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Chapter 4

Computational results, their
interpretation and
implications

The refined 2-mass-2-spring-model, featuring a very small dynamic mass
representing the tip apex, is evaluated extensively by numerical calcula-
tions. Several friction regimes were explored systematically. The most
striking and elucidating results are presented in this chapter, together with
their interpretation. We also highlight the implications of the results of our
studies.

4.1 Results - a limited regime of atomic resolution

Following the discussion presented in Chapter 2, the friction behaviour of a
friction contact is dependent on (amongst others) the number of atoms in
the tip apex that make contact with the substrate, N

c

, and the number of
tip apex atoms that e↵ectively move together with the contact atoms, N

d

.
In order to study the impact of these parameters, we performed numerical
calculations in which N

c

was fixed at a value of 100 (atoms) and N
d

was
varied from 2500 to 108 atoms. The value of 100 atoms for N

c

is larger than
the number that one should associate with a typical friction contact. The
number of contacting atoms in the case of contact-AFM is typically 10. For
FFM, we should expect a similar number. We have chosen a higher value for
N

c

in order to avoid unpractically long calculation times. However, our re-
sults should still be considered representative for the stick-slip dynamics in
typical FFM experiments. The values for N

d

were chosen such that, in ac-
cording to Equation 2.9, overdamped, critically damped and underdamped

38



(a) (b)

(c) (d)

Figure 4.1: Numerically calculated lateral force maps, with the param-
eters chosen to match those of the FFM-experiments. (k

cant

= 30N/m,
k
d

= 2N/m, v
supp

= 30µm/sec, m
at

= 74 amu, U
0

= 0.8 eV(peak-peak),
T = 298K), and a number of contacting atoms of N

c

= 100 (see text).
The number of dynamic atoms N

d

was chosen di↵erently for each panel,
in order to vary the damping regime. (a) N

d

= 108, corresponding to one-
hundredfold underdamped motion. (b) N

d

= 106, b= tenfold underdamped.
(c) N

d

= 4 ⇥ 104, b= twofold underdamped. (d) N
d

= 2500, b= twofold
overdamped. Note that the two underdamped cases in (a) and (b) show
many occasions with multiple slip events and that the overdamped case
shows an increase in the force fluctuations. For lateral force patterns with
a well-defined lattice signature, the damping should be close to critical.
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situations were realized. Other parameters were chosen to match typical
FFM experiments. The calculations resulted in 2-dimensional lateral force
maps, of which typical examples are presented in Figure 4.1.

The numerically calculated friction force maps are in agreement with
the qualitative damping rate of the friction contact that can be calculated
via Equation 2.8. In the regime of a critically damped tip apex (e.g. Figure
4.1c), a regular stick-slip (SS) pattern was observed, which presents itself
in a clearly visible atomic periodicity and a minor amount of thermal noise,
similar to what was observed in FFM experiments. As expected, all excess
kinetic energy that the tip apex acquired during the slip was dissipated
rapidly enough to prevent the occurrence of double slips. On the other
hand, a heavily underdamped tip apex, which corresponds to Figure 4.1a,
led to a nearly complete vanishing of the atomic periodicity in the friction
maps. Although the SS-behaviour was still observed, the motion had be-
come very irregular: the precise moment and the length of the slip were
unpredictable. Slips with a length of more than one atomic spacing (the so-
called multiple slips) occurred frequently, which indicated that the excess
kinetic energy of the tip apex was not dissipated in time and the tip apex
was able to overcome the next potential barrier. As a direct consequence,
the tip was able to slip to the second-next potential well at once.

The result of the calculation in which the tip apex was chosen to be
slightly overdamped, is shown in Figure 4.1d. A remarkable observation
is the slight degradation of the atomic periodicity in the SS-behaviour.
As further overdamping of the tip apex resulted in very long calculation
time, no complete 2D-maps of heavily overdamped systems were calculated.
However, a quick survey showed that a more overdamped friction contact
destroyed the atomic periodicity even more. A close look at the manner
in which the atomic periodicities were lost, revealed that it originated in
a higher degree of unpredictability of the precise moment a slip was initi-
ated. In contrast to the underdamped situation, the occurrence of multiple
slips was negligible. The origin of this stochastic-type of stick-slip can be
found easily in the noise term present in the Langevin equations: it is the
fluctuation-dissipation theorem that is causing the noise term to increase
in a situation of high dissipation. In the overdamped case, the dissipation
is relatively high and so is the noise term. These fluctuations dominate
the motion of the tip apex, resulting in a loss of atomic periodicity in the
friction curves.
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Figure 4.2: Friction ‘phase’ diagram as a function of the number of atoms
N

c

in the contact and the number of dynamic atoms N
d

. The blue, solid
line indicates the situation for critical damping of the tip apex motion,
D = N2

c

/N
d

= 1, the blue dash-dotted line indicates a tenfold underdamped
system. The colours indicate the quality of the stick-slip patterns. Green
corresponds to a clearly recognizable atomic lattice, and red to strongly
washed out patterns.

4.2 Interpretation - modes of friction

Our theoretical description of the tip apex, presented in Chapter 2, already
predicted friction behaviour of the tip apex that should depend on the tip
geometry. The numerical calculations presented here show this dependence
too. In case of a close to critically damped tip apex, regular SS-motion
is observed. A deviation from the critically damped situation leads to
a loss of atomic periodicity in the lateral force signal of the cantilever.
Apparently, a limited window exists where the dissipation is high enough
to avoid multiple slips and where the statistical fluctuations are not causing
irregular slip occurrences.

This friction picture can be summarized and visualized by a ‘phase’
diagram as presented in Figure 4.2. This figure indicates the quality of
the atomic patterns as function of the tip geometry. The colour coding is
based on the numerical calculations that we performed, the indicated lines
are drawn in accordance to Equations 2.8 and 2.9. We see that the friction
regimes are characterized by the geometry of the tip, which is defined by
N

d

and N
c

. The lower right, black coloured, area is physically inaccessible
as the ensemble of dynamic atoms at least consist of the atoms making up
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the friction contact.
In Figure 4.2, just above the unphysical area, a narrow regime is present

characterised by a relatively small number of dynamic atoms and a large
contact size. This makes the dissipation rate of the friction contact rela-
tively high, resulting in overdamped behaviour. The high dissipation in-
creases the noise on the contact behaviour, which explains that this regime
is characterised by statistically initiated jumps (c.f. Figure 4.1d). The blue
solid line in Figure 4.2 indicates the case of a critically damped friction
contact, D = 1. The area around this line represents a regime in which
regular SS-motion of a tip of an FFM will yield the typically observed
atomic lattices in the 2D lateral force maps.

In case of a slightly underdamped tip geometry, e.g. D = 0.1 indicated
by the dashed blue line in Figure 4.2, multiple slips occur. These slips
degrade the atomic patterns in the 2D force maps, as can be seen in Figure
4.1b, where the tip geometry realized a damping factor D = 0.1. An even
further underdamped scenario, having a damping factor of D = 0.01, yields
a complete vanishing of atomic periodicities in the observations, see Figure
4.1a. This situation belongs to the red area in the top-left corner of the
friction phase diagram shown in Figure 4.2.

4.3 Implications - tuneable friction

In view of the strict conditions on the tip geometry for obtaining atomic
patterns by an FFM, visualized by the green area in the phase diagram in
Figure 4.2, one might wonder why so many FFM-experiments yield regular
SS-motion that results in the typically observed atomic periodicities. The
answer to this question is surprisingly natural: most tips used in AFM-
and FFM-experiments have geometries that make the tip apex naturally
fall in the green area of the phase diagram. As a result, a typical AFM
probe has a tip apex that will realise an approximately critically damped
friction contact. But, on the other hand, in case we would use a completely
rigid tip in an FFM, which one might regard as the optimal configuration,
we would never observe regular SS-motion. Namely, this would make the
dynamic mass very high, which would bring us to the upper-left, red area in
the friction phase diagram: a heavily underdamped situation that destroys
the observation of atomic patterns.

Our characterisation of single asperities and the narrow window of tip
geometries that lead to regular SS-motion allows us to think about new
strategies to control friction. For example, although the red areas in Figure
4.2 indicate a loss of regular SS, friction contacts that fall in the upper-left
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red zone will result in a reduction of the average friction force experienced.
The further away from the critically damped scenario, the more delocalized
the single asperities will be. We regard this as a novel and attractive
way to achieve low-friction contacts. Based on this approach, we can not
only think of individual ‘designer’ asperities, combining a specific tip apex
geometry and sti↵ness. The concept can be used on a macroscopic scale
by an appropriate patterning of the entire surface into an ensemble of such
low-friction contacts, thus generating a macroscopic, low-friction interface.

4.4 A detailed look at FFM experiments and their
interpretation

Experimental reports that can be used to verify our theoretical work are
rather scarce as highly time-resolved experiments are required. One of the
most suited reports in the literature is the work performed by S. Maier et
al.[15]. In their work, the focus was on fluctuations and jump dynamics
in atomic friction experiments. Using a FFM equipped with a high-speed
data acquisition system, single-asperity friction on graphite and KBr(100)
was studied with a 20MHz sampling rate. Here we will evaluate the experi-
mental data reported in Reference [15] in the light of our work and based on
this we present an alternative interpretation of their findings. The results
obtained by our numerical calculations will be used to study and discuss
both the tip apex behaviour and the impact of this behaviour on the ob-
served lateral deflection of the cantilever. Consequently, the validity and
strength of our numerical approach will emerge.

4.4.1 Data averaging

Both in numerical calculations and in experiments, the acquired data is
often averaged in order to cancel high-frequency noise. Extra attention has
to be paid in case the data rate after averaging is approaching the frequency
of relevant components in the original signal within one order of magnitude.
The impact of data averaging on the amplitudes of harmonics in the original
signal can be evaluated by calculating the transfer function of such a digital
process. In our case, data averaging of a sine function f

0

(t) = A sin (!
0

t)
over a certain time interval T

ave

can be described mathematically as follows:

hf
0

(t)i
Tave

=
1

T
ave

Z
t+Tave/2

t�Tave/2

f
0

(t0)dt0. (4.1)
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Figure 4.3: Transfer function of typical digital data averaging of an input
signal towards a 66 kHz sampling rate as function of the input frequency.
The graph shows that even at a frequency as high as 300 kHz signals are not
completely suppressed by the low sampling rate and that at intermediate
frequencies the undersampling can even lead to sign reversals of the filtered
signal.

For simplicity, we show the operation in continuum space. Performing the
integration and using the product-to-sum identities, leads to

hf
0

(t)i
Tave

=
2

!
0

T
ave

f
0

(t) sin

✓
1

2
!
0

T
ave

◆
, (4.2)

which can be rewritten into

hf
0

(t)i
Tave

= f
0

(t)sinc

✓
1

2
!
0

T
ave

◆
. (4.3)

This means that data averaging over a time interval T
ave

a↵ects the ampli-
tude of a harmonic with frequency !

0

with a factor sinc (0.5!
0

T
ave

).
In case of a 15µs time resolution (as used in the work in Reference [15],

which was the result of averaging over 50 data points of data recorded with
3.3MHz sampling frequency), the transfer function of the data averaging
applied in their situation is plotted in Figure 4.3. This figure shows the
ratio between the output and input amplitudes of a harmonic signal, as
function of the frequency of the harmonics in the input signal.

In order to let the calculations performed in our work match with the
work done in Reference [15], we configured our filtering such that it matched
with the filtering performed in Reference [15] as closely as possible. Since
the eigenfrequency of the modelled cantilever was not precisely identical to
that of the cantilever in the experiment, we adjusted the filter frequency

44



accordingly. In practice, the data for the modelled cantilever (which was
stored to a file with a sampling rate of 20MHz) was averaged over 600 data
points.

As a side remark, we note that the impact of data averaging on thermal
noise is such that the high-frequency part of the noise (roughly > 0.5MHz)
is removed completely and hence the observed noise band is reduced.

The residual noise band Maier et al. observed after data averaging,
had an amplitude of 0.7 nN. The primary origin of this noise cannot be
thermal fluctuations, as a quick calculation shows that unfiltered thermal
noise on the cantilever would result in a noise force with an amplitude less
than 0.3 nN. Additional data averaging would reduce this amplitude even
further by nearly one order of magnitude. Hence we assume that the noise
band reported in Reference [15] has its major origin in electronic noise
generated by the photodiode.

4.4.2 A close look at the motion of the tip apex

The calculations performed in our studies take into account the full dy-
namics of both the cantilever and the tip. This detailed study allows us to
zoom in on the motion of the tip apex and on the occurrences op slips and
allows us to follow the reaction of the cantilever.

In order to compare the cantilever behaviour and the tip apex dynam-
ics, one has to bridge a gap of timescales (kHz vs THz). For this, his-
tograms were made of the tip apex positions. Every single calculation cycle
(THz-scale), the x- and y-coordinates of the tip apex were stored internally.
Then (on the MHz-scale) a histogram was constructed out of all tip-apex-
position-data-points. This histogram was written to a file. After the cal-
culations were finished, a Python-script imported all these histograms and
plotted them as function of time (e.g. see the upper panel of Figure 4.4). In
this way, a 2-dimensional map was created, which clearly shows the most
frequently occurring tip apex positions along a single direction (e.g. x),
over time. These maps, plotted together with the lateral force on the can-
tilever, enable us to look at the origin of the typically measured friction
traces and to analyse the interplay between tip apex and cantilever.

A typical example of this interplay is shown in Figure 4.4. This figure
is based on a simulation in which a tip was scanning a graphite lattice. In
the upper panel, a histograms of the x-coordinate of the tip apex position
is shown as function of time. Each individual histogram is plotted along
the vertical axis and shows a distribution of the x-positions of the tip apex
during a certain time interval. This map shows that the tip has performed
e↵ectively four slips during the calculations. However, an accurate look at
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Figure 4.4: (Upper panel) Statistical representation of the x-coordinate
of the tip-apex plotted as function of time. Each vertical column of pixels
originates from one histogram. The colours run from blue (zero proba-
bility) via yellow (intermediate) to red (maximum probability). (Center
panel) Unfiltered, 20MHz data representing the lateral force on the can-
tilever. (Bottom panel) Lateral force data, originating from the cantilever,
averaged in order to the simulate experimental conditions in Reference
[15], as detailed in the text. A zoom in of the data at the position that is
indicated by the green, dashed line is presented in Figure 4.5. The calcu-
lation was performed on a graphite lattice, using the following parameters:
U
0

= 0.45 eV
pp

, m
cant

= 10�10 kg, m
d

= 10�20 kg, v
supp

= 30nm/sec, and
T = 298K.
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each of these four slip events reveals that at each slip the tip apex jumps
multiple times at high frequency forward and backward from one lattice
well to the next.

The second panel presented in Figure 4.4 shows the lateral force on
the cantilever. The data sampling rate was 20MHz. The third panel also
presents the lateral force on the cantilever, but in this panel the data points
were averaged over 600 points in order to e↵ectively create the same con-
ditions as realized in the experiments in Reference [15]. The impact of
data averaging is clearly visible from the di↵erence between the lower two
panels of Figure 4.4: the SS-signature is much more pronounced after data
averaging. The e↵ect of data averaging is identical to the one reported in
Reference [15]. Our focus on the tip apex position in combination with
the force on the cantilever forms an additional tool that allows us to study
the interaction between the tip and cantilever in more detail using our
calculation model.

The next sections focus on the interpretation of the dynamics of both
the cantilever and the tip apex. The experimentally inaccessible timescale,
at which the tip apex moves, will be accessed by our calculations. Based
on the experimental support of the results of our calculations, we reveal
the behaviour of the apex of a friction contact.

4.4.3 Cantilever oscillation

The impact of a single slip-event of the tip apex on the cantilever can be
studied when we compare the non-averaged (20MHz) lateral-force data of
the cantilever with the history of the tip apex position. In Figure 4.5, a
zoom-in is presented of the first part of the first slip-event shown in Figure
4.4. The upper panel shows that the tip apex jumps forward and backward
between lattice wells multiple times at a high frequency. The influence of
each slip event of the tip apex on the cantilever is visible in the lower panel
of Figure 4.5. In this figure we see that the lateral force on the cantilever
oscillates. The force oscillation occurs with the cantilever eigenfrequency
and is a direct consequence of the oscillatory motion of the cantilever. The
amplitude and phase of the cantilever oscillation are both changed abruptly
each time that the tip apex jumps.

A comparison of the middle and bottom panels of Figure 4.4 with the
bottom panel of Figure 4.5 enables us to explain the complex motion of the
cantilever in Figure 4.4. Especially the middle panel in Figure 4.4 shows
a noisy, scattered set of data points during episodes where the tip apex
jumps forward and backward many times between its current and its next
lattice position. The abrupt changes in the amplitude and phase of the
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Figure 4.5: Zoom in of Figure 4.4 at the position indicated by the green,
dashed line in Figure 4.4. Both the tip apex position (upper panel) and
the non-averaged lateral force on the cantilever (lower panel) are plotted.

cantilever oscillation at each tip apex jump results in very complex and
erratic cantilever behaviour. On the other hand, during episodes in which
the tip apex is localized in a certain lattice well, a well-defined, broad band
is visible in the middle panel of Figure 4.4, which means that the oscillation
of the cantilever is not disturbed.

The insight in the influence of a tip-apex jump on the cantilever motion
brings us to a new level of understanding of single-asperity friction. First,
as the cantilever is not damped significantly (in our calculations it is even
completely undamped), the energy inserted into the complete 2-mass-2-
spring system by the moving support, has to be dissipated exclusively via
the tip-surface contact eventually. So all energy present in the cantilever
oscillation will finally reach the friction contact, although energy can be
stored in the cantilever motion temporarily. The coupling of the cantilever
to the tip apex is rather weak (m

d

/m
cant

< 10�10). Therefore, direct
dissipation of the cantilever’s kinetic energy via the resulting, forced motion
of the tip apex is negligible, as can been recognized in the second panel of
Figure 4.4, where the amplitude of the cantilever oscillation remains nearly
constant between subsequent jumps of the tip apex. The only way for
the cantilever to lose energy e�ciently, is by a sudden loss of potential
energy as the direct consequence of a sudden change in the equilibrium
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Figure 4.6: A schematic view of the change of the cantilever potential
due to a jump of the tip apex. The situations before and after the jump
are indicated by the blue and green curves respectively. The two curves
indicate the full potential experienced by the cantilever, as a result of its
connections to both the support and the tip apex. The oscillatory motion
of the cantilever is indicated by the sine function. During the rapid jump
of the dynamic tip apex, the position of the cantilever is not changed. The
precise position and velocity of the cantilever at the moment of the tip apex
jump determines its new amplitude and phase.
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position of the cantilever. The equilibrium position of the cantilever is
determined by the positions of the support and the tip apex (and their
spring coe�cients). The position of the support can be considered to remain
unchanged on the timescale of a slip event. However, a jump of the tip apex
from one lattice well to another takes place at a timescale characterized by
the eigenfrequency of the tip apex, which is in the THz-regime. As a
consequence, each time the tip apex jumps, both the equilibrium position
of the cantilever and the potential energy stored in the tip-cantilever spring
are changed. As the cantilever moves very slowly with respect to the tip
apex, the cantilever experiences instantaneously a di↵erent force after a
sudden jump of the tip apex. This results in abrupt changes of both the
amplitude and phase of the cantilever oscillation. Basically, the position of
the cantilever at the moment the tip-apex jumps, is crucial for its future
motion. A schematic view of the change of the cantilever potential and its
motion before and after a tip apex jump is shown in Figure 4.6. Note, that
the change in potential energy of the cantilever goes hand in hand with an
opposite change in kinetic energy of the tip apex, which is accelerated or
decelerated due to the force exerted by the cantilever. This forms a highly
e�cient pathway for the exchange of energy between cantilever and tip
apex, as is illustrated by the strong variations in the cantilever’s oscillation
amplitude in Figures 4.4, 4.5 and 4.6.

4.4.4 Slip duration, intermediate tip positions

Most of the highly time-resolved experiments presented in Reference [15]
were performed on a KBr(100)-lattice. In order to check the influence of
the substrate, we also performed numerical calculations using a lattice po-
tential corresponding to the KBr(100)-lattice. The result of a calculation
using a lattice corrugation of 0.45 eV (peak-peak) is shown in Figure 4.7.
The scanning support of the cantilever was moved over 5 lattice constants,
comparable to the calculations for graphite. The upper panel of Figure 4.7
shows the distribution of the x-coordinate of the tip apex as function of
time. A pronounced di↵erence with respect to the calculations performed
on a graphite lattice, is the alternating long and short residence time of the
tip apex in lattice wells. In the calculations shown in the upper panel, 11
locations are visible at which the tip apex resided (including the starting
position). One might have expected to observe only 4-5 tip apex jumps,
as the support moves over 5 lattice spacings. However, intermediate jumps
are present. These are sideways jumps of the tip apex to the most easily ac-
cessible wells. In other words, the apex jumps not purely in the x-direction
in which the motion of the support takes place, but it follows a minimum-
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Figure 4.7: (Upper panel) Distribution of the x-coordinate of the tip-apex
plotted as function of time. Each vertical column of pixels originates from
one histogram. (Center panel) Unfiltered, 20MHz data representing the
lateral force on the cantilever. (Bottom panel) Lateral force data averaged
in order to simulate experimental conditions (as applied in Reference [15]).
The calculation was performed on a KBr(100)-lattice, using the following
parameters: U

0

= 0.45 eV
pp

, m
cant

= 10�10 kg, m
d

= 10�18 kg, v
supp

=
30nm/sec, and T = 298K.
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energy zig-zag trajectory over the surface, in which it passes through other
energy wells at intermediate x-coordinates. The y-motion of the tip apex,
recorded in our calculations, supports this interpretation.

A detailed look at the tip apex behaviour on graphite, as shown in
Figure 4.5, reveals that also in that case the tip performs jumps with a
length of half a lattice distance in the x-direction. Also on graphite, the
tip performs jumps in the sideways directions. However, the position of the
tip apex in those sideways-positioned lattice wells is energetically not very
favoured, which leads to negligibly short residence times of the tip apex in
these positions.

The dynamic behaviour of the tip apex jumping between lattice wells
results in a very specific behaviour of the cantilever deflection, especially
after data-averaging. This can be seen most clearly in the lower panels in
Figures 4.4 and 4.7. On the KBr(100)-lattice, the stable, intermediate po-
sitions of the tip apex result in an extra level in the lateral force curves. On
graphite, the jumpiness of the tip apex shows up di↵erently in the friction
force data. After averaging of the tip apex x-position over many individ-
ual jumps, a gradual slope emerges. This is the result of the statistical
average of the amount of time the tip resides in the discrete lattice wells.
So the rapid dynamics of the tip apex, which jumps between well-defined,
discrete positions is obscured in the experiment by the both the relatively
slow cantilever and the subsequent data averaging.

In short, in the experiment, the slips may appear like very slow events,
however, in reality, each individual slip duration is more or less identical
(characterized by the eigenfrequency of the tip apex) and the apparent
slip duration is a consequence data averaging carried out on the deflection
signal of the ‘slow’ cantilever. This new insight explains most of the data
observed in Reference [15] and yields a more fundamental interpretation of
their experiments, based on the dynamic behaviour of the friction contact.

4.4.5 The Q-factor of the cantilever

In Section 3.3.4 the damping of the cantilever was described by its Q-factor.
As we show in Appendix A, the Q-factor of the cantilever can be expressed
as follows.
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1
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(4.4)
In this equation, not only the influence of the connection of the cantilever
to the support and to the dynamic mass, but also the influence of the

52



(a) (b)

Figure 4.8: Result of a numerical calculation of a tip scanning over
graphite at room temperature. (a) Distribution of the x-coordinate of the
tip apex (top) and the non-averaged lateral force on the cantilever (bot-
tom) during a typical SS-motion on graphite. (b) Fourier spectrum of
the lateral force on the cantilever. The estimation of the Q-factor is indi-
cated by the green fit, which is characterised by the following parameters:
FWHM = 83.1Hz, Center = 89.8 kHz, Q = 540.

tip-substrate interaction is taken into account.

The Q-factor of the cantilever is known to decrease many orders of mag-
nitude when the tip is brought in contact with a substrate, although the
origin of this e↵ect is not fully understood yet [15]. Our numerical calcu-
lations present a suitable tool to investigate the e↵ect of the tip-substrate
interaction on the Q-factor of the cantilever. First, a calculation was done
in which a typical FFM experiment was simulated. The cantilever and tip
were dragged by the support moving at a velocity of 30 nm/sec over the gra-
phene lattice potential with a corrugation of 0.4 eV, at room temperature.
The Q-factor was determined by a Fast Fourier Transformation (FFT) and
found to be approximately 540, see Figure 4.8. Second, a situation was
created that was intended to realize a ‘delocalized’ tip that is jumping for-
ward and backward between two lattice wells. To realise this, the support
was fixed at a position just in between two lattice wells in the tip-substrate
interaction potential, maximizing the enharmonic contribution of the inter-
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(a) (b)

Figure 4.9: Result of a numerical calculation at room temperature of a
tip-cantilever system, while the support is positioned right in between two
minima, i.e. above a local maximum, of the interaction potential between
the tip apex and the graphite substrate. (a) Distribution of the x-coordinate
of the tip apex (top) and the non-averaged lateral force on the cantilever
(bottom) during a typical SS-motion on graphite. (b) Fourier spectrum of
the lateral force on the cantilever. The estimation of the Q-factor is indi-
cated by the green fit, which is characterised by the following parameters:
FWHM = 2.41 kHz, Center = 89.2 kHz, Q = 18.5.
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(a) (b)

Figure 4.10: Result of a numerical calculation of a tip-cantilever system,
while the support is positioned right in between two minima, i.e. above a
local maximum, of the interaction potential between the tip apex and the
graphite substrate. The temperature wat set to 0K in order to prevent ther-
mally activated jumps of the tip apex. (a) Distribution of the x-coordinate
of the tip apex (top) and the non-averaged lateral force on the cantilever
(bottom) during a typical SS-motion on graphite. (b) Fourier spectrum of
the lateral force on the cantilever. The estimation of the Q-factor is indi-
cated by the green fit, which is characterised by the following parameters:
FWHM = 38.5Hz, Center = 89.8 kHz, Q = 1170.
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action potential. The thermal fluctuations cause the tip to jump between
the minima in the interaction potential many times, as can be seen in the
results of the calculations that are presented in Figure 4.9. The Q-factor
of the lateral force signal from the cantilever has dropped significantly to a
value of 18.5. In order to verify that thermal fluctuations have been solely
responsible for this strong reduction of the Q-factor, we have repeated the
calculation for precisely the same configuration, i.e. with the support posi-
tioned precisely between two neighbouring potential wells, but now at zero
temperature. As can be seen in Figure 4.10, the absence of fluctuations
resulted in a very ‘localized’ tip. The Q-factor has increased to a value of
at least 1170. In fact, this value should be regarded as a lower estimate of
the Q-factor, as a result of the finite resolution of the calculation.

These numerical calculations reveal a dramatic impact of the tip-sub-
strate dynamics on the measured Q-factor. As demonstrated in Figures
4.8-4.10, the mere presence of the lattice does not explain the deterioration
of the Q-factor. In Section 4.4.3 we demonstrated that a delocalized tip
apex that is jumping forward and backward, has a major impact on the
amplitude and the phase of the oscillating motion of the cantilever. As a
direct result, the cantilever motion can no longer be described properly by
a single resonance frequency and the FFT acquires a significant width, as
is illustrated dramatically in Figure 4.9. The impact of this noise on the
Q-factor is in the order of several orders of magnitude. Summarizing we
can state that the Q-factor is a↵ected significantly by the dynamics of the
tip apex.

Our findings are supported fully by the experimental results presented
in Reference [15]. In that report, it can be recognized that the ‘noisy’
FFT-spectrum measured using a sharp tip on an Al

2

O
3

(0001)-substrate
is fully consistent with the analysis and interpretation presented here. In
addition, the spectra reported in Reference [15] that are recorded using
micrometer-scale spherical tips do not exhibit the discussed ‘noise’, which
is not a surprise as these tips are not expected to create a single-asperity
contact with the substrate. As a consequence, the recorded lateral forces
originate from an averaged behaviour of all individual nanocontacts of the
blunt tip with the substrate.

Using the interpretation presented here, both the qualitative nature of
the lateral force spectra and the quantitative behaviour of the Q-factor is
explained. The origin of the behaviour of the measured cantilever deflection
is rooted in the extremely dynamic behaviour of the tip apex. Although the
cantilever is much heavier than the tip apex, every single high-frequency
slip of the tip apex a↵ects the cantilever motion, resulting in a significant
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impact on the Q-factor of the cantilever.

4.5 Summarizing conclusions

Numerical calculations using the refined 2-mass-2-spring model resulted in
friction force maps that contained a limited regime in which atomic peri-
odicities are clearly observed. This regime is characterised by a specific
ratio between the number of atoms present in the contact and in the dy-
namic mass. When this ratio led to a critically damped tip apex, regular
SS-patterns were observed. In other scenarios, either the underdamped
tip apex led to multiple slips or the overdamped tip apex resulted in a
stochastic-type of stick slip.

Our numerical model allowed us to zoom in on the motion of the tip
apex and on the reaction of the cantilever on slip events of the tip apex.
Based on the experimental support of the results of our calculations, we
revealed the behaviour of the tip apex of a friction contact. The typical
observations of the lateral deflection of the cantilever was explained and
further insight in special behaviour of the tip apex was achieved.

Also, we concentrated on the Q-factor of the cantilever. The absence
of explicit damping on the cantilever and the marginal damping of the
cantilever via the small tip apex could not explain the drop in the A-factor
that is typically reported in literature. We showed that the SS-behaviour
of the tip apex as a significant influence on the determined Q-factor of the
cantilever.

Based on our theoretical model of a friction contact and on the calcu-
lational results, we constructed a friction ‘phase’ diagram. As most tips
used in AFM- and FFM-experiments have geometries that make the tip
apex naturally critically damped, regular SS-motion is readily observed.
Deliberate construction of asperities with a geometry that would lead to
low friction contacts, opens a way to predict and tune the friction of maybe
even macroscopic surfaces.
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