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General Introduction
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Liver cirrhosis, the second phase in the fibrosis-cirrhosis-hepatocellular carcinoma (HCC) 
cascade, is the fourth most common cause of death in Europe (170.000 deaths per year) and 
the 14th worldwide (>1 million deaths per year), with an expected increasing incidence in 
the nearby future1,2. Cirrhosis is becoming a major health problem and therapeutics directly 
targeting the process of liver fibrogenesis, thereby preventing the progression of the disease 
in the fibrosis-cirrhosis-HCC cascade, are not yet available.

Aetiological factors that can cause cirrhosis include hepatitis viruses (B, C and D), chronic 
alcohol intake (alcoholic liver disease, ALD), auto-immune hepatitis (AIH), drug-induced liver 
injury (DILI), genetic disorders (like α1-antitrypsin deficiency, Wilson disease and hereditary 
haemochromatosis), obesity and diabetes mellitus (non-alcoholic fatty liver disease, NAFLD), 
and cholestatic diseases (like primary biliary cholangitis, PBC, and primary sclerosing cholangitis, 
PSC)2-5. The prevalence of these aetiologies is region related2,6-8. In the Western world, liver 
cirrhosis mostly evolves in a background of alcohol intake (ALD) and lifestyle-induced NAFLD7,9,10. 
Due to the increasing prevalence of overweight and diabetes over the past decades, NAFLD 
has become an endemic cause of liver disease9,10. In Asia and sub-Saharan Africa, cirrhosis is 
mostly induced by viral hepatitis B or C infection6,7. In general, these aetiological factors lead 
to the onset of liver fibrogenesis and eventually to fibrosis and cirrhosis3,4,11. Liver fibrogenesis 
starts by damaged and apoptotic hepatocytes which trigger the proliferation and activation of 
liver-resident stellate cells3,4,11. These activated stellate cells differentiate into myofibroblasts 
and subsequently start to secrete excessive amounts of extracellular matrix (ECM) leading 
to fibrogenesis (Figure 1). The liver has an efficient regenerative capacity to overcome acute 
damage induced by injuring stimuli such as toxins, viral infection, auto-immunity, cholestasis, 
metabolic disorders, trauma or surgical interventions12-16. In response to these acute injuring 
stimuli, stellate cells become activated and the liver starts regenerative cascades that promote 
survival and proliferation of endogenous liver cells. At the end of these regenerative processes, 
the activated stellate cells are silenced and shift to their inactivated state14-16. When the liver 
is chronically challenged, despite some regeneration, the liver will be unable to recover in 
the period between the injuring insults. This continuous fibrogenesis leads to diminished 
liver function and eventually to fibrosis and finally cirrhosis4,11.

In a healthy steady-state situation, stellate cells reside in the space of Disse near the portal 
triads17. The space of Disse is the area between the hepatocytes and the liver sinusoids, with the 
fenestrated endothelium in between. During liver fibrogenesis, the activated and proliferating 
stellate cells migrate and populate these spaces where they secrete ECM components and 
form the so-called septa that eventually bridge the entire space between portal triads (porto-
portal septa), between centrilobular veins (centro-central septa), and between portal triads 
and centrilobular veins (porto-central septa). In the clinic, the produced ECM deposition is 
used to assess the severity of liver fibrosis18. Besides these myofibroblasts and their secreted 
ECM components, the septa are also filled with invading Kupffer- and T-cells18. After a long 
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period of sustained fibrogenesis, the blood-flow through the liver becomes hampered 
which leads to fewer nutrients and oxygen supply and subsequently more cell death in the 
liver which eventually enhances the ongoing fibrogenesis. During the last phase, the liver 
will fail to perform its many functions, which indicates end-stage liver cirrhosis. During this 
final stage there is an increased risk of decompensated cirrhosis, characterized by variceal 
bleeding, ascites, hepatic encephalopathy, and multi-organ failure. Furthermore, cirrhosis 
also predisposes towards development of hepatocellular carcinoma (HCC)19,20.

Treatment of liver fibrosis and cirrhosis is limited to removal of the injuring stimuli, such as 
anti-viral therapies or refraining from alcohol consumption21,22. For example, sustained response 
to antiviral therapy in patients with HBV- or HCV-induced fibrosis can lead to the reversal of 

 

Figure 1: Stellate cells during the induction and regression of liver fibrogenesis. In the healthy situation, quiescent 
stellate cells are involved in metabolic homeostasis, vaso-regulation and retinoid metabolism. Due to liver injuring 
stimuli, the stellate cells become activated and differentiate into myofibroblasts. This shift is accompanied by 
metabolic reprogramming, retinoid loss, increased ECM secretion, increased proliferation, and increased inflammatory 
signalling of stellate cells. Removal of the injuring stimuli may lead to the regression of fibrogenesis, which is 
initiated by myofibroblasts that become apoptotic or shift to their inactivated or senescent state. Reproduced from 
[Pathobiology of liver fibrosis: a translational success story, Y.A. Lee, M.C. Wallace, S.L. Friedman, 64(5):830-41 2014] 
with permission from the iIllustrator and BMJ Publishing Group Ltd11.
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the relative stage of fibrosis23,24. Due to this successful treatment strategy, less patients with 
HCV-induced cirrhosis are now in need of orthotopic liver transplantation (OLT)25. Nevertheless, 
OLT is currently the only curative treatment for end-stage cirrhosis with deteriorating function 
and decompensation9,21,24. Although OLT is performed for decades already, it is still a major 
intervention with substantial risks26,27. Furthermore, the possibility to perform OLT depends 
on the general condition of the patient and on donor availability28,29. Recently, hepatocyte 
and liver organoid transplantations were tested as alternative treatment strategies for end-
stage liver cirrhosis. These therapies were found to improve liver function and overall survival 
in mice with fulminant liver failure30,31. However, in mouse models for liver fibrosis, these 
treatments were ineffective in resolving fibrosis, and also showed low engraftment in the 
damaged liver. Altogether these observations indicate the need for alternative treatment 
strategies which preferably directly target fibrogenesis32-34.

Mesenchymal stromal cells (MSCs)
The applicability of MSC therapy is well studied in a variety of diseases, and research in this 
context made huge progress in the basic and functional characterisation of this cell type35-37. 
Some of these studies showed that MSCs have functional characteristics that might be applicable 
to reverse liver fibrogenesis33,37-39. MSCs can easily be isolated from different tissues such as 
adipose-, umbilical cord-, and bone marrow-tissue, and are identified by their ability to adhere 
to plastic, their ability to differentiate into osteoblasts, adipocytes and chondrocytes, and their 
expression of certain membrane markers37,38,40. The literature, however, is less unambiguous 
regarding the precise subset of these membrane markers41. In general, mouse-derived MSCs 
are known to express CD29 (β1-integrin), Stem Cell Antigen-1 (SCA-1) and CD44 but not the 
hematopoietic cell marker CD45 and endothelial cell marker CD3142,43. Endoglin (CD105) and 
vascular cell adhesion molecule 1 (VCAM-1, CD106) membrane expression are inconsistently 
used as identification markers for MSCs41,44-47.

MSCs exert multiple unique features that make them of interest for therapeutic use. One 
of these features is that resting MSCs are not expressing MHC class II proteins, unless 
activated, and are therefore not recognised and not rejected by the host immune system 
after transplantation48. Furthermore, MSCs can easily be expanded in vitro while maintaining 
their phenotype and can easily be cryopreserved, which makes it possible to treat multiple 
patients with the same MSC product38.

In relation to their potential therapeutic use, MSCs are known to be able to inhibit inflammatory 
responses, for example suppressing T-cell responses and promoting anti-inflammatory 
macrophage differentiation49,50. Because of these immune-regulatory properties, MSCs 
have already been used after kidney or bone-marrow transplantation for the prevention of 
rejection36,51,52. Furthermore, MSCs promote regeneration and repair of damaged tissue as, 
for example, observed in the MSC treatment of perianal fistulas in Crohns disease53. Tissue 
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repair, tissue regeneration and immune-responses are also important processes during the 
regression of liver fibrogenesis, and therefore the use of MSCs might be of interest as potential 
treatment strategy for liver fibrosis40.

Fibroblasts and MSCs have multiple phenotypic similarities which makes it somewhat difficult 
to distinguish these cell types. Literature suggests that MSCs, in contrast to fibroblasts, 
are positive for SCA-1 and that this marker therefore may be used to distinguish both cell 
types54. It is also suggested that fibroblasts and MSCs share some functional characteristics 
in immunomodulation and tissue regeneration54-57. However, the comparison in their ability 
to reverse liver fibrogenesis has not been studied before.

MSC therapy as potential therapeutic strategy to resolve liver fibrosis
Sakaida et al. published in 2004 in vivo studies showing that MSC treatment could inhibit and 
prevent the induction of liver fibrosis58. Since that time several in vivo and clinical studies 
assessed whether liver fibrosis and cirrhosis could be reversed by MSC therapy39,40,59-61. Most 
of these studies revealed positive and promising results showing that MSCs are able to 
effectively reverse liver fibrogenesis and thereby ameliorate fibrosis or cirrhosis. Furthermore, 
no serious side-effects or unsafety signals were observed in all these studies. In literature, 
different working mechanisms have been suggested. One of the suggested theories includes 
the ability of MSCs to stimulate the survival and proliferation of endogenous liver cells upon 
tissue damage (Figure 2). For example, Fouraschen et al. showed that livers that underwent 
a partial hepatectomy regenerate faster with MSC therapy12. It was suggested that MSCs 
express and secrete hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), 
insulin-like growth factor-1 (IGF-1), and stromal derived growth factor-1 (SDF-1) and thereby 
stimulate survival and proliferation of hepatocytes, that might explain the pro-regenerative 
capacities of MSC therapy12,62-66. In relation to the anti-inflammatory capacities of MSCs, it 
is thought that MSCs reverse fibrogenesis by suppression and/or redirecting of innate- and 
adaptive-immune responses (Figure 3). For example, MSCs are known to directly inhibit 
B- and T-cell proliferation, thereby inhibiting immune-responses. In relation to the innate 
immune system, MSCs are thought to secrete IGF-1 and interleukin-10 (IL-10) in response to 
the fibrogenic environment, which stimulates macrophage M2 polarization. M2 macrophages 
are anti-inflammatory and are able to silence some of the immune-reactions which occur 
during fibrogenesis63,67. Furthermore, MSCs are also known to suppress dendritic and NK cell 
function (Figure 3).

Another suggested mechanism is a direct anti-fibrogenic effect of MSCs by the release of 
cytokines such as HGF which directly targets the stellate cells and myofibroblasts. HGF is known 
to directly inhibit the activation and proliferation of stellate cells, thereby directly targeting 
the initiation steps of fibrogenesis. Furthermore, HGF is also known to silence myofibroblasts 
(activated stellate cells), thereby directly silencing fibrogenesis (Figure 2)37,66,68-70. MSCs are 
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even thought to be able to differentiate into hepatocytes or hepatocyte-like cells33,38. These 
differentiated cells exert similar functional properties as observed in normal hepatocytes, 
such as glycogen storage, low density lipoprotein (LDL) uptake, and the production of albumin 
and urea. However, while these hepatocyte-like cells, like hepatocyte organoids, may improve 
liver function, they show low engraftment in the liver and are also ineffective for induction 
of regression of ongoing fibrogenesis32-34. The precise working mechanisms of MSCs are still 
largely unknown, but probably encompass a combination of the above mentioned mechanisms 
that contribute to their efficacy in the observed reversal of fibrogenesis.

The importance of study design and MSC characterisation in MSC-related 
therapy
Despite the promising previously performed studies and the proposed mechanisms, the 
use of MSC therapy for liver fibrosis is still in its infancy. Most in vivo and clinical studies 
are using different study designs, which makes it difficult to compare these studies and to 
evaluate the overall efficacy of MSC therapy37,59,60,71. For example, the disease stage (fibrosis 
vs cirrhosis) or aetiological factors can be different between studies and these might affect 
the study outcome. Furthermore, the effectiveness of MSC therapy could also be affected 
by technical variables in the study design such as the dosage and -administration routes (i.e., 
local- vs intravenous- vs portal-administration) of MSCs 39,59-61,71. Moreover, many studies are 
using MSCs isolated from different sources, while it is known that adipose-, umbilical cord- 
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Figure 2: Potential therapeutic interactions of MSCs with endogenous liver cells for the treatment of liver fibrosis. 
Schematic overview of suggested working mechanisms of MSC therapy for the regression of liver fibrogenesis.
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and bone marrow-derived MSCs can behave differently, suggesting that the source of MSCs 
might also be important to induce the regression of fibrogenesis46,72. Furthermore, recently 
published studies revealed the possible existence of different subpopulations of MSCs which 
might explain the different findings in the literature43,45,46,71. With the currently used isolation 
protocols, a heterogeneous population of cells is isolated which are all positive for most of 
the known MSC characterisation markers46,73,74. For example, VCAM (CD106) and Endoglin 
(CD105) membrane expression are not used as a standard for MSC characterisation while 
literature already suggested that subpopulations identified by the presence or absence of 
these proteins might exert different functional properties44-46. Anderson et al. showed that 
Endoglin-negative MSC populations seem to have better immunoregulatory properties 
compared to Endoglin-positive MSC populations45. Other studies have shown that VCAM-
positive MSC subpopulations are more pro-regenerative and immunosuppressive compared 
to VCAM-negative MSC subpopulations44,46. These findings indicate that the use of different 
subpopulations of MSCs probably affect therapy efficacy. Therefore, these variables might 
explain the different and sometimes contradictive study outcomes, warranting further research 
to identify an optimal MSC therapy for liver fibrosis.

Figure 3: The putative interplay between MSCs and immune cells in the treatment of liver fibrosis. Schematic 
overview of suggested immunoregulatory mechanisms of MSC therapy that might lead to the regression of liver 
fibrogenesis. Reprinted from [Mesenchymal stromal cell therapy for liver Diseases, 68(6):1272-1285 2018, M. Alfaifi, 
Y.W. Eom, P.N. Newsome, S.K. Baik] with permission from Elsevier61.
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Animal models to study liver fibrogenesis
Various in vitro and in vivo models are being used to study the pathogenesis of liver fibrogenesis 
and to test alternative treatments to reverse this pathological process75,76. Acute and chronic 
liver fibrogenesis can be induced in vivo by genetic modifications, mechanical alterations or 
administration of hepatotoxic compounds75.

The latter is most frequently used since these models most resemble the human viral- or 
alcohol-induced liver diseases. Thioacetamide (TAA) and carbon tetrachloride (CCL4) are well-
known and frequently used hepatotoxic compounds to induce acute- and chronic- liver injury 
in mice and rats75,76. Hepatocytes metabolise both compounds into hepatotoxic metabolites 
that subsequently induce apoptosis of the hepatocytes and thereby initiate the induction of 
fibrogenesis75,76. The duration of the administration-period of these compounds correlates 
to the severity and progression of the disease. This correlation makes it is possible to study 
different disease stages within the same model system76,77. CCL4- and TAA-induced animal 
models for liver fibrosis have shown to be predictable and reliable but are also expensive 
and sometimes acute toxicities with subsequent animal death are observed. Moreover, it 
takes a relative long period to induce chronic liver fibrosis (6 weeks) or cirrhosis (12 weeks). 
Within these periods, animals are in need of frequent check-ups and regular administration 
of the toxic compounds, making these models time-consuming and labour-intensive75. These 
observations indicate that CCL4 and TAA rodent models are robust but less attractive for high 
throughput compound screening.

Zebrafish embryos, on the other hand, are small, less expensive, easy to maintain, have a 
short regeneration time and also showed huge physiological similarities with man78-80. In 
relation to that latter, livers of zebrafish are constructed with the same cells as in humans and 
show a further resemblances of 70%78,81. Moreover, zebrafish embryos are suitable for high 
throughput screening as observed in non-hepatic related studies80. However, the use of these 
embryos in respect to liver fibrogenesis is limited, and a detailed description of a zebrafish 
embryo model which resembles chronic human liver fibrogenesis had not been presented yet.

Some studies observed that acute liver injury in zebrafish embryos leads to increased collagen 
and Hand-2 expression, which is indicative for the activation of stellate cells, and for the onset 
of fibrosis82-85. Furthermore, similarities to the well-known human and mouse pathogenesis of 
liver fibrogenesis were observed when TAA or ethanol was administered to mature zebrafish86-88. 
The zebrafish embryo might thus be an attractive high throughput model system to study 
chronic liver fibrogenesis. The abilities of TAA and CCL4 to induce fibrogenesis in zebrafish 
embryos and the possible involved pathways have not yet been described. If these compounds 
induce fibrogenesis in zebrafish embryos with similar pathological mechanisms as observed 
in humans it would be a perfect high throughput screening model for the identification of 
alternative therapeutics to reduce fibrogenesis.
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Cripto-1: a new player in the fibrosis-cirrhosis–HCC cascade
As mentioned earlier, therapies directly targeting fibrogenesis are needed. In order to discover 
new targets for intervention, it is important to increase our basic understanding and knowledge 
of the fibrosis-cirrhosis-HCC cascade and the underlying pathological mechanisms.

In 2018, Zhang et al. described elevated Cripto-1 (Teratocarcinoma-Derived Growth Factor 
1; TGDF1) protein levels in blood of patients with HBV- and HCV-induced cirrhosis89. Cripto-1 
belongs to the epidermal growth factor-Cripto/frl/cryptic (EGF-CFC) family and is a GPI-
anchored signaling protein that is important during embryogenesis and believed to be 
silenced after birth90-92. Surprisingly, recent discoveries indicate that Cripto-1 is re-expressed 
postnatally in different neoplastic processes but a link to fibrogenesis was never observed90. 
Oncogenesis, embryogenesis, fibrogenesis, tissue repair, and tissue regeneration are different 
processes but also share multiple similarities including cell proliferation, cell survival, and cell 
differentiation14-16. Cripto-1 is known to be an important protein for these cellular features 
during embryogenesis and oncogenesis92,93. One might therefore speculate that Cripto-1 
expression during fibrogenesis could be involved in the survival, proliferation and plasticity 
of liver cells as protective mechanism to overcome the injuring stimuli. When this would 
be true it could imply a functional role for Cripto-1 in the fibrosis–cirrhosis-HCC cascade. 
Altogether, these observations warrant further research to disentangle the contribution of 
Cripto-1 in liver fibrogenesis, which in the future may contribute to the identification of new 
leads for antifibrotic therapy.

Cripto-1 in Hepatocellular carcinoma
Hepatocellular carcinoma is the second leading cause of cancer-related death worldwide94. 
HCC mostly arises in a background of cirrhosis in the last phase of the fibrosis-cirrhosis-HCC 
pathological disease course95,96. HCCs are known to be invasive and to have a high metastatic 
potential leading to poor prognosis of patients. The treatments for early and intermediate 
tumor stages include resection, OLT and/or minimally invasive image-guided therapies such as 
local ablation by trans-arterial chemoembolization (TACE) or radiofrequency ablation (RFA)97,98. 
For advanced tumor stages, systemic treatments such as Sorafenib and Regorafenib are being 
used98,99. However, these palliative systemic therapies can have substantial side-effects, are 
effective in only a minority of the patients and lead to an average survival benefit of only 6 
months98,100. Despite these different treatment strategies the overall patient prognosis for 
HCC remains poor due to tumor recurrence and non-response to therapy98.

Biomarkers for HCCs that correlate with tumor stage and which are able to predict the 
progression of the tumor could be of help in the early detection and treatment of HCC101. In 
the clinic, alpha-fetoprotein (AFP) is used as a biomarker but as sole marker is insufficient 
for diagnosis since it does not predict disease stage and serum levels are not elevated in 
30% of the HCCs98,102. However, in the cases where AFP is elevated those serum levels do 
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correlate to tumor size and tumor progression, and therefore in these cases it can be used 
to evaluate response to therapy and follow-up of the disease103. The mechanisms behind the 
development, progression, invasion, and metastasis of HCCs are largely unknown. Elucidation 
of these processes might lead to the identification of new biomarkers and new (personalized)-
therapies. For example, biomarkers which could distinguish Sorafenib responders from non-
responders would lead to a better and more personalized treatment. As mentioned earlier, 
Cripto-1 is re-expressed during oncogenesis where it is involved in cancer progression and 
metastasis91,104-110. Moreover, Wang et al. recently showed that Cripto-1 expression in HCC 
correlates to poor patient survival and faster tumor recurrence in HCC patients but the precise 
contribution of Cripto-1 is unclear92,111. Suggested mechanisms include Cripto-1 involvement 
in pathways leading to faster proliferation and onset of epithelial to mesenchymal transition 
of tumour cells92,112-117. The exact function of Cripto-1 in HCC and its possible usage as a 
biomarker, however, need to be further studied. As described, Cripto-1 is also observed 
in blood of patients with cirrhosis without the presence of HCC or any other neoplasms89. 
One might speculate that hepatocytes expressing Cripto-1 during fibrogenesis may be the 
cells with the highest potential to become oncogenic and thereby may be identified as the 
“cancer stem cells”. In the future, unravelling the role of Cripto-1 in the fibrosis-cirrhosis-
HCC pathological disease course might lead to the identification of new targets for HCC and 
antifibrotic therapies.

Outline and aims of the studies described in this thesis
Currently, MSCs have been tested in clinical trials, often with promising results but also 
sometimes with a lack of effectivity regarding the reversal of fibrosis, cirrhosis and end-stage 
liver disease39,61,118. Results from the literature are difficult to compare since there are multiple 
differences in study design such as underlying disease aetiology, disease stage, administration 
route- and dosage- and source- of MSCs, which could affect the study outcomes60,61,71. Therefore, 
in the study of chapter 2, the therapeutic potential of MSCs and fibroblasts were assessed 
and compared, in combination with partial hepatectomy as regenerating stimulus, in CCL4-
induced fibrosis and cirrhosis in mice. Furthermore, the impact of route of administration 
and dosage of MSCs on the therapeutic efficacy of MSCs was evaluated. Specifically the local 
administration of the MSCs in regenerating fibrotic and cirrhotic livers was thought to be able 
to ameliorate fibrogenesis.

The use of different MSC subpopulations might also contribute to the contrasting findings 
in literature44-46,119. In the study of chapter 3, the pro-regenerative and anti-fibrotic abilities 
of four different subpopulations of MSCs, selected on their Endoglin and/or vascular cell 
adhesion molecule (VCAM) expression, was compared. This approach was used to evaluate 
whether different subpopulations of MSCs could lead to different outcomes, which might 
explain the contradictory results observed in literature.
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Rodent models for liver fibrosis have been widely used, but are not suitable for high throughput 
screening purposes75. Therefore we aimed to translate the widely used CCL4 and TAA mouse 
models for liver fibrosis to zebrafish embryos as a new model suitable for fast screening 
(chapter 4). The applicability to study new therapeutic interventions was evaluated by the 
administration of MSCs and fibroblasts as potential novel cell therapies for liver fibrogenesis.

Therapies directly targeting fibrogenesis are needed. More knowledge of the pathological 
mechanisms underlying the fibrosis-cirrhosis-HCC cascade could lead to identification of new 
leads for the development of alternative treatment strategies. Interestingly, a recent study 
reported elevated Cripto-1 protein levels in plasma of patients with cirrhosis89. This was the 
first study that suggested a connection between Cripto-1 expression and fibrogenesis. In 
order to compare Cripto-1 expression of normal and fibrogenic liver tissue of humans, mice, 
and zebrafish embryos a study was performed to evaluate whether Cripto-1 is expressed 
by liver cells (chapter 5). Furthermore, the Cripto-1 level in blood and its expression in liver 
tissue were assessed to evaluate whether it relates with the disease stage. If this would be 
the case, it could imply a contribution of Cripto-1 in the fibrosis–cirrhosis-HCC cascade which 
warrant further studies.

Cripto-1 is known for its role in cancer progression and metastasis90. In HCC, Cripto-1 expression 
correlates with poor prognosis and overall survival, however, the functional role of Cripto-1 
in HCC is largely unknown89,111. Therefore, as described in chapter 6 the role of Cripto-1 in 
HCCs in vitro and in vivo was studied. In addition it was assessed whether Cripto-1 expression 
might affect the use of conventional systemic therapies.

Finally, in the overall discussion of chapter 7 the implications of the findings of the different 
studies is discussed and directions for future research are indicated.
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