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ARTICLE

Light-triggered switching of liposome surface
charge directs delivery of membrane impermeable
payloads in vivo
Gabriela Arias-Alpizar 1,7, Li Kong1,2,7, Redmar C. Vlieg3, Alexander Rabe 4,6, Panagiota Papadopoulou 1,

Michael S. Meijer 5, Sylvestre Bonnet 5, Stefan Vogel 4, John van Noort 3, Alexander Kros 1✉ &

Frederick Campbell 1✉

Surface charge plays a fundamental role in determining the fate of a nanoparticle, and any

encapsulated contents, in vivo. Herein, we describe, and visualise in real time, light-triggered

switching of liposome surface charge, from neutral to cationic, in situ and in vivo (embryonic

zebrafish). Prior to light activation, intravenously administered liposomes, composed of just

two lipid reagents, freely circulate and successfully evade innate immune cells present in the

fish. Upon in situ irradiation and surface charge switching, however, liposomes rapidly adsorb

to, and are taken up by, endothelial cells and/or are phagocytosed by blood resident mac-

rophages. Coupling complete external control of nanoparticle targeting together with the

intracellular delivery of encapsulated (and membrane impermeable) cargos, these compo-

sitionally simple liposomes are proof that advanced nanoparticle function in vivo does not

require increased design complexity but rather a thorough understanding of the fundamental

nano-bio interactions involved.
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Surface charge is a key determinant of nanoparticle fate
in vivo1,2. Following intravenous (i.v.) injection, nano-
particles with high surface charge density, either anionic or

cationic, are rapidly cleared from circulation by specialised cells
of the reticulo-endothelial system (RES)3–5. In mammals, RES cell
types are primarily located in the liver (key hepatic RES cell types:
Kupffer cells, KCs, and liver sinusoidal endothelial cells, LSECs)
and spleen. These cells are responsible for clearing up to 99% of
i.v. administered nanoparticles from circulation6. High nano-
particle surface charge density has a qualitative and quantitative
impact on serum protein binding7–12, driving the opsonisation of
circulating nanoparticles and subsequent recognition and clear-
ance by the RES13–15. In addition, cationic nanoparticles tend to
adsorb to the anionic surface of cells and are subsequently
internalised16–20, often leading to acute cytotoxicity21–23. Given
the adverse pharmacokinetics of charged nanoparticles in the
body, most clinically approved, nanoparticle-drug formulations
(nanomedicines) possess a (near) neutral surface charge to pro-
long circulation lifetimes and maximise drug exposure within
target (vascularized) tissues in the body24.

We have previously shown that i.v. administered liposomes
with (near) neutral surface charge, and optimally 100 nm in size,
tend to freely circulate in embryonic zebrafish (Danio rerio)25.
Anionic nanoparticles (in our experience, <−20 mV measured
zeta (ζ) potential) interact strongly with RES cell types, namely
scavenging endothelial cells (SECs, via a stabilin-mediated clear-
ance pathway) and blood resident macrophages25,26. Whereas,
cationic liposomes (>20 mV measured ζ-potential) are rapidly
removed from circulation through a combination of non-specific
cellular interactions (i.e. adsorption to the anionic surface of the
blood vessel walls), and/or clearance via the RES25. While usually
considered detrimental to in vivo performance, the non-specific,
cellular interactions of cationic nanoparticles/complexes (e.g.
LipofectamineTM) have been widely exploited to deliver mem-
brane impermeable, (genetic) material across cell membranes
in vitro27–30. In these cases, a net cationic surface charge not only
promotes non-specific adsorption and uptake within cultured
cells but also facilitates endosomal escape and cytosolic payload
release. In contrast, anionic and neutral nanoparticles are gen-
erally taken up sparingly by non-RES cell types, while those that
are internalised tend to localise within lysosomes21,31—a chemi-
cally hostile environment in which encapsulated payloads are
rapidly degraded.

The contrasting fates of differently charged nanoparticles have
all the ingredients of an ideal targeted drug delivery system. On
the one hand, i.v. administered, (near) neutral nanoparticles
freely circulate, maximising exposure within any (vascularized)
tissue of the body. On the other, cationic nanoparticles are non-
specifically taken up by virtually all cells, delivering high intra-
cellular concentrations of encapsulated (and membrane
impermeable) payloads. Herein, we describe the rapid switching
of liposome surface charge, from neutral to cationic, in situ and
in vivo using light as exclusive trigger (Fig. 1). Light is chosen as
trigger given the rapid and quantitative photolysis of common
chemical photocages32, its proven clinical relevance33 and the
prospect of emerging technologies to apply light deep within
patients. These include fiber-optic34,35 and injectable microLED
hardware36, as well as photocleavable chemical functionality
sensitive to visible or near infrared (NIR) light37–39. Light
wavelengths between 600 and 950 nm can penetrate various
human tissues (skin, fat and blood) up to a depth of 2 cm40. As
model organism, we select the small and transparent zebrafish
embryo. This organism is increasingly being used as a versatile
preclinical screening platform for nanoparticles41 and offers
unprecedented opportunities to image nanoparticles across whole
live organisms (i.e. visualising total injected nanoparticle doses),

at cellular resolution and in real time42. Moreover, the zebrafish
embryo can qualitatively predict nanoparticle interactions with
scavenging cell types of the RES in mammalian models25,43.

In this study, following i.v. administration within a zebrafish
embryo, photoactive liposomes, composed of just two lipids and
prior to light activation, freely circulate and do not significantly
interact with RES and/or other cell types of the embryo. Fol-
lowing in situ light activation, however, rapid surface charge
switching results in non-specific adsorption and uptake of lipo-
somes across the entire endothelium of the fish, as well as pha-
gocytic uptake in blood resident macrophages. Importantly, light
triggered surface charge switching does not disrupt liposome
integrity and encapsulated, membrane impermeable payloads are
successfully transported across cell membranes following surface
charge switching.

Results
Design of photoactive liposomes. Photoswitching the surface
charge of a liposome—from neutral to cationic—requires pho-
toactive lipids embedded within a liposome membrane (Fig. 1). In
the absence of light and at physiological pH, photocaged lipids
should carry no net charge to maintain a (near) neutral liposome
surface charge (i.e. freely circulating). To ensure sufficient catio-
nic surface charge density following photoactivation (in our
experience, liposomes with a measured ζ-potential >20 mV),
photocaged lipids should make up a significant proportion, if not
all, of the overall lipid membrane composition. And, for optimal
performance, photolysis and subsequent charge switching should
be rapid. Finally, to achieve intracellular delivery of (membrane
impermeable) drugs, encapsulated payloads should remain
entrapped within liposomes, before, during and after light acti-
vation. Surface charge switching should not, therefore, involve
any large-scale reorganisation of the liposome membrane and
with it the potential for leakage of encapsulated drugs.

To ensure the non-specific adsorption of cationic liposomes to
blood vessel walls following light triggered surface charge switch-
ing, we first assessed the physicochemical properties and in vivo
behaviour of liposomes containing cationic, cholesterylamine
compounds, 1-3 (Fig. 2a, see Supplementary Information for
synthesis and characterisation). Cholesterol can be incorporated
into a reconstituted (phospho)lipid bilayer up to ~50mol%44, and
is often included in liposomal formulations to modulate drug
retention and release profiles45. Knowing the hydroxyl head group
of cholesterol sits deeper within a lipid bilayer than neighbouring
phospholipid head groups46, a series of cholesterylamine com-
pounds, 1-3, were assessed, in which the spacer length between the
hydrophobic cholesteryl anchor and primary amine head group
was varied. In all cases, linkers were connected to cholesterol via
an ester bond. While spacers were primarily included to ensure
effective charge presentation at the lipid-water interface, our
choice of spacer chemistry was also influenced knowing the final
photocaged cholesteryl compounds would be charge neutral,
hydrophobic and potentially form lipid droplets within a
phospholipid membrane47. In this scenario and upon light
activation, we envisaged extensive membrane remodelling to
reposition the newly revealed primary amine at the water-lipid
interface and with it the potential for contents leakage. To
minimise this risk and to increase the amphipathicity of the final
photocaged cholesteryl compound, we focused on short glycine
and polyethylene glycol (PEG) linkers as hydrophilic and/or
uncharged spacers.

Liposomes, containing varying amounts of 1-3, up to 50 mol%,
were co-formulated with zwitterionic, 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) phospholipids. All formulated lipo-
somes were prepared by standard extrusion techniques and were
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~100 nm in size, with polydispersity indices (PDI) < 0.2 as
measured by dynamic light scattering (DLS, Supplementary
Table 1). DOPC was chosen as co-formulant phospholipid as we
have previously shown liposomes composed of 100% DOPC25, as
well as 1:1 mixtures of DOPC and cholesterol (Supplementary
Figure 1), freely circulate throughout the vasculature of an
embryonic zebrafish beyond 1 h post-injection (hpi). As expected,
increasing the amount of cholesterylamine, 1-3, within the DOPC
liposome membrane resulted in greater cationic surface charge
(Fig. 2b and Supplementary Table 1). However, at high mol% of
cationic lipids, a trend emerged whereby longer spacers resulted
in an increasingly cationic surface charge. Satisfyingly, the
measured surface charge of DOPC:3 (1:1) liposomes was
comparable to liposomes formulated with commercially available,
cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)
lipids (Fig. 2b). We have previously shown that i.v. administered
DOTAP liposomes (e.g. EndoTAG-1® - DOPC:DOTAP (45:55)
and 100% DOTAP liposomes) non-specifically adsorb to blood
vessel walls throughout the vasculature of an embryonic
zebrafish25. Following i.v. microinjection in a two day old
zebrafish embryo (2 days post-fertilisation, dpf), all three cationic
liposome formulations—i.e. DOPC co-formulated with 50 mol%
1, 2 or 3—showed comparable biodistributions to cationic DOPC:
DOTAP (1:1) liposomes (Supplementary Fig. 2a). In all cases,
liposomes were mainly visible as immobile punctae bound to all
blood vessel walls (both arterial and venous) and largely removed
from circulation at 1 hpi (Fig. 3a–c and Supplementary Fig. 2b, c).
In contrast, DOPC liposomes co-formulated with lower mol% of

cholesterylamine 3 showed variable biodistributions dependent
on the surface charge density of the liposome (Fig. 3d,i). In
particular, (near) neutral DOPC liposomes, containing 10 mol%
3, were extensively taken up by blood-resident macrophages
within the caudal haematopoietic tissue (CHT) of the embryonic
fish (Fig. 3j,k and Supplementary Fig. 3 for whole-embryo
images).

Light-triggered switching of liposome surface charge in vitro
and in vivo. As DOPC:3 (1:1) liposomes possessed the highest
measured cationic surface charge, we proceeded to photocage 3,
forming the uncharged, photoactive cholesteryl compound, 4
(Fig. 4a, see Supplementary Information for synthesis and char-
acterisation). Upon UV irradiation (370 ± 7 nm, 202 mW cm−2),
in H2O/MeCN/tBuOH (1:1:1), complete photolysis of 4 was
achieved in less than two minutes, with clean photolysis con-
firmed by the appearance of two isosbestic points in the UV
spectra (Supplementary Fig. 4a). Irradiation of DOPC:4 (1:1)
liposomes, formulated in 10 mM HEPES buffer (pH 7.4), resulted
in comprehensive surface charge reversal—from ζ-potential −8 to
+26 mV—within this same short timeframe (Fig. 4b). Despite
batch-to-batch variation (resulting in measured zeta potentials
ranging from +20 to +35 mV ζ-potential), the cationic surface
charge of irradiated DOPC:4→ 3 (1:1) liposomes was con-
sistently lower than that of parent DOPC:3 (1:1) liposomes
(ζ-potential +48 mV). Both formulations should, in theory, be
compositionally identical and, at this point, we do not have a
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Fig. 1 Photoswitching the surface charge of a liposome – from neutral to cationic – requires photoactive lipids embedded within a liposome membrane.
Prior to light activation, charge neutral, photoactive liposomes freely circulate throughout the vasculature of a zebrafish embryo and do not interact with
RES cell types, or any other cell type, of the embryonic fish. Upon light irradiation and photolysis of photocaged, cholesterylamine lipids, rapid surface
charge switching, from neutral to cationic, leads to non-specific adsorption of liposomes across the endothelium of the embryo, liposome uptake and
intracellular delivery of liposome-encapsulated, membrane impermeable payloads. DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine.
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reasonable explanation for this discrepancy. The measured size
(approx. 100 nm) and PDI ( < 0.1) of DOPC:4 (1:1) liposomes
was unchanged before and after irradiation (Supplementary Fig-
ure 4b and Supplementary Table 1). Likewise, their spherical,
unilamellar morphology, as imaged by cryoTEM, generally
remained unchanged before and after UV irradiation (Fig. 4c, see
Supplementary Fig. 5 for larger populations), although a small
fraction (<10%) of irradiated DOPC:4→ 3 liposomes did appear
non-spherical (oblong) (Supplementary Fig. 5b, e). Whether this
morphological change is the result of membrane reorganization
upon light triggered photolysis of membrane embedded 4 is hard
to conclude given we persistently observed only very small
populations of DOPC:4 liposomes (prior to light activation) by
cryoTEM. Importantly, however, any potential membrane reor-
ganization did not lead to disruption of liposome integrity and
liposome encapsulated and membrane impermeable contents
remained within the aqueous core of the liposome before, during
and after light activation (Supplementary Fig. 6).

Following microinjection in the embryonic zebrafish (54–56 h
post fertilization, hpf) and prior to light activation, DOPC:4
liposomes (formulated at 1:1 molar ratio in all subsequent
experiments) were freely circulating and did not significantly
interact with RES cell types of the embryonic fish, namely blood
resident macrophages and scavenging endothelial cells (SECs), at
1 hpi (Fig. 4d–f,h–j). Indeed, the exponential circulation lifetime
decay of DOPC:4 liposomes in the embryonic fish was very
similar to that previously observed for 100 nm liposomes based

on the lipid composition of Myocet®25. Myocet® (lipid composi-
tion: POPC:cholesterol; 55:45) is a clinically approved liposomal-
doxorubicin formulation designed to evade the RES, circulate
freely and passively target solid tumors via the enhanced
permeability and retention (EPR) effect48. In humans, the
circulation half-life of Myocet® is 2.5 h49. In this case, like
Myocet®, a significant fraction of photoactive DOPC:4 liposomes
remained in circulation >4 hpi (Fig. 4g and Supplementary Figs. 7
and 8 for individual images used for quantification). Upon in situ
irradiation (15 min, 370 ± 7 nm, ~90 mW cm−2, ~2.4 J per
embryo, 1 hpi) of the entire zebrafish embryo, however, a
dramatic change in liposome fate was observed, whereby
DOPC:4→ 3 liposomes were now visible as immobile punctae
associated with all blood vessel walls (Fig. 4k–m) and largely
removed from the circulating blood flow (Fig. 4g). The
biodistribution of DOPC:4→ 3 liposomes matched that of
cationic DOPC:3 (1:1) liposomes (Fig. 3b, c), confirming
successful photoswitching of DOPC:4 liposome surface charge
—from (near) neutral to cationic—in situ and in vivo. In contrast,
the biodistribution of freely circulating DOPC liposomes (100%
DOPC content) was unaffected following identical irradiation
procedures, confirming that the observed changes in biodistribu-
tion require the combination of both circulating DOPC:4
liposomes as well as applied UV light (Supplementary Fig. 9).
All UV irradiated embryos used in this study continued to
develop normally without observable phenotypic abnormalities
up to 6 dpf, confirming the suitability of this animal model for
photoactivation studies50. Furthermore, any small potential
increase in the temperature of the embryo as a result of UV
irradiation will likely be counteracted by the remarkable resilience
of the zebrafish embryo (from 1dpf) to heat stress51.

Having shown photoswitching of liposome surface charge
occurs within seconds (Fig. 4b), we next investigated the tissue
level fate of i.v. administered DOPC:4 liposomes, within
the embryonic zebrafish, in real time (imaging rate: 1 frame
per second, fps), before and during light-triggered surface charge
switching. For this, a custom built, two-photon microscope was
equipped with a 370 ± 7 nm LED, enabling alternating UV
irradiation (95% UV duty cycle, Fig. 5a) and two-photon
fluorescence imaging (see Supporting Information for setup,
Supplementary Figure 10). For these experiments, we focused on
a single plane (200 µm × 200 µm) of view which included both the
dorsal aorta (DA) and posterior cardinal vein (PCV) to ensure
potential liposome selectivity (venous vs. arterial endothelium)
could be observed (Fig. 5b). From the acquired movie, two
fundamental and competing interactions of cationic nanoparticles
could be simultaneously observed, namely non-specific adsorp-
tion of liposomes to endothelial cells (ECs) and liposome
aggregation in circulation (Supplementary Movie 1 and Fig. 5d
for selected individual frames). Non-specific adsorption of
liposomes to ECs was observed less than a minute after light
activation, evident as emerging punctae of immobile fluorescence
adhered to all blood vessel walls within the plane of view. The
number of immobile punctae increased over time, and while there
was no apparent selectivity for arterial or venous blood vessels,
the largest number of liposomes were associated with the walls of
the intersegmental vessel (ISV) connected to, and extending
dorsally from, the PCV (Fig. 5d). ISVs are narrower blood vessels
than both DA or caudal vein (CV) and the blood flow velocity
within this vessel is reduced52. As a result, circulating cationic
liposomes will spend an increased residence time within this
vessel, compared to larger DA or CV blood vessels, under reduced
shear stress53,54. This, in turn, presumably increases the
propensity of cationic liposomes to adhere to the anionic,
heparan sulfated endothelium of the ISV through direct
electrostatic interactions.
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fluorescent lipid probe, DOPE-Atto633, for visualization. f Tissue level organization of macrophages and fluoHA-labelled SECs within the tail region of an
mpeg1:mCherry embryo (2 dpf). g Quantification of DOPC:4 liposome levels in circulation based on mean liposome fluorescence intensity in the lumen of
the DA at 0.5, 1, 2, 4 and 24 hpi (measure of centre: median; error bars: standard deviation); n= 6 (0.5 and 1 hpi) and n= 3 (2, 4 and 24 hpi) individually
injected embryos per formulation per time point (see Fig. S7 for individual images). h–j Whole embryo and tissue level views of DOPC:4 liposome
biodistribution in kdrl:GFP embryos, prior to UV irradiation, 1 hpi. k–mWhole embryo and tissue level views of DOPC: 4→ 3 liposome biodistribution in kdrl:
GFP embryos, directly after in situ irradiation (15 min, 370 ± 7 nm, ~90mWcm−2, ~2.4 J per embryo), ~1.5 hpi. Liposomes (h–m) contained 1 mol%
fluorescent lipid probe, DOPE-LR, for visualization. Scale bars (d–m): 200 μm (whole embryo); 50 μm (tissue level).
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Competing with the non-specific adsorption to the blood vessel
walls, cationic liposome aggregation in circulation was also
observed following light activation. This could be directly
visualized as increasingly large and bright fluorescent particles
passing through the plane of view in circulation (Supplementary
Movie 1 and Fig. 5d, e). Aggregation of cationic liposomes is
caused by the adsorption of anionic serum proteins/macromo-
lecules to the newly revealed cationic nanoparticle surface55,56,
and we have recently shown cationic liposomes adsorb sig-
nificantly more serum proteins than anionic or neutral liposomes
in vitro57. Adsorption of this protein corona will not only mask
underlying cationic surface charge (preventing direct electrostatic
interaction with blood vessel walls) but will induce liposome
aggregation and concomitant uptake in blood resident macro-
phages. Indeed, over the course of this research and in the
absence of light activation, we have observed variable, low level
uptake of DOPC:4 liposomes within blood resident macrophages,
predominantly within the CHT of the embryo. This may be due
to incidental light exposure during experimental and microscopy
procedures, partial photolysis and subsequent aggregation of
liposomes in circulation, followed by irreversible recognition and
clearance via the RES.

These simultaneous and competing interactions of cationic
liposomes in vivo can be explained by the contrasting fates of
DOPC:4→ 3 liposomes as they transition through various
intermediate charged states, from (near) neutral to cationic
surface charge. In particular, during the light triggered
transition of DOPC:4 liposome surface charge, an intermediate
physicochemical state, highly prone to blood-resident macro-
phage uptake (i.e. compositionally similar to DOPC liposomes
containing 10 mol% 3), is, at least momentarily, inevitable
(Fig. 6a). The extent of macrophage uptake versus non-specific
adsorption to ECs, should, therefore, be dependent on the
residence time of partially activated DOPC:4→ 3 liposomes in
circulation. To test this hypothesis, we systematically reduced
the applied UV light dose (from 75% to 10% UV duty cycle;
1.8–0.24 J per embryo, respectively) to extend the time taken for
DOPC:4 liposomes to transition from a (near) neutral to
cationic surface charge in situ and in vivo (Fig. 6b–i). In this
way, the biodistribution of DOPC:3 liposomes, containing
varying mol% 3 (Fig. 3b–i), could be replicated. Most striking,
at 25% applied light (0.6 J per embryo), DOPC:4→ 3 liposomes
were predominantly taken up by blood resident macrophages
within the CHT of the embryonic zebrafish, analogous to (near)
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neutral DOPC:3 liposomes (10 mol% 3) (Fig. 6d, e, j–l). This
result confirmed that an extended residence time of only
partially activated DOPC:4→ 3 liposomes leads to irreversible
clearance of liposomes by the RES.

Light-triggered liposomal cell uptake and payload delivery.
Next, we investigated the intracellular fate of DOPC:4 liposomes
following in situ and in vivo surface charge switching. To verify
endocytosis of DOPC:4→ 3 liposomes, a pH-sensitive fluorescent
lipid probe (DOPE-pHrodo, 1mol%) was incorporated within the
DOPC:4 liposome membrane. The fluorescence intensity of
pHrodo increases >100-fold in mildly acidic environments (e.g. late
endosomes/lysosomes, pH< 6). To accurately assess evolving
pHrodo fluorescence, wild type (AB/TL) embryos were used to
avoid potential fluorescence bleed through from transgenic fluor-
escent markers. Following i.v. injection and in the absence of light,
pHrodo-associated fluorescence was observed in a small number of
cells within the CHT of the embryonic fish (Fig. 7a, b). While the
absence of cell specific (transgenic) fluorescent markers does not
allow for definitive identification of this cell type, its location within
the CHT and rounded morphology (delineated by pHrodo fluor-
escence), is characteristic of low-level phagocytic uptake of DOPC:4
(→3) liposomes within blood resident macrophages, as previously
mentioned. Following in situ light irradiation, however, increasing
pHrodo fluorescence, primarily associated with SECs, was observed
over time (up to 5 hpi) (Fig. 7c). This timeframe suggests a sig-
nificant fraction of DOPC:4→ 3 liposomes are not only endocy-
tosed by SECs but remain within endosomes during trafficking and
maturation to late endosomes/lysosomes. This would be consistent
with the very high lysosomal activity of SECs, whose primary

physiological role in the body is to recognize, clear and breakdown
endogenous and pathogenic waste from the blood58. It is also
possible that a fraction of endocytosed, cationic DOPC:4→ 3
liposomes, within SECs, macrophages or other ECs, manage to
successfully escape endosomes prior to the first imaging time point.
Within the cytosol and beyond the acidic endosome micro-
environment, potential intracellular fluorescence associated with
pHrodo probes would not be visible.

Having confirmed endocytosis of light-activated DOPC:4→ 3
liposomes in vivo, we finally investigated the in vivo fate of
liposome encapsulated and membrane impermeable payloads,
following light triggered surface charge switching. For this, self-
quenching concentrations of water soluble, sulforhodamine B
(SR-B, 10 mM) were passively encapsulated within DOPC:4
liposomes. As for empty liposomes, the morphology and size of
the SR-B filled DOPC:4 liposomes did not significantly change
following irradiation (Fig. 7d). To monitor the fate of liposome
encapsulated SR-B in vivo, we again performed alternating UV
irradiation and two-photon fluorescence imaging (1fps) within
live embryos (Fig. 7e–g and Supplementary Movie 2). In this case,
we focused on a single plane (200 µm × 200 µm) of view to
include the DA, CHT and CV. This region of the embryo includes
a significant population of SECs, as well as blood resident
macrophages, within which DOPC:4→ 3 liposomes extensively
accumulate. From the acquired movies, SR-B filled DOPC:4
liposomes, prior to light activation, appeared freely circulating,
evident as homogenous, low level (quenched) SR-B fluorescence,
confined within the zebrafish vasculature. Upon light triggered
activation (95% UV duty cycle, 2.3 J per embryo) and surface
charge switching, however, localized and de-quenched SR-B
could be seen as increasingly bright, fluorescent punctae,
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associated with all blood vessel walls but most prevalent
throughout the sinusoid-like network of CHT blood vessels.
Again, it is likely that DOPC: 4→ 3 liposome association and
uptake within the CHT is enhanced due to the reduced blood flow
velocities and sheer stresses experienced by liposomes within this
sinusoidal-like tissue. Likewise, the co-existence of immobile
(arrows, Supplementary Movie 2) as well as highly mobile
(arrowheads, Supplementary Movie 2) SR-B fluorescent punctae
is again indicative of intracellular SR-B delivery to both ECs
(immobile) and blood resident macrophages (mobile). As a
representative membrane impermeable, small molecule cargo, the
successful intracellular delivery of liposome-encapsulated SR-B
serves as promising evidence that this proof-of-concept technol-
ogy will likely be transferable to other, therapeutically relevant
(and membrane impermeable) payloads.

Discussion
The discovery of simple and effective targeted drug delivery
systems should be preceded by a thorough understanding of the
nano-bio interactions involved59. Here, we exploit the well
characterised and contrasting fates of differently charged nano-
particles in vivo, however, our ability to rationally design a system
that is both simple and effective has relied on comprehensive
in vivo interrogation of all aspects of this technology (i.e. different
light dosages, surface charge densities, interactions with the RES).
To this end, the embryonic zebrafish has provided an invaluable
pre-clinical in vivo screening platform, offering unprecedented
opportunities to assess, analyse and optimise nanoparticle beha-
viour over an entire live organism (i.e. visualising total injected
doses), at cellular resolution and in real time42,60,61. Furthermore,
the presence and conserved function of key RES cell types enables
predictive assessment of fundamentally important in vivo clear-
ance mechanisms of nanoparticles25,43. It is important to stress
here, however, that these predictions are strictly qualitative. Given
the significant differences in relative numbers of RES cells (i.e.
SECs vs blood resident macrophages), RES tissue size and orga-
nization, quantitative predictions (based on observations in the
embryonic zebrafish) of nanoparticle clearance by the mamma-
lian RES are not yet possible. As such, the embryonic zebrafish
should not replace experiments in larger (mammalian) models
but, instead, should be used to guide and optimize nanoparticle
design prior to first injections in higher vertebrates.

At a fundamental level, the ability to visualise the formation of
a cationic nanoparticle in situ has revealed, for the first time, the
co-existence of two competing interactions of cationic nano-
particles occurring simultaneously in vivo, namely non-specific
adsorption to blood vessel walls and opsonisation in circulation.
This observation not only highlights the importance of con-
sidering the fate of all intermediate physicochemical states of
stimuli-responsive nanoparticles as they transition from A to B,
but, more generally, suggests that the fate of any given cationic
nanoparticle is dependent on its surface charge density. Our data
indicates that above a certain cationic surface charge threshold,
i.v. administered nanoparticles will predominantly stick to (and
be internalised by) endothelial cells, particularly in blood vessels
with reduced blood flow velocity, while below this charge
threshold, nanoparticles will tend to aggregate in circulation and
be subsequently cleared by the RES. In our experience, i.v.
administered liposomes with a measured surface charge >20 mV
will tend to stick to endothelial cells, whereas those with a surface
charge between +5 and +20 mV will tend to aggregate in cir-
culation. Importantly, while we believe a threshold value will
apply to all nanoparticle classes, this will likely vary depending on
the surface chemistry and self-assembly of any individual nano-
particle and should be determined on a case-by-case basis.

In terms of targeting, the exclusive use of light as trigger for-
goes any requirement for exploitable differences between target
and non-target tissues (e.g. passive targeting of solid tumours via
the EPR effect). As such, this liposome technology has the
potential to be transferable to any light accessible tissue. Given
the poor tissue penetration and significant potential cytotoxicity
of using short wavelength UV-A light62,63, however, we would
aim future efforts at replacing o-nitrobenzyl chemistries with
photocages sensitive to longer wavelength light or two-photon
activation. In this vein, a family of zwitterionic BODIPY-derived
photocages have recently been reported that can be efficiently
cleaved using single photon visible or NIR light39. In theory, these
photocages, connected to a cholesterylamine lipid anchor and
incorporated within DOPC liposomes should not affect the sur-
face charge and, therefore, the biodistribution of photoactive
liposomes. In addition, light can be focused with precise spatial
resolution. This has been exemplified by the clinical application of
Visudyne®—a liposome-photosensitizer (verteprofin) formula-
tion, administered intravenously and indicated for the photo-
dynamic therapy of age-related macular degeneration (AMD)64.
In this case, non-thermal, red light (689 nm) is applied to the eye
of a patient to trigger localised therapy. Unfortunately, given the
small size (2–3 mm in length) of the zebrafish embryo and the
practical difficulties in ensuring no incident or scattered UV-A
light reached the dark side of the agar embedded embryo, we have
been unable to demonstrate localised liposome surface charge
switching and intracellular uptake within the embryonic fish in
this study.

In conclusion, we describe a liposome technology that suc-
cessfully couples complete external control of in vivo liposome
targeting together with the transport of encapsulated and mem-
brane impermeable cargos across cell membranes. While these
combined features are unique in the context of stimuli-responsive
drug delivery systems (reviewed in refs. 65,66), including those for
which charge switching is central to function (reviewed in ref. 67),
the stand out feature of these liposomes is undoubtedly their
compositional simplicity. The last decades have seen the
empirical design of increasingly more complex nanomedicine
designs, but it is now generally acknowledged that this approach
has impeded rather than promoted the clinical translation of new
nanomedicines59,68–70. In contrast, clinically approved and tar-
geted nanomedicines tend to be compositionally simple49, with
designs based on robust physicochemical principles (e.g. PEGy-
lation to improve circulation lifetimes)71 and well characterised
and exploitable, albeit now clinically questionable72,73, biological
phenomena (e.g. the EPR effect of select solid tumours)74. Fol-
lowing these principles, we have designed a simple and effective
proof-of-concept liposome technology, composed of just two
lipids, based on, and preceded by, a thorough understanding of
both the physicochemical and in vivo nano-bio interactions
involved. As such, it is our hope that this study, and in particular
the tools and methods employed, will expedite a transition from
the empirical design of increasingly complex nanomedicines to
the rational design of new, simple and effective nanomedicines75.

Methods
Materials and reagents. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-
dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rhodamine-PE) were
purchased from Avanti Polar Lipids (Alabaster, AL, US). 1,2-Dioleoyl-sn-glycero-
3-phosphoethanolamine-Atto 633 was purchased from ATTO-TEC GmbH (Ger-
many). Additional DOPC was purchased from Lipoid GmbH. Cholesterol and
sulforhodamine B (SR-B, sodium salt) were purchased from Sigma Aldrich.
pHrodo™ Red, succinimidyl ester (pHrodo™ Red, SE) was purchased from Thermo
Fisher Scientific. DOPE-pHrodo was prepared through conjugation of DOPE with
pHrodo succinimidyl ester under basic conditions, followed by column chroma-
tography76. Fluorescein-labeled hyaluronic acid (fluoHA) was prepared through
conjugation of hyaluronic acid (100 kDa) with fluorescein isothiocyanate (Isomer I,
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Sigma-Aldrich) under mildly basic conditions, followed by ethanol precipitation77.
All other chemical reagents were purchased at the highest grade available from
Sigma Aldrich and used without further purification. All solvents were purchased
from Biosolve Ltd. For anhydrous reactions, solvents were dried over activated
molecular sieves (3 Å, 4–8 mesh). HEPES buffer: HEPES (10 mM) adjusted to pH
7.4 with 1 M aqueous NaOH. Ultrapure MilliQ® water, purified by a MilliQ
Advantage A10 water purification system from MilliPore, was used throughout.

Chemical synthesis and characterization. TLC analysis was performed using
aluminium TLC plates, coated with 0.25 mm silica gel 60 F254 from Merck KGaA.
Plates were visualized by UV absorption at 254 nm and/or staining with KMnO4

solution. Flash-column chromatography was performed using silica gel 60 (particle
size of 40-63 µm) from Merck KGaA. 1H and 13C NMR spectra were acquired
using an Avance DPX-300MHz or AV-400 MHz NMR spectrometer from Bruker
at room temperature. Chemical shifts are given in ppm with tetramethylsilane
(TMS) or residual solvent (CDCl3: 7.26 ppm for 1H NMR and 77.2 ppm for 13C
NMR) as internal standard. Signal multiplicity is described with common abbre-
viations: singlet (s), broad singlet (sbr), doublet (d), triplet (t), quartet (q), multiplet
(m). Coupling constants are given in Hz. See Supplementary Information for
detailed chemical synthesis protocols and Supplementary Figs. 12–18 for all 1H
NMR spectra. High-resolution mass spectrometry (HRMS) were recorded on a
Thermo Scientific LTQ Orbitrap XL. UV absorption spectra were measured using a
Cary 3 Bio UV-vis spectrometer (Cary WinUV software, version 3.0, Agilent),
scanning from 200 to 550 nm at 1 nm intervals. Scan rate: 120 nmmin−1.

Light source and actinometry. A commercially available 375-nm LED (Maximum
measured wavelength= 370 nm, FWHM= 13.4 nm; H2A1-H375-S, Roithner
Lasertechnik, Vienna, Austria), driven by a custom-built LED driver (I= 350 mA),
was used as UV light source in all cases. The optical power density of the LED light
source was determined using an integrating sphere setup. For this, the LED was
positioned precisely 5 cm above the 6.0 mm aperture of an integrating sphere
(AvaSphere-30-IRRAD, Avantes, Apeldoorn, The Netherlands). This sphere was
connected by an optical fiber (FC-UV600-2, Avantes) to a UV-Vis spectrometer
(AvaSpec-ULS2048L StarLine CCD spectrometer, Avantes). The setup was cali-
brated using a NIST-traceable calibration light source (Avalight-HAL-CAL-ISP30,
Avantes). The LED was switched on, and allowed to warm up for 1 min, before a
spectrum was recorded (see Supplementary Fig. 11 for measured UV-Vis spec-
trum). The obtained spectrum was integrated to obtain the total incident optical
power density (in mW cm−2). Light dosages (J per embryo) were obtained by
multiplying the optical power density by the irradiation time. Average embryo
surface area used was 0.03 cm2 (0.1 × 0.3 cm). Precise irradiation setups are detailed
within experimental descriptions.

Liposome preparation. All liposomes (without encapsulated payloads) were for-
mulated in either (deionized) H2O or 10 mM HEPES buffer at a total lipid con-
centration of 4 mM. Individual lipids, as stock solutions (1–10 mM) in chloroform,
were combined to the desired molar ratios and dried to a film, first under a stream
of N2 then >1 h under vacuum. Large unilamellar vesicles were formed through
extrusion above the Tm of all lipids (room temperature, Mini-extruder, Avanti
Polar Lipids, Alabaster, US). Hydrated lipids were passed 11 times through 2 ×
400 nm polycarbonate (PC) membranes (Nucleopore Track-Etch membranes,
Whatman), followed by 11 times through 2 × 100 nm PC pores. All liposome
dispersions were stored at 4 °C. All liposomes were stable for at least 1 month (in
the dark).

Size and zeta potential measurements. Particle size and zeta potentials were
measured using a Malvern Zetasizer Nano ZS (software version 7.13, Malvern
Panalytical). For DLS (operating wavelength = 633 nm), measurements were
carried out at room temperature in water or HEPES (10 mM) buffer at a total lipid
concentration of ~100 μM. Zeta potentials were measured at 500 μM total lipid
concentration, using a dip-cell electrode (Malvern), at room temperature. For
liposomes formulated in water, aq. NaCl was added to the liposome solution to a
final concentration of 10 mM NaCl before zeta potential measurement. All
reported DLS measurements and zeta potentials are the average of three mea-
surements. For DLS and zeta potential experiments monitoring changes following
light activation, liposomes were irradiated (370 ± 7 nm, 202 mW cm−2) in quartz
cuvettes with the LED mounted at a distance of 1 cm from the sample. The same
liposome sample was used for time course DLS and zeta potential measurements.

Cryogenic transmission electron microscopy. Liposomes (3–6 μL, 4 mM total
lipid concentration) were applied to a freshly glow-discharged carbon 200 mesh Cu
grid (Lacey carbon film, Electron Microscopy Sciences, Aurion, Wageningen, The
Netherlands). Grids were blotted for 1, 2 or 3 s at 99% humidity in a Vitrobot
plunge-freezer (FEI VitrobotTM Mark III, Thermo Fisher Scientific). Cryo-EM
images were collected on a Talos L120C (NeCEN, Leiden University) operating at
120 kV. Images were recorded manually at a nominal magnification of ×17,500 or
×36,000 yielding a pixel size at the specimen of 5.88 or 2.90 ångström (Å),
respectively. For cryoTEM images monitoring changes following light activation,
liposomes were irradiated (15 mins, 370 ± 7 nm, 202 mW cm−2) in quartz cuvettes

with the LED mounted at a distance of 1 cm from the sample. The same liposome
sample was used for before and after UV.

Sulforhodamine-B encapsulation and characterization. DOPC:4 (1:1) lipid films
(10 mM total lipids) were hydrated with HEPES buffer (1 mL) containing
Sulforhodamine-B (SR-B) (10 mM) and formulated by extrusion, as described for
empty liposomes. Un-encapsulated SR-B was removed by size exclusion chroma-
tography (illustraTM NAPTM SephadexTM G-25 DNA grade pre-made columns
(GE Healthcare)) following the supplier’s instructions. Eluted liposomes with
encapsulated SR-B were diluted 2.5x during SEC (to ~4 mM [total lipid]) and
injected without further dilution.

Contents leakage assay. SR-B leakage from DOPC:4 (1:1) liposomes, before and
after light activation, was monitored using a TECAN Infinite M1000 Fluorescence
Plate Reader and were performed in 96-well plates (PP Microplate, solid F-bottom
(flat), chimney well) at room temperature. Final experimental volume in each well
was 200 μL. To monitor SR-B leakage (and dye de-quenching) during photo-
activation, fluorescence emission (excitation: 520 nm; emission: 580 nm) was
measured every 20 s for 600 s, the sample was then irradiated (20 mins, 370 ± 7 nm,
202 mW cm−2) in a quartz cuvette, with the LED mounted at a distance of 1 cm
from the sample, returned to the 96-well plate and fluorescence emission measured
for a further 10 mins. After this, Triton X-100 (10 μL, 1% w/v) was added to the
sample well (10 s agitation) to solubilize liposomes and release any remaining
encapsulated SR-B.

Zebrafish husbandry, injections and irradiation setup. Zebrafish (Danio rerio,
strain AB/TL) were maintained and handled in accordance with guidelines from
the European Convention on the protection of vertebrate animals used for
experimental and other scientific purposes78, and in compliance with the directives
of the local animal welfare committee of Leiden University. Fertilization was
performed by natural spawning at the beginning of the light period, and eggs were
raised at 28.5 °C in egg water (60 μg mL−1 Instant Ocean sea salts). The following
previously established zebrafish lines were used: Tg(kdrl:eGFP)s84379, Tg(mpeg1:
GFP)gl2280, Tg(mpeg1:mCherry)gl2380. Liposomes were injected into 2-day old
zebrafish embryos (52-56 hpf) using a modified microangraphy protocol81.
Embryos were anesthetized in 0.01% tricaine and embedded in 0.4% agarose
containing tricaine before injection. To improve reproducibility of micro-
angiography experiments, 1 nL sample volumes were calibrated and injected into
the sinus venous/duct of Cuvier. A small injection space was created by penetrating
the skin with the injection needle and gently pulling the needle back, thereby
creating a small pyramidal space in which the liposomes were injected. Successfully
injected embryos were identified through the backward translocation of venous
erythrocytes and the absence of damage to the yolk ball. For embryo irradiation,
the UV source (370 ± 7 nm) was positioned approximately 1.5 cm above the agar-
embedded embryo (~90 mW cm−2). 15 min total irradiation time (~2.4 J per
embryo light dose) was used in all cases of embryo irradiation followed by confocal
imaging. For experiments monitoring changes in liposome biodistribution fol-
lowing light triggered surface charge switching, the same embryo was imaged
before and after UV irradiation.

Confocal image acquisition and quantification. Zebrafish embryos were selected
according to successful injections and randomly picked from a dish of
20–60 successfully injected embryos. At least four zebrafish were visualized and the
most representative zebrafish was imaged by a Leica TCS SPE or SP8 confocal
microscope (Leica Application Suite X software, version 3.5.5.19976, Leica
Microsystems). Confocal z-stacks were captured using a 10x air objective (HCX PL
FLUOTAR), a ×40 water-immersion objective (HCX APO L) or 63x water-
immersion objective (HC PL APO CS). For whole-embryo views, 3 overlapping z-
stacks were captured to cover the complete embryo. Laser intensity, gain and offset
settings were identical between stacks and experiments. Images were processed and
quantified using the Fiji distribution of ImageJ82,83. For quantification of liposome
circulation lifetime decay, at least three individual embryos (biological replicates)
were imaged using confocal microscopy at each time point. Quantification (not
blinded) was performed on ×40 confocal z-stacks (optical thickness of 2–3 µm per
slice) using methods and ImageJ macros previously described25. Median values are
reported.

Two-photon setup and image acquisition. A custom-built two-photon multifocal
microscope was used for simultaneous UV irradiation and two-photon fluorescent
imaging (see Supplementary Fig. 10 for schematic of the multiphoton microscope
setup). A femtosecond pulsed Ti:Sa laser set at 830 nm (Coherent, Chameleon
Ultra) was used as excitation source. Multifocal illumination of the sample was
achieved by a diffractive optical element (DOE, custom made by Holoeye) which
splits the laser beam into an array of 25 ×25 foci. A virtual light sheet was created
by spiral scanning the foci within the 50 ms exposure time of the camera using a
fast-scanning mirror (Newport, FSM-300-1)84. The virtual light sheet was focused
and emission photons collected by a 25×, high-NA water-dipping objective (Nikon,
CFI75 Apochromat 25XC W). The objective was positioned onto a piezo stage (P-
726 PIFOC, PI) for z-stack measurements. Emission light was separated from the
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excitation path by a dichroic mirror (700 dcxr, Chroma). After passing through a
700 nm short pass filter, emission photons were detected with a 2048 × 2048 pixel
sCMOS camera (Hamamatsu, Orca Flash 4.0 V2). Emission images were taken at
the start of the experiment with a white LED. After the emission images, the UV-
LED was installed at the location of the white LED. The UV LED was positioned
~1.5 cm (~90 mW cm−2) above the sample and on/off-times were timed by the
same data acquisition card (USB-6226, National Instruments) which triggered the
camera. Simultaneous UV irradiation and two-photon fluorescent imaging was
performed 1 h post injection. To ensure stability, embryos were imaged for 15 min
before the measurement. Once embryos were stable, images were taken every 1 s
for 5 min. After 5 min the UV lamp was turned on and switched off only during
camera exposure. Two-photon microscopy data was processed using custom-built
LabVIEW software (version 2018 SP2, National Instruments).

Statistics and reproducibility. All experiments presented in the main manuscript
were repeated at least twice with the exception of Fig. 6b,c. All replicate experi-
ments were performed using freshly prepared liposomes. Unless clearly stated in
the manuscript text (e.g. varying macrophage uptake prior to UV activation), all
replicate experiments were successful and confirm the presented data. All experi-
ments presented in Supplementary Information were repeated at least twice, with
the exception of Supplementary Figs. 1 and 9. All replicate experiments were
performed using freshly prepared liposomes. For all experiments performed in
embryonic zebrafish, at least four embryos were randomly selected (from a pool of
>20 successfully injected embryos) and imaged (low resolution microscopy). Unless
clearly stated in the manuscript text (e.g. varying macrophage uptake prior to UV
activation), all imaged embryos showed consistent results and confirmed the
presented data. From these four embryos, one was selected for high resolution,
confocal microscopy. No statistical analysis is performed in this work.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this paper are available from the corresponding authors
upon reasonable request. Source data (raw confocal z-stacks and collated data as single Excel
sheet) underpinning the data presented in Fig. 4g have been deposited within the public
image database, fighare.com (https://doi.org/10.6084/m9.figshare.12387629). Source data are
provided with this paper.
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