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ABSTRACT

Sleep disturbances are very prevalent in Huntington’s disease (HD) patients and can substantially impair their 
quality of life. Accumulating evidence suggests considerable dysfunction of the hypothalamic suprachiasmatic 
nucleus (SCN), the biological clock, in both HD patients and transgenic mouse models of the disease. As 
melatonin has a major role in the regulation of sleep and other cyclical bodily activities and its synthesis is 
directly regulated by the SCN, we postulated that disturbed SCN function is likely to give rise to abnormal 
melatonin secretion in HD. Therefore, we compared 24h melatonin secretion profiles between early-stage 
HD patients and age-, sex- and body mass index-matched controls. Although mean diurnal melatonin levels 
were not different between the two groups (p=0.691), the timing of the evening rise in melatonin levels was 
significantly delayed by more than one and a half hours in HD patients (p=0.048). Moreover, diurnal melatonin 
levels strongly correlated with both motor (r=0.70, p =0.036) and functional impairment (r=0.78, p=0.013). 
These findings suggest a delayed sleep phase syndrome-like circadian rhythm disorder in early stage HD 
patients and suggest that melatonin levels may progressively decline with advancing disease. 
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Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded 
CAG repeat size in the gene encoding the protein huntingtin.4 The disease is characterized by motor 

impairment, cognitive deterioration, behavioral problems and progressive weight loss.4 With an estimated 
prevalence of nearly 90% disturbed sleep is also a prominent feature of the disease, substantially impairing 
the quality of life of both patients and caregivers.20 Sleep disturbances in HD patients include an increased 
sleep onset latency, frequent nocturnal awakenings, reduced sleep efficiency, delayed and shortened rapid eye 
movement sleep, and increased periodic leg movements.1,8,22,24 Moreover, wrist actigraphy studies indicate 
circadian rhythm disturbances in HD patients, which are mirrored in the most widely used transgenic mouse 
model of the disease, the R6/2 mouse.10,14,15 The R6/2 mice show progressive disruption of the day-night 
activity patterns, with increased daytime activity and a concurrent decrease in nocturnal activity, eventually 
leading to a complete disintegration of the circadian behavior.14,15 Interestingly, disrupted circadian behavior 
in these mice is accompanied by marked dysregulation of expression of a number of circadian clock genes in 
the hypothalamic suprachiasmatic nucleus (SCN), the principal rhythm generating system in mammals.12,14,15 
Furthermore, we recently demonstrated an increased amplitude of the diurnal cortisol profile as well as an 
increased rate of early day cortisol production in HD patients, both of which are also consistent with SCN 
dysfunction in HD.3 

Melatonin is a hormone that is primarily secreted at night by the pineal gland and has a major role in the 
regulation of sleep and other cyclical bodily activities.5,16 Melatonin synthesis is directly regulated by the 
SCN via a multisynaptic pathway in response to the environmental light/dark cycle, and thus, melatonin is 
considered an endogenous humoral synchronizer that signals ‘time of day’ to all tissues throughout the body.5 
Conversely, the two major melatonin receptors, MT1 and MT2 receptors, are abundantly expressed in the SCN 
and are thought to mediate melatonin’s sleep-promoting and circadian phase-shifting effects.5 Therefore, we 
postulated that disturbed SCN function in HD is likely to give rise to abnormal melatonin secretion, which 
in turn could contribute to impaired sleep and circadian rhythm disturbances in HD patients. In addition, as 
apart from its timekeeping functions melatonin has also strong antioxidative properties, abnormal melatonin 
secretion may also influence the neurodegenerative process underlying HD. In order to test these hypotheses, 
we (1) compared 24 h plasma melatonin concentration profiles between early stage, medication-free HD 
patients and healthy matched controls, and (2) assessed the association between mean diurnal melatonin levels 
and clinical phenotype.

SUBJECTS AND METHODS

Subjects 

Nine early-stage HD patients and nine healthy control subjects, matched for age, sex, and body mass 
index (BMI), were enrolled in the study. Clinical details are summarized in Table 1.  The clinical 
diagnosis of HD was made by a neurologist specialized in movement disorders (R.A.C.R.). The 
Unified Huntington’s Disease Rating Scale (UHDRS) was used to assess HD symptoms and signs.9 

All subjects were free of medication, except one HD patient who discontinued paroxetine use 
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three weeks prior to 
study. Written informed 
consent was obtained 
from all subjects. The 
study was approved by 
the ethics committee of 
the Leiden University 
Medical Center. 

Clinical protocol 

Subjects were admitted 
to the Clinical Research 
Center for 24 h blood 
sampling. Two women 
(one patient and one control) were postmenopausal, the other women were studied in the early 
follicular phase of their menstrual cycle. A cannula was inserted into an antecubital vein 45 min before 
the start of blood sampling at 1630 h. Blood samples were collected with S-monovetten (Sarstedt, 
Etten-Leur, The Netherlands) from a three-way stopcock that was attached to a 0.9% NaCl and 
heparin (1 U/ml) infusion (500 ml/24 h) to keep the cannula from clotting. Sampling was performed 
through a long line to prevent sleep disruption by investigative manipulations. During 24 h, blood 
was collected in serum tubes every hour. Blood was allowed to clot and, within 60-min of sampling, 
centrifuged at 4000 rotations/min at 4 ºC for 20 min, and plasma was stored at -80 ºC until assay. 

Three standardized meals were served at 0900, 1300, and 1900 h (Nutridrink, 1.5 kcal/ml, 1500–
1800 kcal/d; macronutrient composition per 100 ml: protein, 5 g; fat, 6.5 g; carbohydrate, 17.9 g; 
Nutricia, Zoetermeer, The Netherlands). Twenty-four hour urine was collected for the determination 
of creatinine and catecholamine concentrations. Subjects remained sedentary except for bathroom 
visits. No daytime naps were allowed. Lights were switched off at 2300 h and back on at 0730 the 
next morning. 

Assays

Plasma melatonin was measured by radioimmunoassay (Labor Diagnostika Nord GmbH & Co. 
KG, Nordhorn, GER). The detection limit of the assay was 2 pg/mL. The intra-assay and interassay 
variations ranged from 9.8  to 12.3% and from 9.6 to 16.2%, respectively. Samples from each patient 
and matched control were handled in the same run. Urine creatinine was measured by a fully automated 
P 800 Modular system (Roche, Almere, the Netherlands). Urinary epinephrine, norepinephrine and 
dopamine concentrations were assessed by high performance liquid chromatography with electron 
capture detection (ESTA-Coulochem, Chelmsford, MA, USA).

Analysis of melatonin profiles 

Individual diurnal variations of plasma melatonin levels were quantified by a best-fit curve obtained 

Table 1. Characteristics of the study population

HD patients† Controls† p-value‡

Male/female 6/3 6/3 -
Age [y] 47.1 (3.4) 48.6 (3.3) 0.691
BMI 24.1 (1.0) 24.3 (0.6) 0.691
Mutant CAG repeat size 44.4 (1.0) - -
Disease duration [y] 5.7 (1.1) - -
UHDRS motor score 22.2 (6.0) - -
TFC score 11.7 (0.7) - -
Functional Assessment 23.3 (0.7) - -
Independence score 94.4 (2.8) - -

†) Values are indicated as mean (SE).
‡) Differences between groups were assessed by the Mann-Whitney U-test.
Abbreviations: BMI = Body Mass Index; FAS = Functional Assessment; TFC 
= Total Functional Capacity; UHDRS = Unified Huntington’s Disease Rating 
Scale. 
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using locally weighted linear regression with a Gaussian kernel and a regression window of four 
hours as previously described.11 For each melatonin profile the nadir and the acrophase were defined 
as the minimum and maximum of the best-fitting curve, while the amplitude was defined as half of the 
difference between the acrophase and nadir values. The onset of the melatonin rise was defined as the 
timing of the first plasma level exceeding the mean + 3 standard deviations (SDs) of baseline levels 
recorded over the 1030-1430 period, not followed to lower concentrations before the acrophase. 
The melatonin offset was defined as the timing of the last value occurring after the acrophase that 
exceeded +3 SDs of the baseline values.11    

Statistical analysis

Results are expressed as mean ± standard error (SE) unless otherwise specified. The non-parametric Mann-
Whitney U-test was used to assess group differences. Spearman’s correlation coefficient was applied to assess 
all correlations. All tests were two-tailed and significance level was set at p < 0.05. Statistical analyses were 
performed using SPSS for Windows (release 16.0, SPSS, Inc., Chicago, IL). 

RESULTS 

Subjects 

The HD and the control group did not differ with 
respect to age, sex, and BMI (all p ≥ 0.691, Table 
1). There were also no significant differences in 
urinary creatinine, epinephrine, norepinephrine 
and dopamine levels (all p ≥ 0.10).

Melatonin profiles 

Mean 24 h melatonin levels were not significantly 
different between HD patients and controls (24.8 
± 5.4 vs. 22.7 ± 2.8 pg/mL, p = 0.691; Figure 
1). Also the acrophase and nadir concentrations, 
as well as the amplitude of the diurnal melatonin 
profile were not significantly different between 
the two groups (p ≥ 0.857; Table 2). In one HD 
patient, however, the diurnal melatonin profile was 
extremely irregular and at no point did melatonin 
concentrations rise above three standard deviations of the mean baseline values (this subject also 
happened to be the most severely affected patient with scores of 63 and 7 on the UHDRS motor and 
total functional capacity subscales, respectively).  Consequently, melatonin onset, offset and duration 
could not be defined in this subject; therefore, for subsequent comparison of these parameter values 
between the two groups also the data of the matched control subject were excluded from the analyses. 

Figure 1. Mean 24 h melatonin levels in HD patients 
and matched controls. The diurnal melatonin rise 
was significantly delayed in HD patients by about 
one and a half hours (p=0.048). The black bar on the 
abscissa indicates the dark period (23:00-7:30 h).
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Melatonin onset time 
was significantly delayed 
in HD patients compared 
with controls (00:30 h 
± 22 min vs. 22:52 h 
± 37 min, p = 0.048). 
Melatonin offset time, 
however, was similar 
between the two groups 
(Table 2). Consequently, 
there was also a trend for 
a shorter duration of the 

nocturnal plasma melatonin plateau in HD patients (6.2 ± 1.2 vs. 9.1 ± 0.8 h, p = 0.063).    

Melatonin levels and clinical phenotype

In HD patients, mean 24 h melatonin levels significantly correlated with UHDRS motor score (r = -0.70, p = 
0.036), total functional capacity (r = + 0.78, p = 0.013), and independence score (r = + 0.88, p = 0.002), but not 
with mutant CAG repeat size (r = +0.18, p = 0.645).

DISCUSSION 

Here we present the first detailed description of diurnal melatonin profiles in HD patients. We show that the 
timing of the evening rise in melatonin levels is significantly delayed by more than one and a half hours in 
these patients compared with matched control subjects. Moreover, despite similar mean diurnal melatonin 
levels between our early stage HD patients and controls, we found strong inverse associations between mean 
diurnal melatonin levels and both motor and functional disability in these patients, suggesting that decreases in 
melatonin levels are likely to become more pronounced in the later stages of the disease. 

Delayed onset of melatonin secretion in HD patients is reminiscent of a delayed sleep phase syndrome (DSPS)-
like circadian rhythm disorder.25 The pathophysiological basis of DSPS is assumed to lie in a slower endogenous 
clock with an abnormally long intrinsic circadian periodicity,  resulting in a delayed phase position of the overt 
circadian rhythms, including those of melatonin, cortisol and core body temperature.25 Interestingly, recently we 
also found an increased rate of early day cortisol production in HD patients, which may also be a manifestation 
of delayed circadian rhythms in HD.3 Circadian rhythm disturbances in HD are likely to stem directly from 
pathology within the SCN molecular oscillation, caused either by the toxic effects of mutant huntingtin locally 
and/or arising from dysfunction of brain circuitry afferent to the SCN.14,15 In favour of local pathology is the 
detection of neuronal inclusions of mutant huntingtin in the SCN of HD patients2, as well as the finding of 
SCN dysfunction at both mRNA and protein level in R6/2 mice, with reduced levels of the positive regulator 
mBmal1 and truncated peak expression of its target genes mPer1, mPer2, and mProk2.14 However, intact 
oscillation of SCN neurons from R6/2 mice in vitro, when released from the pathological context, is consistent 

Table 2. Melatonin secretion characteristics in HD patients and controls.

HD patients† Controls† p-value‡

Mean 24 h levels (pg/mL) 24.8 (5.4) 22.7 (2.8) 0.601
Acrophase conc. (pg/mL) 76.6 (20.4) 60.1 (9.7) 0.860
Nadir conc. (pg/mL) 5.8 (0.9) 5.8 (0.7) 0.857
Amplitude (pg/mL) 35.4 (9.9) 27.2 (4.8) 0.895
Onset time (hh:mm) 00:30 (00:22) 22:52 (00:40) 0.048*

Offset time (hh:mm) 07:30 (00:48) 08:22 (00:21) 0.478
Nocturnal duration (h) 7.0 (1.0) 9.5 (0.8) 0.063

†) Values are indicated as mean (SE).
‡) Differences between groups were assessed by the Mann-Whitney U-test; * p 
< 0.05.
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with an afferent cause of SCN dysfunction in HD.15 Alternatively, impaired expression and/or function of the 
melatonin receptors in HD could play a role, particularly the MT2 receptor subtype which is enriched in the 
SCN and is known to be involved in phase-shifting of the biological clock.17 Regardless of the cause of diurnal 
rhythm disturbances in HD, however, restoration of circadian rhythms by pharmacological imposition of sleep 
has been shown to improve cognitive decline in R6/2 mice, suggesting that a similar strategy may be beneficial 
to HD patients. As our findings indicate a DSPS-like phenotype in early stage HD, another approach that may 
be evaluated in these patients is to treat them with melatonin and/or bright light at the appropriate times so as 
to phase advance the clock.13,25 The administration of melatonin at the subjective dusk, and the use of bright 
light at the subjective dawn and avoidance of light in the subjective evening, could be used to phase advance 
the clock.13,25 

Interestingly, we also found that mean diurnal melatonin levels in HD patients decreased with increasing 
severity of the clinical phenotype, suggesting that melatonin levels may decline substantially with advancing 
disease course. Progressive abnormalities in the metabolism of the melatonin precursor tryptophan may account 
for this association,7,19 although additional investigations are needed to pinpoint the exact underlying metabolic 
pathways. Numerous studies have shown the ability of melatonin and its kynuramine metabolites to increase the 
survival of neurons under conditions of enhanced oxidative stress.18 Therefore, declining melatonin levels may 
contribute to the progressive neurodegeneration in HD, and conversely, exogenous melatonin supplementation 
may be of benefit to HD patients. In fact, melatonin can antagonise the cytotoxic properties of both quinolinic 
acid and 3-nitropropionic acid, the administration of which is used to model HD induced pathology.6,21 
Moreover, recently it was demonstrated that melatonin can potently inhibit mitochondrial cytochrome  c 
release, which is known to activate downstream cell death pathways, resulting in neuroprotection in a mutant 
huntingtin expressing striatal cell line.23

In conclusion, our findings suggest a DSPS-like circadian rhythm disorder in early stage HD patients and 
indicate that melatonin levels may progressively decline with advancing disease. Therefore, strategies aimed 
at advancing the phase of the biological clock as well as melatonin supplementation might be of benefit to 
HD patients. However, first larger scale studies are needed to confirm our findings and to assess whether later 
stages of HD are also accompanied by a similar circadian rhythm disorder.
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