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Appendix A

Theoretical description of
the Q-factor of the cantilever

In Chapter 4, the Q-factor of the cantilever was discussed. The Q-factor was
estimated via the frequency spectrum of the lateral force on the cantilever.
At the very beginning of the discussion, a theoretical expression of the Q-
factor was given in Equation 4.4. Here, we will derive this equation. But
first, we motivate the need for an alternative expression with respect to
known versions present in the literature.

A.1 Motivation

In Reference [15], a derivation of the Q-factor was made by Maier et al.
in an attempt to explain the Q-factors that were estimated based on their
experiments. One of the assumptions made in this derivation, was that the
tip apex followed the motion of the cantilever. The results of our numer-
ical calculations do not justify this assumption: we have shown that the
tip apex is oscillating most of its time in the lower part of the substrate
potential wells. At the same time, the sti↵ cantilever oscillates with its
own charactiristic frequency. The relatively soft spring between the can-
tilever and the tip apex makes the tip apex significantly decoupled from
the cantilever.

Our alternative derivation is meant to incorporate the e↵ect of the pres-
ence of the substrate potential and the e↵ect of the decoupling between the
tip apex and the cantilever.
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A.2 Derivation of Equation 4.4

The Q-factor of the cantilever is defined as

Q = 2⇡
E

�E
, (A.1)

where E is the energy stored in the oscillator, and �E is the energy loss
per oscillation cycle of the cantilever. Here, we are interested in the case
where the cantilever is coupled to the flexible tip apex, which turns our
system into a 2-mass-2-spring system.

For the sake of simplicity, we treat the symmetric case, in which the
equilibrium positions of the support, the cantilever and the tip apex are
coinciding with a local minimum in the substrate potential.

We will calculate the energy loss per oscillation cycle of the cantilever
�E, under the following assumption:

Assumption 1: We assume that the intrinsic damping of the cantilever
is so weak that it can be ignored completely.

This assumption simplifies our derivation of �E, as the energy dissipa-
tion is now only concentrated in the tip apex:

dE

dt
= ��

diss

(ẋ
d

(t))2. (A.2)

Now, we have to establish a relation between the motion of the cantilever
and that of the tip apex. First, we define the motion of the cantilever as
follows:

x
cant

(t) = A
cant

sin (!
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t) . (A.3)

The motion of the tip apex, x
d

, is coupled to the time-dependent position
of the cantilever and to the substrate. This coupling can be made explicit
via the combined potential that is experienced by the tip apex:
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in which the two terms on the right-hand side represent the tip-cantilever
spring potential and the tip-substrate interaction potential, respectively. As
the tip apex is a very dynamic element, especially with respect to the much
heavier cantilever, we can describe its motion as a rapid oscillation around
the time-dependent minimum x⇤

d

of V
d

. The position of this minimum is
given by
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. (A.5)
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Assumption 2: As the amplitude of the tip apex oscillation is small
with respect to width of the substrate potential wells, we can approximate
the shape of the substrate potential by a parabola, so that sin(ax) ⇡ ax.

This assumption simplifies Equation A.5 to:
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✓
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4⇡2U
0

k
d
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◆�1

x
cant

(t) = "x
cant

(t). (A.6)

We can describe the motion of the tip apex as a rapid oscillation around
this time-dependent potential energy minimum:

x
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d

t) + "A
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t) . (A.7)

From this we obtain the velocity of the tip apex:
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This can be used to calculate the energy dissipation rate at the tip apex:
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If we integrate this over one full oscillation period of the cantilever, we
obtain the total energy loss per cycle:
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In the integration, the cross term in dE/dt leads to a zero contribution.
The two remaining terms can be associated with the dissipation due to the
separate contributions from the rapid tip apex motion and the much slower
motion of the tip apex’s equilibrium position due to the cantilever oscilla-
tion. It is the latter term that we associate with the modest dissipation of
the cantilever motion via the tip apex. This is the cantilever energy loss
per oscillation cycle that we need to determine:
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. (A.11)

The energy of the cantilever oscillation is equal to:
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(A.12)
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Using these expressions for E and �E, we can now calculate the corre-
sponding Q-factor to be:

Q =
m
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(A.13)

Using Equation 2.7, which stated that �
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= 2
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D, we can rewrite
Equation A.13 as
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This relation can be further simplified, which results in the expression of
the Q-factor given in Equation 4.4:

Q =
1

2D

✓
1 +

4⇡2U
0

k
d

a2

◆
2

s
m

cant

m
d

k
cant

k
d

=
1

2D

✓
1 +

k
TSI

k
d

◆
2

s
m

cant

m
d

k
cant

k
d

.

(A.15)
What the equation shows is that the mass ratio between the cantilever and
the tip apex makes the damping of the cantilever motion via the forced
motion of the tip apex extremely ine�cient. In addition it shows that
the e↵ectiveness of this weak dissipation channel depends strongly on the
amplitude of the tip-substrate interaction potential.

The form derived here for the Q-factor was tested by numerical calcula-
tions that comprised ringdown tests using our 2-mass-2-spring model with
various, realistic amplitudes of the graphite substrate potential, including
the extreme case of a flat potential. The Q-factor in these calculations,
that was estimated via the decay of the cantilever oscillation amplitude,
was (within the statistical error margin of the calculations) identical to the
Q-factor calculated via Equation 4.4.
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Appendix B

List of symbols

List of all symbols used in the first part of this thesis. The symbols are put
in alphabetical order. Greek symbols are put at the end of the list.

a lattice constant of the substrate
D relative damping rate of the friction contact, D = 1

corresponds to the critically damped case
F
diss

the dissipative force on the dynamic mass m
d

k
at

spring constant associated with each of the atomic
bonds in the tip

k
B

Boltzmann’s constant
k
cant

(torsional) cantilever spring constant
k
d

spring constant with which the dynamic tip mass m
d

is connected to the rigid remainder of the tip plus the
cantilever

k
e↵

e↵ective spring constant of the entire system (from
support to substrate)

k
subs

spring constant associated with the sti↵ness of the
substrate

k
tip

spring constant of the tip
k
TSI

spring constant associated with the tip-substrate in-
teraction

m
at

atomic mass of the atoms in the tip
m

cant

e↵ective mass of cantilever
m

d

dynamic mass, i.e. the mass associated with the N
d

dynamic atoms
m

e↵

e↵ective mass present in the 1-mass-1-spring model,
which is pulled through the substrate potential
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N
c

number of atoms making physical contact with the
substrate

N
d

number of dynamic atoms, i.e. the e↵ective number
of atoms moving at same speed as the N

c

contact
atoms

Q quality factor of an oscillator, which is in our work
the cantilever

T the temperature of the system
t
diss

timescale set by the damping rate ⌘
diss

t
slip

timescale for a slip event of the dynamic mass
U
0

corrugation amplitude of the periodic substrate po-
tential V

subs

V
subs

substrate potential
v
supp

velocity of the support
x
cant

x-coordinate of the cantilever
x
d

x-coordinate of the dynamic mass
x
supp

x-coordinate of the support
x
t

x-coordinate of the tip apex

Greek symbols
� dissipation rate [kg/sec]
�
at

dissipation rate of one single atom in the contact
[kg/sec]

�
diss

dissipation rate of the entire contact [kg/sec]
⌘
at

damping rate of one single atom in the contact [sec�1]
⌘
diss

damping rate of the dynamic mass [sec�1]
µ macroscopic friction coe�cient
⇠ Gaussian distributed random noise term
�
F

standard deviation of the random force
!
at

typical (angular) frequency for vibrations of an atom
in the tip

!
d

(angular) eigenfrequency for vibrations of the dy-
namic mass
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