of 

complications. Iron overload is the most common and relevant one and it is associated with 

several (lethal) co-morbidities such as cardiac dysfunction, liver fibrosis, hypogonadism, 

hypothyroidism, hypoparathyroidism and diabetes mellitus 18,20. Cardiac disease caused by 

myocardial siderosis is the most relevant complication, causing death in 71% of the patients 

affected by transfusion-dependent diseases 17. 
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Figure 1. Iron homeostasis. Adapted from Andrews et al.16.  

 

In the absence of an innate mechanism that allows removing iron excess from the body,  

treatment with iron chelators is therefore essential to prevent iron accumulation and related 

complications 22–25. Iron chelators possess overall a similar mechanism of action. They act by 

1) preventing the uptake of NTBI into organs such as liver and heart; 2) chelating intracellular 

iron and thus preventing its corporation into ferritin; or 3) intercepting iron released from 

degraded ferritin 26.  
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Clinical assessment of iron overload 

There are several clinical measures to evaluate the disease state of iron overload. The most 

common is the biomarker serum ferritin, due to its strong correlation with total body iron 

stores 27. As a single clinical endpoint however, serum ferritin is not always reliable. It could 

also be influenced by other factors such as inflammatory disorders and liver disease 28. On 

the other hand, serial measurements of serum ferritin are still the easiest and least invasive 

method to evaluate iron overload and efficacy of chelation therapy.  

Other assessment methods for iron status focus more on tissue specific accumulation. Liver 

iron concentration is considered as the gold standard for the evaluation of iron overload due 

to a high correlation with total body iron accumulation 29. However, determination of liver 

iron concentration requires an invasive technique with complications and risks of false 

negative results 30. Magnetic Bio-Susceptometry (SQUID) is another option for measurement 

of liver iron accumulation 31. However, it is only available in a limited numbers of centres 

worldwide. Furthermore, cardiac complications due to iron accumulation in the heart have 

been associated with 50-70% of deaths in thalassaemia major patients, mainly at young age 
32. Methods that were developed for cardiac monitoring were based on keeping serum 

ferritin and LIC level below a certain threshold (<2500 μg/L and <7 mg/kg dwt respectively) 

that was associated with decreased cardiac risks. However, this method proved not to be 

sufficient for effective intervention, since any dysfunctions were often identified at relative 

late stage. In recent years, Magnetic Resonance Imaging (MRI) techniques for assessing iron 

loading in the liver and heart have been introduced and validated for the evaluation of tissue 

specific accumulation 33.  

 

Iron overload is thus a rather complex process, and the understanding of the dynamics of 

the disease and its progression is essential for an adequate improvement of the therapeutic 

intervention. Several clinical questions are still not fully understood, e.g. how much time is 

required in order to observe a true response in the patient, or in order to reach clinically 

acceptable serum ferritin levels (i.e. about 2500 ug/L). As generally recognised, ferritin 

reflects what happens at the organ level only up to a certain threshold. Above this threshold 

other mechanisms intervene (inflammatory disorders, liver status) 27,28 that influence the 

relationship between serum ferritin and body iron accumulation and the iron interchange 

between organs and the circulatory system. This project puts its main focus on the use of 

model-based approach to gain more insights in key factors that play a role in iron overload. 

The specific objective is to develop a disease model on the basis of available literature data. 

In particular we aim at quantifying the impact of blood transfusions on the changes in serum 

ferritin levels. 
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6.2 Methods 
Data 

A thorough literature search was performed in Pubmed to retrieve all pertinent publications 

that would allow the development of the disease model. Stepwise mining and pooling of 

published data was subsequently performed to characterise the different aspects of iron 

overload. Data published by Dawkins et al. 34 were used to quantify the turnover of serum 

ferritin in healthy individuals; whereas clinical data published by Worwood et al., George et 

al. and Letsky et al. 35 were pooled to evaluate the impact of blood transfusions on serum 

ferritin levels in untreated patients (i.e., patients not receiving chelation therapy). 

 

Modelling 

The software R (v.2.14.0) was used for statistical summaries and literature data extraction 

(complemented with R Digitize Package 36 ), as well as data manipulation and preparation for 

modelling purposes. Nonlinear mixed effects modelling was performed in NONMEM version 

7.2 (Icon Development Solutions, USA). 

Model building criteria included: (i) successful minimisation, (ii) standard error of estimates, 

(iii) number of significant digits, (iv) termination of the covariance step, (v) correlation 

between model parameters and (vi) acceptable gradients at the last iteration. Comparison of 

hierarchical models was based on the likelihood ratio test. Goodness of fit was assessed by 

graphical methods, including population and individual predicted vs. observed 

concentrations, conditional weighted residual vs. observed concentrations and time, 

correlation matrix for fixed vs. random effects, correlation matrix between parameters and 

covariates and normalised predictive distribution error (NPDE) 37.  

The validation of the final model was based on graphical and statistical methods, including 

visual predictive checks 38. Bootstrap was used to identify bias, stability and accuracy of the 

parameter estimates (standard errors and confidence intervals). The bootstrap procedures 

were performed in PsN v3.5.3 (University of Uppsala, Sweden) 39, which automatically 

generates a series of new data sets by sampling individuals with replacement from the 

original data pool, fitting the model to each new data set. 

 

Iron homeostasis in healthy individuals (basal ferritin turnover) 

To quantify serum ferritin changes in healthy individuals, data from 14 subjects were 

extracted from literature 34 and combined into a single dataset. Data are presented in Table 

1 and Figure 2. A turnover model was tested to describe serum ferritin profiles in this 

population:  

 

𝑑𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁

𝑑𝑡
= 𝐾𝑖𝑛 − 𝐾𝑜𝑢𝑡 × 𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁 
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where Kin is the basal zero-order production rate of ferritin and Kout is the basal first-order 

degradation rate of ferritin.  

 

Table 1. Summary of serum ferritin levels in healthy individuals: data is presented by study duration. 

 

 Serum Ferritin (g/L) 

Study duration Mean ± s.d Range (g/L) 

7 weeks (N=9) 49.67 ± 25.95 8.53 – 97.60 

24 hours (N=5) 67.71 ± 31.62 19.7 – 119.4 

 

 
 

Figure 2. Serum ferritin changes over time in healthy individuals. Individual profiles in 14 healthy 

individuals presented as mean (solid line) and 5th and 95th percentiles (dashed lines). Left panel: 

serum ferritin profiles during an observational period of 7 weeks (N=9). Right panel: serum ferritin 

profiles during an observational period of 24 hours (N=5).  
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Relationship between serum ferritin and cumulative blood units (effect of transfusions) 

Data containing serum ferritin levels in untreated patients were extracted and pooled from 

literature 35,40,41 into a single dataset (Figure 3, right panel). Relevant information regarding 

the study population mentioned in the published articles is summarized in Table 2.  

 

Table 2. Summary of serum ferritin levels and transfusion history in patients affected by transfusion-

dependent diseases not receiving iron chelation therapy.  

  Serum ferritin (g/L) Transfusion history (cum. blood units) 

Study N Mean ± s.d Range Mean ± s.d Range 

Overall 188 4271.55 ± 3003.76 353-18780 153.8 ± 106.42 4-502 

Worwood et al. 116 5023.4 ± 2512.38 445-14120 193.1 ± 107.4 4-502 

Letsky  et al. 24 4902.63 ± 4603.18 447.4-18780 116.5 ± 96.3 4-278 

George et al. 48 2694.64 ± 2694.64 353-9046 77.6 ± 43.05 13-224 

 
Figure 3. Comparison of the distributions of serum ferritin levels in healthy individuals (left panel) 

and patients affected by transfusion-dependent diseases not receiving iron chelation therapy (right 

panel). 



CHAPTER 6 

138 

 

Information regarding the volume of blood per unit was only available for the work carried 

out by Worwood et al. (500 ml per unit) and by George et al. (350 ml per unit). To ensure 

that equal volume of blood per transfusion was taken into account for the entire cohort, 

cumulative amount of blood units was normalized to a volume of 500 ml per blood unit. 

Given the non-linear nature of the relationship between serum ferritin and cumulative blood 

units, an Emax model was tested to describe the relationship as described below: 

 

𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁 = 𝐸0 + 
𝐸𝑚𝑎𝑥 × 𝐵𝑈

(𝐸𝑏𝑢50 + 𝐵𝑈)
 

 

where, E0 represents baseline serum ferritin levels when no transfusion has yet occurred, 

Emax the maximum serum ferritin levels at saturation and Ebu50 the cumulative amount of 

blood units (BU) when 50% of saturation is reached.  

Ferritin data were log transformed for the analysis and the whole dataset was randomly 

divided into two subsets, resulting into 2/3 of the data used for the model building and 1/3 

of the data preserved for external validation. 

 

Integration of the effect of blood transfusions in the turnover model: disease model for 

iron overload  

Once the relationship between cumulative blood units and serum ferritin was quantified, it 

was our goal to integrate this information within the turnover model. Our intent was to 

translate the relationship into a rate that would affect the basal ferritin production rate. 

Given that information on time was not provided in the data used to quantify the 

relationship, and given that we were mainly interested in translating the population profile, 

we assumed a constant interval of three weeks between subsequent units of blood 

transfused. This is on average the case in patients affected by transfusion-dependent 

diseases 2,4,5,7,8. 

Assuming this constant time interval we performed a simulation-estimation analysis to 

quantify the impact of blood transfusions on the production rate of serum ferritin. The 

simulations were performed using the Emax model in the range of 5 to 450 cumulative blood 

units and subsequently the simulated data were fitted with the turnover model where basal 

Kin and Kout were fixed and a new production rate (CRT = conversion rate) was estimated 

(Figure 4). This rate was non-linearly correlated to actual ferritin levels according to the 

following equation: 

 

𝐶𝑅𝑇 = 𝑆𝐶𝐿 ×  𝑒−𝑆𝐻𝑃 ×𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁 
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where SCL is a scaling factor and SHP is the shape factor of the correlation. The conversion 

rate was integrated in an additive manner in the turnover model as follows: 

 

𝑑𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁

𝑑𝑡
= 𝐾𝑖𝑛 + 𝑪𝑹𝑻 − 𝐾𝑜𝑢𝑡 × 𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁 

 

CRT represents the effect of the disease (chronic transfusion therapy) on the biomarker 

ferritin. 

 

 
Figure 4. Stepwise integration of the effect of blood transfusions on serum ferritin levels in the 

turnover model developed on healthy subjects. Left panel: open circles represent the observed data 

and solid line represents the fitting of the relationship between cumulative blood units and serum 

ferritin levels. Right panel: negative relationship between serum ferritin conversion rate in the 

presence of chronic transfusion regimen and serum ferritin levels. The relationship has been derived 

from the one presented on the left panel assuming a constant time interval between consecutive 

blood units transfused. 

 

6.3 Results 
Iron homeostasis in healthy individuals (basal ferritin turnover) 

An indirect response model was developed to describe basal serum ferritin turnover in 

healthy individuals. The zero-order production rate constant (Kin) and the first-order 

degradation rate constant (Kout) were successfully estimated; inclusion of inter-individual 

variability on Kin allowed a better description of the data. Parameter estimates and 
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bootstrap results are shown in Table 3. Goodness-of-Fit (GoF) (Figure 7, see Appendix) plots 

as well as Normalized Prediction Distribution Errors (NPDE) (Figure 8, see Appendix) confirm 

the suitability of the model in describing adequately the data. 

 

Table 3. Final model parameters for turnover model of serum ferritin in healthy individuals.  

Parameters Estimates Bootstrap (mean) CV (%) 

Kin (μg/day) 0.00625 0.00416 34.2 

Kout (day-1) 0.000137 0.0000875 32.7 

Eta on Kin 0.367 0.329 40.8 

Residual error 0.000658 0.000641 31.2 

 

Relationship between serum ferritin and cumulative blood units (effect of transfusions) 

An Emax model was used to describe the relationship between serum ferritin levels and 

cumulative blood units. Inter-individual variability was estimated on the Ebu50 parameters. 

The model allowed accurately quantifying the relationship; final parameter estimates are 

provided in Table 4 together with the estimates obtained with the external set of data. 

Goodness of Fit (Figures 9 and 11, see Appendix) plots as well as NPDE (Figures 10 and 12, 

see Appendix) reveal that the model provides a suitable description of the data.  

 

Table 4. Summary of estimated relationship between cumulative blood units and serum ferritin 

levels in patients affected by transfusion-dependent diseases not receiving iron chelation therapy. 

Parameters Estimates External Validation 

E0 (ug/L) 5.81 5.62 

Emax (ug/L) 9.17 8.88 

Ebu50 26.5 16 

Eta on Ebu50 0.554 0.63 

Residual error 0.0075 0.15 

 

Integration of the effect of blood transfusions in the turnover model: disease model for 

iron overload  

At first, ferritin levels corresponding to a range of cumulative blood units of 5 to 450 were 

simulated with the Emax model previously developed. Secondly, the data were fitted using 

an integrated model that consisted of the turnover model where basal Kin and Kout were 

fixed to the values estimated in the healthy population and an additive ferritin production 

rate (CRT) that was estimated during this process. The conversion rate (CRT) was non-

linearly correlated to actual ferritin concentration. Final parameter estimates are provided in 

Table 5, whereas a schematic representation of the model is shown in Figure 5.  
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Table 5. Summary of final parameter estimates for the disease model of iron overload: integration of 

the effect of blood transfusions on serum ferritin levels in the turnover model developed on healthy 

subjects. 

Parameters Estimates 

Kin (μg/h) 0.000208 FIX 

Kout (h-1) 0.00000458 FIX 

SHP (h-1) 0.00026 

SCL (μg/h) 0.383 

Residual error 0.0014 

 

 
Figure 5. Disease model for iron overload. Kin and Kout represent respectively the basal zero order 

production rate and first order degradation rate of ferritin in healthy individuals. CRT represents the 

serum ferritin conversion rate in patients undergoing chronic transfusion therapy, which reflects the 

impact of the disease (blood transfusions) on serum ferritin levels. The dashed line represents the 

negative feedback that serum ferritin has on CRT. 

 

Given the nature of the simulation, it was only possible to quantify the mean population 

profile for the integrated model. Inter-individual variability was added in a systematic 

manner to evaluate whether the model would capture the variation in the original data. 

Visual predictive checks (with the inclusion of 50% variability on both SCL and SHP) show 

that the model allows describing the data in an adequate and not biased manner (Figure 6 
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left panel). In addition, Figure 6 (right panel) shows simulated profiles of serum ferritin over 

a period of 10 years in a virtual patient not receiving iron chelation therapy. The simulations 

provide insights on how the impact of the disease changes when patients start at different 

baseline levels, and allow quantifying the true underlying disease progression. 

 
Figure 6. Visual predictive check of the disease model for iron overload and simulated mean serum 

ferritin profile in virtual patients not receiving iron chelation therapy. Left panel: VPC of the disease 

model for iron overload. Observed data are plotted using open circles; the black solid line represents 

the median of the simulated data; the dashed lines represent the 5th and 95th percentiles of the 

simulated data. Right panel: simulated ferritin profiles over a period of 10 years for a virtual patient 

not receiving iron chelation therapy. Each line represents a different ferritin baseline level: the solid, 

dashed (small), dotted, dashed-dotted, and dashed (big) lines represent 1000, 2500, 5000, 7500, and 

10000 ug/L baseline ferritin levels. 
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6.4 Discussion and Conclusion 
With this work we attempt for the first time to use a model-based approach in the field of 

transfusion-dependent diseases. An indirect response model was first developed in healthy 

subjects to account for the basal turnover of serum ferritin. Subsequently, the relationship 

between serum ferritin and cumulative blood units was quantified and integrated in the 

turnover model, and the non-linearity of the system was properly captured. Once the effect 

of the chronic transfusion regimen is introduced in the model, the contribution of the basal 

turnover of serum ferritin becomes negligible; the conversion rate (CRT) becomes the driving 

force of the changes in serum ferritin levels and gives a clear idea of the magnitude of iron 

overload in the absence of chelation therapy (Figure 6, right panel). As depicted in the same 

figure, the model allows exploring the natural course of the disease without treatment 

intervention; without such a model it would not be possible to appropriately quantify the 

true effect of iron chelation therapy. In addition, the nature of the model allows evaluating 

the drug effect of any available or future chelating agent.   

 

Limitations 

The lack of access to individual data did not allow a proper characterisation of the inter-

individual variability and/or of a thorough covariate analysis. On the contrary, we could 

appropriately quantify the mean population changes in disease progression.  

When integrating the Emax model with the turnover model, we assumed a constant time 

interval between subsequent units of blood transfused; the interval chosen was based on 

available literature data 2,4,5,7,8. Even though there is inter- and intra-patient variation in the 

transfusion regimen, we believe that the literature data support our assumption given that 

we could only evaluate the mean population profile of the integrated model. 

 

Conclusions 

In conclusion, despite some limitations due to incomplete availability of data a disease 

model was successfully developed in patients affected by severe iron overload that were not 

undergoing iron chelation therapy. The impact of blood transfusions on serum ferritin levels 

was quantified allowing a more mechanistic interpretation of the underlying disease 

progression. This model provides the basis for a more structured evaluation of therapeutic 

intervention in this patient population and gives the opportunity for further evaluation of 

the disease and its progression. 
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Appendix 

 
Figure 7. Goodness-of-fit plots for the turnover model in healthy individuals. Upper panels show the 

observed data (Obs) vs. population predictions (Pred) (left) and the observed data vs. individual 

predictions (IPred) (right). Lower panels show the conditional weighted residuals (CWRES) vs. 

population predictions (left) and the CWRES vs time (right). 
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Figure 8. NPDE summaries for the turnover model in healthy individuals. Upper panels show the QQ-

plot of the distribution of the NPDEs for a theoretical N (0, 1) distribution (left) and the histogram of 

the distribution of the NPDE together with the density of the standard normal distribution (right). 

Lower panels show the NPDEs vs. time (left) and NPDEs vs. individual predictions (right). 
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Figure 9. Goodness-of-Fit plots of estimated relationship between cumulative blood units and serum 

ferritin levels in patients affected by transfusion-dependent diseases not receiving iron chelation 

therapy: model building. Upper panels show the observed data (Obs) vs. population predictions 

(Pred) (left) and the observed data vs. individual predictions (IPred) (right). Lower panels show the 

conditional weighted residuals (CWRES) vs. population predictions (left) and the CWRES vs IPred 

(right). 
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Figure 10. NPDE summaries of estimated relationship between cumulative blood units and serum 

ferritin levels in patients affected by transfusion-dependent diseases not receiving iron chelation 

therapy: model building. Upper panels show the QQ-plot of the distribution of the NPDEs for a 

theoretical N (0, 1) distribution (left) and the histogram of the distribution of the NPDE together with 

the density of the standard normal distribution (right). Lower panels show the NPDEs vs. time (left) 

and NPDEs vs. individual predictions (right). 
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Figure 11. Goodness-of-Fit plots of estimated relationship between cumulative blood units and 

serum ferritin levels in patients affected by transfusion-dependent diseases not receiving iron 

chelation therapy: external validation. Upper panels show the observed data (Obs) vs. population 

predictions (Pred) (left) and the observed data vs. individual predictions (IPred) (right). Lower panels 

show the conditional weighted residuals (CWRES) vs. population predictions (left) and the CWRES vs 

IPred (right). 
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Figure 12. NPDE summaries of estimated relationship between cumulative blood units and serum 

ferritin levels in patients affected by transfusion-dependent diseases not receiving iron chelation 

therapy: external validation. Upper panels show the QQ-plot of the distribution of the NPDEs for a 

theoretical N (0, 1) distribution (left) and the histogram of the distribution of the NPDE together with 

the density of the standard normal distribution (right). Lower panels show the NPDEs vs. time (left) 

and NPDEs vs. individual predictions (right). 
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Summary 

Purpose: Our endeavour is to show the advantages of a model-based approach to identify key factors 

that play a role in transfusion-dependent iron overload. We use deferoxamine as a paradigm 

compound to assess the role of relevant covariates on the underlying disease progression. 

Methods: Data from clinical routine practice on 27 patients affected by β-thalassaemia major were 

used for the analysis. Serum ferritin was selected as the main endpoint of interest for the assessment 

of iron overload. Its time course was characterised by means of a hierarchical nonlinear mixed effects 

model, as implemented in NONMEM (7.2.0). 

Results: A turnover model best described serum ferritin changes over time, with the effect of blood 

transfusions introduced  as a change in  the ferritin conversion rate, whereas the effect of 

deferoxamine was described by a proportional change in the degradation rate constant (Kout). The 

inclusion of IOV (57.4 %) on the conversion rate resulted in a significant drop in the OFV (Δ 443) 

allowing a better description of the individual profiles. 

Conclusions: A model-based approach was successfully used to gather further insight into the 

dynamics of ferritin in transfusion-dependent iron overload. Given the choice of parameterisation, the 

model may be used as a tool to support clinical practice, including the evaluation of the dose 

rationale for existing and novel chelating agents. 
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Abbreviations 

ALT Alanine Aminotransferase 

AST Aspartate Aminotransferase 

Css Steady state concentration 

CMPL Treatment compliance 

DFO Deferoxamine 

FT4 Free T4 

IIV Inter-individual variability 

IOV Inter-occasion variability 

M&S Modelling and simulations 

NPDE Normalised predictive distribution error 

NTBI Non-Transferrin Bound Iron 

OFV Objective function value 

PKPD Pharmacokinetic-pharmacodynamic 

PRED Population prediction 

RBC Red blood cells 

TSH Thyroid-Stimulating Hormone 

VPC visual predictive check 
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7.1 Introduction 
Transfusional iron overload 

Beta-thalassaemia major is a hereditary blood disorder and patients affected by this disease 

require regular red blood cell (RBC) transfusions to survive (1–7). Without the chronic 

transfusion regimen, patients would die before the third decade of life (2,4,5,7,8). Even 

though a significant improvement has been achieved in the management of the chronic 

transfusion regimen in the past decades, therapeutic intervention will eventually lead to a 

series of complications. Iron overload is the most common and relevant one and it is 

associated with several co-morbidities such as cardiac dysfunction, liver fibrosis, 

hypogonadism, hypothyroidism, hypoparathyroidism and diabetes mellitus (6,9,10). Cardiac 

disease caused by myocardial siderosis is the most relevant complication, causing death in 

71% of the patients affected by transfusion-dependent diseases (11). 

For complex processes such as iron overload, understanding of the dynamics of the disease 

and its progression is crucial to adequately evaluate the therapeutic intervention. This 

complexity is also characterised by the fact that the currently accepted biomarker, i.e., blood 

ferritin is not specific enough to distinguish the effect of transfusion from the influence of 

other pathological mechanisms such as inflammatory disorders, and/or liver status, which 

can equally affect the iron interchange between organs and the circulatory system (2,12–

14). Consequently, ferritin levels may not provide a direct link for total body or tissue specific 

iron accumulation at specific time points. On the other hand, changes in ferritin levels over 

time are still helpful for the management of the disease and maintaining serum ferritin 

below a threshold of about 2500 µg/L is a widely accepted therapeutic goal  (2,3,5–7). 

However, important clinical questions are not yet fully understood, e.g. how much time is 

required in order to observe a stable response or to reach clinically meaningful serum 

ferritin levels.  

 

Iron chelation therapy with chelating agent deferoxamine 

Given that human physiology does not have an innate mechanism that allows removal of the 

iron excess, treatment with iron chelators is therefore vital to prevent its accumulation and 

related complications (15–18). In the current investigation we attempt to characterise the 

(patho)-physiological response to the iron chelating agent deferoxamine as a paradigm 

compound for the assessment of iron dynamics using a model-based approach. 

Deferoxamine was the first iron chelator approved for human use and has been available for 

the treatment of iron overload for more than 35 years (2,6,15–19). It is an exadentate 

chelator that binds iron in a 1:1 ratio. The drug is rapidly absorbed after intramuscular and 

subcutaneous administration, but it cannot be absorbed orally. In the treatment of iron 

overload in patients affected by transfusion-dependent haemoglobinopathies several dosing 

regimens and dose levels have been proposed and used in the past but in the majority of 
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cases deferoxamine is given as an 8 to 12 hour nightly subcutaneous infusion (5 to 7 days a 

week) (2,19–21). The serum protein binding is less than 10% and the drug undergoes the 

following metabolic reactions: transamination and oxidation; beta-oxidation; 

decarboxylation and N-hydroxylation. The average recommended daily dose varies between 

20 and 60 mg/kg and the drug has an half-life of 5.6 hours in patients (20–22).  

 

Deferoxamine binds free iron by preventing the uptake of NTBI (Non-Transferrin Bound Iron) 

into organs but is also acts within the cell where enters by endocytosis, stimulates the 

degradation of ferritin via lysosomes and subsequently binds the released iron. The iron 

bound to deferoxamine is then excreted in urine and faeces (2,6,21,23). 

Regardless of numerous limitations associated with the use of deferoxamine, such as poor 

compliance due to the parenteral administration, inadequate cardiac iron removal and 

auditory, ocular and neurological toxicities (6,16,18,19,24),  deferoxamine is still the most 

common used therapy for the treatment of iron overload. This widespread use has remained 

despite the presence of new oral iron chelators.  

 

Given the complexity of the issues highlighted above, our focus is to gain insight into key 

factors that play a role in iron overload; with the objective of quantifying the therapeutic 

effect of deferoxamine and identify potential covariates on model parameters describing the 

underlying disease progression. Furthermore, we propose how modelling and simulation 

(M&S) can be applied to support decision making in clinical practice,  providing a framework 

to predict changes in the disease status and resulting ferritin response following treatment 

with existing and novel chelators. 

 

7.2 Methods 
Data 

The modelling analysis was performed using retrospective clinical data from three different 

Italian centres: Azienda Ospedaliera Universitaria Consorziale Policlinico di Bari U.O. 

Pediatria Federico Vecchio; Azienda Ospedaliera Universitaria Policlinico di Sassari Clinica 

Pediatrica, ASL 1 D.H. per Talassemia; Azienda Ospedaliera di Padova Clinica di 

Oncoematologia Pediatrica. The study has been conducted in full conformance with the 

principles of the Declaration of Helsinki and with the local laws and regulations concerning 

clinical trials. The protocol and the informed consent documents have been formally 

approved by the relevant research ethics committee of each clinical site.  

 

27 patients affected by transfusion-dependent diseases, receiving deferoxamine as single 

drug for iron chelation therapy were considered eligible for the retrospective study. Patients 

receiving chemotherapy, and/or affected by other diseases that require additional blood 
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transfusions, and/or affected by unrelated endocrine dysfunctions were considered not 

eligible for the study. Baseline characteristics of the patient population are provided in Table 

1. Serum ferritin was the main endpoint of interest and was measured every two to three 

months; patients contributed with 40.2 observations on average (sd: 17), with a minimum of 

4 samples per year. With the same frequency, data on the following variables were collected 

during the study: height and body weight of the patients, as well as clinical data on TSH, FT4, 

AST, ALT, glucose, creatinine and ejection fraction. These were considered as potential 

covariates and were tested during the study to evaluate their influence on the changes in 

serum ferritin levels. 

 

Table 1. Baseline characteristics of the patient population 

 Units Median Range 

Age Years 14.6 6.8-19.9 

Weight Kg 46 17.5-71 

Height Cm 154 111-173 

TSH mIU/L 2.34 0.58-83.2 

FT4 ng/dL 1.05 0.73-1.43 

AST U/L 33 7-159 

ALT U/L 56 9-372 

Glucose mg/dL 91 52-444 

Creatinine mg/dL 0.6 0.2-1.12 

Ejection Fraction % 64 35-77 

Ferritin μg/L 2260 393-8500 

 

 

PK model deferoxamine 

As pharmacokinetic samples are not collected in clinical routine monitoring, the model was 

built using literature data (25) by fitting a mean pharmacokinetic profile in adults patients 

affected by transfusion-dependent haemoglobinopathies receiving deferoxamine as an 8 

hours subcutaneous infusion. A two compartment pharmacokinetic model with zero-order 

absorption (8 hours subcutaneous infusion) and first-order elimination processes provided 

an appropriate description of the average steady state concentration (CssAV) for the 

population of interest. The fitting of the published data is shown in Figure 1.  
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Figure 1. Performance of the pharmacokinetic model of deferoxamine. The circles represent the 

mean population deferoxamine concentrations reported in literature (23). The solid line represents 

model prediction.  

 

Assumptions were then made to allow the use of the model to predict exposure in the 

patient population: 1) the simulations were based on the dosing regimen information 

collected in the clinical centres and the reported changes to the regimen; and 2) in the 

absence of quantitative data on adherence to drug therapy, compliance was assumed 

equivalent to 100%. The role of compliance was assessed in a second phase and details on 

that are provided in the next paragraphs. Afterwards, fixed allometric scaling (exponent of 

0.75 on CL/F and 1.00 on V/F) was used to extrapolate CssAV in adolescents and children. 

Population prediction (PRED) were used to generate CssAV values in the population of 

interest. 

 

Disease model iron overload 

A disease model for iron overload in patients affected by transfusion-dependent diseases 

was previously developed by our group [unpublished results]. It consists of an indirect 
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response model where basal turnover of ferritin levels is depicted by a zero-order 

production rate (Kin) and a first-order degradation rate (Kout) and the disease component is 

described by an additive production rate (CRT) triggered by the transfusion regimen which 

was found to be non-linearly correlated to the disease status (actual ferritin levels). 

 
𝑑𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁

𝑑𝑡
= 𝐾𝑖𝑛 + 𝐶𝑅𝑇 − 𝐾𝑜𝑢𝑡 × 𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁     Equation 1 

 

𝐶𝑅𝑇 = 𝑆𝐶𝐿 ×  𝑒−𝑆𝐻𝑃 ×𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁       Equation 2 

 

where SCL is a scaling factor and SHP is the shape factor of the correlation. The population 

parameters of the disease model were kept fixed when performing the PKPD analysis of the 

retrospective clinical data. 

 

Modelling 

The software R (v.2.14.0) was used for statistical summaries as well as data manipulation 

and preparation for modelling purposes. Nonlinear mixed effects modelling was instead 

performed in NONMEM version 7.2 (Icon Development Solutions, USA). 

Model building criteria included: (i) successful minimisation, (ii) standard error of estimates, 

(iii) number of significant digits, (iv) termination of the covariance step, (v) correlation 

between model parameters and (vi) acceptable gradients at the last iteration. Comparison of 

hierarchical models was based on the likelihood ratio test. Goodness of fit was assessed by 

graphical methods, including population and individual predicted vs. observed 

concentrations, conditional weighted residual vs. observed concentrations and time, 

correlation matrix for fixed vs. random effects, correlation matrix between parameters and 

covariates and normalised predictive distribution error (NPDE) (26).  

Fixed and random effects were introduced into the model in a stepwise manner. Inter-

individual variability in the parameters was assumed to be log-normally distributed. A 

parameter value of an individual i (post hoc value) is therefore given by the following 

equation: 

 

θi = θTV * eηi 

 

in which θTV is the typical value of the parameter in the population and ηi is assumed to be 

random variable with zero mean and variance ω2. Residual variability, which comprises 

measurement and model error, was described with a proportional error model. This means 

for the jth observed concentration of the ith individual, the relation Yij: 

 

Yij = Fij + εij * W 
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where Fij is the predicted concentration and εij the random variable with mean zero and 

variance σ2. W is a proportional weighing factor for ε. 

 

Different concentration-effect relationships (e.g., Emax model, linear model, etc.) were 

tested on the disease model presented in equation 1 to quantify the effect of deferoxamine 

on serum ferritin levels. CssAV levels, generated with the PK model described above were 

used in the drug model as a measure of deferoxamine exposure. The effect of deferoxamine 

(DFO) was introduced as proportional change in the degradation rate (Kout) of ferritin as 

shown in equation 3 which is derived from equation 1. 

 
𝑑𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁

𝑑𝑡
= 𝐾𝑖𝑛 + 𝐶𝑅𝑇 − 𝐾𝑜𝑢𝑡 × 𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁 × (1 + 𝐷𝐹𝑂)   Equation 3 

 

𝐷𝐹𝑂 = 𝑆𝐿𝑃 ×  𝑆𝐶𝑠𝑠𝐴𝑉        Equation 4 

 

where DFO is the effect of deferoxamine on the Kout of the disease model, SLP is the slope 

parameter of the concentration-effect relationship, and SCssAV is the steady state 

concentrations simulated with the deferoxamine PK model. 

In addition, the disease model parameters, the scaling (SCL) and the shape (SHP) factors 

presented in equation 2 were found to be non-linearly correlated to the actual disease 

status according to the following relationships: 

 

𝑆𝐶𝐿𝑖 =  𝑆𝐶𝐿𝑟𝑒𝑓  × (
𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁

𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁𝑚𝑒𝑑
)

𝜃𝑥

       Equation 5 

 

𝑆𝐻𝑃𝑖 =  𝑆𝐻𝑃𝑟𝑒𝑓  × (
𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁

𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁𝑚𝑒𝑑
)

𝜃𝑥

       Equation 6 

 

where SCLref and SHPref are the reference parameters in the population of interest, SCLi and 

SHPi are the individual parameters, FERRITINmed is the median ferritin value in the population 

of interest and θx is the estimated exponent of the relationship. 

The evaluation of the final model was based on graphical and statistical methods, including 

visual predictive checks (27). Bootstrap was used to identify bias, stability and accuracy of 

the parameter estimates (standard errors and confidence intervals). The bootstrap 

procedures were performed in PsN v3.5.3 (University of Uppsala, Sweden) (28), which 

automatically generates a series of new data sets by sampling individuals with replacement 

from the original data pool, fitting the model to each new data set. 
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Assessing the role of compliance 

At the initial stage of the model-building phase, the model was not able to appropriately 

describe the data (Figure 2), under the assumption that the patients represent a single 

population. However, two different profiles were observed in the data, which prompted us 

consider dichotomising the data into responders and non-responders. An arbitrary definition 

was used based on the observed ferritin levels: the responders showed very stable profiles 

around 2500 µg/L serum ferritin, whereas the non-responders showed very steep increases 

in ferritin levels and appeared not to be able to return to a less severe state of the disease. A 

mixture model improved the quality of the fitting, but did not allow an adequate 

characterisation of the individual profiles.  

 

 
Figure 2. Goodness-of-fit plots of the model without the inclusion of compliance. Upper panels show 

the observed data (Obs) vs. population predictions (Pred) (left) and the observed data vs. individual 

predictions (IPred) (right). Lower panels show the conditional weighted residuals (CWRES) vs. 

population predictions (left) and the CWRES vs time (left). 

 

We have therefore investigated other potential mechanisms and explanatory factors 

associated with the different response profiles based on the information available in the 
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literature. Treatment compliance was found to be the major cause of differences in ferritin 

levels. In the papers by Gabutti et al. (29) and Galanello et al. (30) serum ferritin profiles are 

quite stable over the observational period (Figures 3 and 1 respectively) as in our responder 

group and compliance is in both cases higher than 95%. In other investigations (20,29,31) 

Kaplan-Meier analyses show the relationship between survival and treatment compliance, 

providing evidence of the fact that poor adherence has a crucial impact on the clinical 

outcome. In particular the work by Olivieri et al. (31) shows how survival can directly be 

linked to the observed ferritin levels.  

The absence of quantitative data on treatment compliance in our retrospective study did not 

allow us to directly select this variable to account for such differences, which represented a 

clear obstacle for the analysis. To overcome this issue we used the work carried out by 

Olivieri et al. (31) as a reference and we derived a new variable (CMPL) based on the 

percentage of observations for each patient above the threshold of 2500 µg/L ferritin. The 

new variable (CMPL) was introduced in the model as follows:  

 

𝐷𝐹𝑂 = 𝑆𝐿𝑃 ×  𝑇𝐶𝑠𝑠
𝐴𝑉        Equation 7 

 

𝑇𝐶𝑠𝑠
𝐴𝑉 =  𝑆𝐶𝑠𝑠

𝐴𝑉  × (1 − 𝐶𝑀𝑃𝐿)       Equation 8 

 

where DFO is the effect of deferoxamine, SLP is the slope parameter of the concentration-

effect relationship, and TCssAV are the “true” steady state concentrations after accounting 

for the impact of treatment compliance (CMPL). TCssAV are derived from the simulated 

steady state concentrations (SCssAV) corrected by treatment compliance as shown in 

equation 7. 

 

The implementation of treatment compliance provided a significant increase in the fitting 

performances of the model (as shown in Figures 3 and 4) and allowed a more accurate 

quantification of the therapeutic intervention.  
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Figure 3. Goodness-of-fit plots of the final model. Upper panels show the observed data (Obs) vs. 

population predictions (Pred) (left) and the observed data vs. individual predictions (IPred) (right). 

Lower panels show the conditional weighted residuals (CWRES) vs. population predictions (left) and 

the CWRES vs time (left). 
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Figure 4. Individual plots of 9 randomly selected patients: observed data are plotted using blue 

circles; the black solid line represents the population prediction (Pred) and the red solid line 

represents the individual predictions (IPred). 

 

Model Simulations 

Simulations were performed to investigate the impact of different exposure levels and 

various compliance scenarios on the clinical evaluation of serum ferritin levels. Time to reach 

2500 μg/L serum ferritin (threshold between moderate and severe iron overload 

(2,6,20,31,32)) was chosen as a comparison measure between different scenarios. The 

differential equation solver ode15s from the software MATLAB (version R2010b) was used 

for the purpose of model simulations, whereas the software R (v.2.14.0) was used for 

graphical summaries. The ode15s which is a multistep solver and uses numerical 

differentiation formulas is particularly suitable for stiff systems (33,34).  

Three dosing regimens (30, 45 and 60 mg/kg/day for 5 days a week) were used to generate 

CssAV in a patient population with body weight ranging from 15 to 75 kg. This allowed 

evaluating the impact of different exposures on the endpoint of interest (time to reach the 

threshold). Each exposure level was then tested on patients starting at different baselines 
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ranging from 3000 to 12000 μg/L serum ferritin. In this set of simulations the exposure was 

assumed to be constant over time. 

 

In addition, simulations were used to evaluate the impact of various compliance scenarios 

on changes in ferritin levels. Our main interest in this case was to show how the model can 

be used prospectively in the clinical practice to evaluate a priori any given situation. To 

present and discuss the results of these simulations, given the large number of scenarios 

evaluated, we considered only a virtual patient of 45 kg receiving 45 mg/kg/day 

deferoxamine 5 days per week (representative of the mean patient in the population under 

investigation). The different scenarios investigated are presented in Table 2; compliance is 

stratified per 1 year, 6, 2 and 1 months.  

 

Table 2. Simulation scenarios for the evaluation of different compliance levels 

 

  Number of missed doses in the stratification period 

  Single doses  

(Random) 

Consecutive doses 

(Drug holidays) 

  Stratification 

 % of missed doses 1 year 1 year 6 months 2 months 1 month 

Scenario 1 10% 25 25 / 5 / 

Scenario 2 20% 50 50 25 10 5 

Scenario 3 30% 75 75 / 15 / 

Scenario 4 40% 100 100 50 20 10 

Scenario 5 50% 125 125 / 25 / 

Scenario 6 60% 150 150 75 30 15 

Scenario 7 70% 175 175 / 35 / 

Scenario 8 80% 200 200 100 40 20 

Scenario 9 90% 225 225 / 45 / 

Full adherence is equivalent to 250 doses per year 

 

The iterations were stopped if more than 5 years were needed to reach the threshold of 

2500 μg/L serum ferritin. As proposed in the work carried out by Piana et al. (35), the five 

scenarios selected try to cover different compliance patterns that may occur in the presence 

of a chronic regimen. Scenario 1 with single doses missed at random reflects poor quality of 

execution, whereas the other scenarios provide a range of options that reflect different 

patterns and durations of drug holidays. 
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7.3 Results 
Disease model 

The use of a disease model describing the impact of blood transfusions on serum ferritin was 

expanded to include the effects of chelation therapy. The effect of blood transfusions was 

introduced as a conversion rate on the production rate of ferritin and was found in the 

previous analysis to be inversely correlated to the disease status as shown in equation 1 and 

2. In addition, the disease model parameters, the scaling (SCL) and the shape (SHP) factors 

presented in equation 2 were found to be non-linearly correlated to the actual disease 

status.  Their inclusion in the model provided a significant decrease in the objective function 

value (OFV) and allowed a better description of the data. Furthermore, the inclusion of inter-

occasion variability (IOV = 57.4 %) on the conversion rate resulted in a significant drop in the 

OFV (Δ 443) allowing a better description of the individual profiles. 

 

Drug model 

The effect of deferoxamine (DFO) was introduced in a proportional way on the degradation 

rate (Kout) of ferritin. Furthermore, the implementation of treatment compliance as a factor 

on the exposure of deferoxamine improved considerably the data fitting and the model 

performance, as well as the inclusion of inter-individual variability (IIV) on the slope 

parameter, which reduced significantly the OFV and improved goodness of fit and visual 

predictive check (VPC) diagnostics. An overview of the final model parameters and bootstrap 

results is presented in Table 3.  

 

Table 3. Parameter estimates of the PKPD model of deferoxamine 

Parameter Estimate Bootstrap (mean) CV (%) 

Kin (mcg/h) 0.0002 (FIX) / / 

Kout (h-1) 0.0000045 (FIX) / / 

SHP (h-1) 0.00026 (FIX) / / 

SCL (mcg/h) 0.383 (FIX) / / 

Slope (mcg/conc) 4.81 5.16 15.7 

Error Proportional -0.173 -0.17 6.5 

DIS exp on SHP 1.29 1.08 57.4 

DIS exp on SCL 0.845 0.67 51.9 

IIV on Slope 0.082 0.105 80.9 

IOV on CRT 0.252 0.29 43.1 

 

Internal model validation diagnostics were satisfactory. Individual predicted profiles and 

goodness-of-fit plots as shown in Figures 3 and 4, as well as VPC (Figure 5) reveal that the 
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model provides an adequate and non-biased description of the data.  In addition, NPDE 

summaries (Figure 6) show that the discrepancy between predicted and observed values can 

be assumed to be normally distributed. 

 

 
Figure 5. Visual predictive check: observed data are plotted using grey circles; the red solid line 

represents the median of the observed data; the blue solid lines represent the 5th and 95th 

percentiles of the observed data. The red shaded area represents the 95th CI of the median of the 

simulated data; the blue shaded areas represent the 95th CI of the 5th and 95th percentiles of the 

simulated data. 
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Figure 6. NPDE: normalised prediction distribution errors. Upper panels show the QQ-plot of the 

distribution of the NPDEs for a theoretical N (0, 1) distribution (left) and the histogram of the 

distribution of the NPDE together with the density of the standard normal distribution (right). Lower 

panels show the NPDEs vs. time (left) and NPDEs vs. individual predictions (right). 

 

Model Simulations  

The impact of different exposure levels and various compliance scenarios on the clinical 

evaluation of serum ferritin levels was evaluated through model simulations. The results of 

the effect of different exposure levels in virtual patients characterised by different body 

weights and starting at different ferritin baseline levels are presented in Figure 7 for the 

following dosing regimen respectively: 30, 45 and 60 mg/kg/day for 5 days a week. Results 

clearly show that in the absence of an adequate exposure to the chelating agent an 

appropriate clinical response cannot be achieved. The model provides also the opportunity 

to evaluate a priori the most suitable dosing regimen to achieve a desired therapeutic goal. 
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Figure 7. Time to reach a threshold of 2500 ug/L of serum ferritin based on different exposure levels 

in patients with different body weights (15 to 75 kg). The different panels show three scenarios 

where 30, 40 and 45 mg/kg dosing regimen have been evaluated. Each line represents a different 

starting baseline ferritin level (darker to lighter shows an increase in the starting baseline levels): 

square, circle, triangle with point up, plus, cross, diamond, triangle with point down, square cross, 

star and diamond plus represent respectively 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 

11000 and 12000 ug/L of the starting baseline ferritin. 
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We have also investigated in one virtual patient of 45 kg receiving 45 mg/kg/day 

deferoxamine 5 days per week the impact of different compliance patterns in achieving a 

specific response, which was defined as time to reach the threshold of 2500 μg/L serum 

ferritin. Several conclusions can be derived from the results of the simulations: 1) if single 

doses are missed at random (reflecting poor quality of execution) (Figure 8 – scenario 1) as 

compared to doses missed consecutively (drug holidays) (Figure 8 – scenario 2) over a period 

of 1 year, a better and faster response is achieved; 2) if doses are missed consecutively over 

a given period of time, the shorter the period the better the clinical response as shown in 

Figure 8 – scenarios 2 to 5) in all the scenarios, if more than 60 % of the doses are missed 

(treatment compliance is lower than 40%) the therapeutic intervention is not effective; 

finally 4) a reduction in treatment compliance, especially when moving from 30 to 60% of 

missed doses clearly shows a significantly slower response indicating that even though the 

desired therapeutic outcome will be achieved the time to reach this goal might not be 

sustainable by the patient.  
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Figure 8. Time to reach a threshold of 2500 mcg/L of serum ferritin based on different compliance 

scenarios (10 to 90 % of missed doses). The different panels show five scenarios where different 

compliance patterns have been evaluated (see table II). Each line represents a different starting 

baseline ferritin level (darker to lighter shows an increase in the starting baseline levels): square, 

circle, triangle with point up, plus, cross, diamond, triangle with point down, square cross, star and 

diamond plus represent respectively 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000 and 

12000 ug/L of the starting baseline ferritin. 
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7.4 Discussion 
A model-based approach was proposed here to understand the implications of iron 

chelation therapy with deferoxamine on ferritin levels in patients affected by transfusion-

dependent diseases. The complexity of the system requires an integrated approach that 

allows exploring the dynamics of the disease and its progression. A drug model was 

incorporated successfully into a disease model previously developed aimed at the 

characterisation of ferritin levels in this population. The model was evaluated using 

statistical and graphical criteria of goodness-of-fit and predictive performance measures as 

shown in table III and figures 3 to 6. The analysis reveals a strong effect of the disease status 

on the overall iron/ferritin conversion rate, and highlights also the role of treatment (drug 

exposure and compliance patterns) on the overall response and disease progression. In 

addition, the inclusion of IOV (57.4 %) allowed achieving a better description of individual 

profiles. Such a value of IOV appears to be influenced by larger intra-individual variability at 

higher serum ferritin levels where other mechanisms such as inflammatory disorders, and/or 

liver status play a role in determining the absolute ferritin value. Unfortunately, the lack of 

information on these variables allowed us only to take a stochastic approach for the 

quantification of such differences.  

 

Parameterisation of iron chelation 

Deferoxamine binds iron at different extracellular levels, and within the cell it targets 

lysosomal ferritin iron by stimulating ferritin degradation (23). Given that with the available 

data we could not distinguish among the different actions of deferoxamine, we decided to 

parameterise the drug effect as a proportional factor influencing the Kout of the turnover 

model. Furthermore, the same parameterisation would allow exploring the effect of other 

chelating agents: for example, oral chelators such as deferiprone and deferasirox also act 

intracellularly as deferoxamine, though targeting a different pathway (i.e., cytosolic ferritin 

iron) (23).  

 

Clinical application 

Model simulations were used to investigate the impact of different exposure levels and 

various compliance scenarios on serum ferritin levels. Results show that inadequate iron 

chelation therapy with sub-therapeutic exposure (Figure 7) as well as poor adherence to the 

assigned dosing regimen (Figure 8) would significantly increase the time required to achieve 

a desired clinical response, and in some cases (e.g., with treatment compliance lower than 

40%) patients would not achieve at all the therapeutic goal. Even though these results might 

seem rather obvious, we are aware that clinically relevant changes in serum ferritin levels 

are observed over a long period of time and often crucial decisions have to be made before 

the clinical evidence is available. This availability of this model shows an opportunity to 



MODEL-BASED OPTIMISATION OF DEFEROXAMINE CHELATION THERAPY 

173 
 

explore different scenarios that have been so far evaluated empirically in clinical practice. 

For example, model simulations allow evaluating whether a compromise between lower 

exposure, aimed at a possible reduction in acute side effects is compensated by acceptable 

increase in the time to achieve the therapeutic goal. Likewise, it may be possible to evaluate 

the importance of different compliance patterns for the available chelating agents, yielding a 

more quantitative estimate of the changes in ferritin levels and /or risk of clinical failure. This 

information can then be used to support the decision making and to optimise the 

therapeutic intervention. 

 

Limitations 

Some limitations must be discussed in the context of this analysis. First of all, we used a PK 

model developed on literature data, which allowed us using mean population data and 

derive individual information based only on fixed allometric scaling. A more structured 

analysis of the PK of deferoxamine would reduce the uncertainty around the simulated 

exposure and would allow us explaining the variability in PK that propagates into the 

pharmacodynamics. On the other hand, we believe that the approach taken allowed us to 

characterise differences in the pharmacokinetics that we would have not been able to define 

only with information on the dosing regimen; e.g., changes in size are accounted for based 

on allometric scaling. 

A second aspect is the role of compliance in the context of this analysis. The absence of 

quantitative data on treatment adherence in the population under investigation was a clear 

impediment. To overcome this issue we used the observed data to generate a variable that 

would allow us to have a gradient of treatment compliance. This decision was supported by 

the information available in the literature; we found clear evidence that high compliance 

leads to stable ferritin levels over time and that poor adherence to deferoxamine therapy is 

strongly correlated to a poor clinical outcome as nicely depicted in the work by Gabutti et al. 

(29) (Kaplan-Meier analysis presented in Figure 6). This was confirmed by a few other 

publications (20,30,31,36) and gave us the confidence that the approach taken would be 

robust enough to meet the purposes of this analysis. 

 

Conclusion 

In conclusion, we were able to gather further insights in the dynamics of a rather complex 

process such as iron overload using a model-based approach. Bearing in mind the limitations 

discussed and the relative level of uncertainty, the model has proven to be a useful tool to 

support decision making in clinical practice in the context of transfusion-dependent 

haemoglobinopathies. In addition, this approach will enable further evaluation of the dose 

rationale for existing and novel chelating agents. 
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Summary 

Aims: The evaluation of the safety profile during the development of a drug is a challenging 

undertaking, especially as the drug-specific adverse events may be intertwined with disease-related 

complications. Using iron chelation therapy as an example, we propose a model-based approach to 

integrate epidemiological and pharmacological data for the characterisation of the acute, long-term 

adverse events and the disease complications due to transfusion-dependent iron overload.  

Methods: Longitudinal data from a reference group of patients (n= 27) affected by β-thalassaemia 

major under chelation therapy with deferoxamine were evaluated in conjunction with literature data 

on the short-term safety profile of deferoxamine. Occurrence of the secondary co-morbidities 

hypothyroidism and diabetes mellitus was analysed based on a time to event approach in NONMEM 

v.7.2.0. In this analysis historical data were included as priors to reduce uncertainty in parameter 

estimates. Occurrence of the acute drug-specific adverse events arthralgia/myalgia and anaphylaxis 

were modelled as dose-dependent and dose-independent events. 

Results: The predicted incidence for hypothyroidism and diabetes based on the hazard models with 

mean (90% CI) was 6.3% (0-14.8) and 8.9% (0-18.5), respectively. For a 45 mg/kg/day dose the mean 

(95% CI of the mean) simulated incidences for anaphylaxis and arthralgia/myalgia were 0.154% 

(0.139-0.169) and 21.01% (20.85-21.17) respectively; other doses as well as different compliance 

patterns were evaluated both for drug-specific AEs and disease complications. 

Conclusions: A model-based approach provides the basis for a structured evaluation of the safety 

profile of drugs at different stages of development and for risk management, allowing integration of 

clinical and epidemiological data and consequently discrimination between the disease-related and 

the drug-related adverse events. Our simulations show that both chelation and transfusion history 

play a major role in determining the long-term adverse events and complications of disease. The 

findings also reveal a delicate balance between acute and long-term complications, indicating that 

inadequate chelation therapy or poor compliance can affect the desired therapeutic goal. 
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8.1 Introduction 
In many chronic paediatric diseases such as transfusion-dependent haemoglobinopathies, 

where life-long red blood cell (RBC) transfusion is essential to survive (1–7), the direct and 

instantaneous therapeutic effectiveness needs to be balanced with long-term complications 

that depend both on the treatment intervention and the underlying disease progression. 

Two major aspects need to be considered when evaluating long-term effects: the disease 

progresses over time and may lead to disease specific complications and at the same time 

the frequency of drug-specific AEs may change over time or delayed, time-dependent AEs 

may be occur (8,9). Furthermore, in contrast to drug efficacy, even the short-term evaluation 

of drug-specific AEs can be extremely challenging, as data are often not available (e.g., a 

given event might not be observed during a clinical trial, especially if the incidence is 

relatively low) or not quantifiable due to recognised methodological issues (10–12). The two 

aspects very often overlap, making it rather difficult to discriminate the underlying cause. 

Lack of understanding of such an interaction may lead to inaccurate assessment of the safety 

profile of a drug. In fact, to fully characterise the safety profile, a variety of endpoints need 

to be considered in parallel, taking into account the correlations among them.  

 

Chronic iron overload 

Even though the management of the chronic RBC transfusion regimen and the availability of 

adequate iron chelation therapy have improved significantly in the last decades, patients 

with β-thalassemia will still experience a number of complications throughout their entire 

life (6,13,14).  

Among the disease related complications, iron overload is the most clinically relevant and it 

is associated with several co-morbidities such as cardiac dysfunction, liver fibrosis, 

hypogonadism, hypothyroidism, hypoparathyroidism and diabetes mellitus (6,13,14). 

Cardiac disease caused by myocardial siderosis is the most relevant one, causing death in 

71% of the patient population (15).  

In the absence of an innate mechanism to remove the excess of iron, treatment with iron 

chelators is vital to prevent its accumulation and to manage the related complications (16–

19). In addition to the disease related complications, the therapeutic intervention itself may 

also cause a number of undesired events (different for each iron chelator available on the 

market) that will play an essential role in the ability of the patient population not only to 

accept the intervention (poor adherence) but also to coexist with these complications for a 

life-long term. In this analysis we focus on the iron chelating agent deferoxamine (DFO), that 

is first-line therapy for transfusion-dependent diseases and has been available for the 

treatment of iron overload for more than 35 years (2,6,16–21). Among the various 

limitations of deferoxamine therapy recognised by clinicians and experts in the field 
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(6,17,19,22), compliance to the treatment plays a crucial role in the overall effectiveness of 

the treatment as well as the related complications. 

 

Using DFO for the treatment of iron overload as an illustrative example, we propose and 

evaluate the advantages of a model-based approach for the characterisation of the safety 

profile of a medicinal product. We also show how modelling allows integration of 

epidemiological (literature) and pharmacological data for the quantification of the acute 

(drug specific) and long-term (disease specific) AEs of iron chelation therapy. Lastly, we show 

how the effect of treatment compliance can be assessed and correlated to acute and long-

term events, disentangling the impact of inadequate chelation therapy from variable pattern 

of treatment compliance. 

 

8.2 Methods 
Data 

To evaluate the model-based approach in the context of chronic iron overload we decided to 

select data in thalassaemic patients undergoing single therapy with deferoxamine and 

specifically collected data on incidence of hypothyroidism and diabetes mellitus. The choice 

of these two co-morbidities was made because they both are a clear consequence of the 

disease and no other influence of the drug therapy is expected except for the prevention of 

the complication itself. Furthermore, in the absence of clinical data on drug-specific AEs we 

simulated incidences for two extreme cases (i.e., arthralgia/myalgia as a very common AE 

and anaphylaxis as a rare AE) to assess their profiles after short- and long-term treatment. 

Specific details on the data are provided in the next few paragraphs. 

 

Clinical Data on hypothyroidism and diabetes mellitus 

The modelling analysis was performed using retrospective clinical data in 27 patients with β 

thalassaemia major from three different Italian centres: A.O. Universitaria Consorziale 

Policlinico di Bari U.O. Pediatria Federico Vecchio; A.O. Universitaria Policlinico di Sassari 

Clinica Pediatrica, ASL 1 D.H. per Talassemia; A.O. di Padova Clinica di Oncoematologia 

Pediatrica. The study has been conducted in full conformance with the principles of the 

Declaration of Helsinki and with the local laws and regulations concerning clinical trials. The 

protocol and the informed consent documents have been formally approved by the relevant 

research ethics committee of each clinical site.  

Clinical data were collected retrospectively for a maximum of ten years in 27 patients 

affected by transfusion-dependent diseases, receiving deferoxamine as single drug for iron 

chelation therapy. Baseline characteristics of the patient population are provided in Table 1. 

Patients contributed with 40.2 observations on average (sd: 17), with a minimum of 4 

samples per year. 
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Table 1. Baseline characteristics of the patient population (n=27) 

 Units Median Range 

Age Years 14.6 6.8-19.9 

Weight Kg 46 17.5-71 

Height Cm 154 111-173 

TSH mIU/L 2.34 0.58-83.2 

FT4 ng/dL 1.05 0.73-1.43 

AST U/L 33 7-159 

ALT U/L 56 9-372 

Glucose mg/dL 91 52-444 

Creatinine mg/dL 0.6 0.2-1.12 

Ejection Fraction % 64 35-77 

Ferritin μg/L 2260 393-8500 

 

Literature data on co-morbidities and drug specific AEs (data abstraction) 

A literature search has been performed to retrieve data on the incidence of hypothyroidism 

and diabetes mellitus in the thalassemic population. At first reports  from the  Central 

Bureau of Statistics, The Netherlands were used as reference for the background incidence 

of the two co-morbidities in the overall population (23). Subsequently, a comprehensive 

literature search was performed using MESH terms in PubMED, in which articles describing 

hypothyroidism and diabetes in thalassaemic patients were retrieved. Thirteen articles in 

total (15,24–32,32–34) were identified with relevant information on the incidence of both 

co-morbidities. The keywords used comprised the names of the co-morbidity in combination 

with β-thalassaemia major, transfusional iron overload, deferoxamine, and a combination of 

them. In parallel, a separate search was performed on publications showing supporting 

evidence for the use of serum ferritin levels as a predictor for the occurrence of the two co-

morbidities in thalassaemic patients (35–39). Of relevance is the finding that co-morbidity is 

with  higher incidence in  patients whose serum ferritin levels are consistently above 2500 

μg/L (35–39). This threshold represents the boundaries for a shift in  iron overload from  

moderate to a severe state (2,6,40–42). Given the level of detail provided by the authors,  

we  have focused on the work by Belhoul et al. who demonstrated in a group of almost 400 

patients a clear distinction in the incidence of hypothyroidism and diabetes mellitus in 

relation to a serum ferritin threshold of 2500 μg/L (38).  

 

Finally for the evaluation of drug specific adverse events (anaphylaxis and 

arthralgia/myalgia), estimates reported on the summary of product characteristics (SPC) of 

DFO (20) were used to simulate the events of interest. The pharmacological classification 

proposed by Wills and Brown was used to select drug specific adverse events based on their 

frequency, time of onset and the relation with dose (43). Arthralgia/myalgia was selected as 
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an example of a very common Type A (dose-dependent) AE with a frequency greater than 

1/10. In addition, anaphylaxis was identified as a rare, Type B (dose-independent) AE with a 

frequency between 1/10000 and 1/1000. 

 

Modelling 

Hazard models for hypothyroidism and diabetes mellitus 

The models for hypothyroidism and diabetes were developed based on the combination of 

literature and clinical data. Three steps were taken for the development of each model:  

 

1) An exponential hazard model was built based on literature data on the incidence of 

the co-morbidity in thalassaemic patients (disease effect) and in a healthy population 

(baseline);  

2) The estimated parameters were used as priors to estimate the hazard in the 

retrospective clinical data in thalassaemic patients;  

3) Literature data were used to incorporate the effect of serum ferritin levels as a 

covariate on the final hazard model. 

 

During step 1, a time to event analysis was performed for both hypothyroidism and diabetes 

by implementing an exponential hazard model in NONMEM v.7.2 (Icon Development 

Solutions, USA). The initial model was based on the epidemiology reports and literature data 

and consisted in the following relationship between hazard and survival:  

 

𝑆(𝑡) =  𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑡

0        Equation 1 

 

Where the hazard is h(t), and the survival (S) is a function of the cumulative hazard within 

the time interval 0 to t. The effect of disease was included as a covariate function (λdis) that 

would modify the background (initial) hazard (h0) as follows: 

 

ℎ(𝑡) =  ℎ0(𝑡) ∗ 𝑒𝜆𝑑𝑖𝑠          Equation 2 

 

In step 2 the normal-inverse Wishart prior (NWPRI) option was used in NONMEM (44) to 

estimate the incidence of the co-morbidities in the data collected during the retrospective 

study in thalassaemic patients. In the presence of extremely sparse data the use of prior 

information was deemed pivotal to ensure unbiased estimate of the disease effect and to 

stabilise the model. 

 

Finally, in step 3  the work by Belhoul et al. (38) was used to justify the inclusion of serum 

ferritin levels as a covariate factor in the model developed in step 2. The objective was to 
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demonstrate that ferritin can be considered as a predictive factor for the probability (hazard) 

of developing co-morbidity. The threshold of 2500 μg/L was used as reference value to 

dichotomise the data into two groups and ratio of the incidence of the co-morbidity in these 

groups was used to define the corresponding ratio in the hazard model. As shown in 

equation 2, the effect of the disease was described by two components depending on 

whether serum ferritin levels were above (λfrth) or below (λfrtl) the selected threshold: 

 

ℎ(𝑡) =  ℎ0(𝑡) ∗ 𝑒𝜆𝑓𝑟𝑡ℎ+𝜆𝑓𝑟𝑡𝑙                Equation 3 

 

A summary of the model building steps and parameter estimates for the hazard models of 

deferoxamine for hypothyroidism and diabetes mellitus is provided in Table 3. 

 

Table 3. Model building steps and parameter estimates of the hazard model of deferoxamine for 

hypothyroidism and diabetes mellitus. 

Hypothyroidism 

Parameter Description Estimate 

Step 1: based on epidemiological and literature data 

h0 Baseline hazard 0.000496 

λdis Disease as a predictor 2.69 

Step 2: based on retrospective clinical data (step 1 used as prior) 

h0 Baseline hazard 0.000496 (FIX) 

λdis Disease as a predictor 1.86 

Step 3: based literature data (38) 

h0 Baseline hazard 0.000496 (FIX) 

λfrtl Disease when ferritin is 
below 2500 µg/L 

1.03 

λfrth Disease when ferritin is 
above 2500 µg/L 

2.58 

Diabetes mellitus 

Parameter Description Estimate 

Step 1: based on epidemiological and literature data 

h0 Baseline hazard 0.00036 

λdis Disease as a predictor 2.72 

Step 2: based on retrospective clinical data (step 1 used as prior) 

h0 Baseline hazard 0.00036 (FIX) 

λdis Disease as a predictor 2.54 

Step 3: based literature data (38) 

h0 Baseline hazard 0.00036 (FIX) 

λfrtl Disease when ferritin is 
below 2500 µg/L 

1.56 

λfrth Disease when ferritin is 
above 2500 µg/L 

3.33 
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Logistic models of acute drug specific adverse events 

In contrast to the data fitting procedures used to describe the incidence of co-morbidiies, 

drug-specific adverse events were evaluated by simulations using the information reported 

on the SPC of deferoxamine. 

Two approaches were used to simulate the incidence of a very common dose-dependent AE 

(arthralgia/myalgia) and a rare dose-independent AE (anaphylaxis).  In the first case, a 

logistic model with non-linear regression was developed correlating the drug levels a steady-

state with the probability of adverse events in an exposure-dependent manner. Steady-state 

concentrations were simulated based on a PK model, which is described in later in this 

section. The logistic model was implemented as follows: 

 

𝑃 =  
𝐶𝑠𝑠𝛾

(𝑃𝐶50
𝛾+𝐶𝑠𝑠𝛾)

       Equation 4   

 

where Css is the deferoxamine steady state concentration, PC50 is the concentration 

corresponding to a 50% probability of experiencing the AE, and γ is the coefficient defining 

the shape of the relationship. Parameter values for PC50 and γ were fixed to 13 ug/ml and 

2.5, respectively, to ensure that simulated incidence levels correspond to the figures 

reported in the SPC. 

In the second case, a truncated normal distribution (with x > 0) was used in R to simulate a 

rare, dose-independent AE (anaphylaxis). The rnorm function (45) with mean equal to 0.5 

and standard deviation equal to 0.5 was used to generate the probabilities of experiencing 

the adverse event.  A severity of grade 2-3 was assumed for all AEs. However, for the 

purposes of this analysis no distinction was made between severity levels at the time of the 

event. Data was therefore summarised only as the overall frequency of AE. 

 

Role of compliance  

In a previous investigation we have highlighted the importance of treatment compliance for 

the effectiveness of drug therapy in patients with chronic iron overload [Chapter 7 of this 

thesis]. Poor adherence was found to have a major influence on the pharmacokinetics of the 

drug and subsequently on the desired clinical response. Compliance to treatment will 

therefore be one of the factors to be evaluated in the proposed simulation scenarios in 

order to assess its impact on the short- and long-term complications of iron chelation 

therapy.  

 

Evaluation scenarios: clinical trial and not-in-trial Simulations 

Simulations were performed to investigate the impact of different dose levels yielding to a 

range of exposure levels and various compliance scenarios on the onset and incidence of 

short and long-term unfavourable effects of iron chelation therapy (46). Data were 
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simulated for an overall period of maximum 10 years, where the 1st year is representative of 

a standard clinical trial and the subsequent years reflect a follow-up interval that has the 

objective of capturing real life conditions that may occur over a long-term period. 

Simulations were performed on a hypothetical patient population with similar demographic 

characteristics as the patients included in the retrospective clinical study (N=27) and were 

based on the models and final parameter estimates described above. Doses were adjusted 

according to changes in body weight at the scheduled visits. To ensure that uncertainty and 

variability in parameter estimates are accounted for, 250 simulations were performed for 

each individual in each of the scenarios described below. To facilitate visual representation 

of the simulated data, co-morbidity data were stratified by age in two major groups: above 

and below 12 years of age.  

 

Simulation of drug concentrations and serum ferritin levels 

A PK model and a PKPD model previously developed by our group [Chapter 7 of this thesis] 

were used to simulate deferoxamine exposure and serum ferritin levels. Deferoxamine 

concentrations (Css) were simulated based on a two compartment pharmacokinetic model 

with zero-order absorption and first-order elimination. Five dosing regimens (30, 40, 45, 50 

and 60 mg/kg/day for 5 days a week) were evaluated and used as input for the logistic 

model (evaluation of short-term effects). These data were also used for the prediction of 

serum ferritin profiles, as described by the PKPD model. The predicted ferritin levels were 

incorporated as a covariate factor in the hazard models to evaluate the long-term 

complications of chelation therapy. 

 

Clinical / Experimental conditions  

To ensure the availability of clinically relevant scenarios, different deferoxamine dosing 

regimens yielding to a range of exposure levels were tested on patients starting at three 

different baselines ferritin levels, namely 1500, 2500 and 3500 μg/L serum ferritin. This 

allowed further exploration of the correlation between ferritin levels and differences in 

compliance pattern. The three groups reflect well-defined populations of patients with poor 

chelation history (baseline at 3500 μg/L), patients with good chelation history (baseline at 

1500 μg/L) and patients with unknown chelation history (baseline around 2500 μg/L).  

In the initial set of simulations, exposure to deferoxamine was assumed to be constant over 

the course of treatment. In addition, it was assumed that all patients received the same 

dosing regimen: 45 mg/kg/day deferoxamine for 5 days a week. Treatment was maintained 

at constant dose levels for up to 10 years, under assumption of adequate or satisfactory 

response over time, even in those subjects showing initial ferritin levels above 3500 μg/L. 

Our main interest was to show how simulations can be used prospectively to evaluate long-

term complications. Moreover, we demonstrate how these scenarios can be used to explore 
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the impact of variable treatment compliance. The selected scenarios are presented in Table 

2.  

 

Table 2. Simulation scenarios for the evaluation of different patterns of compliance. 

  Number of missed doses in the stratification period 

  Single doses  

(Random) 

Consecutive doses 

(Drug holidays) 

  Stratification 

 % of missed doses 1 year 1 year 6 months 2 months 1 month 

Scenario 1 10% 25 25 / 5 / 

Scenario 2 20% 50 50 25 10 5 

Scenario 3 30% 75 75 / 15 / 

Scenario 4 40% 100 100 50 20 10 

Scenario 5 50% 125 125 / 25 / 

Scenario 6 60% 150 150 75 30 15 

Scenario 7 70% 175 175 / 35 / 

Scenario 8 80% 200 200 100 40 20 

Scenario 9 90% 225 225 / 45 / 

Full adherence is equivalent to 250 doses per year 

 

All the analyses described in the aforementioned paragraphs were peformed in NONMEM 

version 7.2 (Icon Development Solutions, USA), with exception of the rare dose-independent 

AE, which was performed in R. All data manipulation, graphical and statistical summaries 

were performed in R (v.2.14.0). 

 

8.3 Results 
Hazard models for hypothyroidism and diabetes mellitus 

Two survival models (exponential hazard) were developed for the quantification of 

hypothyroidism and diabetes in thalassaemic patients and used for prospective evaluation 

through model simulations. Figure 1 shows the predictions for hypothyroidism and diabetes, 

as compared to the available epidemiological and literature data, as described previously in 

step 1. Both models show good agreement with the observed data.  
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Figure 1. Performance of the hazard model for hypothyroidism (top panel) and diabetes (bottom 

panel) based on modelling of historical data. Black circles represent observed literature data for 

baseline incidence of the co-morbidities in the overall population whereas blue circles represent the 

observed literature incidence for thalassaemic patients. The dashed lines show model predictions in 

blue with respect to the patient population and in black with respect to the baseline incidence. 

 

The results of the final model are presented in  Figure 2, (after step 3: inclusion of serum 

ferritin as a predictor of the co-morbidity), in which published literature (15,24,32,38,39,47) 

data was included as prior for the analysis of the available clinical data. The mean (90% CI) 

predicted incidence of hypothyroidism and diabetes was 6.3% (0-14.8) and 8.9% (0-18.5), 

respectively. Both models were considered adequate for simulation purposes. 
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Figure 2. Validation of the hazard models for hypothyroidism (top panel) and diabetes (bottom 

panel).  Model predicted incidence (solid dark grey line) is compared to literature data (coloured 

dashed lines): Borgna-Pignatti et al (black); Belhoul et al (red); Mehrvar et al (blue); Aydinoc et al 

(yellow); Shamshirsaz et al (green); and Kyriakou et al (orange and purple). 

 

Clinical trial and not-in-trial simulations  

The results of the evaluation of drug and treatment compliance levels on long term disease 

progression are presented in Figure 3. Simulation of the incidence of hypothyroidism and 

diabetes in a virtual population of 27 patients are stratified by age groups (below or above 

12 years of age at start of treatment). In patients below 12 years of age a slight negative 

trend is observed indicating a reduction in the incidence of the co-morbidities with 

increasing dose levels; this is not the case in the other group where no significant changes 

are observed. Furthermore, a clear distinction in the incidence of both co-morbidities was 

observed for patients with different starting baseline ferritin levels. This finding highlights 

the relevance of transfusion and chelation history for these outcomes.  
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Figure 3. Effect of different exposure levels (x axes show different dosing regimens investigated in 

the simulation) on hypothyroidism, diabetes, arthralgia/myalgia and anaphylaxis in the population 

under investigation for an observational period of maximum 10 years. Top left and top mid panels 

show the simulations outcome for hypothyroidism after stratification of the patients into two age 

categories, i.e., below and above 12 years of age, respectively. Bottom left and bottom mid panels 

show the simulations outcome for diabetes in patients below and above 12 years of age, 

respectively. The dashed, solid and dotted-dashed lines represent respectively the three subgroups 

of patients with adequate, unknown and poor chelation history. The top right panel show the results 

for arthralgia/myalgia, whereas the bottom right panel gives the results for anaphylaxis. In all 

scenarios the dark grey lines represent the mean and the light grey lines represent the 95% 

confidence interval of the mean.  

 

On the other hand, the simulations describing the occurrence of acute,  drug-specific AEs the 

show the implications of dose-dependent and dose-independent adverse events, on the 

individual safety profile of each patient, with the incidence of myalgia/arthralgia increasing 

proportionally with the dose of deferoxamine.  

 

Given the interaction between treatment response, as determined by ferritin levels and 

adherence to the prescribed dosing regimen, we also included an evaluation of the impact of 

different compliance patterns. Results are shown in Figures 4, 5 and 6 for hypothyroidism, 

diabetes and arthralgia/myalgia and anaphylaxis, respectively. Similarly to what we have 

observed when evaluating the implications of different exposure levels, stratification of the 
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data by age indicates an increase in the incidence of hypothyroidism and diabetes with 

decreasing levels of adherence in patients below 12 years of age (Figures 4 and 5 – left 

panels). Similar trends are observed among the different scenarios proposed.  In addition, 

stratification based on starting ferritin levels shows the importance of the patient’s 

treatment history for the prediction of long-term complications.  

When looking at arthralgia/myalgia (Figure 6 – left panels) the different scenarios are 

characterised by similar profiles, i.e., with increasing incidence of adverse events at 

increasing doses; but the magnitude of the effect is slightly altered at different levels of 

compliance. By contrast, no major differences are observed for the dose-independent AE 

(anaphylaxis: Figure 6 – right panels).  
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Figure 4. Effect of different patterns of compliance on hypothyroidism in the population under 

investigation for an observational period of maximum 10 years. Left and right panels show results 

based on stratification of patients into two age categories, i.e., below and above 12 years of age, 

respectively. In all scenarios: the dashed, solid and dotted-dashed lines represent respectively the 

three subgroups of patients with adequate, unknown and poor chelation history; the dark grey lines 

represent the mean and the light grey lines represent the 95% confidence interval of the mean. The 5 

scenarios presented here are detailed in the methods and in Table 2. 
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Figure 5. Effect of different patterns of compliance on diabetes in the population under investigation 

for an observational period of maximum 10 years. Left and right panels show results based on 

patient stratification into two age categories, i.e., below and above 12 years of age, respectively. In 

all scenarios: the dashed, solid and dotted-dashed lines represent the three subgroups of patients 

with adequate, unknown and poor chelation history; the dark grey lines represent the mean and the 

light grey lines represent the 95% confidence interval of the mean. The 5 scenarios presented here 

are detailed in the methods and in Table 2. 
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Figure 6. Effect of different compliance patterns on arthralgia/myalgia (left panels) and anaphylaxis 

(right panels) in the population under investigation for an observational period of maximum 10 

years. The solid, dashed (small), dotted, dotted-dashed, and dashed (large) lines represent the 

scenarios investigated from 1 to 5 respectively. In all panels the dark grey lines represent the mean 

and the light grey lines represent the 95% confidence interval of the mean. Mean and 95%-CI of the 

mean are presented in the top panels, whereas the bottom panels show only the mean value. 

 

8.4 Discussion and Conclusion 
A model-based approach was implemented to evaluate simultaneously the short- and long-

term unfavourable effects of iron chelation therapy. Epidemiological and pharmacological 

data have been combined to appropriately estimate the parameters of interest in the 

survival models. In contrast to traditional data meta-analysis, summary statistics is used to 

integrate data from different sources; here we rely on literature summaries to fit a 

population model for events whose incidence is relatively low to be derived from individual 

clinical trials. In fact, the epidemiological data was deemed essential for an unbiased 

quantification of the incidence of hypothyroidism and diabetes in the thalassaemic 

population. Both models were successfully validated, as shown in Figures 1 and 2.   

Whereas external model validation procedures could not be easily implemented for this type 

of analysis, basic diagnostics plots suggested that the model was sufficiently robust support 

its use for simulation purposes.  In fact, the use of literature summaries, i.e., point estimates, 
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as reference input data for fitting has been applied previously in a number of therapeutic 

areas in investigations with similar scope (48–50). 

 

Treatment as a disease modifying factor 

Our simulations show that long-term complications associated with inadequate chelation 

due to suboptimal dosing or poor compliance has major implications for patients in the 

lower age group, whereas almost no effect is observed for those patients in the higher age 

group. These results suggest that this phenomenon is partially masked by the baseline age of 

the population, which in turn reflects the chelation history of the patients. This is also 

evident by the difference in the overall incidence of the comorbidities among the three 

subgroups evaluated in each scenario, depending on their chelation history.  These findings 

are in agreement with previous report on the consequences and cost of noncompliance to 

iron chelation (51,52). In clinical practice, improvement of compliance with chelation 

therapy is considered the best prevention for hypothyroidism. Guidelines also recommend 

regular follow-up and optimising chelation therapy in patients showing sub-clinical 

hypothyroidism, i.e., basal levels of TSH 5 to 7 mUI/ml.  

 

In theory, our analysis suggests that changes in the treatment of patient at a late phase of 

the disease could potentially have little or no impact on the probability of developing 

hypothyroidism or diabetes. Hence, effective treatment at the start of chelation therapy may 

determine long-term onset of co-morbidities. Whilst the proposed simulations scenarios 

have been limited to a predefined set of compliance patterns with overall dose intake 

ranging from 10% (worst case scenario) to 90 % in patients with perfect adherence to 

treatment, literature data on deferoxamine reveals that mean compliance in patients ranges 

from 59 to 78 % (51). 

The proposed scenarios also provide an opportunity to assess prospectively the correlation 

between short- and long-term complications.  For instance, until now it is unclear whether 

changes in the dosing regimen can be implemented to provide benefit for a given patient in 

the short-term without significantly affecting the long-term disease progression. Such a 

correlation can be seen in the scenarios shown in Figures 3 to 5 for the long-term 

complications.  Focus of treatment is mostly on correcting for changes in ferritin levels, but 

dose rationale currently does not assess how different dose levels may lead to higher or 

lower incidence of long term co-morbidities. 

 

Limitations 

The simulation scenarios presented here represent a simplification of a complex therapeutic 

reality in which the nature and number of co-morbidities and drug-specific AEs are much 

higher than those included in our analysis (53–55). Nevertheless, we believe that the 
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selection of a subset of AEs has enabled us to demonstrate how inferences by modelling and 

simulation can be used to characterise the overall safety profile of a compound. 

Furthermore, our approach shows how to explore safety concerns pro-actively in a 

quantitative manner even in the absence of sufficient data from randomised clinical trials.  

We acknowledge, however, that the lack of available clinical data imposed the integration of 

epidemiological and literature data to develop the final models based on population 

summary data, which may mask some specific features of the disease or treatment at the 

individual patient level, especially if one takes into account potential correlations or 

interaction between covariates. Therefore, the impact of such an interaction, as well as of 

the correlation between endpoints could not be evaluated. The availability of more 

informative, individual patient data could have provided further support for our 

assumptions, but we do not anticipate that such data would alter the final conclusions from 

the proposed simulation scenarios.  

The shortcoming from individual data may have been compensated by the incorporation of 

time-dependent effects (and covariate factors), which allowed a clear distinction between 

disease-specific (long term) and drug-specific (short term) AEs. 

A possible weakness remains in that very few data were available from long term safety 

follow up studies including paediatric and adults. Such data might have provided better 

estimates of the parameters and covariate factors determining the timing and age of onset 

of co-morbidities. 

We also acknowledge that the stratification of AEs by their grade of severity would be more 

relevant in clinical practice. Here we have assumed a grade 2-3 for all simulated AEs to 

reduce the complexity of the scenarios. The same applies for the duration of the AEs and the 

clinical implications that the event would have for individual patients, such as dose titration 

over even change of chelator. This simplification was necessary to ensure that focus were 

given the time-dependencies associated with the long term consequences of inadequate 

chelation therapy (56,57).  

  

Perspectives 

In this analysis we showed that M&S provides the necessary tools to overcome the 

methodological and practical hurdles in the evaluation of the safety profile of a compound. 

We foresee the advantages of applying such an approach in the context of a full benefit-risk 

(BR) appraisal, where the lack of a systematic and more structured approach is 

acknowledged by different parties (58–62). Of particular relevance for the implementation 

of BR assessment, is the possibility of exploring rare dose-independent AEs. It is worth 

mentioning that in controlled trials and especially in paediatric trials, where limited numbers 

of patients are enrolled, these events might not even be observed.  We believe that in such 

cases, modelling & simulation enables the integration of available information (e.g., 
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extrapolation of adult data) to explore in a quantitative manner the implication of (clinically 

relevant) what-if scenarios (10,11).  

Despite the limited number of scenarios presented here, several aspects can be considered 

and analysed by clinical trial and not-in-trial simulations. Such a framework may allow 

common questions in paediatric research to be evaluated in a systematic way, especially 

those related to developmental growth or age, which may lead to changes in the incidence 

of AEs over time. Another important application is the assessment of  susceptibility of 

subgroups or population minorities which may not be appropriately represented in the trial 

population (63). 

 

Conclusions 

In summary, our investigation has illustrated the advantages of a model-based approach for 

the characterisation of the safety profile of drug in children.  The use of modelling and 

simulation does not only provide the basis for the  systematic integration of clinical and 

epidemiological data as a means  to overcome the limited data availability in this population, 

but also allows one to disentangle disease-specific from the drug-specific adverse events, 

which are often intertwined, but have different impact on  long-term outcome of treatment. 

Irrespective of the level of understanding or the mechanisms underlying adverse events, the 

availability of a simulation framework to evaluate the safety profile of a treatment offers a 

unique opportunity to explore scenarios which may not be feasible or even acceptable in 

real life, but which nevertheless provide insight into the role of the drug, the patient and the 

disease in the outcome of an intervention. Such information may be essential for accurate 

assessment of the benefit-risk profile of a medicinal product in children. 
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Summary 

Aims: In this manuscript we apply a model-based approach to complement evidence generation and 

support an integrated evaluation of benefit-risk balance. Multicriteria decision analysis is used as a 

reference method for the benefit-risk analysis of chelation therapy for chronic iron overload in 

children. Thalassaemia was selected as a paradigm disease with the objective of assessing the impact 

of long term effects on the dose rationale for the paediatric population. 

Methods: Clinical trial simulations and not-in-trial simulations were performed to characterise the 

time course of five clinical endpoints/markers deemed relevant for the evaluation of iron chelation 

therapy in paediatric patients affected by chronic iron overload.  Simulations were based on 

hierarchical models previously developed using available clinical and literature data on deferoxamine. 

Summary statistics were used as input for multi-criteria decision analysis using the software D-Sight.  

For comparison purposes, deferoxamine, as a fixed dose of 45 mg/kg/day, was used as a reference 

scenario. A range of alternative dosing regimens and treatment follow-up periods up to 5 years were 

then evaluated, including fixed doses, weight-banded and ferritin-guided individualised regimens.  

Results: The results of the MCDA show that fixed dosing regimens reach similar weighted scores in a 

typical phase III trial scenario.  However the contribution of the different criteria varies considerably 

amongst the five endpoints. In addition, differences in the pharmacokinetics and pharmacodynamics 

of children below 20 kg and in patients with serum ferritin levels below 2500 µg/L suggest that these 

subgroups may benefit from alternative regimens. The differences in these groups appear to hold 

throughout the 5-year follow-up scenario, although the overall weighted scores decrease and the 

differences among treatment options are less evident.  

Conclusions: In contrast to the evidence obtained during a phase III trial, the use of a model-based 

approach reveals that children below 20 kg and patients with ferritin levels below 2500 µg/L may 

achieve a similar BR score with higher and lower doses, respectively. Our analysis also shows the 

feasibility of integrating PKPD relationships into BR methodologies such as MCDA, allowing for a 

more clear, transparent and systematic assessment of the BRB of a medicinal product. Of relevance 

for paediatric diseases is the possibility to explore BRB beyond the duration of treatment in a clinical 

trial. Moreover, it illustrates how evidence synthesis can be complemented by simulated data, 

enabling the evaluation of options and scenarios which may not be available from empirical 

experimental protocols.  
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9.1 Introduction 
Approval of new medicines for the paediatric population is based on the evidence regarding 

the efficacy and safety profile obtained throughout clinical development (1–4). However, a 

quantitative assessment of the benefit-risk balance (BRB) of a drug is usually not performed 

by sponsors or regulatory authorities at the moment of first marketing authorisation (5). 

Currently, quantitative assessment of the BRB remains a post-marketing endeavour, taking 

into account the emerging evidence from the therapeutic use of the drug in larger 

population and thereby mitigating some of the uncertainties associated with the limited 

data available at the time of launch.  Interest towards the contribution of quantitative 

methodologies for BR assessment has increased considerably in the past years, with 

different stakeholders recognising the need for a more standardised framework, that 

includes higher transparency and consistency(6–14). Among the  numerous approaches for 

quantitative BR analysis, it appears that the lack of transparency can be addressed by the 

development of multi-criteria decision analysis (MCDA) (6,14–21). Nonetheless, this and 

other methods rely on the assumption that a systematic review of empirical evidence arising 

from randomised clinical trials and observational studies  data provides an accurate, 

unbiased picture of a drug’s efficacy and safety.  

This assumption though, may not be valid for a number of reasons.  First, it should be noted 

that for many drugs the evidence required to support regulatory submission does not arise 

from the overall target population, as data is constrained by inclusion and exclusion criteria 

which may not be applicable during the therapeutic use of the medicinal product. In 

addition, little is done to disentangle the contribution of treatment on disease progression 

from external confounding factors on treatment response. Furthermore, the information 

collected in the context of pivotal clinical trials may not provide evidence that dose 

selection, dosing regimen, and treatment duration are truly optimal. Current approaches 

provide a solution to these issues only on the basis of data accumulation from larger clinical 

trials (before drugs approval is obtained) or from data obtained in post-marketing phases. In 

the past years, model-based drug development has proven to be an important resource in 

pharmaceutical research and may be an extremely helpful tool for projecting or 

hypothesising based on assumptions in anticipation of further data collection (22–25). Its 

value is particularly relevant in paediatric drug development where M&S can be used as a 

tool to characterise pharmacokinetic-pharmacodynamic relationships and support further 

understanding of the efficacy and safety profile of old and new drugs (22,24). In this 

manuscript, we propose a model-based approach to complement evidence generation for an 

integrated evaluation of BRB and provide an opportunity for a comprehensive evaluation 

before the first marketing approval. Chronic iron overload will be used as a paradigm disease 

with the objective of assessing the impact of long term effects on the dose rationale for the 

paediatric population. 
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Chronic iron overload is a consequence of chronic blood transfusions in patients affected by 

transfusion-dependent diseases such as beta-thalassaemia major (26–33). These patients 

experience a number of complications such as cardiac dysfunction, hypogonadism, 

hypothyroidism and diabetes mellitus due to tissue specific iron accumulation (27,28,30,32). 

In order to keep iron levels under control, these patients undergo therapy with iron 

chelators, which present a number of unfavourable effects, and along with disease-related 

complications affect the patients’ quality of life (34). To provide an assessment of BRB as 

close as possible to clinical practice in this indication, we have selected deferoxamine as a 

reference compound. Deferoxamine is the currently considered as first line therapy for iron 

overload (34–36). However, we would like to stress that the context of the exercise is purely 

illustrative and is not intended to modify or provide recommendations about its benefit-risk 

profile.  

 

Instead, our objective is to show how integration of modelling and simulation with 

quantitative methods such as MCDA can be used to complement evidence generation for 

diseases or conditions in which data arising from clinical development may be limited or 

insufficient to address clinical and regulatory questions at the time of marketing 

authorisation. We focus on the opportunities for incorporating pharmacokinetic-

pharmacodynamic relationships into the evaluation of the dose rationale and reducing the 

uncertainty and empiricism in evidence synthesis during BR analyses.  

 

9.2 Methods 
Endpoints 

All the data used in the analysis were simulated using pharmacokinetic, pharmacodynamic 

and disease models previously developed by our group. Five clinical endpoints were used for 

the evaluation of the BR framework for iron chelation therapy. A brief description of the 

selected of efficacy and safety endpoints is provided below:  

 

1. Serum ferritin level was selected as a measure of total body iron accumulation. 

Simulated data describing ferritin levels over time were included in the analysis as 

number of responders. A responder was defined as follows: a 20% reduction from 

baseline after 1 year of treatment for patients with baseline serum ferritin of 2500 

µg/L or more; any decrease of serum ferritin levels or an increase, if that increase is 

less than 15% of the baseline as long as it does not result in levels above 2500 µg/L, 

for patients with baseline serum ferritin less than 2500 µg/L. Inclusion criteria at the 

start of treatment is described in the following paragraphs.  

2. Hypothyroidism is a complication of the disease and its prevention was considered a 

benefit of the chelation therapy. Simulated data describing the incidence of 
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hypothyroidism was used as a measure of the progression of the disease. The 

reduction of its incidence is an overall favourable effect of drug therapy. 

3. Diabetes mellitus is a complication of the disease and its prevention was considered 

a benefit of the chelation therapy. Simulated data describing the incidence of 

diabetes was used as a measure of the progression of the disease. The reduction of 

its incidence is an overall favourable effect of drug therapy. 

4. Arthralgia and myalgia are a consequence of the chelation therapy by deferoxamine. 

This is a very common and dose-dependent AE of the iron chelator deferoxamine. It 

was simulated in terms of the incidence of arthralgia/myalgia in individual patients 

over the course of treatment.  

5. Anaphylaxis is a rare dose-independent AE of the iron chelator deferoxamine. 

Simulated data reflected the incidence of anaphylaxis in individual patients. The 

occurrence of anaphylaxis would represent a drop-out from the study or switch to an 

alternative treatment, nonetheless, given the very low incidence patients’ data were 

kept for the evaluation of the other endpoints.  

 

The pharmacokinetic, pharmacodynamic and disease models were hierarchical models, with 

stochastic parameters describing within and between-subject variability. NONMEM v.7.2 and 

R software were used for simulation purposes as well as for graphical and statistical 

summaries. For the simulation of serum ferritin profiles a turnover model was previously 

built by our group, characterised by a disease model that accounts for the effect of the 

chronic transfusion regimen and by a drug model that accounts for the effect of iron 

chelators in reducing serum ferritin levels [Chapter 7 of this thesis]. For the simulation of the 

incidence of hypothyroidism and diabetes, two exponential hazard models were developed 

in which serum ferritin was included as a predictor of the instantaneous hazard [Chapter 8 of 

this thesis].   

 

For the evaluation of drug-specific adverse events, a logistic model with nonlinear regression 

affected by changes in deferoxamine exposure was used to describe the incidence of 

arthralgia/myalgia in dose-dependent manner; whereas a truncated normal distribution was 

used in R to simulate anaphylaxis events in a dose-independent manner. 250 simulations 

were performed for each individual to account for inter- and intra-individual variability in the 

thalassemic population.  An overview of the equations used to describe the response 

variable for each of the models is presented in the Table 1. 
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Table 1. Models used for the simulations  

Model and equations Description 

Deferoxamine PK model 

𝑑𝐴(1)

𝑑𝑡
= 𝐴(2)  × 𝑄 𝑉2⁄ − 𝐴(1)  × 𝑄 𝑉1⁄ − 𝐴(1) × 𝐶𝐿 𝑉1⁄  

𝑑𝐴(2)

𝑑𝑡
= 𝐴(1)  × 𝑄 𝑉1⁄ − 𝐴(2)  × 𝑄 𝑉2⁄  

2 compartment PK model with zero-

order absorption (8 hours subcutaneous 

infusion) and first-order elimination 

processes. Fixed allometric scaling 

(exponent of 0.75 on CL/F and 1 on V1/F 

and V2/F) is used to extrapolate 

exposure in adolescents and children 

Deferoxamine PKPD model 

𝑑𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁

𝑑𝑡
= 𝐾𝑖𝑛 + 𝐶𝑅𝑇 − 𝐾𝑜𝑢𝑡 × 𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁 

× (1 + 𝐷𝐹𝑂) 

 

𝐶𝑅𝑇 = 𝑆𝐶𝐿 ×  𝑒−𝑆𝐻𝑃 ×𝐹𝐸𝑅𝑅𝐼𝑇𝐼𝑁 

 

𝐷𝐹𝑂 = 𝑆𝐿𝑃 × 𝑆𝐶𝑠𝑠𝐴𝑉 

Kin  = zero-order production rate  

Kout = first-order degradation rate 

CRT = disease component, additive 

production rate triggered by the 

transfusion regimen which was found to 

be non-linearly correlated to the disease 

status where SCL is a scaling factor and 

SHP is the shape factor of the correlation 

DFO = deferoxamine effect where SLP is 

the slope parameter of the 

concentration-effect relationship, and 

SCssAV is the steady state concentrations 

Diabetes and Hypothyroidism hazard model 

𝑆(𝑡) =  𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑡

0  

ℎ(𝑡) =  ℎ0(𝑡) ∗ 𝑒𝜆𝑓𝑟𝑡ℎ+𝜆𝑓𝑟𝑡𝑙     

The hazard is h(t), and the survival (S) is a 

function of the cumulative hazard within 

the time interval 0 to t. 

The effect of the disease is described by 

two components depending on whether 

serum ferritin levels are above (λfrth) or 

below (λfrtl) the threshold of 2500 μg/L 

Arthralgia/myalgia logistic model 

𝑃 =  
𝐶𝑠𝑠𝛾

(𝑃𝐶50
𝛾 + 𝐶𝑠𝑠𝛾)

 

Css is the deferoxamine steady state 

concentration, PC50 is the concentration 

corresponding to a 50% probability of 

experiencing the AE, and γ is the 

coefficient defining the shape of the 

relationship 
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Phase III trial design 

A phase III trial of the duration of 1 year was simulated in paediatric thalassaemic patients 

undergoing chelation therapy with deferoxamine at a fixed dose of 45 mg/kg/day for 5 days 

a week. A sample size of 150 patients was selected with about 30 patients aged 2 to 6 years, 

70 aged 6 to 12 years and 50 aged 12 to 17 years. Patients’ demographics were as follows 

(median and range): age 10 years (2-17), body weight 32 kg (12-62), 50% males and baseline 

ferritin levels 3000 µg/L (1000-8500). A graphical representation of the simulated serum 

ferritin profiles for the 1 year study is shown in Figure 1, whereas a summary of the 

remaining endpoints is presented in Table 2. 

 

Figure 1. Simulated serum ferritin profiles over a period of 1 year for the Phase III trial in 

thalassaemic paediatric patients. The solid black line represents the median, whereas the dashed 

grey lines represent the 5th and 95th percentiles. 
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Table 2. Summary statistics of the simulated phase III trial 

Endpoint Units Mean LCI1 RCI2 SD 5 P3 95 P4 

Incidence of Hypothyroidism % 3,26 3,07 3,45 1,54 0,67 6 

Incidence of Diabetes % 4,9 4,69 5,11 1,69 2,67 8 

Incidence of Arthralgia/Myalgia % 64,3 63,84 64,76 3,71 57,63 70 

Incidence of Anaphylaxis % 0,63 0,59 0,66 0,28 0,13 1,07 

1 Left confidence interval of the mean 
2 Right confidence interval of the mean 
3 5th percentile 
4 95th percentile 

 

Complementary simulation scenarios 

A number of alternative scenarios were simulated along with the phase III trial. A sample size 

of 150 patients (as commonly tested in phase III protocols for chronic iron overload in 

children) per treatment arm was selected also for the alternative scenarios. Even though a 

standard phase III trial in this patient population would last on average 1 year, we have 

simulated data for a period of 10 years to assess the changes in the long-term outcomes, 

with a number of 5 observations per year. Patients’ demographics were similar to the one 

used for the phase III trial. In the end two scenarios were selected and used for the BR 

analysis, namely data simulated over a 1 year and a 5 year period. Summary statistics for the 

simulated data are presented in Tables 3 and 4 (see Appendix). Different dosing algorithms 

were tested and used as treatment options for the BR analysis; the different regimens are 

presented in Table 5. Along to the fixed dosing regimen of 45 mg/kg/day (5/7) used as a 

reference scenario (phase III trial), a range of different fixed doses were tested as well as 

individualised regimens based on body weights or serum ferritin differences. 
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Table 5. BR analysis scenarios 

Input for standard 
MCDA analysis 

Input for integrated PKPD and MCDA analysis 

Phase III data based on a 
fixed dose of  

45 mg/kg/day 5/7 

Scenario Alternative options 

1: Fixed dosing regimens 30, 40, 50 and 60 mg/kg/day 5/7 

2: Weight banded dosing regimens 

Kg < 20: 60 mg/kg/day 5/7 

20-40 kg: 50 mg/kg/day 5/7 

Kg > 40: 45 mg/kg/day 5/7 

3: Ferritin guided dosing regimens 

Ferritin < 2500 µg/L: 40 

Ferritin 2500-5000 µg/L: 45 

Ferritin > 5000 µg/L: 55 

 

 

Multi-criteria decision analysis 

The MCDA analysis was performed with the software D-Sight (D-Sight Brussels, Belgium) 

which uses the PROMETHEE (Preference Ranking Organization Method for Enrichment 

Evaluation) methods (37–40). The different stages of the analysis are summarised in Table 6 

(17,18). Summary statistics of the simulated data discussed above were introduced in the 

MCDA software for the analysis. Mean and confidence intervals of the clinical endpoints for 

the different treatment arms and subgroups were used as input for the analysis (MCDA 

criteria).   
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Table 6. MCDA stages (adapted from Dogson et al.) 

Stage Description 

1 - Establish the decision context Establish aims of the MCDA, and consider 
the context of the appraisal 

2 - Identify the options to be appraised Define the options that will be evaluated in 
the appraisal 

3 - Identify objectives and criteria Identify criteria for assessing the 
consequences of each option and organise 
criteria into a value tree 

4 - Scoring Assess the expected performance of each 
option against the criteria; and assess the 
value associated with the consequences of 
each option for each criterion 

5 - Weighting  Assign weights for each of the criterion to 
reflect their relative importance to the 
decision 

6 - Derive an overall value Calculate overall weighted score by 
combining weights and scores for each 
option 

7 - Results Examine the results and the contribution of 
individual criterion to the overall score 

8 - Sensitivity analysis Assess the influence of other preferences or 
weights on the overall ordering of the 
options 

 

Expert input: value tree and weights elicitation 

The analysis was conducted with a group of experts including: 1 former member of the PDCO 

(Paediatric Committee), 3 haematologists/paediatricians, 1 clinical trial expert, 1 statistician 

and 1 clinical pharmacologist.  

Discussions with experts lead to the definition of the final value tree (a tree-like graph of the 

different criteria), as well as to the characterisation of the preference values for the criteria 

selected and the relative weights for the different criteria or weights elicitation (stages 4 and 

5 of the MCDA analysis). The outcome of this process reflects the risk perception of the 

different stakeholders and has the objective of providing an adequate and unbiased risk 

assessment before the processing of the data is performed.  

The final value tree is presented in Figure 2 and includes already the contribution of the 

relative weights assigned by the experts (weights elicitation), whereas Figure 3 shows an 

example of two utility functions defined for serum ferritin response (non-linear) and 

arthralgia/myalgia (linear) during the assessment of preference values.  
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Figure 2. Final value tree and relative weights for the different criteria after discussion with experts. 

Favourable effects (FE) and unfavourable effects (UFE) were given the same importance whereas 

among the FE and UFE, diabetes and anaphylaxis were given the major importance respectively.  
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A 

 
B  

 
Figure 3. Assessed preference values for two criteria based on the discussion with experts. Panel A 

shows the non-linear utility function defined for ferritin response, whereas panel B shows the linear 

utility function defined for arthralgia/myalgia. On the y axis the score is presented in percentage (%). 

 

With respect to the weights elicitation: as shown in Figure 2, the same importance was given 

to all favourable effects (FEs) against all unfavourable effects. Among the FEs, prevention of 

diabetes had a higher importance as compared to both ferritin response and prevention of 
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hypothyroidism; whereas the last two had equal importance as compared to each other. 

Finally, among the unfavourable effects (UFEs), greater relevance was given to anaphylaxis 

given the seriousness of the event. In addition, a brief summary of the discussion on the 

assessment of the preference values is provided below: 

 

1. Ferritin response: a nonlinear increase was selected for this criterion reflecting an 

optimal response above 90% and a poor response below 80% as depicted in figure 3 

(panel A). 

2. Hypothyroidism: a linear decrease is expected to be sufficient to characterise the 

differences among the options under evaluation as hypothyroidism is considered 

relatively tolerable by the experts. 

3. Diabetes mellitus: experts have defined an incidence above 5% as not acceptable. A 

non-linear utility function has been selected to characterise differences among the 

proposed options. 

4. Arthralgia/Myalgia: a linear decrease (Figure 3, panel B) was considered sufficient to 

capture the differences among the options proposed as a high rate of the AE can still 

be tolerated according to the experts’ opinion. 

5. Anaphylaxis: a very steep non-linear decrease has been selected for anaphylaxis 

given the seriousness of the AE.  

 

Calculation of the overall weighted score 

With the information on preference values and relative weights, the final step was to 

calculate the overall weighted score for each option (stage 6 of MCDA). The outcome of this 

calculation is simply the weighted average of its scores on the different criteria. The final 

score is generated using the following equation: 

 

𝑆𝑖 =  𝑤1𝑠𝑖1 + 𝑤2𝑠𝑖2 +  … +  𝑤𝑛𝑠𝑖𝑛     Equation 1 

 

where the overall weighted score (S) for an option i will be given by the sum of all the 

individual scores (s) of each criterion multiplied by the assigned weight (w). 

 

Assumptions 

We assume that the incidence of these effects is not random, in contrast to current 

approaches that regard the various endpoints as independent of each other. We captured 

mechanistic correlations across the various endpoints as described in the equations of table 

1, except for anaphylaxis which is a dose-independent AE. For the evaluation of 

unfavourable effects we have selected frequency as the only dimension of interest for this 

analysis, without taking into account severity or duration, i.e. assuming a grade 2-3 for all 
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AEs. We recognise that in clinical practice, severity and duration have an essential role in the 

evaluation of the BR balance and therefore should be accounted for. Furthermore, when a 

fixed dosing regimen was evaluated during the 1 year trial we maintained a fixed regimen 

also during the follow-up years and in the same manner, independently of patients’ 

response to therapy, no switch therapy was considered. On top of that, treatment 

compliance was assumed to be optimal in this exercise and subsequently the observed 

differences are essentially due to variability in pharmacokinetics. We acknowledge the 

importance of these factors, nonetheless, we chose to reduce the complexity to better 

illustrate the advantage of the approach without influencing its validity. 

 

9.3 Results 
The results of the multi-criteria decision analysis are presented in Figures 4 and 5, for the 1 

year clinical trial and 5 year treatment follow-up, respectively. Figure 4 shows that the fixed 

dosing regimens have a similar weighted score; except for the 30 mg/kg regimen (score of 

29.28) where the lowest score is achieved. Even though the overall score is similar the 

contribution of the different criteria is differs considerably amongst the five endpoints, with, 

as expected, ferritin response that tends to increase at increasing doses counteracted by the 

contribution of AEs that tends to increase as the dose decreases.  
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Figure 4. Criteria contribution for the 1 year scenario. The overall weighted score is presented for the 

different options (the higher the score the better the overall performance of the option appraised). 

Individual criteria contribution are displayed for each option: light blue, dark red, green, dark blue 

and blue represent respectively ferritin response, arthralgia/myalgia, anaphylaxis, diabetes and 

hypothyroidism. 

 
Figure 5. Criteria contribution for the 5 year scenario. The overall weighted score is presented for the 

different options (the higher the score the better the overall performance of the option appraised). 

Individual criteria contribution are displayed for each option: light blue, dark red, green, dark blue 

and blue represent respectively ferritin response, arthralgia/myalgia, anaphylaxis, diabetes and 

hypothyroidism. 

 

The results of the MCDA show that fixed dosing regimens reach similar weighted scores in a 

typical phase III trial scenario.  However the contribution of the different criteria varies 

considerably amongst the five endpoints. In addition, differences in the pharmacokinetics 

and pharmacodynamics of children below 20 kg and in patients with serum ferritin levels 

below 2500 µg/L suggest that these subgroups may benefit from alternative regimens. The 

differences in these groups appear to hold throughout the 5-year follow-up scenario, 

although the overall weighted scores decrease and the differences among treatment options 

are less evident. From the 5-year treatment follow up is also clear that the acute effects 

become clinically less relevant; in addition, the differences among the individual 

contributions of each criterion tend to disappear. For example, in a five year period different 
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doses lead to a similar response in serum ferritin. Yet, such changes are achieved at very 

different rates. 

 

9.4 Discussion and conclusion 
MCDA results 

Before any quantitative BR evaluation is performed, the integration of multiple models is 

essential and allows to 1) complementing the existing data to support the decision to be 

taken and possibly determining whether personalised medicine would be of any benefit for 

the patient population; 2) optimising the input data for the BR analysis; and 3) quantifying 

the relevant correlations among different endpoints that are currently still evaluated in an 

independent manner. 

Assuming that the scenarios presented here are part of a real clinical case, the therapeutic 

conclusion derived from this analysis may be the following: children below 20 kg may benefit 

from a higher dose (60 mg/kg/day) at least in an early phase of the disease, and patients 

with controlled serum ferritin levels below 2500 µg/L may achieve a similar BR score with a 

lower dose (40 mg/kg/day),  as compared to the evidence arising from the phase III trial data 

(fixed 45 mg/kg/day). A model-based approach allows one to understand the implications of 

doses that have not been formally tested and the impact they have on benefit and risk. The 

approach also enables one to take into account clinical and feasibility elements that were 

not considered in the clinical protocols. In addition, the possibility to explore beyond the 

standard duration of a phase III trial allows understanding how long-term outcomes may 

affect the BR scores and anticipate whether any changes can be expected in the BR balance 

of the drug.  

 

Limitations 

It is important to emphasise that it was not our intent to modify in any way the current BR 

balance of deferoxamine; our goal was to demonstrate how model-based MCDA can be used 

to personalise drug therapy by incorporating various alternatives and virtual sub-populations 

in the analysis. The complexity of chronic iron overload is much higher than the one depicted 

in this manuscript in many ways: e.g., other disease-related complications, such as cardiac 

complications, have a higher relevance in the evaluation of iron accumulation; drop-out 

rates that occur in a real clinical setting have not been considered during this  analysis; and 

last but not least the role that treatment compliance (especially for deferoxamine) has on 

the clinical evaluation of iron overload is extremely important. Having acknowledged that, 

an exercise with less complexity provides a better framework for illustrating how modelling 

and simulation can be used to overcome some of the issues highlighted in the manuscript. 
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Even though in the recent years PKPD modelling has been proposed in conjunction with 

clinical utility approaches (41,42), in this manuscript we integrate for the first time PKPD 

modelling with multi-criteria decision analysis (MCDA) to overcome the issues discussed in 

the introduction.  

Furthermore, we learned from this exercise that given the complexity that usually 

characterises the BR evaluation of drugs, a quantitative and integrated approach is essential 

to reduce the uncertainty of the analysis and to increase the understanding of the BRB. This 

is particularly true in the paediatric context where not only the BRB is not constant over time 

(in particular in chronic diseases, as in the example discussed here), but also the lack of 

available data does not allow performing an appraisal that is representative of real life 

population (22–24,43,44). Complementing evidence generation (i.e., real data) with virtual 

scenarios and alternative treatment and protocol options (clinical and feasibility elements 

such as study design, inclusion and exclusion criteria, etc.) using clinical trial simulations 

and/or not-in-trial simulations provides an opportunity to accomplish two major goals: 

achieving a better and more comprehensive understanding of the BRB possibly before a drug 

reaches the market and evaluating the BRB in sub-groups providing the basis for the 

assessment of personalised therapy. This is an element often overlooked in that 

understanding of BRB is also relevant for children, their parents and others interested in 

patients engagement. 

 

Conclusion 

In conclusion, we have successfully complemented evidence generation using PKPD 

modelling to the use of MCDA for BR assessment in a paediatric disease. We strongly believe 

that such an approach is essential for a more structured evaluation of the BR balance of any 

intervention, especially if mechanism-based modelling and pharmacokinetic-

pharmacodynamic relationships are used to support such scenarios. Of relevance for 

paediatric diseases is the possibility to explore BRB beyond the duration of treatment in a 

clinical trial.  
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Appendix 

Table 3. Summary statistics of the simulated data for the 1 year scenario 

Option Criteria Units Mean LCI1 RCI2 SD 5 P3 95 P4 

Phase III 

Fixed 
dose 45 

Ferritin response % 89,44 89,12 89,76 2,56 85,33 93,33 

Incidence of Hypothyroidism % 3,26 3,07 3,45 1,54 0,67 6 

Incidence of Diabetes % 4,9 4,69 5,11 1,69 2,67 8 

Incidence of Arthralgia/Myalgia % 64,3 63,84 64,76 3,71 57,63 70 

Incidence of Anaphylaxis % 0,63 0,59 0,66 0,28 0,13 1,07 

Fixed 
dose 30 

Ferritin response % 77,7 77,32 78,08 3,05 72,67 82,67 

Incidence of Hypothyroidism % 3,33 3,13 3,52 1,56 0,67 6 

Incidence of Diabetes % 5,02 4,81 5,22 1,66 2,67 7,33 

Incidence of Arthralgia/Myalgia % 34,5 34,08 34,92 3,36 28,67 39,7 

Incidence of Anaphylaxis % 0,67 0,62 0,69 0,29 0,19 1,14 

Fixed 
dose 40 

Ferritin response % 86,77 86,42 87,11 2,79 82,67 91,03 

Incidence of Hypothyroidism % 3,18 2,99 3,37 1,5 0,67 6 

Incidence of Diabetes % 4,75 4,54 4,96 1,66 2 7,7 

Incidence of Arthralgia/Myalgia % 54,47 54 54,95 3,82 48 60,67 

Incidence of Anaphylaxis % 0,67 0,59 0,65 0,27 0,13 1,06 

Fixed 
dose 50 

Ferritin response % 91,78 91,51 92,05 2,18 88 95,33 

Incidence of Hypothyroidism % 3,13 2,94 3,31 1,5 0,67 5,33 

Incidence of Diabetes % 4,77 4,55 4,98 1,71 2 7,33 

Incidence of Arthralgia/Myalgia % 70,83 70,43 71,24 3,28 64,67 76 

Incidence of Anaphylaxis % 0,66 0,62 0,69 0,28 0,27 1,07 

Fixed 
dose 60 

Ferritin response % 96,47 96,3 96,65 1,44 94 98,67 

Incidence of Hypothyroidism % 3,19 3,01 3,38 1,52 0,67 6 
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Incidence of Diabetes % 4,71 4,51 4,92 1,69 2 7,33 

Incidence of Arthralgia/Myalgia % 82,82 82,44 83,19 3,02 78 87,33 

Incidence of Anaphylaxis % 0,65 0,62 0,68 0,28 0,26 1,14 

Weight < 
20 kg 

Ferritin response % 94,15 93,7 94,61 3,65 88,24 100 

Incidence of Hypothyroidism % 1,74 1,47 2,01 2,18 0 5,88 

Incidence of Diabetes % 2,42 2,12 2,73 2,47 0 5,88 

Incidence of Arthralgia/Myalgia % 73,06 72,21 73,91 6,88 61,76 85,29 

Incidence of Anaphylaxis % 0,66 0,62 0,69 0,29 0,27 1,20 

Weight 
20-40 kg 

Ferritin response % 91,57 91,16 91,97 3,27 85,25 96,72 

Incidence of Hypothyroidism % 2,72 2,46 2,98 2,11 0 6,56 

Incidence of Diabetes % 4,23 3,9 4,56 2,68 0 8,2 

Incidence of Arthralgia/Myalgia % 68,05 67,38 68,72 5,41 60,66 77,05 

Incidence of Anaphylaxis % 0,67 0,63 0,71 0,30 0,27 1,20 

Weight > 
40 kg 

Ferritin response % 92,29 91,91 92,67 3,05 87,27 96,36 

Incidence of Hypothyroidism % 4,47 4,1 4,83 2,91 0 9,09 

Incidence of Diabetes % 6,47 6,07 6,86 3,19 1,82 10,91 

Incidence of Arthralgia/Myalgia % 71,49 70,77 72,22 5,85 61,82 81 

Incidence of Anaphylaxis % 0,62 0,59 0,66 0,28 0,13 1,07 

Ferritin < 
2500 

Ferritin response % 93,83 93,35 94,3 3,83 86,49 100 

Incidence of Hypothyroidism % 3,06 2,67 3,45 3,13 0 8,11 

Incidence of Diabetes % 4,29 3,9 4,69 3,19 0 10,81 

Incidence of Arthralgia/Myalgia % 56,42 55,44 57,4 7,93 43,24 67,57 

Incidence of Anaphylaxis % 0,64 0,61 0,68 0,28 0,27 1,20 

Ferritin 
2500-

Ferritin response % 93,66 93,33 93,99 2,65 88,75 97,37 

Incidence of Hypothyroidism % 3,31 3,06 3,55 2 0 6,58 
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5000 Incidence of Diabetes % 4,94 4,61 5,26 2,64 1,32 9,21 

Incidence of Arthralgia/Myalgia % 62,4 61,68 63,12 5,82 53,22 71,05 

Incidence of Anaphylaxis % 0,65 0,61 0,68 0.28 0,26 1,60 

Ferritin > 
5000 

Ferritin response % 99,77 99,68 99,87 0,75 97,3 100 

Incidence of Hypothyroidism % 3,03 2,67 3,38 2,86 0 8,11 

Incidence of Diabetes % 4,99 4,55 5,44 3,59 0 10,81 

Incidence of Arthralgia/Myalgia % 75,85 75,03 76,67 6,6 64,86 86,49 

Incidence of Anaphylaxis % 0,65 0,62 0,68 0,27 0,27 1,07 

1 Left confidence interval of the mean 
2 Right confidence interval of the mean 
3 5th percentile 
4 95th percentile 

 

Table 4. Summary statistics of the simulated data for the 5 years scenario 

Option Criteria Units Mean LCI1 RCI2 SD 5 P3 95 P4 

Phase III 

Fixed 
dose 45 

Ferritin response % 93,32 93,06 93,58 2,08 89,63 96,67 

Incidence of Hypothyroidism % 4 3,78 4,22 1,74 1,33 7,33 

Incidence of Diabetes % 5,82 5,59 6,05 1,84 3,33 9,33 

Incidence of Arthralgia/Myalgia % 97,13 96,97 97,29 1,32 94,67 99,33 

Incidence of Anaphylaxis % 0,66 0,65 0,68 0,13 0,45 0,87 

Fixed 
dose 30 

Ferritin response % 83,97 83,65 84,3 2,61 79,33 88,37 

Incidence of Hypothyroidism % 4,57 4,34 4,81 1,87 1,63 8 

Incidence of Diabetes % 6,61 6,37 6,84 1,93 3,33 10 

Incidence of Arthralgia/Myalgia % 80,6 80,22 80,97 3,04 75,33 85,33 

Incidence of Anaphylaxis % 0,64 0,63 0,66 0,13 0,45 0,85 

Fixed 
dose 40 

Ferritin response % 90,24 89,97 90,5 2,13 86,67 93,33 

Incidence of Hypothyroidism % 4,04 3,83 4,25 1,72 1,33 7,33 
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Incidence of Diabetes % 5,94 5,71 6,18 1,89 3,33 9,33 

Incidence of Arthralgia/Myalgia % 94,11 93,89 94,33 1,77 91,33 96,67 

Incidence of Anaphylaxis % 0,65 0,63 0,66 0,12 0,45 0,86 

Fixed 
dose 50 

Ferritin response % 95,44 95,24 95,64 1,6 92,67 98 

Incidence of Hypothyroidism % 3,83 3,61 4,04 1,73 1,33 6,67 

Incidence of Diabetes % 5,61 5,38 5,84 1,83 2,67 8,67 

Incidence of Arthralgia/Myalgia % 98,24 98,12 98,36 0,97 96,67 100 

Incidence of Anaphylaxis % 0,67 0,65 0,68 0,14 0,44 0,91 

Fixed 
dose 60 

Ferritin response % 98,2 98,07 98,33 1,04 96,67 100 

Incidence of Hypothyroidism % 3,82 3,61 4,04 1,72 1,33 6,67 

Incidence of Diabetes % 5,55 5,33 5,78 1,82 2,67 8,67 

Incidence of Arthralgia/Myalgia % 99,59 99,53 99,66 0,53 98,67 100 

Incidence of Anaphylaxis % 0,66 0,64 0,67 0.14 0,45 0,93 

Weight < 
20 kg 

Ferritin response % 96,05 95,65 96,45 3,24 91,18 100 

Incidence of Hypothyroidism % 2,62 2,29 2,96 2,73 0 7,5 

Incidence of Diabetes % 3,41 3,03 3,8 3,09 0 8,82 

Incidence of Arthralgia/Myalgia % 98,38 98,13 98,63 2,02 94,12 100 

Incidence of Anaphylaxis % 0,66 0,64 0,68 0,13 0,45 0,90 

Weight 
20-40 kg 

Ferritin response % 94,67 94,33 95,01 2,77 90,16 98,36 

Incidence of Hypothyroidism % 3,39 3,1 3,68 2,35 0 8,2 

Incidence of Diabetes % 5,28 4,92 5,63 2,87 1,64 9,84 

Incidence of Arthralgia/Myalgia % 98,09 97,87 98,3 1,7 95,08 100 

Incidence of Anaphylaxis % 0,64 0,63 0,66 0,13 0,43 0,88 

Weight > 
40 kg 

Ferritin response % 95,24 94,89 95,58 2,79 90,91 100 

Incidence of Hypothyroidism % 5,03 4,65 5,42 3,11 0 10,91 
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Incidence of Diabetes % 7,27 6,85 7,69 3,41 1,82 12,73 

Incidence of Arthralgia/Myalgia % 98,36 98,15 98,58 1,73 94,55 100 

Incidence of Anaphylaxis % 0,65 0,64 0,67 0,13 0,45 0,88 

Ferritin < 
2500 

Ferritin response % 92,64 92,12 93,15 4,14 86,49 98,78 

Incidence of Hypothyroidism % 3,56 3,16 3,96 3,23 0 8,11 

Incidence of Diabetes % 4,96 4,53 5,39 3,46 0 10,81 

Incidence of Arthralgia/Myalgia % 96,86 96,49 97,24 2,99 91,89 100 

Incidence of Anaphylaxis % 0,65 0.63 0,66 0,14 0,45 0,88 

Ferritin 
2500-
5000 

Ferritin response % 97,99 97,8 98,19 1,59 94,74 100 

Incidence of Hypothyroidism % 3,97 3,68 4,26 2,34 0 7,89 

Incidence of Diabetes % 5,66 5,32 6 2,73 1,32 10,53 

Incidence of Arthralgia/Myalgia % 96,96 96,72 97,19 1,89 93,42 100 

Incidence of Anaphylaxis % 0,65 0,64 0,67 0,14 0,43 0,88 

Ferritin > 
5000 

Ferritin response % 99,95 99,9 99,99 0,38 100 100 

Incidence of Hypothyroidism % 3,75 3,36 4,14 3,12 0 8,11 

Incidence of Diabetes % 5,96 5,47 6,45 3,95 0 13,51 

Incidence of Arthralgia/Myalgia % 97,99 97,73 98,25 2,08 94,59 100 

Incidence of Anaphylaxis % 0,66 0,64 0,67 0,13 0,43 0,85 

1 Left confidence interval of the mean 
2 Right confidence interval of the mean 
3 5th percentile 
4 95th percentile 
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CHAPTER 10 

Model-informed assessment of the benefit-
risk profile of medicines for children  
 
Summary, conclusions and perspectives 
 

Growing awareness about the relevance of formal evaluation of the efficacy and safety in 

children has resulted into important changes in the legislation defining the requirements for 

the approval of medicines for children (1–4). In parallel to these developments, 

methodological advancements have taken place in terms of the level and type of evidence 

required to establish the so-called benefit-risk profile of an intervention (5–8). Whilst a 

considerable number of approaches have been evaluated over the last decade, their 

utilisation has often been limited to post-approval data. Most importantly, they summarise a 

fait accompli, i.e., the evidence is gathered after the facts. 

Whilst risk management and mitigation measures are intrinsic components of a risk 

management plans (5–8), current approaches do not provide a quantitative framework for 

regulators, clinical scientists and drug developers on how to integrate knowledge about 

drug- and disease-specific properties, thereby enabling the prediction of treatment response 

across a range of possible scenarios before evidence is generated. The availability of such a 

framework would not only permit optimisation of risk management plans, it would also 

represent a more robust basis for addressing clinical and scientific questions during drug 

development and at the time of approval.  

 

Throughout this thesis we have focused on the advantages of introducing quantitative 

clinical pharmacology concepts, and more specifically modelling and simulation, as an 

ancillary tool for evidence generation and evidence synthesis. We have illustrated how 

model-based predictions can be used in conjunction with established benefit-risk 

methodologies to support the decision-making process underpinning the approval of 

paediatric medicines. The examples used in previous chapters also offer insight into the 

deficiencies associated with data generation and unravel opportunities for the optimisation 

of clinical protocols in children.  

 

Two main features need to be highlighted, which differentiate the work proposed here from 

previous research in paediatric clinical pharmacology. In contrast to previous work in which 

population pharmacokinetic-pharmacodynamic models have been developed to describe a 
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single endpoint, it is the first time that multiple drug-disease models are implemented in 

parallel, taking into account eventual correlations between measures of efficacy and safety. 

This represents an important advancement in the way one assesses treatment response i.e., 

not as a primary endpoint in a clinical protocol, but rather as a means to characterise 

disease- from drug-specific properties, thereby providing a parametric representation of the 

efficacy and safety profile of an intervention. A second feature of our work is the 

application of clinical trial and not-in-trial simulations as complement to data obtained from 

clinical trials. Here simulated data (i.e., imputations) from virtual scenarios were intertwined 

with real data and used as input for the multi-criteria decision analysis. An immediate 

advantage of the approach is the possibility of exploring in a quantitative manner the 

benefit-risk profile of a medicinal product in situations which have not been tested prior to 

its approval. This aspect is particularly relevant for the evaluation of medicines for children, 

for whom limited evidence can be generated and physiological processes associated with 

maturation and growth may affect the benefit-risk balance. 

 

The aforementioned features were embedded across the different chapters, where 

chelation therapy associated with iron overload is used to illustrate the implementation of 

the proposed framework. Here we present an overview of the results and conclusions from 

these investigations, emphasising the contribution of modelling and simulation as a tool for 

more effective data generation, evidence synthesis and decision making regarding the 

evaluation of paediatric medicines. 

  

Our work is based on the premise that when a drug is granted its first marketing 

authorisation the decision is based only on the evidence generated throughout the drug 

development phases in the target paediatric population (1,3,2,4). However, at this stage no 

quantitative evaluation is performed of the benefit-risk balance (BRB); usually a full BR 

appraisal takes place during the post-marketing phase, when additional evidence arises from 

clinical practice as well as from additional randomised controlled trials.  Clearly, this 

situation is not ideal, as it imposes a reactive rather pro-active attitude towards benefit-risk. 

Despite the acknowledgement by different stakeholders about the need for a more 

consistent, transparent framework to support (decision-making for) the approval of new 

medicines (9–12)., inferential methods by modelling and simulation have been ignored or 

have limited role as a statistical analysis tool. Thus far little has been done to enable the use 

of inferential methods by modelling and simulation as an integrative tool for evidence 

synthesis and benefit-risk assessment.   

 

In chapter 1, we review the available literature on benefit-risk evaluation to identify suitable 

methods for the development of the proposed framework. In spite of the vast number of 
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methodologies (both qualitative and quantitative) are available in the public domain, the 

majority of them are not appropriate for a more general application (13–15).   

Among other things, we highlight the relevance of quantitative methods as enablers or keys 

to the answer to clinical, regulatory and scientific questions regarding the benefits and risks 

of an intervention.  Growing consensus suggests that a combined approach involving 

qualitative and quantitative methods is required to ensure meaningful evaluation and 

interpretation of benefit and risk data.  Here we identify MCDA as the method of choice for 

further integration with mechanism-based modelling and simulation. Despite its limitations 

in the way uncertainty is handled, MCDA offers the opportunity to evaluate a 

multidimensional aspects drug and disease which arise in drug development and in the 

clinical practice. In revisiting the drug approval process and the requirements for paediatric 

drug development, it becomes evident that the use of drug-disease modelling and 

simulation represents a formal extension of the clinical pharmacology concepts into the 

realm of evidence synthesis and evaluation of novel therapeutic agents. This advancement 

can be compared to the introduction of receptor pharmacology in drug discovery, which 

replaced empirical evidence from experimental protocols (16–18). Then receptors were just 

a concept, not a substrate, whose properties could be used to understand drug properties 

and optimise the development of novel molecules.  Similarly, today response scenarios in 

virtual patients are still seen as concepts, rather than as substrates that can be used for 

further characterisation of the benefit-risk profile. 

 

Having identified a suitable methodology enabled us to formalise the scope and intent of the 

investigations described in the subsequent chapters of this thesis.  In fact, in chapter 2 we 

introduce details on the implementation of a framework in which MCDA is applied in an 

integrated manner with modelling and simulation. The primary intent of the framework is to 

have a tool for more effective data generation, evidence synthesis and better decision 

making.  Focus is given to the opportunities for optimising data generation in children and 

most importantly to the possibility of integrating knowledge by mechanism-based 

parameterisations, which enable us to discriminate between drug- and disease-specific 

properties. The implementation of these concepts is illustrated by the use of clinical trial and 

not-in-trial simulations to complement data generation and improve benefit-risk 

assessment. For the sake of clarity, the proposed work is presented into three separate 

sections in this thesis. In section 2, attention is paid to importance of data quality in the 

context of paediatric bridging studies and the implications for the estimation of the 

parameters of interest in subsequent steps, i.e., evidence synthesis. Our investigation also 

shows how critical pharmacokinetic data are for the selection of the dosing regimen in the 

target population. In section 3, we discuss the hurdles for the assessment of efficacy in 

children and show that disease processes may determine the time course of response, 
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making drug effects no more than a covariate factor for efficacy and safety.   We illustrate 

how treatment response can be characterised by integrating certain physiological measures 

(i.e., markers of pharmacology) with disease-related factors. In this context, it also worth 

mentioning that further insight into the mechanisms underpinning pharmacological effects 

provides a systematic approach to the evaluation of safety findings.  In fact, drug-disease 

models were developed for a series of clinically relevant outcomes, taking into account the 

physiological or pharmacological correlation between them.  The examples presented here 

also provide a first insight into the concept of knowledge propagation, not as a statistical 

prior, but as time variant and time-invariant parameter distributions. These predictive 

distributions are essential in the context of chronic diseases, as they enable prediction of 

long-term complications or changes in response due to physiological factors as well as 

patient behaviour. Finally, in section 4, we demonstrate how MCDA can be implemented in 

conjunction with modelling and simulation. The models developed in the previous sections 

are used to generate virtual responses in clinical trial and not-in-trial simulation scenarios, 

mimicking a Phase III efficacy trial and a long-term follow-up pharmacovigilance protocol. 

The availability of a range of scenarios which have not been evaluated in an empirical 

setting, including predictions of long-term changes in the benefit-risk profile, provides a 

more robust basis for decision making regarding the approval and risk management of 

medicines for children.  

 

10.1 Optimising evidence generation in paediatric trials 
One of the major issues in paediatric drug development is that ethical and practical 

constraints often limit the generation of evidence (19,20). This has implications for the 

subsequent use in the evaluation of the benefit-risk profile of an intervention.  In brief, there 

is an imperative for acquiring data with high quality and high informative value. Obviously, 

both the quality and informative value of data acquire in children cannot be taken for 

granted. Empirical experimental evidence based primarily on feasibility yields a potentially 

distorted picture of reality, in that drug-specific properties may not be disentangled from the 

role of disease-related factors and experimental design. 

 

Given the role of extrapolation and bridging in paediatric research, in chapters 3, 4 and 5 we 

demonstrate how knowledge integration can be use applied in conjunction with optimal 

design to evaluate which study protocol designs are more informative, whilst taking into 

account feasibility issues. Here we have focused on the sample size and sampling frequency 

required for obtaining accurate estimates of systemic exposure in children with < 6 years of 

age undergoing chelation therapy with deferiprone. 

The study was based on the assumption that pharmacokinetic properties can be bridged 

from adults and adolescents. Affected by transfusion-dependent diseases and therefore 
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provide evidence of the dosing regimen(s) that ensures comparable drug exposure across 

the overall patient population. Therefore in chapter 3 we developed a population 

pharmacokinetic model using available data in adults receiving oral doses of deferiprone as a 

100 mg/ml solution. Our results show how a model-based approach can be used to assess 

the effect of demographic and physiological factors on drug exposure and subsequently 

provide the basis for evaluating the design of prospective clinical trial protocols. Our analysis 

also illustrates how pharmacokinetic models can be used with a set of assumptions to 

explore the implications of factors such as co-morbidities, hepatic or renal impairment on 

drug exposure and consequently on dosing recommendations. In chapter 4, the population 

pharmacokinetic model describing the pharmacokinetics of deferiprone in adults and 

adolescents is used in conjunction with allometric scaling concepts to optimise the sampling 

algorithm for a prospective PK trial in children aged < 6 years. The analysis also provided an 

opportunity to assess the feasibility of reducing the number of patients per dose level. A 

sampling scheme with 5 samples post-dose per subject was found to be sufficient to ensure 

accurate characterization of the systemic exposure to deferiprone. Despite the assumptions 

regarding the changes in clearance and volume of distribution, our results reveal that the 

use of predefined (fixed) sampling schemes and sample sizes do not warrant accurate model 

structure and parameter identifiability in paediatric pharmacokinetic studies. Of importance 

is the accurate estimation of the magnitude of the covariate effects, as they may determine 

the dose recommendation for the population of interest.  Furthermore, the analysis shows 

that the optimisation of study design does not require necessarily the use of the final model 

for the population of interest; the combination between ED-optimisation and the 

information carried by a hypothetical model is sufficient to significantly increase the quality 

of the information collected in a prospective clinical trial. Finally, in chapter 5 we have 

performed the analysis of the pharmacokinetics of deferiprone in children aged < 6 years 

after administration of three different dose levels in the DEEP1 PK study (EudraCT, 2012-

000658-67). The analysis also demonstrates the value of optimised protocol design, in that 

pharmacokinetic parameter estimates are obtained with high precision and accuracy despite 

sparse sampling and small sample size (i.e., 18 evaluable children with 5 samples per 

patients). Based on bridging concepts, a dosing regimen was recommended to this 

population of young children that ensures comparable exposure to adults and adolescents. 

An oral dose of 75 mg/kg/day deferiprone results in median AUC values of 340.6 and 318.5 

µM/L*h in children and adults, respectively. Comparable values are also observed after a 

regimen of 100 mg/kg/day. Hence, a dosing regimen of 25 mg/kg t.i.d. should be used in 

children below 6 years, with the possibility of titration up to 33.3 mg/kg. The work carried 

out in this section allowed us to characterise the pharmacokinetics in the target population 

and supported the dose rationale for the subsequent assessment of the efficacy and safety 

of deferiprone in a non-inferiority study in the target population 
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From a methodological perspective, our findings highlight the role of parameter-covariate 

correlations to establish accurate dosing recommendations, i.e., pharmacokinetic studies in 

children involve more than simply generating data in a small group of children: it demands 

some level of stratification of the covariate factors. 

 

10.2 Integrated evaluation of efficacy and safety by modelling and 

simulation 
In addition to the requirement for high quality of data, accuracy and precision in the 

parameters of interest, the evaluation of pharmacodynamics, efficacy and safety imposes 

the assessment of the multidimensionality and the complexity of the clinical context in 

which the treatment is used. In contrast to pharmacokinetics, where measures of exposure 

are all derived from the underlying pharmacokinetic parameters, the analysis of 

pharmacodynamic data needs to account for multiple endpoints, many of which are 

correlated with each other. Drug-specific and system-specific parameters need to be 

considered in an integrated manner in order to characterise the efficacy and safety profile of 

a drug. As illustrated in the previous chapters of this thesis, PKPD models provide an 

opportunity to quantify such correlations and account for them when drawing conclusions 

about the benefit-risk profile of an intervention. To this end, the integration oncoming 

clinical data with prior knowledge (e.g. epidemiological data on background rates of 

expected co-morbidities; or knowledge acquired on a different disease, population or drug 

of the same class) becomes essential to describe the dynamics of disease and its progression 

and consequently determine long-term outcome. 

 

These concepts were illustrated for characterisation of the safety and efficacy profile of 

deferoxamine, which is currently the first line treatment for chronic iron overload in patients 

affected by transfusion-dependent diseases (21–24).  First, in chapter 6 we developed a 

disease model for chronic iron overload based on available literature data in untreated 

patients. For the first time, the relationship between serum ferritin levels and blood 

transfusions has been characterised in a parametric manner. A turnover model was 

implemented in which a time-varying parameter describes the ferritin conversion rate taking 

into account the transfusion history and disease progression. This model provides a more 

mechanistic interpretation of the pathophysiological changes associated with iron overload 

observed during the course of transfusions. Among other things, it allows us to address 

some unanswered clinical questions in thalassaemia, such as to estimate the time required 

to achieve response based on the serum ferritin levels at the start of treatment.  

This turn-over model was used as a starting point in chapter 7 for the evaluation of the 

chelating effects of deferoxamine, as determined by the changes in serum ferritin levels. 

Deferoxamine binds iron at different extracellular levels, and within the cell it targets 
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lysosomal ferritin iron by stimulating ferritin degradation. The drug effect was therefore 

parameterised in the disease model as a proportional change in the degradation rate 

constant (Kout). Such a parameterisation can also be applied to the evaluation of other 

chelating agents. Most importantly, the availability of this model offers an opportunity to 

explore different scenarios that have been so far evaluated empirically in clinical practice. 

For example, it may be possible to evaluate the importance of different compliance patterns 

for the available chelating agents, and consequently, their impact on ferritin levels and /or 

risk of clinical failure. In fact, we found clear evidence that high compliance leads to stable 

ferritin levels over time and that poor adherence to deferoxamine therapy is strongly 

correlated to a poor clinical outcome 

We subsequently apply this drug-disease model as a framework for further optimisation of 

therapeutic interventions, whereby the impact of covariate factors such as dose, drug 

exposure, compliance, or disease status can be evaluated against short and long-term 

treatment outcome.  

 

As the assessment of the benefit-risk profile of a treatment requires quantitative descriptors 

of efficacy and safety, in chapter 8, we have complemented the work described in the 

previous chapter for safety endpoints. Whilst different dimensions of a symptom or sign may 

need to be considering when assessing its clinical relevance, here we have focused on 

incidence only.  This decision was purely based on didactic reasons, ensuring clarity about 

how modelling and simulation can be used to integrate different endpoints. Two survival 

models were developed to describe disease-specific complications, namely hypothyroidism 

and type II diabetes. Both co-morbidities evolve as a consequence of iron accumulation and 

as such can be causally correlated with ferritin levels. A hazard function including ferritin 

levels was found to be a predictor of the probability of the incidence of the co-morbidity. In 

addition two models were developed to characterise the incidence of acute drug-specific 

adverse events, namely arthralgia/myalgia and anaphylaxis. They reflect two typical features 

of the safety profile, in that the former refers to a frequent, dose-dependent event, whereas 

the latter a rare, dose-independent one. Of particular relevance for the implementation of 

BR assessment, is the possibility of exploring rare dose-independent AEs. The four models 

were used in parallel to assess the impact of different exposure levels and compliance 

patterns on short- and long-term complications of iron chelation therapy. It should be noted 

that such a comprehensive analysis would not have been possible without integration of 

epidemiological (literature) and pharmacological data. In doing so, we have ensured that 

interdependencies and correlations between the different endpoints under evaluation were 

taken into account in a quantitative manner.  
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10.3 Clinical Trial Simulations: accounting for exposure, disease 

progression and uncertainty in benefit-risk analysis 
As highlighted in the scope and intent of investigations, throughout this thesis we have 

defended the use of model-guided evidence generation and subsequent evidence synthesis 

for characterising the benefit-risk profile of medicines for children. Our results have 

demonstrated that empirical evidence is not necessarily accurate and that any attempt to 

establish the benefit-risk profile of an intervention at the time of its approval presupposes 

that the available data suffices to support such an assessment. This assumption may not be 

appropriate in a considerable number of cases.  In paediatric diseases one needs to consider 

that the natural time course of disease occurs in parallel to developmental (physiological) 

growth and maturation processes. By performing clinical trial simulations and not-in-trial 

simulations, intrinsic and extrinsic sources of variation as well as confounding factors can be 

appropriately evaluated and incorporated into the decision process. The approach also 

addresses the issue of uncertainty due to limited sample size in clinical trials. 

 

In chapter 9 MCDA is used in conjunction with simulation scenarios to evaluate the benefit-

risk profile deferoxamine in children with transfusion-dependent haemoglobinopathies. 

Here all five models developed in the previous section were used to simulate treatment 

response in virtual paediatric patients. Individual response data is obtained from a 1-year 

hypothetical phase III trial in conjunction with a follow-up safety study in which patients are 

evaluated up to 10 years after the start of the treatment. A reference scenario was proposed 

based on the currently approved dosing regimen of deferoxamine, i.e., 45 mg/kg/day (5/7). 

In this analysis, we have compared the results of the phase III trial with a range of alternative 

regimens and conditions, namely different fixed dose levels, weight-banded dosing regimens 

and ferritin-guided individualised regimens. The availability of simulated responses over a 

period of 10 years enabled us to assess the impact of long-term complications on the 

benefit-risk balance. Our approach clearly provides a more comprehensive evaluation of the 

implications of drug-specific and disease-specific factors on the overall benefit-risk profile of 

deferoxamine. Moreover, we show how interdependencies can be accounted for during the 

characterisation of long-term complications and how disease progression can be 

disentangled from drug-related events. The current findings open new avenues for a more 

structured evaluation of the BR balance of an intervention. It provides a framework for the 

integration of knowledge in a parametric manner, thereby 1) complementing the existing 

data to support the decision to be taken; 2) optimising the input data for the MCDA analysis; 

and 3) quantifying the relevant correlations among different endpoints and possibly 

determining whether personalised regimens would be of any benefit for the patient 

population.  
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10.4 Conclusions, recommendations and perspectives 
Throughout this thesis we have highlighted important limitations in the assessment of BR 

profile of a medicinal product in children, especially if applied at the time of approval. In 

contrast to current practice, PKPD modelling provides a robust, mechanism-based 

opportunity to complement the clinical data to be used in BR assessment. Whereas different 

methods have been developed with the intent of enabling a more quantitative appraisal of 

the benefit-risk profile, none of them fully address the aforementioned limitations. 

Nevertheless, the MCDA appears to possess the necessary features to assess BRB in a more 

systematic and transparent manner, with the potential for a full integration with PKPD 

modelling. Yet, it should be noted that the use of MCDA has an illustrative purpose in this 

thesis. In principle, our approach could be implemented in combination with other 

quantitative BR methodologies. The major challenge lies in the steps that take place before a 

BR evaluation is performed. Traditional endpoints do not necessarily capture sufficient 

information about the treatment and the p-value of a clinical trial is not predictive of 

effectiveness, losing its importance in the context of BRB.  This is compounded by the fact 

that ethical and practical constraints limit the level of clinical evidence that can be gathered 

in a randomised, controlled setting as well as by the effect of disease progression on the 

benefit-risk balance, especially in chronic conditions.  

In summary, we defend the need for a development and approval paradigm in which both 

evidence generation and evidence synthesis form the basis for approval.  Clinical events or 

the absence thereof are not spurious, random features of an intervention. They are greatly 

determined by the patient population, the context in which the treatment is assessed and by 

the dose rationale.  

 

Even though some examples are available in literature where M&S is proposed in 

combination with clinical utility measures in the context of BR assessment (25,26), this thesis 

represents the first analysis in which PKPD modelling has been fully integrated with MCDA. 

This approach enables regulators, sponsors, and clinical experts to:  

 

1. optimise study design, ensuring the quality of the data collected; 

2. integrate available information (e.g., epidemiological data) to support data analysis 

and models assumptions; 

3. simultaneously evaluate multiple endpoints and account for co-linearity and 

interdependencies and  

4. most importantly, complement real data for a more comprehensive decision making.   
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What have we learned? 

We have encountered a number of challenges that made the characterisation of treatment 

effects within a real-life clinical context rather complex. Currently, clinical data are 

generated for hypothesis testing and as such are focused on primary endpoints, not on the 

assessment of benefit-risk profiles. Often, the available were not sufficient to estimate all 

model parameters for each separate endpoint or to fully assess correlations between 

endpoints. Moreover, dose rather than exposure is still used as gold standard for defining 

treatment effects, ignoring the role of pharmacokinetics and covariate factors as explanatory 

variables for the variability in response. 

Firstly, these challenges allowed us to learn that M&S tools provide an opportunity to 

describe and quantify relevant aspects of paediatric diseases even in the absence of 

individual data by making use of available literature as well as prior knowledge, as presented 

in chapter 6. We have shown also that despite limited evidence regarding the safety profile 

of deferoxamine, such a limitation does not prevent us from exploring the implications of 

treatment based on the integration of data from epidemiological studies as well as from a 

different population in which the same compound or another one of the same 

pharmacological/molecular class has been used.  Secondly, we have shown the importance 

of defining a model for each endpoint to be evaluated in a BR analysis: an integrated 

approach with the use of multiple models is essential to characterise the multidimensionality 

of disease. Moreover, PKPD relationships cannot be ignored during the evaluation of the BR 

profile. Whereas this process was found to be resource-intensive and time-consuming, we 

have no doubt about its superiority in terms of establishing the true benefit-risk profile and 

enabling better decision making. It is also clear that implementation of the approach in a 

prospective manner requires efforts to be allocated as early as phase I. Finally, we have 

learnt that the clinical interpretation of benefit-risk estimators is fraught with a relatively 

large degree of uncertainty, varying considerably among the different stakeholders. These 

differences do not facilitate consensus regarding the consequences of an intervention.  M&S 

allows a reduction in this uncertainty thanks to the use of underlying PKPD relationships. 

Such relationships are causal in nature and as such provide a somewhat more objective 

readout of the different criteria and their relative consequences: exposure-response data 

can be used to guide the expert judgment and dismiss implausible correlations.  

Nevertheless, we are aware of the fact that subjectivity cannot and most likely will never be 

fully eliminated during the appraisal of the benefit-risk profile of a medicinal product. 

 

Requirements and recommendations 

In the next paragraphs, we aim at summarising how a model-based approach can be applied 

to future appraisals using MCDA as a quantitative method. The first point to consider is that 

the clinical data generated is not sufficient for a comprehensive BR evaluation. In table 1 a 
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visual overview of the elements that differentiate our proposal from current practices in 

benefit-risk assessment. The most important message from our work is that any available 

knowledge on the pharmacological properties as well as on the disease and its progression 

cannot be omitted from a more structured and comprehensive analysis of the benefit-risk 

profile.  

 

Table 1. Overview of the differences between the proposed model-based approach and the current 

approach for BR appraisals. CTS: Clinical Trial Simulations; NITS: Not In Trial Simulations. 

 

CURRENT APPROACH    MODEL-BASED APPROACH 

Clinical data from  

phase II-III trials 
SOURCE  

Pharmacokinetic data 

Longitudinal data 

Epidemiological data: 

background incidences (co-

morbidities and AEs) 

Prior knowledge on: 

mechanism of action; 

disease progression; other 

drugs; other populations 

Evidence generated INPUT 
Evidence generated + virtual 

scenarios (CTS and NITS*) 

Tested dosing regimen vs. 

placebo or standard of care 
OUTPUT 

Alternative options: 

possibility to achieve 

personalised medicine 

 

The proposed approach is versatile in that it does not necessarily rely on the characteristics 

of MCDA. However, if we consider M&S in the context of MCDA, as described throughout 

this thesis, the chart shown in figure 1 can be used to illustrate what exactly changes in 

benefit-risk assessment. In figure 1, the different stages of MCDA are aligned to the 

contributions of M&S. 
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Figure 1. Contributions of the proposed model-based approach to the different stages of MCDA.  
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interest towards BR assessment is expanding and more and more projects have started 

focusing on the use of a more structured and transparent process by combing ideas and 

inputs from different stakeholders (5–8,27,28). The major effort of these groups appears to 

be focused  on the following aspects (29–37):  

1. more systematic use of available clinical evidence;  

2. better graphical representation of the overall BRB;  

3. re-evaluation of the BRB during the whole life cycle of the drug based on data 

accumulation and integration of clinical data with real data (progressive licensing); 

 

 
 

Figure 2. Process of the Public Health Benefit assessment. Adapted with permission from Massol et 

al. (38) 

 

Unfortunately, as depicted in Figure 2, it appears that today’s efforts rely primarily on data 

accumulation, making it central to the implementation of BR analysis. By contrast, we 

envisage the joint used of available data with drug-disease models as basis for clinical trial 

simulations (CTS) and/or not-in-trial simulations (NITS). The concept of extrapolating to real 

life population is not new and has been already applied and proposed in the context of 

safety management (39).  
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One major area that requires further development and discussion is uncertainty. While 

statistical uncertainty is captured well in most decision approaches, work remains to be 

done with regard to better articulating the consequences of any gaps in the efficacy and 

safety data (e.g., dropouts) and the level of evidence available on the benefit–risk profile. 

We acknowledge the fact that the models developed and used in this thesis carry a certain 

degree of uncertainty. Nevertheless, they allowed us to explore scenarios that could not be 

considered during drug development. They also provided answers to clinical questions (e.g., 

impact of long-term complications on the BRB of iron chelators) that could not necessarily 

be addressed directly in a real setting. Drug development and therapeutics will greatly 

benefit from a framework that describes how drug- and disease-specific properties interact 

with each other and ultimately determine the benefit-risk profile during development (i.e. 

randomised clinical trials) as well as during clinical use of the drug. 

 

Our approach could form the backbone for the recently proposed progressive licensing 

model, which was initiated by Health Canada to develop a drug regulatory system for the 

future (36). The progressive licensing model consists in sound scientific evidence and risk 

management. It is aimed at supporting access to promising new drugs and the continuous 

monitoring of safety, quality, and efficacy. It is being developed on the assumption that 

knowledge and experience can be gained from every stage of a drug's life cycle. A well-

designed regulatory framework should support the collection, analysis, and communication 

of knowledge and experience about a drug throughout its life cycle so that it can be used 

wisely. In addition, in contrast to network meta-analysis which relies in stochastic 

parameterisation of the trade-offs between risk and benefit, the use of drug disease models 

suits the same purpose using a biologically, clinically plausible parameterisation (40). 

 

In conclusion, it should be highlighted that models do not make decisions, people do. A 

collaborative effort between industry and regulators will be required to continue to advance 

the science of benefit–risk methodology, since, as we have argued above, there is no single 

or simple approach that would address all benefit–risk assessments. Eventually, we expect a 

set of common principles, standards and a toolbox of methods will emerge. Ultimately, 

patients, clinicians, drug developers and regulators need to acknowledge that decisions are 

better made when data are presented and communicated in a clear, systematic manner. 

PKPD modelling can complement evidence generation by providing stakeholders the 

opportunity to explore conditions that have not been experimentally tested at the time of 

BR analysis. Regardless of the limitations models and simulation scenarios may have, model-

based evaluation is likely to outperform gut feeling, which currently prevails in clinical 

decision-making.   
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CHAPTER 11 

Nederlandse samenvatting  

(Synopsis in Dutch) 
 

De evaluatie en de toelating van geneesmiddelen voor kinderen is voortdurend aan 

verandering onderhevig. Enerzijds is dat een gevolg van het toegenomen besef van het belang  

de effectiviteit en veiligheid van geneesmiddelen voor deze  doelgroep zo nauwkeurig 

mogelijk vast te stellen. Anderzijds is het een gevolg van  vooruitgang in stastische en klinische 

methodologien die het mogelijk maakt het baten-risico profiel steeds nauwkeuriger vast te 

stellen. Omdat het moeilijk is om voldoende onderzoeksresultaten te verkrijgen voor de 

toepassing van  geneesmiddelen voor kinderen, wordt vaak gebruik gemaakt van gegevens 

verkregen nadat een geneesmiddel is toegelaten (de zogenoemde ‘post-approval data’). 

Hierbij geldt een fait accompli, oftewel het bewijs is verzameld na de feiten.  

Op dit ogenblik is er geen kwantitatief raamwerk voor autoriteiten, klinische onderzoekers en 

bedrijven die geneesmiddelen ontwikkelen, op basis waarvan de bestaande kennis en 

informatie over zowel het geneesmiddel als de ziekte kan worden geïntegreerd  om daarmee 

de effectiviteit van het geneesmiddel te voorspellen voordat het onderzoek wordt gestart. 

Door een kwantitatief raamwerk op te stellen is het niet alleen mogelijk om het risico 

management plan te optimaliseren, het geeft ook houvast om tijdens het geneesmiddel 

ontwikkelingsproces wetenschappelijke en klinische vragen te beantwoorden. 

 

Het onderzoek beschreven in dit proefschrift is er op gericht om  op basis van kwantitatieve 

klinische farmacologische principes aanvullend bewijs te verkrijgen over de werkzaamheid van 

geneesmiddelen bij kinderen. Hiervoor is  modelering en simulatie van klinische 

farmacokinetische en farmacodynamische gegevens gebruikt. In hoofdstuk 1  laten we zien 

hoe voorspellingen op basis van een modelmatige aanpak kunnen worden gecombineerd met 

bestaande methodes voor het karakteriseren van het baten en risico profiel van en 

geneesmiddel.  Op basis daarvan verwachten we het besluitvormingsproces voor de toelating 

vangeneesmiddelen voor kinderen te verbeteren. Twee belangrijke zaken onderscheiden het 

onderzoek beschreven in dit proefschrift van eerder onderzoek in pediatrische klinische 

farmacologie. Wij hebben voor het eerst meerdere geneesmiddel-ziekte modellen 

tegelijkertijd geanalyseerd en gesimuleerd waarbij rekening werd gehouden met mogelijke 

correlaties tussen effectiviteit en veiligheid. Dit levert een belangrijke bijdrage aan de manier 

waarop het effect van een geneesmiddel wordt geanalyseerd; niet zozeer als primair eindpunt 

in een klinische studie, maar als middel om geneesmiddeleigenschappen te onderscheiden 

van ziekte eigenschappen. Hierdoor wordt het mogelijk om de effectiviteit en veiligheid van 
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een geneesmiddelinterventie te beschrijven  met behulp van parameters. Het tweede 

belangrijke punt waar ons onderzoek aan heeft bijgedragen, is het gebruik van simulaties van 

effecten in klinische studies en in patiënten die gewoonlijk worden uitgesloten van deelname 

aan klinische studies, de zogenoemde “not-in-trial” populatie, als toevoeging aan de klinische 

gegevens. Hierbij worden gesimuleerde gegevens uit virtuele scenarios verweven met echte 

gegevens en vervolgens gebruikt als input voor MCDA (Multi Criteria Decision Analysis).  

MCDA wordt gezien als hulpmiddel bij het oplossen van vraagstukken waarbij de oplossing 

moet voldoenaan meerdere, mogelijks conflicterende eisen.  Het voordeel van deze aanpak is 

dat het mogelijk is om al voor de beoordeling en toelating  van een geneesmiddel, een 

kwantitatieve analyse te doen van het baten-risico profiel in situaties die niet getest zijn 

tijdens de ontwikkelingsfase(s). Dit is vooral van belang voor de evaluatie van geneesmiddelen 

voor kinderen, omdat er maar op zeer beperkte schaal gegevens verkregen kunnen worden 

uit deze populatie.  Daaranaast kan men rekening houden met de rol van  fysiologische 

processen zoals rijping en groei die op lange termijn de baten-risico balans van de behandeling 

kunnen beïnvloeden.  

 

De punten zoals zojuist besproken komen in de verschillende hoofdstukken van dit 

proefschrift aan de orde. Het voorgestelde raamwerk voor de toepassing van een 

modelmatige aanpak bij de toelatingsprocedure van geneesmidelen voor kinderen  wordt 

geïllustreerd aan de hand van de ontwikkeling van chelatietherapie voor ijzerstapelingsziekten 

als gevolg van herhaalde bloedtransfusie. 

 

 

11.1 Chronische ijzerstapeling door bloedtransfusie-afhankelijke 

hemoglobinopathien 
Bèta-thalassemie-major is één van de meest voorkomende bloedtransfusie-afhankelijke 

ziekten. Het is een erfelijke ziekte die door een sterk gereduceerd of volledig afwezige 

synthese van bèta-globine wordt veroorzaakt. Hierdoor wordt in het lichaam van patiënten 

met bèta-thalassemie-major onvoldoende en afwijkend hemoglobine (Hb) in de rode bloed 

cellen (RBC) aanmaakt. Ook daalt de productie van RBC waardoor deze patiënten 

bloedarmoede hebben. Daarom hebben patiënten met bèta-thalassemie-major regelmatig 

een bloedtransfusie nodig om te kunnen overleven. Alhoewel de behandeling met chronische 

bloedtransfusie sterk verbeterd is in de afgelopen jaren, zijn er nog steeds een groot aantal 

complicaties. Door de vele bloedtransfusies kan ijzerstapeling optreden en dit kan hartfalen, 

lever fibrose, suikerziekte en een verstoorde hormoon productie tot gevolg hebben. Omdat 

het menselijk lichaam zelf geen mechanisme heeft om een overschot aan ijzer af te voeren is 

een adequate ontijzering noodzakelijk om complicaties te voorkomen. Hiervoor worden 

ijzerchelatoren gebruikt die 1) voorkomen dat niet aan transferrine gebonden ijzer (NTBI) 
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wordt opgenomen door organen zoals hart en lever, 2) voorkomen dat intracellulair ijzer 

wordt opgenomen door ferritine, en 3) ijzer wegvangen van ferritine dat wordt afgebroken. 

Aangezien de rol van ferritine bij ijzerstofwisseling, wordt de ferritine concentratie in serum  

gebruikt als maat voor ijzerstapeling. Daarvoor geldt de aanname dat ferritine  aan de totale 

ijzerhoeveelheid in het lichaam gecorreleerd kan worden. Het bepalen van de serum ferritine 

concentratie is een eenvoudige en minimaal invasieve methode om de ijzerstapeling en het 

beloop van het effect van chelatietherapie te volgen.  

 

 

11.2 Optimalisatie van het verzamelen van gegevens bij 

geneesmiddelonderzoek in kinderen 
Klinisch onderzoek in kinderen is beperkt door zowel ethische als praktische oorzaken. 

Daarom  worden extrapolatie en overbruggingsconcepten vaak gebruikt als basis voor de 

evaluatie van geneesmiddelen in paediatrische indicaties.  Dit maakt het lastig om het baten-

risico profiel van een therapie op te stellen. Daarnaast moet men ook erop letten dat de 

gegevens die worden verzameld van voldoende kwaliteit zijn.  

Rekening houdend met  het bovenstaande hebben we iIn hoofdstukken 3, 4 en 5 beschreven 

hoe een klinisch studieprotocol de meeste informatie kan opleveren.  Hiervoor hebben we 

zowel de mogelijkheden van integratie van kennis als de praktische uitvoerbaarheid in 

overweging genomen. Onze belangrijkste doelstellingen waren om te onderzoeken hoe veel 

patiënten in een studie nodig zijn en hoe vaak bloedmonsters afgenomen moeten worden om  

de blootstelling aan een geneesmiddel nauwkeurig te bepalen.  Het optimalisatie concept is 

geïllustreerd  door  het vaststellen van de farmacokinetische eigenschappen van deferiprone 

in kinderen jonger dan 6 jaar. Door aan te nemen dat de farmacokinetiek  van deferiprone kan 

worden voorspeld op basis van gegevens verkregen uit klinisch onderzoek in volwassenen en 

in jongvolwassenen met bloedtransfusie-afhankelijke ziekten, kan het doseringsschema en 

dus de blootstelling gelijk worden gehouden voor de totale patiënten populatie. Op basis van 

beschikbare gegevens in volwassenen die werden behandeld met een orale dosis van 75 

mg/kg/day deferiprone hebben we in hoofdstuk 3 een populatie farmacokinetisch model 

ontwikkeld. Onze resultaten laten zien dat een modelmatige aanpak gebruikt kan worden om 

het effect van demografische en fysiologische factoren op het lotgeval van deferiprone te 

karakteriseren. Kennis omtrent de farmacokinetiek van deferiprone kan vervolgens 

geïntegreerd worden met statistische beginselen om nieuwe klinische studies te ontwerpen. 

De parameters die de farmacokinetiek van deferiprone beschrijven zijn in hoofdstuk 4 

toegepast in combinatie met allometrische schaling  om de optimale tijdstippen voor 

bloedafname te bepalen. Hieruit bleek dat het voldoende is om per patiënt 5 bloedmonsters 

af te nemen om de systemische blootstelling aan deferiprone nauwkeurig vast te stellen in 

kinderen. Ook liet deze analyse zien dat het niet noodzakelijk is om voor de optimalisatie van 
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de opzet van een klinische studie een definitief farmacokinetisch model ter beschikking te 

hebben.  De toepassing van  geextrapoleerde parameters bij optimalisatieprocedures in 

paediatrisch onderzoek is een aanzienlijk nieuw concept. In hoofdstuk 5 hebben we, uit data 

verkregen uit de DEEP1 PK studie (EurdraCT, 2012-000658-67), de farmacokinetiek van 

deferiprone in kinderen jonger dan 6 jaar geanalyseerd. Hieruit bleek de meerwaarde van een 

geoptimaliseerd protocol ontwerp erg duidelijk: de farmacokinetische parameters konden 

met grote precisie worden bepaald ondanks het kleine aantal patiënten (18 kinderen) dat in 

de studie was opgenomen en het kleine aantal bloedmonsters (5 per patiënt). Op basis van 

overbruggingsconcepten hebben we een doseringsschema voor deferiprone in kinderen 

jonger dan 6 jaar kunnen vaststellen zodat  de blootstelling aan deferiprone bij deze groep 

patiënten vergelijkbar is met die van volwassenen en jongvolwassenen. Samenvattend tonen 

deze resultaten aan, dat modelmatig ontworpen overbruggingsprotocolen robust zijn om de 

farmacokinetiek in en nieuwe doelgroep te karakteriseren. Bovendien,  kunnen deze 

resultaten de basis vormen voor het kiezen van de dosis en doseerschema voor het 

vervolgonderzoek waarin de effectiviteit en veiligheid van deferiprone in de doelgroep wordt 

bepaald. Vanuit een methodologisch perspectief blijkt  het dat de correlatie tussen 

farmacokinetische parameters en covariaten bepalend zijn om een nauwkeurige aanbeveling 

over de juiste dosering te kunnen maken. Oftewel: farmacokinetische studies in kinderen is 

meer dan data verzamelen in een kleine studiegroep, het identificeren van de covariaten op 

basis waarvan de variabiliteit in farmacokinetische parameters kan worden bepaald speelt 

hierbij een grote rol.  

 

 

11.3 Geïntegreerde evaluatie van effectiviteit en veiligheid door 

modelering en simulatie 
Voor het bepalen van de effectiviteit en veiligheid van een geneesmiddel  is meer nodig dan 

een betrouwbare meting en een precieze bepaling van relevante eindpunten  en parameters. 

Daarvoor dienen de complexiteit van de ziekte en de onderliggende klinische context ook 

meegenomen te worden.  In tegenstelling tot een farmacokinetische analyse waarbij de mate 

van blootstelling direct uit enkele parameters wordt bepaald, zijn er bij het bepalen van de 

farmacodynamiek vaak meerdere eindpunten nodig, die ook onderling een samenhang met 

elkaar hebben. Om de effectiviteit en veiligheid van een geneesmiddel te kunnen vaststellen 

moet een onderscheid worden gemaakt tussen de geneesmiddel-specifieke parameters en de 

ziekte-specifieke parameters. In de voorafgaande hoofdstukken van dit proefschrift hebben 

we laten zien dat PKPD modellen gebruikt kunnen worden om de correlatie tussen de 

geneesmiddel- en ziekte-specifieke parameters te karakteriseren. Daardoor is het ook  

mogelijk om met deze correlatie rekening te houden  wanneer het baten-risico profiel van een 

geneesmiddel wordt opgesteld.  
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Als men de lange termijn uitkomsten van een behandeling  tracht te voorspellen is het 

essentieel om  nieuwe onderzoeksgegevens over de dynamiek en het verloop van een ziekte 

te integreren met bestaande kennis. De bestaande kennis kan worden verkregen of afgeleid 

uit oa. epidemiologische gegevens over  verwachte co-morbiditeit(en), uit andere 

ziektemodellen of patiëntengroepen, of uit geneesmiddelen uit dezelfde klasse.   

Om deze concepten te illustreren hebben we de effectiviteit en veiligheid van deferoxamine 

gekarakteriseerd. Deferoxamine is een ijzerchelator die op dit moment als eerstelijns therapie 

bij chronische ijzerstapeling wordt voorgeschreven. In eerste instantie hebben we in 

hoofdstuk 6 een ziektemodel voor chronische ijzerstapeling ontwikkeld op basis van 

literatuurgegevens die  de jizer homeostase in onbehandelde patiënten beschrijft. In dit 

“turnover” model, hebben we gebruik gemaakt van een tijdsafhankelijke parameter die de 

omzettingssnelheid van ferritine weergeeft waarbij rekening werd gehouden met 

bloedtransfusies en ziekte progressie. Dit model sluit een mechanistische benadering om van 

de pathofysiologische veranderingen als gevolg van ijzerstapeling door herhaalde 

bloedtransfusie. In hoofdstuk 7 is dit ziektemodel gebruikt om op basis van  van veranderingen 

in serum ferritine concentraties, het effect van deferoxamine te bepalen. Daardoor kunnen 

verschillende scenario’s gesimuleerd worden waar dit tot nu toe slechts empirisch konden 

worden bepaald. Het is bijvoorbeeld mogelijk om de invloed van patiënt-trouw  voor de 

verschillende ijzerchelatoren te simuleren en daarbij het effect op de ferritine concentratie in 

serum te bepalen. Daaruit kan men oa de klinische respons en het succes of faal van  de 

behandeling te voorspellen. Dit geneesmiddel-ziekte model hebben we vervolgens toegepast 

als raamwerk voor de optimalisatie van de respons op ijzerchelatoren. Hierbij kunnen 

covariaten zoals dosering, blootstelling, patiënt-trouw, stadium van de ziekte worden afgezet 

tegen korte- en lange termijn uitkomsten.  

 

Omdat het voor het bepalen van het baten-risico profiel van een geneesmiddel van belang is 

om niet alleen de werkzaamheid te bepalen, hebben we in hoofdstuk 8 ook de veiligheid 

(bijwerkingen en ziektecompicaties) ook door middel van parametrische methodes 

samengevat. Hiervoor hebben we twee overlevings-modellen ontwikkeld om hypothyroidie 

en diabetes mellitus als ziekte-specifieke complicaties te kunnen beschrijven. Zowel diabetes 

als hypothyroidie zijn een co-morbiditeit van ijzerstapeling en kunnen daarom worden 

gecorreleerd aan de ferritine concentratie in serum. Een risico functie waarbij rekening 

gehouden werd met de ferritine concentratie bleek het ontstaan van de co-morbiditeiten te 

kunnen voorspellen. Daarnaast hebben we twee modellen ontwikkeld om de incidentie van 

gewrichts- en spierpijn en overgevoeligheidsreacties, twee acute en geneesmiddel-specifieke 

bijwerkingen van ijzerchelatoren, te kunnen karakteriseren. Deze vier modellen werden 

tevens gebruikt om de invloed van blootstelling en patiënt-trouw op zowel de korte- als de 



CHAPTER 11 

252 
 

lange termijn complicaties van ijzerchelatie therapie te onderzoeken. Hierbij dient te worden 

opgemerkt dat deze uitvoerige analyse alleen mogelijk was door de integratie van gegevens 

uit epidemiologische en klinisch farmacologische studies. Hierdoor hebben we zowel de 

correlatie tussen als de tijdsafhankelijkheid van de verschillende eindpunten op een 

kwantitatieve manier kunnen meewegen in onze analyse.    

 

 

11.4 Simulatie van klinische studies als basis voor de baten-risico 

analyse  
Het doel van ons onderzoek is om de meerwaarde van modelering en simulatie voor het 

genereren van zo een realistisch mogelijk baten-risico profiel voor geneesmiddelen voor 

kinderen. Met het onderzoek beschreven in dit proefschrift willen we aantonen dat het bewijs 

dat empirisch verkregen wordt niet altijd accuraat is. En dat de aanname dat de gegevens die 

beschikbaar zijn op het moment van goedkeuring voldoende zijn om een baten-risico profiel 

voor een nieuw geneesmiddel op te stellen, ook niet altijd klopt. Door gebruik te maken van 

simulatie van de effecten verkregen uit klinische studies en in individuen die gewoonlijk 

worden uitgesloten van deelname aan klinische studies (“not-in-trial” simulaties), is het 

mogelijk om rekening te houden met intrinsieke en externe variabiliteit, zoals bijvoorbeeld 

verschillen in blootstelling en  ziekte progressie. Ook is het mogelijk om eventueel verstorende 

factoren te analyseren zodat hiermee rekening gehouden kan worden in het besluitvormende 

proces. Deze aanpak maakt het ook mogelijk om onzekerheden door het kleine aantal 

patiënten (en/of bloedmonsters) in de klinische studies uit te sluiten. 

 

In hoofdstuk 9 hebben we het baten-risico profiel voor deferoxamine bij kinderen met een 

bloedtransfusie-afhankelijke hemoglobinopathie geëvalueerd door gebruik te maken van 

MCDA technieken in combinatie met gesimuleerde scenario’s, waarbij virtuele patienten op 

verschillende manieren worden behandeld. In onze analyse hebben we de resultaten van een 

standaard fase III studie vergeleken met de gesimuleerde resultaten van verschillende 

behandeling condities en doseringsschema’s voor deferoxamine. Op deze manier konden we 

de gevolgen van lange-termijn complicaties op het baten-risico profiel  kwantificeren. Deze 

resultaten laten zien dat het mogelijk is om het baten-risico profiel van een geneesmiddel op 

een meer gestructureerde manier te evalueren voordat data omtrent de effectiviteit van de 

behandeling wordt verkregen. Bovendien laat ons onderzoek een raamwerk zien waarbij 

bestaande kennis over de ziekte, patiënten populatie en het geneesmiddel wordt 

geïntegreerd als parametrische verdelingen in een groep modellen. Dit heeft een drietal 

voordelen: 1) bestaande gegevens worden aangevuld om zo de besluitvorming te verbeteren; 

2) de input voor de MCDA wordt geoptimaliseerd; en 3) dankzij het vastellen van relevante 

correlaties tussen verschillende eindpunten wordt het mogelijk om te evalueren of een 
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bepaalde dosis of doseringsschema een voordeel heeft voor de gehele patiënten populatie of 

alleen maar voor een deel daarvan. Op basis van zulke scenario’s kan besloten worden of een 

gepersonaliseerde therapie zinvol, wenselijk of onnodig is voor de betrokken patiënten.  

 

11.5 Discussie, conclusies en aanbevelingen 
In dit proefschrift hebben we laten zien dat de huidige manier om een baten-risico profiel voor 

een geneesmiddel voor kinderen op te stellen niet afdoende is. Vooral niet als men zich 

realiseert dat de evaluatie van  baten en risico’s zich beperkt tot gegevens die beschikbaar zijn 

op  het moment van de toelating van het desbetreffende geneesmiddel. Ondanks de 

beschikbare methoden om het baten-risico profiel op een kwantitatieve manier te analyseren, 

hebben ze een belangrijke tekortkoming, namelijk alle methoden zijn puur data gedreven. Als 

zodanig blijken ze ongeschikt te zijn om baten en risico’s te voorspellen voodat alle relevante 

gegevens verkregen worden. Door gebruik te maken van farmacokinetische en 

farmacodynamische modelering, een robuuste en mechanistische methode waardor ziekte- 

en geneesmiddel-specifiek eigenschappen worden meegewogen, kunnen bestaande klinische 

gegevens aangevuld en versterkt worden. Aangezien MCDA techknieken de 

besluitingsvorming uiteindelijk tot  getallen en cijfers omzetten, biedt deze  aanpak de 

mogelijkheid om een baten-risico profiel op een systematische en transparante manier te 

analyseren. Een bijkomend voordeel is dat MCDA  geïntegreerd kan worden met 

farmacokinetische en farmacodynamische modelering. Hierdoor kan een betrouwbaarder 

baten-risico profiel opgesteld worden , rekening houdende met de invloed van zowel het 

beloop van de ziekte als het gebrek aan experimentele data. 

 

In dit proefschrift werd de MCDA gekozen om de geïntegreerde  benadering te 

implementeren. Dit concept kan echter ook worden gebruikt in combinatie met andere 

kwantitatieve baten-risico methoden. In feit, er zijn verschillende voorbeelden in de 

wetenschappelijke literatuur waarbij modelering en simulatie gebruikt wordt in combinatie 

met een klinische utiliteitsfuncties of waarderingsfuncties. In tegenstelling tot die 

voorbeelden , is  in dit proefschrift voor het eerst gebruik gemaakt van een methode waarbij 

PKPD modelering volledig geïntegreerd is met MCDA. Aangezien het besluitvormingsproces 

aanzienlijk verbetert  kan worden biedt deze aanpak  belangrijke voordelen voor regulatoire 

autoriteiten, farmaceutische bedrijven en klinische deskundigen: 

1) Het studie protocol kan worden geoptimaliseerd. Hierbij wordt de kwaliteit van de 

data verbeterd en gewaarborgd voordat patienten  geïncludeerd worden in een 

klinische studie; 

2) Beschikbare kennis (bijvoorbeeld epidemiologische gegevens) kan op een formele 

manier  worden geïntegreerd om de data analyse en model-aannames  te versterken; 



CHAPTER 11 

254 
 

3) Meerdere eindpunten kunnen simultaan worden geëvalueerd waarbij rekening wordt 

gehouden met onderlinge correlaties en tijdsafhankelijkheid; en  

4) Gegevens die verkregen zijn tijdens de klinische ontwikkelingsfase  kunnen worden 

aangevuld met gesimuleerde data, waardoor  de onzekerheden omtrent de baten en 

risico’s  meegewogen worden tijdens de analyse. 

 

Het vermogen tot extrapolatie stelt de analist of onderzoeker in staat nieuwe alternatieven te 

evalueren en te klasseren, en dit alles in real-time. Alhoewel onze aanpak niet per se 

gekoppeld hoeft te worden aan MCDA, zijn er een aantal belangrijke veranderingen nodig om 

de technieken met elkaar te kunnen integreren (Tabel 1).  

 

Tabel 1. Bijdrage van de voorgestelde modelmatige aanpak aan de verschillende stappen van MCDA.  

Multi-criteria decision analysis Modelmatige aank 

0: input  

1: bepalen van besluitvorming 0-1: Optimalisatie van input gegevens en aanvullen 

van klinische gegevens met virtuele scenario’s 

2: identificeren van uiteenlopende 

opties 

1-2: gevolgtrekking door extrapolatie: alternatieve 

opties 

3: identificeren van doelstelling en 

criteria 

2-3: rekening houden met correlaties tussen criteria 

4: scoring  

5: weegfactoren 4-5: besluitvormingssleutels en waarderingfuncties 

door experts 

6: bepalen van overall score  

7: analyseren van resultaten 6-7: beoordelen van bewijs van CTS en/of NITS om 

gepersonaliseerde geneesmiddeltherapie te 

bereiken 

8: gevoeligheidsanalyse 7-8: onzekerheden in het model kunnen worden 

gekwantificeerd en er kan rekening mee worden 

gehouden in de analyse 

 

Toekomstperspectief en conclusie 

De wetgeving rondom de goedkeuring van geneesmiddelen is wereldwijd aan verandering 

onderhevig. Dit komt niet alleen door vooruitgang in de farmaceutische wetenschappen en 

geneesmiddelontwikkeling, maar ook door veranderingen in het verwachtingspatroon van 

patiënten. Er is een toegenomen belangstelling voor het opstellen van een baten-risico profiel 

voor geneesmiddelen. Steeds meer onderzoeksprojecten maken gebruik van een 

gestructureerd en transparant proces waarbij rekening wordt gehouden met de eisen en 
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verwachtingen van verschillende belanghebbenden. De belangrijkste punten die hierbij 

consequent naar voren komen zijn: 

1) Systematisch gebruik van beschikbaar klinisch bewijs; 

2) Verbeterde grafische weergave van het totale baten-risico profiel; 

3) Een her-evaluatie van het baten-risico profiel gedurende de levensloop van een 

geneesmiddel door nieuwe (post-market) gegevens te integreren met data uit de 

klinische studies, oftewel adaptive licensing. 

 

Vanuit een theoretisch perspectief  vergen de  huidige methoden het verzamelen van nieuwe 

gegevens  om  baten en risico’s te kunnen beoordelen (Table 2) . Wij willen juist stimuleren 

dat het simultaan gebruik van beschikbare gegevens met geneesmiddel-ziekte modellen de 

basis kunnen zijn voor simulatie van klinische studies en/of ‘not in trial’simulaties. 

 

Tabel 2. Overzicht van de verschillen tussen de huidige aanpak en de voorgestelde modelmatige 

aanpak voor baten-risico analyse. CTS: Clinical Trial Simulations; NITS: Not-In-Trial Simulations. 

 

Huidige aanpak    Modelmatige aanpak 

Klinische data van fase II-III 

studies 
Bron 

Farmacokinetische data 

Longitudinale  data 

Epidemiologische data: 

achtergrond frequentie  

(co-morbiditeiten en 

bijwerkingen) 

Achtergrond kennis van: 

werkingsmechanisme; ziekte 

progressie; andere 

geneesmiddelen; andere 

doelgroepen 

Op basis van bewijs uit  

gecontroleeerde klinische 

studies 

INPUT 
Op basis van klinische data  én 

virtuele patiënten (CTS en NTIS) 

Aanbevelingen vaak beperkt 

tot de beschikbare data, 

namelijk de geteste 

doseringsschema’s en/of  

patiënten populaties  

OUTPUT 

Aanbevelingen ook voor 

gextrapoleerde scenario’s en/of 

andere patiënten populaties:  

ontwikkelen van 

gepersonaliseerde 

geneesmiddeltherapie  
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