

The origins of friction and the growth of graphene, investigated at the atomic scale

Baarle, D.W. van

Citation

Baarle, D. W. van. (2016, November 29). The origins of friction and the growth of graphene, investigated at the atomic scale. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/44539

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/44539

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/44539</u> holds various files of this Leiden University dissertation.

Author: Baarle, D.W. van Title: The origins of friction and the growth of graphene, investigated at the atomic scale Issue Date: 2016-11-29

The origins of friction and the growth of graphene

investigated at the atomic scale

The origins of friction and the growth of graphene

investigated at the atomic scale

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker, volgens besluit van het College voor Promoties te verdedigen op dinsdag 29 november 2016 klokke 11.15 uur

 door

Dirk Willem van Baarle geboren te Ridderkerk in 1986 Promotor:

Prof. dr. J. W. M. Frenken Universiteit Leiden

Leden van de promotiecommissie:

Prof. dr. A. Fasolino
Radboud Universiteit, Nijmegen, Nederland
Prof. dr. T. Michely
Universität zu Köln, Keulen, Duitsland
Prof. dr. E. R. Eliel
Universiteit Leiden
Prof. dr. ir. T. H. Oosterkamp
Universiteit Leiden

ISBN: 978-90-8593-277-2 Casimir PhD series, Delft-Leiden 2016-33 An electronic version of this thesis can be found at https://openaccess. leidenuniv.nl

The work presented in this thesis has been performed at the Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, The Netherlands, and has been financially supported by the European Research Council (ERC) through the Advanced Grant project Science F(r)iction, SciFri, and by the Foundation for Fundamental Research on Matter (FOM) in the framework of the FOM-Program on Fundamental Aspects of Friction, FaF.

General introduction and outline

Two research fields meet

A single glance at the title of this thesis might give rise to questions on the focus and scope of the work reported here. Is this thesis a mere aggregation of two separate studies? What is the relation between research on the origin of friction and on the growth of graphene? Why is a theoretical study combined with experimental work?

The key to the answer to these questions can be found in previously reported work that was performed by Dienwiebel *et al.*[1]. In that work, it was discovered that the incommensurability between rotated graphite layers results in ultralow friction, also known as superlubricity. This effect of ultralow friction, measured at the nanometer scale, invites us to investigate the friction of a nanocontact: which parameters are essential to capture an atomic-scale contact in a simple model? Can we describe, understand and predict the behaviour of friction contacts, based on this model?

The results of Dienwiebel *et al.* invite us to think about a scaledup version: is it possible to reproduce the low-friction behaviour between rotated layers of graphite at the macroscopic scale?

To perform such a macroscopic low-friction experiment, a first requirement is the availability of surfaces that are characterized by atomically flat and defect-free, macroscopic-sized single crystals of graphite or graphene. Can we realize such surfaces? Are there atomic-scale processes that can assist in the synthesis of perfect, macroscopic-sized graphene-covered surfaces?

Part I: On the origins of friction

The research reported in this thesis deals with the two types of questions outlined above. First, we present our studies into the origins of friction. Our approach is to focus on the dissipation of a single-asperity friction contact.

After an introduction of the subject and a brief overview of the current status of the research field on single-asperity friction in the first chapter, we present a bottom-up estimate of the dissipation of a frictional nanocontact in Chapter 2. The result shows that there is a significant discrepancy between our estimate and the typical values assumed in the literature. In order to solve this discrepancy, we present a more physical, but still rather simple method to describe a single asperity.

In Chapter 3, the numerical method to simulate and evaluate our new description of single-asperity friction is presented.

Chapter 4 contains the results of our computations. These results are discussed and compared with experimental results from the literature. This study brings us to a more fundamental understanding of a friction nanocontact. Additionally, it casts new light on the behaviour of sliding surfaces and invites us to speculate about new ways to control friction by manipulation of the contact geometry.

Part II: Graphene growth on Ir(111)

The second part of this thesis is dedicated to the experimental work performed on the graphene-iridium system. Using our high- and variabletemperature STM we studied the behaviour of graphene at nucleation and growth conditions on the Ir(111) surface.

In Chapter 5, the recent literature is discussed and the most relevant aspects of the experimental setup are described in combination with some methods used in our work.

Chapters 6-8 are dedicated to the results of the experiments, focussing on the nucleation, growth and ripening of graphene on Ir(111). Chapters 9 and 10 present some findings on the closure of a graphene film and on the high-temperature impact of iridium steps on the graphene overlayer.

Contents

Ι	On	the origins of friction	11
1	Intr	oduction and motivation	12
	1.1	Hunting for the fundamentals of friction	12
	1.2	The Friction Force Microscope	13
	1.3	The theoretical model	16
	1.4	A first look at 2-mass-2-spring behaviour	19
2	The	e dissipation of a single-asperity contact: a problematic	
	disc	repancy	21
	2.1	Background	21
	2.2	The friction force on a single atom	22
	2.3	The dissipative force on a single asperity	22
	2.4	Finding the origin of the discrepancy	24
	2.5	Estimating the dynamic mass	25
	2.6	Summary	28
3	The	e refined 2-mass-2-spring model	29
	3.1	Introduction	29
	3.2	From schematics to Langevin equations	29
	3.3	The 2-mass-2-spring model in full detail	31
	3.4	Computational architecture	33
	3.5	Time-step calculation, thermal-noise generation and data av-	
		eraging	35
	3.6	Summary	37
4	Cor	nputational results, their interpretation and implica-	
	tion	IS	38
	4.1	Results - a limited regime of atomic resolution $\ldots \ldots \ldots$	38
	4.2	Interpretation - modes of friction	41
	4.3	Implications - tuneable friction	42

	$4.4 \\ 4.5$	A detailed look at FFM experiments and their interpretation Summarizing conclusions	$43 \\ 57$
A	ppen	dices	58
\mathbf{A}	The	eoretical description of the Q-factor of the cantilever	58
В	List	c of symbols	62
II	G	raphene growth on Ir(111)	64
5	Intr	roduction, instrumentation and methods	65
	5.1	A short introduction to graphene	65
	5.2	Instrumentation	68
	5.3	Methods	71
6	Gra	phene nucleation on Ir(111)	77
	6.1	Experimental approach	77
	6.2	Deposition of ethylene at room temperature	78
	6.3	First observation of carbon clusters	80
	6.4	Conversion from hydrocarbons to a morphous carbon $\ . \ . \ .$	82
	6.5	Lowest temperature of graphene nucleation $\ldots \ldots \ldots$	86
	6.6	Summarizing conclusions	95
7	Gra	phene growth	96
	7.1	Experimental observation of graphene island evolution $\ . \ .$	96
	7.2	A geometrical interpretation	99
	7.3	Conclusions	101
8	Gra	phene ripening: Ostwald beats Smoluchowski	103
	8.1	The live observation of graphene ripening by STM $\ . \ . \ .$	103
	8.2	Discussion	107
	8.3	Summary and conclusions	111
9	Gra	phene film closure: strain and boundary defects	112
	9.1	Observation of graphene film closure $\ldots \ldots \ldots \ldots$	112
	9.2		115
	9.3	Conclusions	118

10 High-temperature behaviour of graphene-covered iridiun	n 119
10.1 Graphene growth over iridium steps	119
10.2 Iridium step mobility underneath graphene	123
10.3 Fluctuations of graphene-covered iridium steps	126
10.4 Summary \ldots \ldots \ldots \ldots \ldots \ldots	133
Appendices	135
C Image-subtraction procedure	135
D Island-extraction algorithm	138
Bibliography	139
Summary	149
Samenvatting	153
Acknowledgements	158
Curriculum vitae	160