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Chapter 7  
 

Optimisation of first clinical studies in 
special populations – summary 
conclusions and perspectives 
 

Introduction 
Special populations represent groups of patients that respond differently to drug treatment as a 
result of a variety of genetic, (patho-)physiological and/or environmental factors. To support dose 
labelling, drug regulators require dedicated clinical studies in special populations. Frequently, these 
clinical studies in special populations are studies into the pharmacokinetics (PK), of which the results 
are then be used to extrapolate efficacy and safety data from pivotal study populations into special 
populations. The conduct and analysis of these clinical PK studies is difficult due to practical and 
ethical barriers which often lead to small sample sizes and sparse data, and is further complicated by 
the inherent heterogeneity of these patient groups. In this thesis, the concept of semi-physiological 
PK modelling is introduced as an alternative approach to obtain the critical knowledge needed for 
optimisation of the design and the analysis of the clinical studies in special populations. 

In the context of drug development, the application of model-based approaches is widely used for 
the prediction of (variation) in PK. Traditionally used model-based approaches include 
compartmental PK modelling and physiologically-based PK (PBPK) modelling. These modelling 
approaches have distinctly different strengths and weaknesses. Table 7.1 summarises the pertinent 
properties of these approaches.  

Table 7.1  Properties, advantages and limitations of compartmental and PBPK models for prediction of variation in PK in 
children and other special populations 

Compartmental PK models Physiologically-based PK models 

Data-driven descriptive approach Knowledge-driven, mechanistic approach 

Description of inter-individual variation on the basis of 
co-variates with limited possibilities for extrapolation 
beyond the observed range  

Physiological approach to describe and explain 
variation enabling extrapolation outside observed 
range 

Statistical basis  enables  the application of optimal 
design and population data-analysis techniques 

Model complexity limits  the application for optimal 
design and population-analysis techniques 

Has been used successfully in combination with 
allometric scaling to predict exposure in healthy 
children (>5 years) to account for differences in size 1,2.  

Can in principle be used to predict exposure in children 
of all ages 3–8 

Has not been evaluated in combination with allometric 
scaling to predict exposure in healthy children (<5 
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years) to account for differences in size and 
maturation. 

Cannot be applied for the prediction of the variation in 
exposure in special populations other than children  

Can be applied for the prediction of exposure in 
special populations in general if knowledge on the 
physiological differences is available 9–13 

 

Briefly, compartmental PK modelling is a data-driven approach with a sound statistical basis for 
determination of the optimal design of a study and for analysis of the data, but without a 
mechanistic basis for extrapolation outside the ranges of physiological function that have actually 
been studied. This hampers the prediction of PK in the various special populations without taking 
into consideration descriptive scaling factors. A frequently applied method for prediction of 
clearance is the  allometric scaling, but its application seems to be limited to children 1,2. On the other 
hand, PBPK modelling is a knowledge-driven approach with a physiological basis that enables 
prediction of the PK outside the ranges of physiological function that have been studied. The 
increased complexity of these models, however, limits the use of advanced optimal design and data-
analysis techniques.  The utility of PBPK concepts for the prediction of changes in the PK has been 
demonstrated in numerous studies in special populations3–13. In principle, PBPK modelling is 
applicable to every special population as long as quantitative information is available on how genetic, 
(patho-) physiological and/or environmental factors impact the physiology.  

The intrinsic properties of the traditionally used model-based approaches have led to the current 
practice where PBPK models are used for prediction and compartmental PK models for data analysis 
14,15. One of the pitfalls of this practice is that PBPK modelling concepts are rarely used for 
optimisation of the design of clinical studies. Moreover information acquired by using PBPK models is 
disregarded when analysing the data of a clinical study with a compartmental PK model. As a result, 
physiological insights are not used when commencing with clinical drug development in special 
populations. An approach that integrates PBPK and compartmental PK modelling concepts is of 
considerable interest for clinical studies in special populations, to optimise the “learn and confirm” 
cycles of model-informed drug development. 

In this thesis we aimed to develop a semi-physiological PK framework that combines properties of 
PBPK models with the statistical basis of the compartmental PK models. This framework was 
designed (i) to preserve the physiological foundation in order to maintain the predictive power and 
to allow prediction of the PK to various special populations and; (ii) to diminish model complexity in 
order to maximise the possibilities for the application of advanced optimal design and population 
data-analysis techniques.  

Section 2: development of a semi-physiological pharmacokinetic 
framework 
One of the most important objectives of developing a semi-physiological PK framework is the 
accurate prediction of clearance as this PK parameter is a major determinant of the changes in drug 
plasma concentration driving the efficacy and safety. In order to predict clearance, traditionally used 
approaches are allometric scaling and PBPK modelling. The research described in section 2 of this 
thesis  aimed i) to investigate the interchangeability and ii) to compare the accuracies of the 
allometric scaling and the PBPK approaches for the prediction of clearance. Focus was on the 
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prediction of clearance in children since allometric scaling principles are widely applied in  this 
population. Also, an alternative mechanistic approach for the prediction of clearance was proposed 
and evaluated for accuracy. 

Traditionally used approaches  
Allometric scaling in combination with maturation functions is a relatively straightforward approach 
for the prediction of changes in the PK on the basis of a compartmental PK model. This approach has 
been introduced to predict the clearance in children when the processes involved in the elimination 
route are known to undergo maturation. The maturation functions are typically derived based on 
paediatric data from a prototype compound with similar elimination route, whereby it is implicitly 
assumed that the maturation functions solely represent the ontogeny of the liver enzyme activity. It 
remains to be established how well these hypothesised pathway-specific maturation functions can 
be applied across different compounds sharing similar elimination pathways.  

In chapter 3, PBPK and allometric scaling in combination with a maturation function were compared 
in order (i) to provide insight into their interchangeability and; (ii) to provide insight into the 
physiological meaning of the maturation functions. Interchangeability was assessed using 
hypothetical compounds with similar elimination pathways but otherwise different PK properties.  
Maturation functions derived on the basis of clinical PK data from paracetamol and morphine as 
paradigm drugs were used. These drugs were of interest because of the differences in the extraction 
ratio, while sharing the same route of elimination (glucuronidation). The accuracy of the predictions 
using PBPK modelling for paracetamol and morphine was evaluated using the estimates of developed 
compartmental PK models in combination with allometric scaling as a reference. 

The predictions of clearance using allometric scaling and PBPK were shown to be comparable in 
children > 1 year. In children < 1 year, predictions were only comparable for hypothetical compounds 
with an extraction ratio and a lipophilicity (log P) that are similar to the corresponding values of the 
paradigm drug used for derivation of the maturation function. In addition, the maturation functions 
using the prototype compounds were shown to solely represent ontogeny of the liver enzyme 
activity for the compound with a low extraction ratio (i.e., paracetamol). Further, predictions of 
clearance using the PBPK model were accurate for paracetamol but slightly biased for morphine. 
Predictions of the inter-individual variability were under-estimated by the PBPK models for both 
compounds and over-estimated by allometric scaling for morphine. Under-estimation of the PBPK 
prediction is likely to be due to the unknown sources of variability while the over-estimation by 
allometric scaling suggests that fixing allometric scaling exponents into the model requires the model 
to compensate for potential biases using random-effects.  

In summary, the results of this investigation indicated that interchangeability between PBPK and 
allometric scaling in combination with maturation function cannot be assumed for the prediction of 
clearance. Although no conclusions with regard to the superiority of one approach over the other can 
be derived from this investigation, the application of the allometric scaling approach was shown to 
be restricted by the drug-specific properties of the selected maturation function. Also, the 
inadequacy of both model-based approaches to predict inter-individual variability is a potential 
limitation in the context of the application of optimal design and data analysis . These results re-
inforce the need for developing a framework that contains (i) expressions for system-specific 
properties and; (ii) allows adequate prediction of inter-individual variability. 

134



134 
 

years) to account for differences in size and 
maturation. 

Cannot be applied for the prediction of the variation in 
exposure in special populations other than children  

Can be applied for the prediction of exposure in 
special populations in general if knowledge on the 
physiological differences is available 9–13 

 

Briefly, compartmental PK modelling is a data-driven approach with a sound statistical basis for 
determination of the optimal design of a study and for analysis of the data, but without a 
mechanistic basis for extrapolation outside the ranges of physiological function that have actually 
been studied. This hampers the prediction of PK in the various special populations without taking 
into consideration descriptive scaling factors. A frequently applied method for prediction of 
clearance is the  allometric scaling, but its application seems to be limited to children 1,2. On the other 
hand, PBPK modelling is a knowledge-driven approach with a physiological basis that enables 
prediction of the PK outside the ranges of physiological function that have been studied. The 
increased complexity of these models, however, limits the use of advanced optimal design and data-
analysis techniques.  The utility of PBPK concepts for the prediction of changes in the PK has been 
demonstrated in numerous studies in special populations3–13. In principle, PBPK modelling is 
applicable to every special population as long as quantitative information is available on how genetic, 
(patho-) physiological and/or environmental factors impact the physiology.  

The intrinsic properties of the traditionally used model-based approaches have led to the current 
practice where PBPK models are used for prediction and compartmental PK models for data analysis 
14,15. One of the pitfalls of this practice is that PBPK modelling concepts are rarely used for 
optimisation of the design of clinical studies. Moreover information acquired by using PBPK models is 
disregarded when analysing the data of a clinical study with a compartmental PK model. As a result, 
physiological insights are not used when commencing with clinical drug development in special 
populations. An approach that integrates PBPK and compartmental PK modelling concepts is of 
considerable interest for clinical studies in special populations, to optimise the “learn and confirm” 
cycles of model-informed drug development. 

In this thesis we aimed to develop a semi-physiological PK framework that combines properties of 
PBPK models with the statistical basis of the compartmental PK models. This framework was 
designed (i) to preserve the physiological foundation in order to maintain the predictive power and 
to allow prediction of the PK to various special populations and; (ii) to diminish model complexity in 
order to maximise the possibilities for the application of advanced optimal design and population 
data-analysis techniques.  

Section 2: development of a semi-physiological pharmacokinetic 
framework 
One of the most important objectives of developing a semi-physiological PK framework is the 
accurate prediction of clearance as this PK parameter is a major determinant of the changes in drug 
plasma concentration driving the efficacy and safety. In order to predict clearance, traditionally used 
approaches are allometric scaling and PBPK modelling. The research described in section 2 of this 
thesis  aimed i) to investigate the interchangeability and ii) to compare the accuracies of the 
allometric scaling and the PBPK approaches for the prediction of clearance. Focus was on the 
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prediction of clearance in children since allometric scaling principles are widely applied in  this 
population. Also, an alternative mechanistic approach for the prediction of clearance was proposed 
and evaluated for accuracy. 

Traditionally used approaches  
Allometric scaling in combination with maturation functions is a relatively straightforward approach 
for the prediction of changes in the PK on the basis of a compartmental PK model. This approach has 
been introduced to predict the clearance in children when the processes involved in the elimination 
route are known to undergo maturation. The maturation functions are typically derived based on 
paediatric data from a prototype compound with similar elimination route, whereby it is implicitly 
assumed that the maturation functions solely represent the ontogeny of the liver enzyme activity. It 
remains to be established how well these hypothesised pathway-specific maturation functions can 
be applied across different compounds sharing similar elimination pathways.  

In chapter 3, PBPK and allometric scaling in combination with a maturation function were compared 
in order (i) to provide insight into their interchangeability and; (ii) to provide insight into the 
physiological meaning of the maturation functions. Interchangeability was assessed using 
hypothetical compounds with similar elimination pathways but otherwise different PK properties.  
Maturation functions derived on the basis of clinical PK data from paracetamol and morphine as 
paradigm drugs were used. These drugs were of interest because of the differences in the extraction 
ratio, while sharing the same route of elimination (glucuronidation). The accuracy of the predictions 
using PBPK modelling for paracetamol and morphine was evaluated using the estimates of developed 
compartmental PK models in combination with allometric scaling as a reference. 

The predictions of clearance using allometric scaling and PBPK were shown to be comparable in 
children > 1 year. In children < 1 year, predictions were only comparable for hypothetical compounds 
with an extraction ratio and a lipophilicity (log P) that are similar to the corresponding values of the 
paradigm drug used for derivation of the maturation function. In addition, the maturation functions 
using the prototype compounds were shown to solely represent ontogeny of the liver enzyme 
activity for the compound with a low extraction ratio (i.e., paracetamol). Further, predictions of 
clearance using the PBPK model were accurate for paracetamol but slightly biased for morphine. 
Predictions of the inter-individual variability were under-estimated by the PBPK models for both 
compounds and over-estimated by allometric scaling for morphine. Under-estimation of the PBPK 
prediction is likely to be due to the unknown sources of variability while the over-estimation by 
allometric scaling suggests that fixing allometric scaling exponents into the model requires the model 
to compensate for potential biases using random-effects.  

In summary, the results of this investigation indicated that interchangeability between PBPK and 
allometric scaling in combination with maturation function cannot be assumed for the prediction of 
clearance. Although no conclusions with regard to the superiority of one approach over the other can 
be derived from this investigation, the application of the allometric scaling approach was shown to 
be restricted by the drug-specific properties of the selected maturation function. Also, the 
inadequacy of both model-based approaches to predict inter-individual variability is a potential 
limitation in the context of the application of optimal design and data analysis . These results re-
inforce the need for developing a framework that contains (i) expressions for system-specific 
properties and; (ii) allows adequate prediction of inter-individual variability. 
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The “well-stirred model” as an alternative approach  
The investigation presented in chapter 4 aimed to further evaluate the accuracy of allometric scaling 
in combination with a maturation function for the prediction of clearance in children. In this 
investigation, the maturation functions were derived using in vitro data that solely represent the 
ontogeny of the liver enzyme activity. In addition, the investigation presented in chapter 4 also 
aimed to evaluate an alternative mechanistic approach based on the well-stirred model of hepatic 
clearance to predict clearance in children. The well-stirred model contains specific expressions for 
system-specific properties and its reduced complexity compared to a PBPK model allows 
combination with compartmental PK models for more accurate prediction of the inter-individual 
variability. 

For this investigation, a literature database was compiled including 203 clearance values of 18 
compounds derived from subjects in the age range from term-neonates to adults. All selected 
compounds were CYP3A-metabolised compounds since future application of the proposed semi-
physiological PK framework was based on CYP3A-metabolised compounds (section 3).  

CYP3A metabolism is complex due to the involvement of at least three isoforms (i.e., CYP3A4, 
CYP3A5, and CYP3A7) each with different substrate-specificities and ontogenies. This complexity 
probably explains the wide variation in the information on CYP3A-ontogeny. In this investigation, 
three maturation functions, previously reported to adequately predict clearance in children were 
evaluated 4,16,17. 

In children >3 months, both allometric scaling in combination with maturation function and the well-
stirred model were shown to predict clearance in paediatric patients reasonably well. Some bias was 
observed in children in the age range between 6 months and 5 years where the CYP3A4 activity was 
not considered to be above adult levels in the maturation function. In children <3 months: (i) biased 
predictions were obtained when allometric scaling was used independent of the maturation function 
that was applied; (ii) unbiased predictions were observed when the well-stirred model was used in 
combination with maturation functions representing the overall CYP3A activity (yet with high 
individual percentage errors and relatively low 2-fold percentage error) and; (iii) biased predictions 
were observed when the well-stirred model was used in combination with a maturation function 
solely representing the CYP3A4 activity. A sensitivity analysis using various maturation functions 
indicated that the activity of CYP3A7 is only relevant in children <3 months and that in term-neonates 
it accounts for up to 86% of the overall CYP3A metabolism. 

In summary, the results of this investigation showed the inadequacy of allometric scaling in 
combination with maturation function(s) to predict clearance in paediatric patients where the system 
is not yet fully matured. These results can be explained by the results presented in chapter 3 which 
indicated that maturation functions were not always solely representative for the ontogeny of the 
liver enzyme activity. On the other hand, the well-stirred model of hepatic clearance was shown to 
be adequate for the prediction of clearance in paediatric patients. Yet, the high individual percentage 
errors and relatively low 2-fold percentage error of the well-stirred model underlined the need for 
considering inter-individual variability in the predictions.  
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Section 3: applications of the semi-physiological pharmacokinetic 
framework 
Although clearance is often the driving PK parameter for efficacy, predictions of full PK profiles are 
required for application of optimal design and data analysis techniques. Hence, a semi-physiological 
PK framework is proposed. The research described in this section aimed at the application of the 
semi-physiological PK framework by illustrating its value in predicting the PK in a variety of special 
populations, i.e., hepatic and renal impaired patients and paediatric patients. 

The semi-physiological PK framework was designed to integrate the physiological basis of the PBPK 
models with statistical aspects of the compartmental PK models. The proposed semi-physiological PK 
framework interfaces (i) a compartmental PK model that contains expressions to accommodate 
variation in plasma protein binding as a cause of variation in clearance and volume of distribution 
and; (ii) physiological equations, such as the well-stirred model of hepatic clearance for the 
description of the changes in the first-pass effect and clearance. The exact features of the model are 
decided on a case-by-case basis depending on their relevance for allowing the model to suit for their 
purpose (i.e., the proposed models are so-called “physiological fit-for-purpose models”).  This 
enables the semi-physiological PK model to accommodate mechanistic functions that capture 
changes of the key physiological parameters in the target population. 

In the semi-physiological PK framework, the inter-individual variability is estimated using two 
components: one defined by anthropometric equations, which estimate the variability in the key 
physiological parameters by considering the patient demographics and; a second component defined 
by estimation of the remaining inter-individual variability (i.e. the variation that cannot be explained 
by the use of the anthropometric equations). The statistical framework of the compartmental PK 
models also allows for correlation between parameter estimates to be considered and thereby, to 
avoid over-prediction of the inter-individual variability. 

Based on the abovementioned properties, the semi-physiological PK framework should (i) allow 
adequate prediction of the PK in various special populations (not only children); (ii) maximise the 
value for the optimisation of clinical study designs and the application of population data analysis 
techniques (including better prediction of inter-individual variability) and; (iii) ensure that knowledge 
is not lost in the transition from prediction to evaluation (i.e., data analysis). 

In chapter 5 and chapter 6, semi-physiological PK models were developed for two model drugs (i.e. 
solifenacin and tamsulosin) with similar PK properties. Both solifenacin and tamsulosin are 
compounds with linear PK that are mainly metabolised by CY3A isozymes where less than 10% of the 
dose is excreted unchanged in the urine. In plasma, solifenacin and tamsulosin extensively bind 

-acid glycoprotein (AGP)18,19. Data available for model development comprised total 
plasma and urine concentrations. To quantify protein binding, data on free plasma concentrations 
were used for solifenacin and data on individual plasma free fractions were used for tamsulosin. 

Both semi-physiological PK models were developed using nonlinear mixed-effects modelling and 
were based on the use of general partitioning framework to account for binding in the central 
compartment to plasma proteins and to non-plasma tissues (Figure 7.1; left panel). In the tamsulosin 
model, binding in the central compartment to non-plasma tissues was found negligible (Figure 7.1; 
right panel). Also, principles from physiology that apply to the main PK process (i.e.,, first-pass effect,  
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The “well-stirred model” as an alternative approach  
The investigation presented in chapter 4 aimed to further evaluate the accuracy of allometric scaling 
in combination with a maturation function for the prediction of clearance in children. In this 
investigation, the maturation functions were derived using in vitro data that solely represent the 
ontogeny of the liver enzyme activity. In addition, the investigation presented in chapter 4 also 
aimed to evaluate an alternative mechanistic approach based on the well-stirred model of hepatic 
clearance to predict clearance in children. The well-stirred model contains specific expressions for 
system-specific properties and its reduced complexity compared to a PBPK model allows 
combination with compartmental PK models for more accurate prediction of the inter-individual 
variability. 

For this investigation, a literature database was compiled including 203 clearance values of 18 
compounds derived from subjects in the age range from term-neonates to adults. All selected 
compounds were CYP3A-metabolised compounds since future application of the proposed semi-
physiological PK framework was based on CYP3A-metabolised compounds (section 3).  

CYP3A metabolism is complex due to the involvement of at least three isoforms (i.e., CYP3A4, 
CYP3A5, and CYP3A7) each with different substrate-specificities and ontogenies. This complexity 
probably explains the wide variation in the information on CYP3A-ontogeny. In this investigation, 
three maturation functions, previously reported to adequately predict clearance in children were 
evaluated 4,16,17. 

In children >3 months, both allometric scaling in combination with maturation function and the well-
stirred model were shown to predict clearance in paediatric patients reasonably well. Some bias was 
observed in children in the age range between 6 months and 5 years where the CYP3A4 activity was 
not considered to be above adult levels in the maturation function. In children <3 months: (i) biased 
predictions were obtained when allometric scaling was used independent of the maturation function 
that was applied; (ii) unbiased predictions were observed when the well-stirred model was used in 
combination with maturation functions representing the overall CYP3A activity (yet with high 
individual percentage errors and relatively low 2-fold percentage error) and; (iii) biased predictions 
were observed when the well-stirred model was used in combination with a maturation function 
solely representing the CYP3A4 activity. A sensitivity analysis using various maturation functions 
indicated that the activity of CYP3A7 is only relevant in children <3 months and that in term-neonates 
it accounts for up to 86% of the overall CYP3A metabolism. 

In summary, the results of this investigation showed the inadequacy of allometric scaling in 
combination with maturation function(s) to predict clearance in paediatric patients where the system 
is not yet fully matured. These results can be explained by the results presented in chapter 3 which 
indicated that maturation functions were not always solely representative for the ontogeny of the 
liver enzyme activity. On the other hand, the well-stirred model of hepatic clearance was shown to 
be adequate for the prediction of clearance in paediatric patients. Yet, the high individual percentage 
errors and relatively low 2-fold percentage error of the well-stirred model underlined the need for 
considering inter-individual variability in the predictions.  
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Section 3: applications of the semi-physiological pharmacokinetic 
framework 
Although clearance is often the driving PK parameter for efficacy, predictions of full PK profiles are 
required for application of optimal design and data analysis techniques. Hence, a semi-physiological 
PK framework is proposed. The research described in this section aimed at the application of the 
semi-physiological PK framework by illustrating its value in predicting the PK in a variety of special 
populations, i.e., hepatic and renal impaired patients and paediatric patients. 

The semi-physiological PK framework was designed to integrate the physiological basis of the PBPK 
models with statistical aspects of the compartmental PK models. The proposed semi-physiological PK 
framework interfaces (i) a compartmental PK model that contains expressions to accommodate 
variation in plasma protein binding as a cause of variation in clearance and volume of distribution 
and; (ii) physiological equations, such as the well-stirred model of hepatic clearance for the 
description of the changes in the first-pass effect and clearance. The exact features of the model are 
decided on a case-by-case basis depending on their relevance for allowing the model to suit for their 
purpose (i.e., the proposed models are so-called “physiological fit-for-purpose models”).  This 
enables the semi-physiological PK model to accommodate mechanistic functions that capture 
changes of the key physiological parameters in the target population. 

In the semi-physiological PK framework, the inter-individual variability is estimated using two 
components: one defined by anthropometric equations, which estimate the variability in the key 
physiological parameters by considering the patient demographics and; a second component defined 
by estimation of the remaining inter-individual variability (i.e. the variation that cannot be explained 
by the use of the anthropometric equations). The statistical framework of the compartmental PK 
models also allows for correlation between parameter estimates to be considered and thereby, to 
avoid over-prediction of the inter-individual variability. 

Based on the abovementioned properties, the semi-physiological PK framework should (i) allow 
adequate prediction of the PK in various special populations (not only children); (ii) maximise the 
value for the optimisation of clinical study designs and the application of population data analysis 
techniques (including better prediction of inter-individual variability) and; (iii) ensure that knowledge 
is not lost in the transition from prediction to evaluation (i.e., data analysis). 

In chapter 5 and chapter 6, semi-physiological PK models were developed for two model drugs (i.e. 
solifenacin and tamsulosin) with similar PK properties. Both solifenacin and tamsulosin are 
compounds with linear PK that are mainly metabolised by CY3A isozymes where less than 10% of the 
dose is excreted unchanged in the urine. In plasma, solifenacin and tamsulosin extensively bind 

-acid glycoprotein (AGP)18,19. Data available for model development comprised total 
plasma and urine concentrations. To quantify protein binding, data on free plasma concentrations 
were used for solifenacin and data on individual plasma free fractions were used for tamsulosin. 

Both semi-physiological PK models were developed using nonlinear mixed-effects modelling and 
were based on the use of general partitioning framework to account for binding in the central 
compartment to plasma proteins and to non-plasma tissues (Figure 7.1; left panel). In the tamsulosin 
model, binding in the central compartment to non-plasma tissues was found negligible (Figure 7.1; 
right panel). Also, principles from physiology that apply to the main PK process (i.e.,, first-pass effect,  
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distribution, and elimination) were considered in order  to allow quantification of the impact of 
changes in the key physiological parameters (i.e., body composition, glomerular function, liver 
enzyme capacity, and liver blood flow) on the PK. 

 

Figure 7.1 Schematic representation of the semi-physiological PK models developed for solifenacin (left panel) and 
tamsulosin (right panel). The arrows within the central compartment represent instantaneous equilibrium and arrows 
between compartments represent kinetic processes. Total and free- plasma concentrations as well as plasma-protein 
concentrations were measured in the compartments indicated by the grey colour. The urine concentrations were 
measured in the compartment named urine compartment. 

The development of the semi-physiological PK models allowed insight into the influence of changes 
in underlying physiological processes on the PK. For example, for both compounds the agreement 
between the predicted bioavailability and the observed bioavailability obtained in a clinical study 
indicated that bioavailability is mainly determined by the first-pass metabolism in the liver. For 
solifenacin, the 10-fold difference between the measured and estimated in vitro clearance reflects 
the involvement of influx hepatic drug transporters whereas for tamsulosin the agreement between 
the measured and estimated in vitro clearance indicates that there is no involvement of influx 
hepatic drug transporters. As expected based on the results observed for PBPK (chapter 3), the inter-
individual variability could not be fully explained by considering the variability predicted from the 
anthropometric equations. The semi-physiological PK model, however, allowed adequate estimation 
of the remaining inter-individual variability. 

In chapter 5, the application of the semi-physiological PK models to predict the PK in hepatic and 
renal impaired patients was evaluated for solifenacin and tamsulosin. Predictions were obtained 
solely by adjustment of the physiological parameters that had been reported to change upon hepatic 
dysfunction 13,20. Changes upon renal dysfunction for solifenacin considered not only changes in 
glomerular function rate but also changes in the hepatic transporter in patients with a glomerular 
filtration rate below 40 mL/min/1.73 m2. These changes were found to be in the order of 
approximately 60% based on a literature survey and were expected to be independent of the type of 
the transporter involved. Recently, a more extensive analysis involving 151 compounds showed this 
factor to be in the order of approximately 70% and confirmed it to be independent of the type of the 
transporter. This factor was also shown to be independent of the metabolism of the compound 21.  
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Predictions using the semi-physiological PK model were close to the observed changes in PK in both 
hepatic and renal impaired patients. The capability of the semi-physiological PK model to predict 
inter-individual variability in clearance could not be fully evaluated due the limited number of data 
points that were available.  

Chapter 6 describes the application of the semi-physiological PK models to predict the PK of 
tamsolusin in paediatric patients (>6 years).  The results from this analysis were compared to the 
results obtained with the traditionally used allometric scaling model as a reference. Predictions using 
the semi-physiological PK model were obtained by adjustment of the values of physiological 
parameters for which changes had been reported in the literature. Prediction of the inter-individual 
variability in children was based on estimates the variability in the physiological parameters sampled 
from the P3MTM database 22 plus the estimated remaining inter-individual variability. For the 
allometric scaling, prediction of the inter-individual variability considered the weight distribution in 
the population derived using the P3MTM database 22 plus the estimated inter-individual variability. 

Predictions obtained using the semi-physiological PK model and the allometric scaling model were 
very similar, except for more accurate prediction of the terminal half-life when using the semi-
physiological PK model compared to the allometric scaling model. These results are in agreement 
with previous investigations showing that the use of allometric scaling for prediction of reasonably 
accurate PK profiles is not always possible 23. On the other hand, it should be emphasized that 
evaluation of the predictions on the terminal half-life is by some means restricted due to the short 
sampling time. Predictions of the inter-individual variability were slightly improved by the use of the 
semi-physiological PK model. As observed in chapter 3, allometric scaling slightly over-estimated the 
inter-individual variability probably because the model compensates for potential biases using 
random-effects. The over-prediction of the inter-individual variability in paediatric patients is 
expected to be directly proportional to the increase in the estimated inter-individual variability 
observed in adult patients after fixation of the allometric scaling exponents. 

In conclusion, the semi-physiological PK framework was successfully developed for two model drugs 
and applied for predictions of the PK in special populations affected by disease or growth related 
changes. Predictions in paediatric patients using the semi-physiological PK models were not markedly 
superior to the predictions using the allometric scaling model. Notwithstanding, only the semi-
physiological PK model is in principle suitable for predictions upon multiple factors simultaneously 
impacting the PK (e.g., growth, maturation and disease). 

General conclusions 
From the traditionally used model-based approaches, only allometric scaling can be combined with 
compartmental PK models, which enables the application of optimal design and advanced data-
analysis techniques. However, the allometric scaling approach was shown to have very low predictive 
power in paediatric patients where ongoing maturation of physiological processes has an influence 
on the hepatic clearance (chapter 3 and chapter 4). In addition, allometric scaling is in principle also 
not suitable to predict the clearance affected by other factors such as disease changes. An alternative 
approach for allometric scaling was found to be the well-stirred model of hepatic elimination 
(chapter 4) which can be used to predict the hepatic clearance not only in paediatric patients but 
also in other special populations 3–13. In addition, the well-stirred model allows combination with 
compartmental PK models for identification of optimal design in the first clinical studies in special 
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distribution, and elimination) were considered in order  to allow quantification of the impact of 
changes in the key physiological parameters (i.e., body composition, glomerular function, liver 
enzyme capacity, and liver blood flow) on the PK. 

 

Figure 7.1 Schematic representation of the semi-physiological PK models developed for solifenacin (left panel) and 
tamsulosin (right panel). The arrows within the central compartment represent instantaneous equilibrium and arrows 
between compartments represent kinetic processes. Total and free- plasma concentrations as well as plasma-protein 
concentrations were measured in the compartments indicated by the grey colour. The urine concentrations were 
measured in the compartment named urine compartment. 
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Predictions using the semi-physiological PK model were close to the observed changes in PK in both 
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inter-individual variability in clearance could not be fully evaluated due the limited number of data 
points that were available.  

Chapter 6 describes the application of the semi-physiological PK models to predict the PK of 
tamsolusin in paediatric patients (>6 years).  The results from this analysis were compared to the 
results obtained with the traditionally used allometric scaling model as a reference. Predictions using 
the semi-physiological PK model were obtained by adjustment of the values of physiological 
parameters for which changes had been reported in the literature. Prediction of the inter-individual 
variability in children was based on estimates the variability in the physiological parameters sampled 
from the P3MTM database 22 plus the estimated remaining inter-individual variability. For the 
allometric scaling, prediction of the inter-individual variability considered the weight distribution in 
the population derived using the P3MTM database 22 plus the estimated inter-individual variability. 

Predictions obtained using the semi-physiological PK model and the allometric scaling model were 
very similar, except for more accurate prediction of the terminal half-life when using the semi-
physiological PK model compared to the allometric scaling model. These results are in agreement 
with previous investigations showing that the use of allometric scaling for prediction of reasonably 
accurate PK profiles is not always possible 23. On the other hand, it should be emphasized that 
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sampling time. Predictions of the inter-individual variability were slightly improved by the use of the 
semi-physiological PK model. As observed in chapter 3, allometric scaling slightly over-estimated the 
inter-individual variability probably because the model compensates for potential biases using 
random-effects. The over-prediction of the inter-individual variability in paediatric patients is 
expected to be directly proportional to the increase in the estimated inter-individual variability 
observed in adult patients after fixation of the allometric scaling exponents. 

In conclusion, the semi-physiological PK framework was successfully developed for two model drugs 
and applied for predictions of the PK in special populations affected by disease or growth related 
changes. Predictions in paediatric patients using the semi-physiological PK models were not markedly 
superior to the predictions using the allometric scaling model. Notwithstanding, only the semi-
physiological PK model is in principle suitable for predictions upon multiple factors simultaneously 
impacting the PK (e.g., growth, maturation and disease). 

General conclusions 
From the traditionally used model-based approaches, only allometric scaling can be combined with 
compartmental PK models, which enables the application of optimal design and advanced data-
analysis techniques. However, the allometric scaling approach was shown to have very low predictive 
power in paediatric patients where ongoing maturation of physiological processes has an influence 
on the hepatic clearance (chapter 3 and chapter 4). In addition, allometric scaling is in principle also 
not suitable to predict the clearance affected by other factors such as disease changes. An alternative 
approach for allometric scaling was found to be the well-stirred model of hepatic elimination 
(chapter 4) which can be used to predict the hepatic clearance not only in paediatric patients but 
also in other special populations 3–13. In addition, the well-stirred model allows combination with 
compartmental PK models for identification of optimal design in the first clinical studies in special 
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populations and for more accurate prediction of the inter-individual variability. Hence, the proposed 
semi-physiological PK framework interfaces the compartmental PK model with expressions to 
describe variation in plasma protein binding with the well-stirred model of hepatic clearance for the 
description of the changes in the extent of absorption and clearance (chapter 5 and chapter 6). 
When using this approach, other features of the model, are to be decided on a case-by-case basis 
depending on their relevance for allowing the model to suit for its purpose (i.e., the proposed models 
are so-called “physiological fit-for-purpose models”). In this thesis, two semi-physiological PK models 
were developed using two model drugs. These models were successfully evaluated for predictions of 
the PK in special populations affected by disease or growth related changes (chapter 5 and chapter 
6). 

Future perspectives 
The PK in special populations, such as children in the age range below 5 years, is often affected by a 
combination of factors, such as growth, maturation and sometimes disease2. This complicates 
prediction of the changes in the PK of these patient populations when compared to healthy adults. In 
this thesis, a semi-physiological framework was evaluated for the predictions of variation in the PK. 
The utility of this approach was demonstrated in cases where only one single factor has affected the 
PK. In principle, the semi-physiological framework should also allow predictions of the changes PK 
when it is affected by a combination of multiple factors.  

In this paragraph, some of the preliminary results are presented that were obtained in situations 
where multiple factors have influenced the PK. In brief, exploratory investigations were performed to 
evaluate the application of the semi-physiological PK framework (i) to predict the clearance and 
volume of distribution in pediatric patients < 5 years where the PK is simultaneously affected by 
growth and maturation and; (ii) to predict the clearance in paediatric patients < 5 years with 
congenital heart disease (CHD) where the PK is simultaneously affected by disease, growth and 
maturation. Also, the application of the semi-physiological framework for optimisation of the design 
(e.g. sample size and sampling schedule) of a first clinical study in special populations is discussed. 

Application to pediatric patients below 5 years of age 
The semi-physiological PK models developed in chapter 5 and in chapter 6 were based on the 
following physiological equations to predict hepatic clearance (CLH) 24 and volume of distribution at 
steady state (Vss) 25 

=
+

 
Equation 7.1 

= +  
Equation 7.2 

where in Equation 7.1, QH is liver blood flow, fu is unbound fraction in plasma, RB is the blood to 
plasma concentration ratio and CLint is the intrinsic clearance which is calculated considering liver 
weight and enzyme activity; and in Equation 7.2, Vss is the volume of distribution at steady state, 
Vplasma is the volume in plasma, Vwater is the total volume of body water and ftissue is the unbound 
fraction in the tissues. The capability of these physiological equations to predict the clearance and 
volume of distribution when it is simultaneously affected by growth and maturation is evaluated in 
this subsection.  
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The model drug used was midazolam, which is a compound with an intermediate extraction ratio 
which is mainly metabolised by CYP3A isoforms. In vitro and in vivo evidence suggests that the PK of 
midazolam is not altered by active transporters, which makes of midazolam a widely used probe for 
determination of CYP3A4 activity 26,27. 

The semi-physiological PK model for midazolam was developed using individual and average PK 
profiles in adults obtained from two publications 28,29.For the evaluation of the model predictions  the 
clearance and volume of distribution values in children were retrieved from the publication by 
Bjorkman et al 30. Predictions of midazolam clearance in children were performed by using the values 
of the model parameters estimates in adults in combination with the changes caused by growth and 
maturation. In the final model, predictions considered the pertinent changes in volume of plasma, 
total body water, liver blood flow, plasma protein binding, liver weight and the maturation of the 
CYP3A activity on the basis of the maturation function that had been derived in chapter 4. 
Predictions using the semi-physiological PK model were also compared to the predictions using the 
allometric scaling model (maturation function was not considered).  

The results depicted in Figure 7.2 show that the well-stirred model of hepatic clearance (Equation 
7.1) predicts the clearance reasonably well, but that the prediction of the volume of distribution 
(Equation 7.2) is inaccurate. Thus, this requires the equation to be adapted. The  clearance values 
that were predicted using the semi-physiological PK model, were  shown to be superior to those 
obtained using the allometric scaling model, whereas predicted values of volume of distribution 
using the semi-physiological PK model, were similarly biased relative to those obtained using the 
allometric scaling model. 

 

Figure 7.2 Predicted clearance and volume of distribution for midazolam as a functions of age, together with literature 
data30. Solid lines represent the predictions using the semi-physiological PK model and dotted lines the predictions using 
the allometric scaling model. 

The observed favourable properties of the semi-physiological PK model for the prediction of 
clearance are in agreement with the results presented in chapter 4 where an extensive evaluation of 
the well-stirred model was performed. An extensive evaluation of the equation to predict the volume 
of distribution (Equation 7.2) was not possible, since an accurate estimation of the reference of the 
volume of distribution in children requires dense data to be collected. In neonates and in young 
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populations and for more accurate prediction of the inter-individual variability. Hence, the proposed 
semi-physiological PK framework interfaces the compartmental PK model with expressions to 
describe variation in plasma protein binding with the well-stirred model of hepatic clearance for the 
description of the changes in the extent of absorption and clearance (chapter 5 and chapter 6). 
When using this approach, other features of the model, are to be decided on a case-by-case basis 
depending on their relevance for allowing the model to suit for its purpose (i.e., the proposed models 
are so-called “physiological fit-for-purpose models”). In this thesis, two semi-physiological PK models 
were developed using two model drugs. These models were successfully evaluated for predictions of 
the PK in special populations affected by disease or growth related changes (chapter 5 and chapter 
6). 

Future perspectives 
The PK in special populations, such as children in the age range below 5 years, is often affected by a 
combination of factors, such as growth, maturation and sometimes disease2. This complicates 
prediction of the changes in the PK of these patient populations when compared to healthy adults. In 
this thesis, a semi-physiological framework was evaluated for the predictions of variation in the PK. 
The utility of this approach was demonstrated in cases where only one single factor has affected the 
PK. In principle, the semi-physiological framework should also allow predictions of the changes PK 
when it is affected by a combination of multiple factors.  

In this paragraph, some of the preliminary results are presented that were obtained in situations 
where multiple factors have influenced the PK. In brief, exploratory investigations were performed to 
evaluate the application of the semi-physiological PK framework (i) to predict the clearance and 
volume of distribution in pediatric patients < 5 years where the PK is simultaneously affected by 
growth and maturation and; (ii) to predict the clearance in paediatric patients < 5 years with 
congenital heart disease (CHD) where the PK is simultaneously affected by disease, growth and 
maturation. Also, the application of the semi-physiological framework for optimisation of the design 
(e.g. sample size and sampling schedule) of a first clinical study in special populations is discussed. 

Application to pediatric patients below 5 years of age 
The semi-physiological PK models developed in chapter 5 and in chapter 6 were based on the 
following physiological equations to predict hepatic clearance (CLH) 24 and volume of distribution at 
steady state (Vss) 25 
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where in Equation 7.1, QH is liver blood flow, fu is unbound fraction in plasma, RB is the blood to 
plasma concentration ratio and CLint is the intrinsic clearance which is calculated considering liver 
weight and enzyme activity; and in Equation 7.2, Vss is the volume of distribution at steady state, 
Vplasma is the volume in plasma, Vwater is the total volume of body water and ftissue is the unbound 
fraction in the tissues. The capability of these physiological equations to predict the clearance and 
volume of distribution when it is simultaneously affected by growth and maturation is evaluated in 
this subsection.  
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The model drug used was midazolam, which is a compound with an intermediate extraction ratio 
which is mainly metabolised by CYP3A isoforms. In vitro and in vivo evidence suggests that the PK of 
midazolam is not altered by active transporters, which makes of midazolam a widely used probe for 
determination of CYP3A4 activity 26,27. 
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maturation. In the final model, predictions considered the pertinent changes in volume of plasma, 
total body water, liver blood flow, plasma protein binding, liver weight and the maturation of the 
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data30. Solid lines represent the predictions using the semi-physiological PK model and dotted lines the predictions using 
the allometric scaling model. 

The observed favourable properties of the semi-physiological PK model for the prediction of 
clearance are in agreement with the results presented in chapter 4 where an extensive evaluation of 
the well-stirred model was performed. An extensive evaluation of the equation to predict the volume 
of distribution (Equation 7.2) was not possible, since an accurate estimation of the reference of the 
volume of distribution in children requires dense data to be collected. In neonates and in young 
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infants, collection of dense data is often hampered by the maximum allowable blood volume to be 
sampled. 

In the absence of clinical data (as encountered in the paediatric population), prediction of volume of 
distribution could rely on the physiological basis of PBPK models. In these models volume of 
distribution at steady state is commonly calculated as follows 31: 

 Equation 7.3 

where Vplasma is the volume in plasma, Ve is the volume in the erythrocyte, E/P is the erythrocyte-to-
plasma coefficient, Vtissue,i is the physical volume and kp,i  is the organ-plasma partition coefficients of 
the ith out of n organs/tissues. The organ tissue to blood partition coefficient is calculated based on 
fractional content of water, content of lipids, protein binding and physicochemical properties of the 
compound such as lipophilicity (LogP) and alkalinity/acidity (pKa) 32–40. Here an approach as outlined 
in chapter 3 could be performed, using PBPK to simulate the volume of distribution in children for a 
range of hypothetical compounds with different LogP, pKa and degrees of plasma of protein binding. 
The results could be used to either optimise existing physiological equations or to empirically 
develop a new one.  

Examples of equations for prediction of volume of distribution that could be (further) evaluated are 
the equation derived by Gibaldi and McNamara 25(Equation 7.2) and the mechanistic equation 
derived by Huisinga et al 41(Equation 7.4) 

= , (1 ) +  
Equation 7.4 

where BW denotes body weight, LBW, denotes lean body weight and R denotes the adipose to total 
volume of distribution ratio of the reference individual. Here, R could be calculated for different 
hypothetical compounds. Theoretically, a relationship between R and the compound properties (e.g. 
LogP, pKa and protein binding) is likely. If used for predictions, the value of R could also be estimated 
by applying this equation to the semi-physiological PK models. The use of this equation was shown to 
accurately predict the volume of distribution in children > 5 years and is expected to require 
maturation to be considered in children <5 years. Therefore, it is likely that a new equation will need 
to be developed. 

The development of new equation to predict volume of distribution in special populations affected 
by changes in body composition could be achieved on the basis of models that were designed to 
identify predictors. Given the PBPK equations to determine tissue distribution (Equation 7.3), 
possible predictors are the compound’s lipophilicity, alkalinity/acidity and protein binding. These 
predictors alone or combined (to generate indices) may determine the key tissue volumes (e.g., 
adipose, muscle…) and in what ratios they should be considered in order to predict the volume of 
distribution in the target population. 

Besides, accurate estimation of clearance and volume of distribution prediction of a full PK profile 
requires potential changes in the inter-compartmental clearance to be adequately predicted. 
Therefore, a mechanistic interpretation of compartmental PK models is necessary. Pilari et al 42 
proposed a minimal lumping approach for PBPK models, where lumped models based on similar time 
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constants for distribution into tissues are further lumped based on visual inspection, to allow direct 
comparisons with compartmental PK models. Time constants for tissue distribution are calculated by 
multiplying the volume of the organ tissue by the organ tissue to blood partition coefficient and then 
dividing it by organ tissue blood flow. 

For the drugs investigated, the central compartment in the compartmental PK models were shown to 
comprise at least blood, lungs, kidneys and liver whereas the peripheral compartment(s) was (were) 
shown to comprise mainly muscle, adipose and bone tissues.  Using this knowledge, mechanistic 
scaling of inter-compartmental clearance becomes possible by using the ontogeny of the organ blood 
flows (Q) of the lumped tissues as shown in Equation 7.5.  

=   =  Equation 7.5 

where Q is the inter-compartmental clearance and Qtissue is the blood flow of the tissue. This 
knowledge was successfully applied to predict inter-compartmental clearance in children > 5 years 
using the semi-physiological PK model (chapter 6). Its applicability in children < 5 years is yet to be 
investigated.  

This proposed mechanistic interpretation of compartmental PK models applies to compounds with 
linear PK properties with regard to the distribution. Saturable elimination can be easily incorporated 
in compartmental PK models, but saturable/delayed protein binding or saturable transporter 
mediated disposition are more difficult as they may impact the number of compartments in the final 
compartmental PK model. In this thesis, the semi-physiological PK model was developed for 
solifenacin (chapter 5), tamsulosin (chapter 6) and midazolam (presented here). For all of these 
compounds, protein binding was instantaneous relative to other processes and was found to be 
linear under therapeutic plasma concentrations. A different partitioning framework would be 
necessary to account for non-linear binding outside the central compartment.  

Application to pediatric patients below 5 years with Congenital Heart Disease 
In this subsection the capability of the well-stirred model to predict the clearance when it is 
simultaneously affected by disease, growth and maturation is evaluated. The model drug used was 
sufentanil, which is an intermediate to high extraction ratio compound that is mainly metabolised by 
CYP3A isoforms. The well-stirred model equation (Equation 7.1) was evaluated using literature data 
in adult patients undergoing non-cardiac surgery 43and in paediatric patients undergoing cardiac 44–

46and non-cardiac surgery 47. 

The impact of CHD on the clearance in children was predicted by considering decreased liver blood 
flow caused by decreased cardiac output. Potential impact of CHD on protein binding was deemed 
unlikely as sufentanil binds to AGP 48 of which the plasma concentrations were shown comparable in 
paediatric patients undergoing cardiac and non-cardiac surgery 49. To our knowledge, CHD has also 
no impact on the maturation functions of the CYP3A isoforms. 

The results for this evaluation are presented in Figure 7.3. It was shown that to account for the effect 
of CHD a decrease of liver blood of flow to 50% of the reference values in infants, children and 
adolescents is sufficient to predict clearance values. The assumed change in liver blood flow is in 
agreement with the changes that have been reported for adult patients with severe  chronic heart 
failure 50. In neonates on the other hand, 50% change in liver blood flow was insufficient to explain 
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infants, collection of dense data is often hampered by the maximum allowable blood volume to be 
sampled. 

In the absence of clinical data (as encountered in the paediatric population), prediction of volume of 
distribution could rely on the physiological basis of PBPK models. In these models volume of 
distribution at steady state is commonly calculated as follows 31: 

 Equation 7.3 

where Vplasma is the volume in plasma, Ve is the volume in the erythrocyte, E/P is the erythrocyte-to-
plasma coefficient, Vtissue,i is the physical volume and kp,i  is the organ-plasma partition coefficients of 
the ith out of n organs/tissues. The organ tissue to blood partition coefficient is calculated based on 
fractional content of water, content of lipids, protein binding and physicochemical properties of the 
compound such as lipophilicity (LogP) and alkalinity/acidity (pKa) 32–40. Here an approach as outlined 
in chapter 3 could be performed, using PBPK to simulate the volume of distribution in children for a 
range of hypothetical compounds with different LogP, pKa and degrees of plasma of protein binding. 
The results could be used to either optimise existing physiological equations or to empirically 
develop a new one.  

Examples of equations for prediction of volume of distribution that could be (further) evaluated are 
the equation derived by Gibaldi and McNamara 25(Equation 7.2) and the mechanistic equation 
derived by Huisinga et al 41(Equation 7.4) 
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where BW denotes body weight, LBW, denotes lean body weight and R denotes the adipose to total 
volume of distribution ratio of the reference individual. Here, R could be calculated for different 
hypothetical compounds. Theoretically, a relationship between R and the compound properties (e.g. 
LogP, pKa and protein binding) is likely. If used for predictions, the value of R could also be estimated 
by applying this equation to the semi-physiological PK models. The use of this equation was shown to 
accurately predict the volume of distribution in children > 5 years and is expected to require 
maturation to be considered in children <5 years. Therefore, it is likely that a new equation will need 
to be developed. 

The development of new equation to predict volume of distribution in special populations affected 
by changes in body composition could be achieved on the basis of models that were designed to 
identify predictors. Given the PBPK equations to determine tissue distribution (Equation 7.3), 
possible predictors are the compound’s lipophilicity, alkalinity/acidity and protein binding. These 
predictors alone or combined (to generate indices) may determine the key tissue volumes (e.g., 
adipose, muscle…) and in what ratios they should be considered in order to predict the volume of 
distribution in the target population. 

Besides, accurate estimation of clearance and volume of distribution prediction of a full PK profile 
requires potential changes in the inter-compartmental clearance to be adequately predicted. 
Therefore, a mechanistic interpretation of compartmental PK models is necessary. Pilari et al 42 
proposed a minimal lumping approach for PBPK models, where lumped models based on similar time 
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constants for distribution into tissues are further lumped based on visual inspection, to allow direct 
comparisons with compartmental PK models. Time constants for tissue distribution are calculated by 
multiplying the volume of the organ tissue by the organ tissue to blood partition coefficient and then 
dividing it by organ tissue blood flow. 

For the drugs investigated, the central compartment in the compartmental PK models were shown to 
comprise at least blood, lungs, kidneys and liver whereas the peripheral compartment(s) was (were) 
shown to comprise mainly muscle, adipose and bone tissues.  Using this knowledge, mechanistic 
scaling of inter-compartmental clearance becomes possible by using the ontogeny of the organ blood 
flows (Q) of the lumped tissues as shown in Equation 7.5.  
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where Q is the inter-compartmental clearance and Qtissue is the blood flow of the tissue. This 
knowledge was successfully applied to predict inter-compartmental clearance in children > 5 years 
using the semi-physiological PK model (chapter 6). Its applicability in children < 5 years is yet to be 
investigated.  

This proposed mechanistic interpretation of compartmental PK models applies to compounds with 
linear PK properties with regard to the distribution. Saturable elimination can be easily incorporated 
in compartmental PK models, but saturable/delayed protein binding or saturable transporter 
mediated disposition are more difficult as they may impact the number of compartments in the final 
compartmental PK model. In this thesis, the semi-physiological PK model was developed for 
solifenacin (chapter 5), tamsulosin (chapter 6) and midazolam (presented here). For all of these 
compounds, protein binding was instantaneous relative to other processes and was found to be 
linear under therapeutic plasma concentrations. A different partitioning framework would be 
necessary to account for non-linear binding outside the central compartment.  

Application to pediatric patients below 5 years with Congenital Heart Disease 
In this subsection the capability of the well-stirred model to predict the clearance when it is 
simultaneously affected by disease, growth and maturation is evaluated. The model drug used was 
sufentanil, which is an intermediate to high extraction ratio compound that is mainly metabolised by 
CYP3A isoforms. The well-stirred model equation (Equation 7.1) was evaluated using literature data 
in adult patients undergoing non-cardiac surgery 43and in paediatric patients undergoing cardiac 44–

46and non-cardiac surgery 47. 

The impact of CHD on the clearance in children was predicted by considering decreased liver blood 
flow caused by decreased cardiac output. Potential impact of CHD on protein binding was deemed 
unlikely as sufentanil binds to AGP 48 of which the plasma concentrations were shown comparable in 
paediatric patients undergoing cardiac and non-cardiac surgery 49. To our knowledge, CHD has also 
no impact on the maturation functions of the CYP3A isoforms. 

The results for this evaluation are presented in Figure 7.3. It was shown that to account for the effect 
of CHD a decrease of liver blood of flow to 50% of the reference values in infants, children and 
adolescents is sufficient to predict clearance values. The assumed change in liver blood flow is in 
agreement with the changes that have been reported for adult patients with severe  chronic heart 
failure 50. In neonates on the other hand, 50% change in liver blood flow was insufficient to explain 
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the observed differences in clearance.  

 

Figure 7.3 Predicted clearance for midazolam as a functions of age, together with literature data 44–47. Solid line 
represents the average predictions, the dotted line represents the two-fold prediction error and the symbols represent 
the literature individual (triangles) and average (crosses) literature data in children (red) and in adults (black). 

Decreasing the liver blood flow by 90% is required for adequate predictions in neonates. Differences 
in the pathophysiology or severity of the disease, or occurrence of comorbidities are possible 
explanations for the stronger disease impact on clearance observed in neonates. Unfortunately, none 
of these differences can be derived from the information provided in the original publications 44–46. 
Other possible causes for the inadequate clearance predictions could be the result of inadequate 
predictions of free fractions in plasma and enzyme activity. However, predicted free fractions are in 
agreement with observed free fractions (0.19 vs 0.20/0.19) 51,52 and the maturation function used to 
predict CYP3A enzyme activity has been extensively evaluated (chapter 4).  

In general, well-stirred models were shown capable of predicting the clearance when it is 
simultaneously affected by disease, growth and maturation changes. However, as discussed in the 
previous section, predictions of full PK profiles would also require quantification of disease related 
changes in volume of distribution and inter-compartmental clearance. It is expected that CHD would 
also affect the inter-compartmental clearance by decreasing cardiac output 22 and subsequently the 
blood flow to various tissues. This hypothesis is supported by the changes in initial and terminal half 
life observed in paediatric patients with CHD 47. After establishment of adequate equations to predict 
variation in volume of distribution in children, prediction of the full PK profiles in paediatric patients 
with CHD should become feasible using the semi-physiological framework. 

Application to inform clinical study designs 
The semi-physiological framework constitutes as alternative scientific basis to predict the combined 
effect of multiple factors on the PK in special populations (chapter 5, chapter 6 and the exploratory 
results presented in this section). In addition, the underlying statistical basis of this framework allows 
combination with non-linear mixed effect modelling and thereby, adequate predictions of the inter-
individual variability (chapter 6). Altogether, the semi-physiological framework constitutes the ideal 
basis for the optimisation of a first study in special populations.  

Optimisation of the first clinical study in special populations is fundamental for estimation of the 
dose or dose regimen that matches predefined target exposures but also for optimisation of other 
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design features such as sample size and PK sampling scheme. Poorly designed clinical studies in 
special populations lead to loss of information, inability to answer specific research questions and are 
potentially unethical 53. One should note that repetition of clinical studies in special populations is 
often not feasible and that, therefore, losing the opportunity to properly investigate the PK of a novel 
drug in these populations is likely to hamper dose labelling. For the optimisation of clinical studies, 
optimal design theory can be used. The use of optimal design theory to justify the sample size and to 
optimise the PK sampling scheme has recently been recommended by the FDA guidance on 
paediatric investigation 54.   

Table 7.2 depicts the background of three different methodologies often applied for optimisation of 
the design of clinical studies as well as their advantages and disadvantages. The optimal sampling 
design is the fastest methodology as it utilises an analytical process for optimisation of sample size 
and sampling scheme. This methodology, however, does not take into account the optimal design 
necessary to allow the model to, for example, distinguish between one and two compartments 53. In 
this respect, optimal sampling design is often used for a pre-selection of the study designs to be 
further investigated using clinical trial simulations 55. This methodology involves the use of 
compartmental PK models to simulate data considering pre-defined study designs and subsequently 
backfitting the same model to determine the precision with which the model parameters can be 
determined. A special case for the clinical trial simulations is the posteriori Bayesian simulation 
where the back-fit makes use of a Bayes theorem. The posteriori Bayesian simulation is applied in 
clinical studies where sparse sampling is required as for example in clinical studies in neonates and 
infant patients. This methodology focuses on the ability of a sampling scheme to allow accurate 
estimation of individual PK parameters (e.g. AUC) rather than to allow model selection 55,56. 

Table 7.2 Overview of the methodologies used for optimal design of clinical studies 

Optimal sampling theory  Clinical trial simulations Posteriori Bayesian estimation 

Involves an analytical process using the 
parameter estimates from the 
compartmental PK model and a 
population Fischer information matrix 

Involves an interactive simulation and 
estimation process using the 
compartmental PK model 

Involves an iterative simulation using 
the compartmental PK model and 
estimation process using a two-stage 
Bayesian procedure 

Optimisation of dose, sample size and 
sampling scheme  

Optimisation of dose, sample size and 
sampling scheme  

Optimisation of sparse sampling  

Targets for accurate estimation of 
model parameters 

Targets for accurate estimation of 
model parameters 

Targets for accurate estimation of PK 
parameter  

Does not consider precision in model 
parameter estimates 

Considers precision in model 
parameter estimates 

Considers precision in PK parameter 
estimates  

Does not consider model selection Considers model selection Model selection is not applicable.  

 

The application of all of these optimal design methodologies using semi-physiological PK models is 
possible because these models have reduced complexity and can easily be combined with the 
statistical framework of optimal design theories. On the other hand, the complexity of PBPK model 
predictions restricts the application of optimal design methodology to optimise clinical studies, 
because of the computational burden. In these cases, it has been proposed that PBPK models are 
used to simulate PK profiles which are then used to develop a compartmental PK model so that 
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the observed differences in clearance.  

 

Figure 7.3 Predicted clearance for midazolam as a functions of age, together with literature data 44–47. Solid line 
represents the average predictions, the dotted line represents the two-fold prediction error and the symbols represent 
the literature individual (triangles) and average (crosses) literature data in children (red) and in adults (black). 
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optimal design can be applied 14,15. The disadvantage of this approach is that it is time consuming 
since it involves the development of a PBPK model and subsequently of a compartmental PK model. 
Also, using the dense data simulated using a PBPK model to develop a compartmental PK model can 
be quite challenging. Further, this approach fully relies on the capability of the PBPK model to predict 
parameter and variance estimates while in chapter 3 of this thesis, PBPK models were shown to 
under-predict inter-individual variability. 

Although theoretically possible, the semi-physiological framework has not yet been evaluated to 
inform clinical study designs. It is anticipated, however, that optimisation of clinical studies using the 
semi-physiological PK could benefit from improvement of the existing anthropometric equations or 
from the development of novel anthropometric equations. This should also be of benefit for PBPK 
models in which anthropometric equations are also keys determinants of the predicted inter-
individual variability. 

Anthropometric equations make use of patient demographics to estimate variation in physiological 
parameters. The various anthropometric equations available have been reviewed by Price et al and 
were selected for the development of the P3MTM database 22 which is a source of data for human 
physiological parameters in adults and children. The physiological parameters in P3MTM have been 
calculated using the NHANES database which only contains information of US citizens. In this respect, 
future applications of the semi-physiological approach for the optimisation of clinical trials in special 
populations requires:  

i.  the availability of demographic databases for various populations as the NHANES database 
may not be representative for a specific special population or for populations in different 
regions/countries where the clinical study will be performed.  

ii.  a comprehensive meta-analysis using the data collected over the years to determine key 
physiological parameters. The proposed meta-analysis has increased power to identify key 
demographics to be considered in the anthropometric equations and is likely to provide 
better insight into the expected differences between populations. Having one equation for 
various subpopulations will also avoid physiological implausible shifts. Further, this meta-
analysis could be used to identify knowledge gaps and streamline the collection of new data 
for further development of the equations. 

It should be noted, however, that the improvement/development of anthropometric equations will   
not lead to the justification of all the observed inter-individual variability, due to the existence of 
additional unknown sources of variability that cannot be explained by the patient demographics. To 
circumvent this problem, the semi-physiological PK models estimate the remaining (unexplained) 
inter-individual variability of the model parameters, whereas the PBPK models separately add 
variance to the anthropometric equations, thereby mostly neglecting the existent correlation 
between different physiological parameters. In this respect, the semi-physiological PK model is more 
likely to adequately predict the inter-individual variability. Yet, when applying optimal designs, it may 
be reasonable to increase the expected variance in each of the model parameters to compensate for 
the fact that the variation in the dense data that are normally used for model development in the 
reference population is unlikely to be representative for the variation observed in the special 
populations in the clinical settings. 
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Conclusions 
Physiological equations used in the semi-physiological framework seem capable of predicting the 
combined effect of different factors on clearance. The impact of maturation on the volume of 
distribution is not well captured by the common equations used to predict the value of this key PK 
parameter. Hence, future research on the presented framework must focus on the 
optimisation/evaluation of existent physiological equations to predict volume of distribution in 
special populations with different body compositions. In addition, the semi-physiological framework 
is yet to be applied to predict full PK profiles in special populations impacted upon simultaneous 
factors and to optimise the first clinical studies in special populations. 

References 

1. Edginton, A. N. & Willmann, S. Physiology-based versus allometric scaling of clearance in 
children; an eliminating process based comparison. Paediatr Perinat Drug Ther 7, 146–153 
(2006). 

2. Anderson, B. J. & Holford, N. H. Mechanism-based concepts of size and maturity in 
pharmacokinetics. Annu.Rev.Pharmacol.Toxicol. 48, 303–332 (2008). 

3. Edginton, A. N., Schmitt, W. & Willmann, S. Development and evaluation of a generic 
physiologically based pharmacokinetic model for children. Clin.Pharmacokinet. 45, 1013–1034 
(2006). 

4. Johnson, T. N., Rostami-Hodjegan, A. & Tucker, G. T. Prediction of the clearance of eleven 
drugs and associated variability in neonates, infants and children. Clin.Pharmacokinet. 45, 
931–956 (2006). 

5. Ogungbenro, K. & Aarons, L. A physiologically based pharmacokinetic model for Valproic acid 
in adults and children. Eur. J. Pharm. Sci. 63, 45–52 (2014). 

6. Ogungbenro, K. & Aarons, L. A Physiologically Based Pharmacokinetic Model for Clobazam and 
Stiripentol in Adults and Children. Pharm. Res. 32, 144–157 (2014). 

7. Stader, F. et al. Physiology-based pharmacokinetics of caspofungin for adults and paediatrics. 
Pharm. Res. 32, 2029–37 (2015). 

8. Khalil, F. & Läer, S. Physiologically based pharmacokinetic models in the prediction of oral 
drug exposure over the entire pediatric age range-sotalol as a model drug. AAPS J. 16, 226–39 
(2014). 

9. Li, G. et al. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients 
with impaired renal function using whole-body physiologically based pharmacokinetic 
modeling. Acta Pharmacologica Sinica 33, 1359–1371 (2012). 

10. Lu, C. et al. Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats 
and humans: Evaluation of free fraction and uptake in hepatocytes. Drug Metab. Dispos. 34, 
1600–1605 (2006). 

146



146 
 

optimal design can be applied 14,15. The disadvantage of this approach is that it is time consuming 
since it involves the development of a PBPK model and subsequently of a compartmental PK model. 
Also, using the dense data simulated using a PBPK model to develop a compartmental PK model can 
be quite challenging. Further, this approach fully relies on the capability of the PBPK model to predict 
parameter and variance estimates while in chapter 3 of this thesis, PBPK models were shown to 
under-predict inter-individual variability. 

Although theoretically possible, the semi-physiological framework has not yet been evaluated to 
inform clinical study designs. It is anticipated, however, that optimisation of clinical studies using the 
semi-physiological PK could benefit from improvement of the existing anthropometric equations or 
from the development of novel anthropometric equations. This should also be of benefit for PBPK 
models in which anthropometric equations are also keys determinants of the predicted inter-
individual variability. 

Anthropometric equations make use of patient demographics to estimate variation in physiological 
parameters. The various anthropometric equations available have been reviewed by Price et al and 
were selected for the development of the P3MTM database 22 which is a source of data for human 
physiological parameters in adults and children. The physiological parameters in P3MTM have been 
calculated using the NHANES database which only contains information of US citizens. In this respect, 
future applications of the semi-physiological approach for the optimisation of clinical trials in special 
populations requires:  

i.  the availability of demographic databases for various populations as the NHANES database 
may not be representative for a specific special population or for populations in different 
regions/countries where the clinical study will be performed.  

ii.  a comprehensive meta-analysis using the data collected over the years to determine key 
physiological parameters. The proposed meta-analysis has increased power to identify key 
demographics to be considered in the anthropometric equations and is likely to provide 
better insight into the expected differences between populations. Having one equation for 
various subpopulations will also avoid physiological implausible shifts. Further, this meta-
analysis could be used to identify knowledge gaps and streamline the collection of new data 
for further development of the equations. 

It should be noted, however, that the improvement/development of anthropometric equations will   
not lead to the justification of all the observed inter-individual variability, due to the existence of 
additional unknown sources of variability that cannot be explained by the patient demographics. To 
circumvent this problem, the semi-physiological PK models estimate the remaining (unexplained) 
inter-individual variability of the model parameters, whereas the PBPK models separately add 
variance to the anthropometric equations, thereby mostly neglecting the existent correlation 
between different physiological parameters. In this respect, the semi-physiological PK model is more 
likely to adequately predict the inter-individual variability. Yet, when applying optimal designs, it may 
be reasonable to increase the expected variance in each of the model parameters to compensate for 
the fact that the variation in the dense data that are normally used for model development in the 
reference population is unlikely to be representative for the variation observed in the special 
populations in the clinical settings. 

147 
 

Conclusions 
Physiological equations used in the semi-physiological framework seem capable of predicting the 
combined effect of different factors on clearance. The impact of maturation on the volume of 
distribution is not well captured by the common equations used to predict the value of this key PK 
parameter. Hence, future research on the presented framework must focus on the 
optimisation/evaluation of existent physiological equations to predict volume of distribution in 
special populations with different body compositions. In addition, the semi-physiological framework 
is yet to be applied to predict full PK profiles in special populations impacted upon simultaneous 
factors and to optimise the first clinical studies in special populations. 

References 

1. Edginton, A. N. & Willmann, S. Physiology-based versus allometric scaling of clearance in 
children; an eliminating process based comparison. Paediatr Perinat Drug Ther 7, 146–153 
(2006). 

2. Anderson, B. J. & Holford, N. H. Mechanism-based concepts of size and maturity in 
pharmacokinetics. Annu.Rev.Pharmacol.Toxicol. 48, 303–332 (2008). 

3. Edginton, A. N., Schmitt, W. & Willmann, S. Development and evaluation of a generic 
physiologically based pharmacokinetic model for children. Clin.Pharmacokinet. 45, 1013–1034 
(2006). 

4. Johnson, T. N., Rostami-Hodjegan, A. & Tucker, G. T. Prediction of the clearance of eleven 
drugs and associated variability in neonates, infants and children. Clin.Pharmacokinet. 45, 
931–956 (2006). 

5. Ogungbenro, K. & Aarons, L. A physiologically based pharmacokinetic model for Valproic acid 
in adults and children. Eur. J. Pharm. Sci. 63, 45–52 (2014). 

6. Ogungbenro, K. & Aarons, L. A Physiologically Based Pharmacokinetic Model for Clobazam and 
Stiripentol in Adults and Children. Pharm. Res. 32, 144–157 (2014). 

7. Stader, F. et al. Physiology-based pharmacokinetics of caspofungin for adults and paediatrics. 
Pharm. Res. 32, 2029–37 (2015). 

8. Khalil, F. & Läer, S. Physiologically based pharmacokinetic models in the prediction of oral 
drug exposure over the entire pediatric age range-sotalol as a model drug. AAPS J. 16, 226–39 
(2014). 

9. Li, G. et al. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients 
with impaired renal function using whole-body physiologically based pharmacokinetic 
modeling. Acta Pharmacologica Sinica 33, 1359–1371 (2012). 

10. Lu, C. et al. Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats 
and humans: Evaluation of free fraction and uptake in hepatocytes. Drug Metab. Dispos. 34, 
1600–1605 (2006). 

147



148 
 

11. Hsu, V. et al. Towards quantitation of the effects of renal impairment and probenecid 
inhibition on kidney uptake and efflux transporters, using physiologically based 
pharmacokinetic modelling and simulations. Clin. Pharmacokinet. 53, 283–293 (2014). 

12. Edginton, A. N. & Willmann, S. Physiology-based simulations of a pathological condition: 
prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 47, 743–
752 (2008). 

13. Johnson, T. N., Boussery, K., Rowland-Yeo, K., Tucker, G. T. & Rostami-Hodjegan, A. A semi-
mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin. 
Pharmacokinet. 49, 189–206 (2010). 

14. Dumont, C. et al. Optimal sampling times for a drug and its metabolite using simcyp® 
simulations as prior information. Clin. Pharmacokinet. 52, 43–57 (2013). 

15. Chenel, M., Bouzom, F., Aarons, L. & Ogungbenro, K. Drug-drug interaction predictions with 
PBPK models and optimal multiresponse sampling time designs: application to midazolam and 
a phase I compound. Part 1: comparison of uniresponse and multiresponse designs using 
PopDes. J. Pharmacokinet. Pharmacodyn. 35, 635–59 (2008). 

16. Edginton, A. N., Schmitt, W., Voith, B. & Willmann, S. A mechanistic approach for the scaling 
of clearance in children. Clin.Pharmacokinet. 45, 683–704 (2006). 

17. Bjorkman, S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, 
Clin.Pharmacokinet. 45, 1–

11 (2006). 

18. Doroshyenko, O. & Fuhr, U. Clinical pharmacokinetics and pharmacodynamics of solifenacin. 
Clin Pharmacokinet. 48, 281–302 (2009). 

19. Michel, M. C., Yanagihara, T., Minematsu, T., Swart, P. J. & Smulders, R. A. Disposition and 
metabolism of solifenacin in humans. Br.J.Clin.Pharmacol. 59, 647 (2004). 

20. Edginton, A. N. & Willmann, S. Physiology-based simulations of a pathological condition: 
prediction of pharmacokinetics in patients with liver cirrhosis. Clin. Pharmacokinet. 47, 743–
52 (2008). 

21. Sayama, H., Takubo, H., Komura, H., Kogayu, M. & Iwaki, M. Application of a physiologically 
based pharmacokinetic model informed by a top-down approach for the prediction of 
pharmacokinetics in chronic kidney disease patients. AAPS J. 16, 1018–28 (2014). 

22. Price, P. S. et al. Modeling interindividual variation in physiological factors used in PBPK 
models of humans. Crit Rev.Toxicol. 33, 469–503 (2003). 

23. Mahmood, I. & Goteti, K. Prediction of Drug Concentration-Time Profiles in Children From 
Adults: An Allometric Approach. Am.J.Ther. 22, - (2015). 

24. Yang, J., Jamei, M., Yeo, K. R., Rostami-Hodjegan, A. & Tucker, G. T. Misuse of the well-stirred 
model of hepatic drug clearance. Drug Metabolism and Disposition 35, 501–502 (2007). 

149 
 

25. Gibaldi, M. & McNamara, P. J. Apparent volumes of distribution and drug binding to plasma 
proteins and tissues. Eur.J Clin Pharmacol 13, 373–380 (1978). 

26. Cummins, C. L., Mangravite, L. M. & Benet, L. Z. Characterizing the expression of CYP3A4 and 
efflux transporters (P-gp, MRP1, and MRP2) in CYP3A4-transfected Caco-2 cells after 
induction with sodium butyrate and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. 
Pharm. Res. 18, 1102–1109 (2001). 

27. Ziesenitz, V. C., Weiss, J., Haefeli, W. E. & Mikus, G. Cytochrome P450-3A phenotyping using 
midazolam is not altered by OATP1B1 polymorphisms. Clin. Pharmacol. Ther. 93, 388 (2013). 

28. Cotreau, M. M., von Moltke, L. L. & Greenblatt, D. J. The influence of age and sex on the 
clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 44, 33–60 (2005). 

29. Mandema, J. W. et al. Pharmacokinetic-pharmacodynamic modeling of the central nervous 
system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy 
volunteers. Clinical pharmacology and therapeutics 51, (1992). 

30. Björkman, S. Prediction of drug disposition in infants and children by means of physiologically 
based pharmacokinetic (PBPK) modelling: Theophylline and midazolam as model drugs. Br. J. 
Clin. Pharmacol. 59, 691–704 (2005). 

31. Rowland Yeo, K., Aarabi, M., Jamei, M. & Rostami-Hodjegan, A. Modeling and predicting drug 
pharmacokinetics in patients with renal impairment. Expert Review of Clinical Pharmacology 
4, 261–274 (2011). 

32. Schmitt, W. General approach for the calculation of tissue to plasma partition coefficients. 
Toxicol. Vitr. 22, 457–467 (2008). 

33. Rodgers, T., Leahy, D. & Rowland, M. Physiologically based pharmacokinetic modeling 1: 
Predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. 94, 1259–1276 
(2005). 

34. Rodgers, T. & Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the 
tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 95, 1238–
1257 (2006). 

35. Rodgers, T. & Rowland, M. Mechanistic approaches to volume of distribution predictions: 
Understanding the processes. Pharm. Res. 24, 918–933 (2007). 

36. Poulin, P., Schoenlein, K. & Theil, F. P. Prediction of adipose tissue: Plasma partition 
coefficients for structurally unrelated drugs. J. Pharm. Sci. 90, 436–447 (2001). 

37. Poulin, P. & Theil, F. P. A priori prediction of tissue: Plasma partition coefficients of drugs to 
facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J. Pharm. 
Sci. 89, 16–35 (2000). 

38. Poulin, P. & Theil, F. P. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-
based prediction of volume of distribution. J. Pharm. Sci. 91, 129–156 (2002). 

148



148 
 

11. Hsu, V. et al. Towards quantitation of the effects of renal impairment and probenecid 
inhibition on kidney uptake and efflux transporters, using physiologically based 
pharmacokinetic modelling and simulations. Clin. Pharmacokinet. 53, 283–293 (2014). 

12. Edginton, A. N. & Willmann, S. Physiology-based simulations of a pathological condition: 
prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 47, 743–
752 (2008). 

13. Johnson, T. N., Boussery, K., Rowland-Yeo, K., Tucker, G. T. & Rostami-Hodjegan, A. A semi-
mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin. 
Pharmacokinet. 49, 189–206 (2010). 

14. Dumont, C. et al. Optimal sampling times for a drug and its metabolite using simcyp® 
simulations as prior information. Clin. Pharmacokinet. 52, 43–57 (2013). 

15. Chenel, M., Bouzom, F., Aarons, L. & Ogungbenro, K. Drug-drug interaction predictions with 
PBPK models and optimal multiresponse sampling time designs: application to midazolam and 
a phase I compound. Part 1: comparison of uniresponse and multiresponse designs using 
PopDes. J. Pharmacokinet. Pharmacodyn. 35, 635–59 (2008). 

16. Edginton, A. N., Schmitt, W., Voith, B. & Willmann, S. A mechanistic approach for the scaling 
of clearance in children. Clin.Pharmacokinet. 45, 683–704 (2006). 

17. Bjorkman, S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, 
Clin.Pharmacokinet. 45, 1–

11 (2006). 

18. Doroshyenko, O. & Fuhr, U. Clinical pharmacokinetics and pharmacodynamics of solifenacin. 
Clin Pharmacokinet. 48, 281–302 (2009). 

19. Michel, M. C., Yanagihara, T., Minematsu, T., Swart, P. J. & Smulders, R. A. Disposition and 
metabolism of solifenacin in humans. Br.J.Clin.Pharmacol. 59, 647 (2004). 

20. Edginton, A. N. & Willmann, S. Physiology-based simulations of a pathological condition: 
prediction of pharmacokinetics in patients with liver cirrhosis. Clin. Pharmacokinet. 47, 743–
52 (2008). 

21. Sayama, H., Takubo, H., Komura, H., Kogayu, M. & Iwaki, M. Application of a physiologically 
based pharmacokinetic model informed by a top-down approach for the prediction of 
pharmacokinetics in chronic kidney disease patients. AAPS J. 16, 1018–28 (2014). 

22. Price, P. S. et al. Modeling interindividual variation in physiological factors used in PBPK 
models of humans. Crit Rev.Toxicol. 33, 469–503 (2003). 

23. Mahmood, I. & Goteti, K. Prediction of Drug Concentration-Time Profiles in Children From 
Adults: An Allometric Approach. Am.J.Ther. 22, - (2015). 

24. Yang, J., Jamei, M., Yeo, K. R., Rostami-Hodjegan, A. & Tucker, G. T. Misuse of the well-stirred 
model of hepatic drug clearance. Drug Metabolism and Disposition 35, 501–502 (2007). 

149 
 

25. Gibaldi, M. & McNamara, P. J. Apparent volumes of distribution and drug binding to plasma 
proteins and tissues. Eur.J Clin Pharmacol 13, 373–380 (1978). 

26. Cummins, C. L., Mangravite, L. M. & Benet, L. Z. Characterizing the expression of CYP3A4 and 
efflux transporters (P-gp, MRP1, and MRP2) in CYP3A4-transfected Caco-2 cells after 
induction with sodium butyrate and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. 
Pharm. Res. 18, 1102–1109 (2001). 

27. Ziesenitz, V. C., Weiss, J., Haefeli, W. E. & Mikus, G. Cytochrome P450-3A phenotyping using 
midazolam is not altered by OATP1B1 polymorphisms. Clin. Pharmacol. Ther. 93, 388 (2013). 

28. Cotreau, M. M., von Moltke, L. L. & Greenblatt, D. J. The influence of age and sex on the 
clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 44, 33–60 (2005). 

29. Mandema, J. W. et al. Pharmacokinetic-pharmacodynamic modeling of the central nervous 
system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy 
volunteers. Clinical pharmacology and therapeutics 51, (1992). 

30. Björkman, S. Prediction of drug disposition in infants and children by means of physiologically 
based pharmacokinetic (PBPK) modelling: Theophylline and midazolam as model drugs. Br. J. 
Clin. Pharmacol. 59, 691–704 (2005). 

31. Rowland Yeo, K., Aarabi, M., Jamei, M. & Rostami-Hodjegan, A. Modeling and predicting drug 
pharmacokinetics in patients with renal impairment. Expert Review of Clinical Pharmacology 
4, 261–274 (2011). 

32. Schmitt, W. General approach for the calculation of tissue to plasma partition coefficients. 
Toxicol. Vitr. 22, 457–467 (2008). 

33. Rodgers, T., Leahy, D. & Rowland, M. Physiologically based pharmacokinetic modeling 1: 
Predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. 94, 1259–1276 
(2005). 

34. Rodgers, T. & Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the 
tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 95, 1238–
1257 (2006). 

35. Rodgers, T. & Rowland, M. Mechanistic approaches to volume of distribution predictions: 
Understanding the processes. Pharm. Res. 24, 918–933 (2007). 

36. Poulin, P., Schoenlein, K. & Theil, F. P. Prediction of adipose tissue: Plasma partition 
coefficients for structurally unrelated drugs. J. Pharm. Sci. 90, 436–447 (2001). 

37. Poulin, P. & Theil, F. P. A priori prediction of tissue: Plasma partition coefficients of drugs to 
facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J. Pharm. 
Sci. 89, 16–35 (2000). 

38. Poulin, P. & Theil, F. P. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-
based prediction of volume of distribution. J. Pharm. Sci. 91, 129–156 (2002). 

149



150 
 

39. Poulin, P. & Theil, F.-P. Prediction of pharmacokinetics prior to in vivo studies. II. Generic 
physiologically based pharmacokinetic models of drug disposition. J. Pharm. Sci. 91, 1358–
1370 (2002). 

40. Berezhkovskiy, L. M. Volume of distribution at steady state for a linear pharmacokinetic 
system with peripheral elimination. J. Pharm. Sci. 93, 1628–1640 (2004). 

41. Huisinga, W., Solms, A., Fronton, L. & Pilari, S. Modeling interindividual variability in 
physiologically based pharmacokinetics and its link to mechanistic covariate modeling. 
CPT.Pharmacometrics.Syst.Pharmacol. 1, e4– (2012). 

42. Pilari, S. & Huisinga, W. Lumping of physiologically-based pharmacokinetic models and a 
mechanistic derivation of classical compartmental models. J. Pharmacokinet. Pharmacodyn. 
37, 365–405 (2010). 

43. Guay, D. R. Pharmacodynamics and pharmacokinetics of cefdinir, an oral extended spectrum 
cephalosporin. Pediatr Infect Dis J 19, S141–S146 (2000). 

44. Davis, P. J., Cook, D. R., Stiller, R. L. & Davin-Robinson, K. a. Pharmacodynamics and 
pharmacokinetics of high-dose sufentanil in infants and children undergoing cardiac surgery. 
Anesth. Analg. 66, 203–208 (1987). 

45. Greeley, W. J., de Bruijn, N. P. & Davis, D. P. Sufentanil pharmacokinetics in pediatric 
cardiovascular patients. Anesth. Analg. 66, 1067–1072 (1987). 

46. Greeley, W. J. & de Bruijn, N. P. Changes in sufentanil pharmacokinetics within the neonatal 
period. Anesth. Analg. 67, 86–90 (1988). 

47. Guay, J., Gaudreault, P., Tang, a, Goulet, B. & Varin, F. Pharmacokinetics of sufentanil in 
normal children. Can. J. Anaesth. 39, 14–20 (1992). 

48. Meuldermans, W. E., Hurkmans, R. M. & Heykants, J. J. Plasma protein binding and 
distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch. Int. Pharmacodyn. 
Ther. 257, 4–19 (1982). 

49. Booker, P. D., Taylor, C. & Saba, G. Perioperative changes in alpha 1-acid glycoprotein 
concentrations in infants undergoing major surgery. Br. J. Anaesth. 76, 365–8 (1996). 

50. Rasool, M. F., Khalil, F. & Läer, S. A Physiologically Based Pharmacokinetic Drug-Disease Model 
to Predict Carvedilol Exposure in Adult and Paediatric Heart Failure Patients by Incorporating 
Pathophysiological Changes in Hepatic and Renal Blood Flows. Clin. Pharmacokinet. (2015). 
doi:10.1007/s40262-015-0253-7 

51. Meuldermans, W. et al. Protein binding of the analgesics alfentanil and sufentanil in maternal 
and neonatal plasma. Eur. J. Clin. Pharmacol. 30, 217–9 (1986). 

52. Meistelman, C. et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology 
72, 470–3 (1990). 

53. Aarons, L. & Ogungbenro, K. Optimal design of pharmacokinetic studies. Basic Clin. 
Pharmacol. Toxicol. 106, 250–255 (2010). 

151 
 

54. FDA. Guidance for Industry: General Clinical Pharmacology Considerations for Pediatric Studies 
for Drugs and Biological Products. - (2014). at 
<http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidanc
es/UCM425885.pdf> 

55. Roberts, J. K. et al. Optimal design in pediatric pharmacokinetic and pharmacodynamic clinical 
studies. Paediatr. Anaesth. 25, 222–30 (2015). 

56. Van der Meer, A. F., Marcus, M. A. E., Touw, D. J., Proost, J. H. & Neef, C. Optimal sampling 
strategy development methodology using maximum a posteriori Bayesian estimation. Ther. 
Drug Monit. 33, 133–46 (2011).  

150



150 
 

39. Poulin, P. & Theil, F.-P. Prediction of pharmacokinetics prior to in vivo studies. II. Generic 
physiologically based pharmacokinetic models of drug disposition. J. Pharm. Sci. 91, 1358–
1370 (2002). 

40. Berezhkovskiy, L. M. Volume of distribution at steady state for a linear pharmacokinetic 
system with peripheral elimination. J. Pharm. Sci. 93, 1628–1640 (2004). 

41. Huisinga, W., Solms, A., Fronton, L. & Pilari, S. Modeling interindividual variability in 
physiologically based pharmacokinetics and its link to mechanistic covariate modeling. 
CPT.Pharmacometrics.Syst.Pharmacol. 1, e4– (2012). 

42. Pilari, S. & Huisinga, W. Lumping of physiologically-based pharmacokinetic models and a 
mechanistic derivation of classical compartmental models. J. Pharmacokinet. Pharmacodyn. 
37, 365–405 (2010). 

43. Guay, D. R. Pharmacodynamics and pharmacokinetics of cefdinir, an oral extended spectrum 
cephalosporin. Pediatr Infect Dis J 19, S141–S146 (2000). 

44. Davis, P. J., Cook, D. R., Stiller, R. L. & Davin-Robinson, K. a. Pharmacodynamics and 
pharmacokinetics of high-dose sufentanil in infants and children undergoing cardiac surgery. 
Anesth. Analg. 66, 203–208 (1987). 

45. Greeley, W. J., de Bruijn, N. P. & Davis, D. P. Sufentanil pharmacokinetics in pediatric 
cardiovascular patients. Anesth. Analg. 66, 1067–1072 (1987). 

46. Greeley, W. J. & de Bruijn, N. P. Changes in sufentanil pharmacokinetics within the neonatal 
period. Anesth. Analg. 67, 86–90 (1988). 

47. Guay, J., Gaudreault, P., Tang, a, Goulet, B. & Varin, F. Pharmacokinetics of sufentanil in 
normal children. Can. J. Anaesth. 39, 14–20 (1992). 

48. Meuldermans, W. E., Hurkmans, R. M. & Heykants, J. J. Plasma protein binding and 
distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch. Int. Pharmacodyn. 
Ther. 257, 4–19 (1982). 

49. Booker, P. D., Taylor, C. & Saba, G. Perioperative changes in alpha 1-acid glycoprotein 
concentrations in infants undergoing major surgery. Br. J. Anaesth. 76, 365–8 (1996). 

50. Rasool, M. F., Khalil, F. & Läer, S. A Physiologically Based Pharmacokinetic Drug-Disease Model 
to Predict Carvedilol Exposure in Adult and Paediatric Heart Failure Patients by Incorporating 
Pathophysiological Changes in Hepatic and Renal Blood Flows. Clin. Pharmacokinet. (2015). 
doi:10.1007/s40262-015-0253-7 

51. Meuldermans, W. et al. Protein binding of the analgesics alfentanil and sufentanil in maternal 
and neonatal plasma. Eur. J. Clin. Pharmacol. 30, 217–9 (1986). 

52. Meistelman, C. et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology 
72, 470–3 (1990). 

53. Aarons, L. & Ogungbenro, K. Optimal design of pharmacokinetic studies. Basic Clin. 
Pharmacol. Toxicol. 106, 250–255 (2010). 

151 
 

54. FDA. Guidance for Industry: General Clinical Pharmacology Considerations for Pediatric Studies 
for Drugs and Biological Products. - (2014). at 
<http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidanc
es/UCM425885.pdf> 

55. Roberts, J. K. et al. Optimal design in pediatric pharmacokinetic and pharmacodynamic clinical 
studies. Paediatr. Anaesth. 25, 222–30 (2015). 

56. Van der Meer, A. F., Marcus, M. A. E., Touw, D. J., Proost, J. H. & Neef, C. Optimal sampling 
strategy development methodology using maximum a posteriori Bayesian estimation. Ther. 
Drug Monit. 33, 133–46 (2011).  

151



152 
 

  

153 
 

 
 

 

  

Appendix 
 


