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Chapter 4.

Liquid-crystal-based photonic topological
insulators

Topological photonics harnesses the physics of topological insulators
to control the behavior of light. Photonic modes robust against material
imperfections are an example of such control. In this chapter, we propose a
soft-matter platform for assembling topological photonic materials that hold
promise for protected unidirectional waveguides, sensors and lasers [17]. The
orientation of liquid crystal molecules introduces an extra geometric degree
of freedom which in conjunction with suitably designed structural properties
leads to the creation of topologically protected states of light. The use of soft
building blocks potentially allows for recon�gurable systems that exploit the
interplay between light and the soft responsive medium.

Topological materials are a class of structured materials that exhibit re-
markable features such as the existence of chiral edge states robust against
backscattering at their boundaries. These materials inspired from topological
insulators [100] have proven ubiquitous in physics, including examples in
photonics [17, 18, 26, 83, 85, 86, 88], mechanics [15, 33, 52, 67, 68, 73], hydro-
dynamics [19, 20, 38, 46], stochastic systems [42] and electrical circuits [29,
59, 69]. The unique properties of topological photonic materials suggest sev-
eral potential applications [17, 18, 83] ranging from high-power single-mode
lasers [25, 27] to slow light [14].
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56 Chapter 4. Liquid-crystal-based photonic topological insulators

In this chapter, we show how liquid crystals can be used as a soft-matter
platform to realize the building blocks of topological photonics [17, 18, 83]. In
the previous chapter, we developed a strategy purely based on liquid crystals
where the orientation of the nematic molecules, described by their director
�eld, is used to realize waveguiding [40, 47, 56]. Here, we use the same degrees
of freedom in these materials to build Floquet topological materials [36, 41, 88]
by coupling these waveguides.

We �rst develop a tight-binding model (coupled-modes description) for
the coupled liquid-crystal waveguides [177]. We establish its domain of validity
through a careful comparison with direct simulations of Maxwell equations.
Along with a precise analysis of the symmetries in the system, these results
allow us to engineer a liquid-crystal realization of two archetypal topological
systems: a system with non-trivial winding numbers analogous to the one-
dimensional Su-Schrie�er-Heeger (SSH) model [36, 172] and a system with non-
trivial Chern numbers inspired by the two-dimensional Haldane model [151].

In Ref. [88] it was demonstrated that periodic modulations induced by
helix-shaped waveguides allow one to implement photonic Floquet topological
insulators. In a curved waveguide, the change in the local direction of prop-
agation leads to geometric phases [13, 161] called Rytov-Vladimirskii-Berry
phases [188, 189], which are eventually responsible for the existence of the
photonic topological insulator in Ref. [88]. In contrast, the geometric phases
present in our liquid-crystal system are Pancharatnam-Berry phases [155, 186]
and stem from the change in the local optical axes. As a consequence, the
symmetries of the photonic topological material are entirely controlled by the
spatial symmetries of the nematic texture.

4.1 Coupled liquid crystal waveguides

In the previous chapter, we studied soft photonic waveguides in a liquid crystal
medium. We now consider a system that consists of two such waveguides
by transversely repeating the director modulation which corresponds to one
waveguide, see Fig. 4.1(a). When two of these waveguides are located close
to each other, they become coupled as light can tunnel from a waveguide
to another through evanescent waves: the electromagnetic �eld inside one
waveguide induces a �eld inside the other one. Fig. 4.1(c) shows that if a
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Figure 4.1: Coupling of two waveguides, corresponding to the liquid-crystal pattern
in (a) and with an e�ective optic potential shown in (b). The 𝑧-axis in (a) shows the
orientation of the molecules in the centre of a waveguide for one Floquet period, given
by Λ. (c)-(d) The intensity pro�le obtained with the guided mode of one of the waveg-
uides as an initial condition shows an oscillatory pattern, which is reminiscent of Rabi
oscillations in two-level quantum systems. (e) Dependence of the dimensionless Rabi
frequency 𝑓𝑅 = 𝜆/𝑇𝑅 with the distance between waveguides for both the continuum
paraxial simulations and the tight-binding method. The e�ective interaction between
two such waveguides, proportional to 𝑓𝑅, decays exponentially with their distance.
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guided mode is initially inside one of the two identical waveguides, it will
eventually leak into the other one. The light intensity pattern obtained from
such interaction oscillates sinusoidally with a period 𝑇R (see Fig. 4.1(d)) exactly
like Rabi oscillations in two-level quantum systems.

We wish to consider a system made of a large number of coupled waveg-
uides. To do so, we need a simpli�ed description of the waveguides and of
their couplings, that allows to capture the essential features of the system
(such as the Rabi oscillations described above) without having to describe
the full liquid crystal con�guration. Hence, we use a time-dependent Hückel
method [34, 191] to develop a tight-binding model for the photonic waveguides
(see appendix 4.6.2). The tight-binding (TB) Hamiltonian 𝐻TB obtained using
this method for the evolution of a system of 𝑁 waveguides reads

𝑖𝜕𝑧 |𝜓𝑛⟩ =
𝑁∑︁
𝑚=1

𝐻TB
𝑛𝑚(𝑧) |𝜓𝑚⟩ , (4.1)

where 𝜓𝑛 is the mode inside waveguide 𝑛. This tight-binding model brings
the essential simplicity that is needed to analyze a system with many coupled
waveguides such as a lattice con�guration. The Rabi oscillations obtained
from this tight-binding model for a two-waveguide system are in agreement
with the solutions of the Schrödinger equation (3.14) in the continuum using
appropriate initial conditions, validating our approach, see Fig. 4.1(e). Using
this tight-binding model, we further quantify the interaction between two such
waveguides and observe that its strength decays exponentially with respect to
the distance between them, see Fig. 4.1(e).

4.2 Photonic crystals in 1+1d: SSH chain

A lattice of coupled waveguides is obtained by a periodic patterning of the
nematic director in the transverse plane. Here, we consider a 1+1d lattice,
where the second dimension stands for the paraxial direction 𝑧 that plays the
role of time in this system. We consider a system inspired by the Su-Schrie�er-
Heeger (SSH) model [36, 172]. Using the interaction-distance dependence
from the previous section, we design a lattice of these waveguides on a chain
so that the interaction between two neighboring waveguides changes in an
alternating way, as shown in Fig. 4.2(a-b). The distance between waveguides
is chosen such that the ratio between the two di�erent hopping amplitudes is
𝐽−/𝐽+ = 0.25(1).
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Figure 4.2: An SSH chain of photonic waveguides in a liquid crystal medium. (a)-(b)
The e�ective photonic potential for two topologically distinct dimerizations of the
waveguides in such a system which correspond to an SSH chain with and without an
edge mode, respectively, as shown in (c)-(d). The e�ective tunneling between these
waveguides is controlled by their distance as illustrated in Fig. 4.1(e). Insets in panels
(a)-(b) sketch an SSH chain corresponding to each system. Strong (𝐽+) and weak (𝐽−)
couplings are shown by double and single bonds, respectively. (c) The propagation of
an edge mode whose existence is topologically protected. (d) Shows the scattering
into the bulk of the same initial mode in a trivial chain.
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Figure 4.2(a-b) also shows that depending on the ordering of the strong
and weak bonds at the boundary, there are two di�erent dimerizations of
the neighboring waveguides. The tight-binding description of the system in
Fig 4.2(a-b) is a time-dependent version of the SSH chain [172]. We �nd a
photonic state that remains at the edge of one of the two con�gurations of this
system, as shown in Fig. 4.2 (c), whereas in the other con�guration, in panel
(d), the initial mode at the edge leaks into the bulk while it propagates forward.
The intensity pro�le of the localized edge mode shows an exponential decay
away from the waveguide at the boundary.

The presence of this edge mode is due to the topology of the Hamiltonian
describing the system, which is characterized by an integer winding number
across the Brillouin zone (BZ). To see this, note that the dimerized chain’s
tight-binding Hamiltonian in the momentum space is in general a 2×2 matrix
(due to two sublattices) and can be cast as

𝐻(k) = d(k) · 𝜎 + 𝜖I, (4.2)

where 𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) is a vector of Pauli matrices, d is a vector in the
momentum space, and 𝜖 is the onsite energy term. When sublattice symmetry
is preserved, 𝑑𝑧 = 0 and

𝑤 =
1

2𝜋𝑖

ˆ
BZ
𝑑2k lnd(k) (4.3)

counts the number of windings of d over the BZ. Since d(k) is a periodic
function, the integration is performed over a closed loop, and thus the param-
eter 𝑤 is integer valued and characterizes the topology of the Hamiltonian.
For the SSH chain, we �nd that 𝑤 = 1 for the topological and 𝑤 = 0 for the
trivial system. In this particular case, this topological invariant depends on
whether 𝐽− is smaller or greater that 𝐽+, which explains why this edge mode
is present in only one of the two con�gurations in Fig. 4.2.

4.3 Symmetries and topological modes in 2+1d

So far, we only considered systems in which there is a symmetry between the
photonic modes that propagate forwards and backwards along the 𝑧 direc-
tion. This 𝑧-reversal symmetry corresponds to time-reversal (TR) symmetry
in the e�ective quantum picture. We would now like to explore the phe-
nomena that can arise with introducing an asymmetry in this direction. The
TR symmetry acts on Eq. (3.14) through the operator 𝑇 = 𝜎𝑧Θ, where Θ
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is complex conjugation and where the Pauli matrix 𝜎𝑧 exchanges right and
left circular polarizations. It follows that a con�guration is TR invariant if
there is a reference point 𝑧0 such that the orientation of the directors satis�es
𝜃(𝑧0 − 𝑧) = −𝜃(𝑧0 + 𝑧) (see appendix 4.6.3).

In the tight-binding model of this system, we focus on the subspace of
guided modes, since the unguided ones do not follow a coupled-mode picture.
In this reduced description, the TR operator is simply the complex conjugation
operator Θ. We prove analytically in the appendix 4.6.3 that the TR invariance
in the paraxial Hamiltonian leads to the TR invariance of the tight-binding
model.

We break TR symmetry by considering the director �eld con�guration

𝜃(𝑥, 𝑦, 𝑧) = 𝜃0(𝑥, 𝑦) [sinΩ𝑧 + 𝜂 cos(2Ω𝑧 − 𝜙)] , (4.4)

where 𝜃0(𝑥, 𝑦) describes the nematic pattern in the transverse plane (it is a
sum of Gaussians centred at desired positions), Ω = 2𝜋/Λ is the frequency of
the drive (an inverse length scale here), 𝜂 is a dimensionless coe�cient that
controls the strength of the TR symmetry breaking, and 𝜙 is the dephasing
between the harmonics of the pattern. We focus on con�gurations of these
waveguides in 2+1 dimensions where the absence of TR invariance can lead
to topological modes [17, 88, 151]. A 2+1d lattice of these waveguides can
be designed by considering transverse modulations of the nematic directors
that are periodic in two directions. We consider a modulation that creates a
honeycomb lattice of such waveguides in the transverse plane, as shown in
Fig. 4.3(a).

We �nd that in our Floquet model, the TR symmetry breaking is not
su�cient to get a topological band structure. This can be understood through
a high-frequency Magnus expansion [61] of a general Floquet tight-binding
Hamiltonian on a honeycomb lattice, by mapping the obtained e�ective Hamil-
tonian with that for the Haldane model [151] (see appendix 4.6.4). We �nd that
breaking the three-fold symmetry between the three neighboring bonds is
required to get a non-zero Haldane mass at the �rst order of the expansion.
Many Floquet driven models involve a rotating gauge �eld, arising for exam-
ple from the coupling with a circularly polarized light radiation [80] or an
e�ective gauge �eld originating from spin-orbit coupling of light on a helical
waveguide [88]. In this case, the rotating gauge �eld e�ectively breaks the 𝐶3

symmetry via a Peierls substitution in the hoppings.
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Figure 4.3: (a) A photonic lattice on a honeycomb structure that is obtained by
patterning of the nematic directors in the transverse plane. Each node of the lattice
corresponds to a photonic waveguide, as shown in the zoomed-in panels. (b) A unit
cell of this photonic lattice, where the waveguides are colored according to their
relative phase shift in the 𝑧-direction. The unit cell is enlarged with respect to the
honeycomb one because of the di�erent phase shifts. (c) The Rabi period between
two photonic waveguides as a function of the relative shift between them. We focus
on the parameter space enclosed by the blue dotted rectangle, where there is a close
agreement between the tight-binding model and the continuum paraxial simulations.
(d) Evolution of a topological edge mode on the projected 𝑥− 𝑦 plane. The size of
each circle corresponds to the light intensity on that site. This mode propagates along
the edge without backscattering on obstacles. (e)-(f) One sideband in the Floquet
band structure of a honeycomb lattice of photonic waveguides (e) without and (f) with
relative phase shift. In both cases the TR symmetry is violated using the structural
parameter 𝜂 = 0.67. The band structure in (f) shows the presence of one mode at the
right (blue) and left (red) edge of this system for a range of transverse momenta in
the BZ. The presence of these edge modes and their unidirectional propagation are
predicted by the di�erence between �rst Chern numbers 𝐶1 of the bands which are
separated by the gap.
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Here, we do not have access to such a rotating gauge �eld. Instead, we
break this symmetry by shifting the waveguides along the z-axis, with a shift
that is di�erent for each of the neighboring waveguides, see Fig. 4.3(b). The
relative shift of waveguides a�ects both the strength of their interactions,
as shown in Fig. 4.3(c), and induces a dephasing between the hoppings. We
choose a spatially periodic con�guration of phase shifts. However, the unit
cell is enlarged with respect to the hexagonal lattice, as shown in Fig. 4.3(b)
where the colors represent the shifts.

We note that the tight-binding description is only reliable when the shifts
are small enough, see Fig. 4.3(c). We use the guided mode of each waveguide as
a basis for the tight-binding description. This works well when the waveguides
are not shifted. When they are, our procedure does not span the whole space
where the modes evolve when the waveguides are shifted, because the guided
modes of waveguides with relative shifts are di�erent: the guided mode of one
waveguide can be repelled from a similar waveguide with a relative shift of
origin. In the following, we focus on the range of shifts where the tight-binding
description still provides a reliable approximation (blue dashed rectangle in
Fig. 4.3(c)).

The band structures associated with the tight-binding model of the lattices
of waveguides in Fig. 4.3(a-b) on a cylinder are shown in panels (e)-(f). Panel
(e) corresponds to a honeycomb lattice of waveguides without relative phase
shifts. Panel (f) corresponds to the unit cell shown in panel (b), where the
waveguides are shifted with respect to each other. In this case, we observe
chiral modes localized at the edges of the cylinder. A direct calculation of the
�rst Chern number [100, 121, 169] (given by Eq. 1.8) of the top and bottom
bands shows that these edge modes have a topological origin. They circulate
unidirectionally along the edge in the transverse plane as they propagate along
the 𝑧-direction despite the presence of a defect at the boundary, see Fig. 4.3(d).
The decay length of the edge modes in the bulk is related to the inverse size of
the bulk band gap in which these modes reside, compared to the frequency of
the Rabi oscillation. Thus, we �nd that the decay length is only a few lattice
sites, even though the gap is very small with respect to the Floquet frequency.
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4.4 Non-Hermitian description of shiftedwaveguides

A full description of the photonic crystal should encompass both guided and
repelled modes. The analysis above shows that waveguides shifted with respect
to each other can be coupled. In this situation, both the guided and repelled
modes should be taken into account. In principle, this would entail the use of
a non-Hermitian Hamiltonian [133] to describe the system, to account for the
loss of light intensity due to the repelled light (eventually converted to heat in
the bulk of the material). In this section, we provide details about the coupling
between waveguides with relative shifts.

In particular, we show that an e�ective Hermitian description of the
coupled waveguides is still possible in the regimes considered above. There
is e�ectively no coupling between the guided and repelled modes, despite
the di�erence between guided modes of the relatively shifted waveguides.
Fig. 4.4 shows simulation results for the two coupled shifted waveguides with
𝜂 = 0.67 and 𝛿 = 1, where the distance between the two waveguides is given
by 2𝑤𝑝+𝛿. As can be seen in the �gure, there is a drastic change in qualitative
behavior of the intensity patterns depending on the relative shift between the
waveguides.

To understand this qualitative di�erence, we now determine the e�ective
coupling between these relatively shifted waveguides. As we saw in Fig. 4.3, the
Hückel method fails to fully account for the couplings when the relative shift
between the waveguides is close to Λ/2. Therefore, we extract the e�ective
Hamiltonians directly from the intensity patterns. We restrict ourselves to
extracting these parameters from the intensities and not from phases, since the
latter would require projection of the temporal modes inside each waveguides
into a basis of a linear combination of both waveguides’ guided modes. We
start with the following ansatz for the e�ective Hamiltonian:

𝐻 = −𝑖𝜖I + (𝐽𝑥𝜎𝑥 + 𝐽𝑦𝜎𝑦) + (𝑚+ 𝑖𝜂)𝜎𝑧 (4.5)

in which the basis vectors [1, 0]𝑇 and [0, 1]𝑇 correspond to the two waveguides.
We consider real values for 𝐽𝑥 and 𝐽𝑦 for now. A more complicated model
with non-reciprocal couplings would require loosening this condition, but we
will see that it is not necessary in our system. When the initial condition is
corresponds to the guided mode of the �rst waveguide, the evolution is given
by

|𝜓1(𝑡)⟩ = 𝑈(𝑡)

[︂
1
0

]︂
= 𝑒−𝜖𝑡

[︂
cos 𝑡𝐽 + 𝑖𝑚𝐽 sin 𝑡𝐽

−𝑖𝐽𝑥𝜎𝑥+𝐽𝑦𝜎𝑦𝐽 sin 𝑡𝐽

]︂
. (4.6)
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Figure 4.4: Coupling between waveguides with relative shifts. Left panels show the
intensity pro�le of the couplings and right panels compare the total intensity in the
two waveguides. The relative shift between waveguides is 0.3Λ for (a)-(b), 0.4Λ for
(c)-(d), and 0.5Λ for (e)-(f).

The mode intensity inside the second waveguide is

⃒⃒
⟨[0, 1]𝑇 |𝜓1⟩

⃒⃒2
= 𝑒−2𝜖𝑡

𝐽2
𝑥 + 𝐽2

𝑦

𝐽2
𝑟 + 𝐽2

𝑐

(︀
sin2 𝐽𝑟𝑡+ sinh2 𝐽𝑐𝑡

)︀
, (4.7)

where 𝐽𝑟 and 𝐽𝑐 are the real and imaginary parts of the e�ective hopping
determined by

𝐽𝑟 + 𝑖𝐽𝑐 =
√︁

(𝑚+ 𝑖𝜂)2 + 𝐽2
𝑥 + 𝐽2

𝑦 . (4.8)
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By �tting Eq. (4.7) to the intensity pattern obtained from the system’s evolution
in the paraxial regime, we can obtain 𝜂, 𝑚, 𝐽𝑟 , 𝐽𝑐, and 𝑗 = |𝐽𝑥 + 𝑖𝐽𝑦|. 𝑚 and
𝜂 are determined by solving

(𝑚+ 𝑖𝜂)2 = (𝐽𝑟 + 𝑖𝐽𝑐)
2 − 𝑗2, (4.9)

(𝑚− 𝑖𝜂)2 = (𝐽𝑟 − 𝑖𝐽𝑐)
2 − 𝑗2. (4.10)

We obtain these parameters for three di�erent waveguide distances and for
𝜂 = 0.67 and shift/Λ = 0.5 for a simulation on a period of 6000Λ. The results
are summarized in Table 4.1.

Table 4.1: Quantities characterizing the coupling between waveguides with relative
shifts.

𝛿 𝜖 𝑚 𝜂 𝑗 |det𝑈 |
0.0 3.2𝑒−5 0.0021 0. 0.0049 1.0
1.0 3.5𝑒−5 0.0013 3.0𝑒−5 0.0019 0.99997
2.0 3.9𝑒−5 0.0013 2.9𝑒−5 0.0007 0.9998

In the last column we calculate the absolute value of the determinant of
the matrix of eigenvectors: 𝑈 = (|𝜓1⟩ , |𝜓2⟩). If 𝐻 is Hermitian, |det𝑈 | = 1.
In our system, the deviation from unity is very small. Based on this result, we
conclude that the non-Hermitian e�ects in our system should be negligible.
The peculiar behavior in the intensity patterns of Fig. 4.4 is due to the Hermitian
mass term (with a real mass 𝑚), which becomes comparable to the hopping
amplitude 𝑗.

We have then veri�ed that non-Hermitian e�ects involving non-
orthogonal eigenmodes are negligible in the topological system described in
the previous section, validating our approach based on Hermitian topological
invariants. Looking forward, the natural occurrence of non-Hermiticity in
the description suggests liquid crystal-based soft waveguides as a promising
platform for non-Hermitian optics [16, 39, 91, 103].

4.5 Conclusion

In this chapter, we have shown how to realize photonic Floquet topological
systems using liquid crystals. As an example, we have shown how Floquet
versions of the SSH and Haldane models can be realized. As photonic crystals,
these photonic Floquet topological insulators are semimetal phases with a
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strong anisotropy; for instance, a (2 + 1)-dimensional Chern insulator can be
seen as a photonic Weyl material [43, 65]. Our analysis based on a reduction of
the paraxial wave equation to a tight-binding description provides a blueprint
to design photonic structures with targeted topological properties in liquid
crystal systems through Pancharatnam-Berry phases.

Our proposal is inspired by recent advances in liquid crystal technology
that make it possible to e�ectively print out any target director �eld either
by stacking two-dimensional photoaligned slices [22, 28, 48, 51, 56, 94, 112]
or through three-dimensional photopatterning techniques [116]. Electrically
controlled and light-driven liquid crystals [48, 107] could be further exploited
to engineer recon�gurable topological photonic devices.

Also, the TR symmetry can be broken using the fully rotating nematic
�elds given by Eq. 3.19. Using this approach introduces a handedness that
breaks the symmetry between forward- and backward-moving modes. Further-
more, the handedness introduces a second e�ective vector potential by moving
into a rotating frame [88]. The consequences of such symmetry breaking terms
are a subject for further investigations.

4.6 Appendix

We now provide details for the information for the realization of the model in
an actual liquid crystal environment, a derivation of the tight-binding model,
symmetries of the photonic crystal system, and non-Hermitian e�ects in the
interaction of waveguides with relative shifts in their origin.

4.6.1 Liquid crystal con�guration

The waveguiding in the system under study is achieved when the following
modulation for the director �eld is used [56]:

𝜃(𝑥, 𝑦, 𝑧) = exp

[︂
−𝑥

2 + 𝑦2

𝑤2
𝑝

]︂
sin

(︂
2𝜋𝑧

Λ

)︂
, (4.11)

where 𝑤 is the width of the Gaussian pattern. The e�ective gauge and scalar
�elds are then determined as

A =
2(𝑥�̂�+ 𝑦𝑦)

𝑤2
𝑝

exp

[︂
−𝑥

2 + 𝑦2

𝑤2
𝑝

]︂
sin

(︂
2𝜋𝑧

Λ

)︂
S(𝑧), (4.12)

V = −2𝜋

Λ
exp

[︂
−𝑥

2 + 𝑦2

𝑤2
𝑝

]︂
cos

(︂
2𝜋𝑧

Λ

)︂
S(𝑧). (4.13)
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Note that the con�guration is chosen to be periodic after each beating length.
Considering Eq. 3.10, it follows that this feature of the liquid crystal structure
leads to a 𝑧-periodic Hamiltonian in the right-hand side of Eq. 3.14. Therefore,
this system can be studied using the machinery of the Floquet Hamiltoni-
ans [56].

Note also that the mode evolution equations of this system are linear in
𝜃. Therefore, one can build a lattice of the waveguides above by repeating the
modulation of one waveguide, Eq. 4.11, in the transverse plane. For example, a
1-d SSH chain is described by

𝜃(𝑥, 𝑦, 𝑧) =
𝑁∑︁
𝑖=1

𝜃𝑖(𝑥, 𝑧), (4.14)

with

𝜃𝑖(𝑥, 𝑧) = sin

(︂
2𝜋𝑧

Λ

)︂
× (4.15)(︂

exp

[︃
− [𝑥− (𝑥𝑖 − 𝑑1/2)]

2

𝑤2
𝑝

]︃
+exp

[︃
− [𝑥− (𝑥𝑖 + 𝑑1/2)]

2

𝑤2
𝑝

]︃)︂
,

where 𝑥𝑖 = 𝑥0 + (𝑖 − 1)(𝑑1 + 𝑑2) are the positions of the centre of pairs
of potentials in terms of the alternating distances between the neighboring
waveguides, 𝑑1 and 𝑑2.

4.6.2 Floquet tight-binding model

To build-up a lattice model for a photonic crystal in this system, we exploit
the Floquet tight-binding approach. We start by writing down the many-
waveguide wavefunction |Φ⟩ as a linear combination of single-waveguide
modes |𝜑𝐼⟩ as follows:

|Φ(𝑧)⟩ =
∑︁
𝐼

𝑎𝐼(𝑧) |𝜑𝐼(𝑧)⟩ , (4.16)

where 𝜑𝐼(𝑧) is obtained by the evolution of the guided mode inside the waveg-
uide 𝐼 . The validity of this approximation can be determined by the closeness
of the dynamics of this wavefunction to the actual system’s evolution. Plug-
ging the wavefunction above into the Schrödinger equation of the system
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leads to

𝐻 |Φ(𝑧)⟩ = 𝑖𝜕𝑧 |Φ⟩ (4.17)

=
∑︁
𝐽

[𝑖𝜕𝑧(𝑎𝐽(𝑧)) |𝜑𝐽(𝑧)⟩+ 𝑖𝑎𝐽(𝑧)𝜕𝑧 |𝜑𝐽(𝑧)⟩].

We can now multiply both sides of this equation with ⟨𝜑𝐽 | to obtain∑︁
𝐼

𝑖 ⟨𝜑𝐽 |𝜑𝐼⟩ 𝜕𝑧𝑎𝐼 (4.18)

=
∑︁
𝐼

⟨𝜑𝐽 |𝐻 |𝜑𝐼⟩ 𝑎𝐼 −
∑︁
𝐼

⟨𝜑𝐽 | 𝑖𝜕𝑧 |𝜑𝐼⟩ 𝑎𝐼 .

This result can be written as

𝑖𝜕𝑧𝑎 = 𝑆−1(𝐻 −𝑅)𝑎, (4.19)

where 𝑎 = (𝑎1, 𝑎2, ...) is a vector in the basis of waveguides, and the matrix
elements in this basis are

𝑆𝐽𝐼 = ⟨𝜑𝐽 |𝜑𝐼⟩ , (4.20)
𝐻𝐽𝐼 = ⟨𝜑𝐽 |𝐻 |𝜑𝐼⟩ , (4.21)
𝑅𝐽𝐼 = ⟨𝜑𝐽 | 𝑖𝜕𝑧 |𝜑𝐼⟩ . (4.22)

Note that these matrices act on the space of guided modes, not on the space of
light polarizations. When starting the coupled-mode theory in Eq. 4.16, we
project the initial model into the space of the guided modes, which is a one-
dimensional subspace of the polarization space. The e�ective tight-binding
Hamiltonian associated with the continuous problem is then

𝐻TB = 𝑆−1(𝐻 −𝑅). (4.23)

4.6.3 Time-reversal symmetry

In this section we consider the time-reversal symmetry (TRS) of the e�ective
Schrodinger equation that describes the light propagation in this system. Here
we are interested in the behaviour of systems under the inversion of the
e�ective time by the operation 𝑇 : 𝑧 → −𝑧. A system is invariant under TRS
if there is a 𝑧0 such that

𝑇𝐻(𝑧0 + 𝑧)𝑇−1 = 𝐻(𝑧0 − 𝑧). (4.24)

We �rst look at the physical set-up that gives a time-reversal invariant
system and then derive the tight-binding version of the Eq. (4.24).
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TRS in real space

The question we would like to answer �rst is that what features of the liquid
crystal system will lead to its invariance under time-reversal. A di�culty
in de�ning a proper time-reversal (TR) operator arises when we notice that
the light beam dynamics in this system is extremely a�ected by its initial
polarization. Especial cases of guided and repelled modes for the right/left
circularly polarized (RCP/LCP) initial conditions are studied in [56]. To avoid
potential problems related to this issue, we pick up a TR operator that preserves
LCP and RCP lights so that we can study the e�ect of this operator in the
projected space of initial conditions with certain polarization ♠. This projection
can be done by using

𝑇 = 𝜎𝑧Θ, (4.25)

where 𝜎𝑧 = diag(1,−1) is the third Pauli matrix andΘ is the complex conjuga-
tion operator. It then follows that𝑇𝜓R,L = 𝜓R,L. Thus, if the initial polarization
of the light beam is a linear combination of the LCP/RCP polarizations (with
real coe�cients), we have

𝑇 |𝜓(0)⟩ = |𝜓(0)⟩ . (4.26)

Now note that the system’s wavefunction evolution is given by |𝜓(𝑧)⟩ =
𝑈(𝑧) |𝜓(0)⟩, where

𝑈(𝑧) = lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

exp (−𝑖𝛿𝑧𝐻(𝑧 − 𝑛𝛿𝑧)) (4.27)

The time reversal of the wavefunction is

𝑇 |𝜓(𝑧)⟩

= 𝑇 lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

exp (−𝑖𝛿𝑧𝐻(𝑧 − 𝑛𝛿𝑧))𝑇−1𝑇 |𝜓(0)⟩

= lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

[︀
𝑇 exp (−𝑖𝛿𝑧𝐻(𝑧 − 𝑛𝛿𝑧))𝑇−1

]︀
𝑇 |𝜓(0)⟩

= lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

[exp (𝑖𝛿𝑧𝐻(−𝑧 + 𝑛𝛿𝑧))] |𝜓(0)⟩ , (4.28)

♠Note that the operator we de�ne does not necessarily work for initial conditions with
arbitrary polarization
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where in the last line we assumed the time reversal invariance of the system
around 𝑧 = 0 as well as the invariance of the initial wavefunction at the
same point given by Eq. (4.26). The last line is the wavefunction’s evolution
backward in time till −𝑧. Thus, the above calculation actually gives

𝑇 |𝜓(𝑧)⟩ = |𝜓(−𝑧)⟩ , (4.29)

where |𝜓(−𝑧)⟩ = 𝑈−1(0,−𝑧) |𝜓(0)⟩. Apart from its convenience, this rela-
tion gives a tool to numerically check whether a given system is TR invariant
or not.

We now �nd the physical systems which are invariant under this TR
operator. In other words, we want to �nd con�gurations of the system such
that the Hamiltonian

𝐻(𝑧) = −1

2
[∇⊥ + 𝑖A( 𝑧)]2 +V(𝑧), (4.30)

with A(𝑧) = −(∇⊥𝜃)S(𝑧) and V(𝑧) = −(𝜕𝑧𝜃)S(𝑧) satis�es (4.24). Now if
we use

𝑇S(𝑧)𝑇−1 = 𝑇 [cos(2𝜋𝑧/Λ)𝜎𝑦 + sin(2𝜋𝑧/Λ)𝜎𝑥]𝑇
−1

= cos(2𝜋𝑧/Λ)𝜎𝑦 − sin(2𝜋𝑧/Λ)𝜎𝑥

= S(−𝑧), (4.31)

we will have

𝑇𝐻(𝑧)𝑇−1 = −1

2
[∇⊥ − 𝑖(−∇⊥𝜃)(−𝑧)S(−𝑧)]2

+ (−(𝜕𝑧𝜃)(−𝑧)S(−𝑧)). (4.32)

Now one can see that an odd 𝜃 around any point in 𝑧0 is a su�cient condition
for the system to be TR invariant. Thus the system is TRI when there is a 𝑧0
such that

𝜃(𝑧0 + 𝑧) = −𝜃(𝑧0 − 𝑧) (4.33)

We thus can break the e�ective TRS in this system using the orientation �eld
that is given in Eq. 4.4. Fig. 4.5 shows examples of 𝜃 �elds which preserve or
break the TR symmetry.



72 Chapter 4. Liquid-crystal-based photonic topological insulators
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Figure 4.5: Examples of nematic director �elds corresponding to TR invariant and
broken systems. The TR broken case is obtained from the Eq. 4.24 using 𝜂 = 0.67
and 𝜙 = arctan 0.5.

TRS in tight-binding Hamiltonian

Here, we consider the e�ect of the time reversal operation in the tight-binding
model of the system under study. It is also insightful to understand the impli-
cations of a continuous TRS Hamiltonian on the tight-binding version. Here
we consider the terms of 𝐻TB in Eqs. (4.20) - (4.22) separately. Switching to
inner product notation we have for a TR invariant system

𝑆𝐽𝐼(−𝑧) = (𝜓𝐽(−𝑧), 𝜓𝐼(−𝑧))
= (𝑇𝜓𝐽(𝑧), 𝑇𝜓𝐼(𝑧))

= (Θ𝜓𝐽(𝑧),Θ𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧), 𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧), 𝜓𝐼(𝑧)) = 𝑆𝐽𝐼(𝑧), (4.34)

where the bar means the complex conjugation.

ℎ𝐽𝐼(−𝑧) = (𝜓𝐽(−𝑧), 𝐻(−𝑧)𝜓𝐼(−𝑧))
= (𝑇𝜓𝐽(𝑧), 𝑇𝐻(𝑧)𝑇−1𝑇𝜓𝐼(𝑧))

= (Θ𝜓𝐽(𝑧),Θ𝐻(𝑧)𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧), 𝐻(𝑧)𝜓𝐼(𝑧)) = ℎ𝐽𝐼(𝑧), (4.35)
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and

𝑅𝐽𝐼(−𝑧) = (𝜓𝐽(−𝑧), 𝑖𝜕𝑧𝜓𝐼(−𝑧))
= (𝑇𝜓𝐽(𝑧), 𝑖𝜕𝑧𝑇𝜓𝐼(𝑧))

= (Θ𝜓𝐽(𝑧), 𝑖𝜕𝑧Θ𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧),−𝑖𝜕𝑧𝜓𝐼(𝑧))
= (𝜓𝐽(𝑧), 𝑖𝜕𝑧𝜓𝐼(𝑧)) = 𝑅𝐽𝐼(𝑧). (4.36)

Thus we conclude that

𝑇𝐻(𝑧)𝑇−1 = 𝐻(−𝑧) (4.37)

implies
Θ𝐻TB(𝑧)Θ

−1 = 𝐻TB(−𝑧). (4.38)

4.6.4 Why is 𝐶3-symmetry breaking needed?

Here we would like to consider the e�ect of the TRS breaking in a Floquet
system. The example of such systems is the Floquet photonic topological
insulators �rst proposed and observed by Rechtsman et al. [88]. Let us start
with a Floquet tight-binding Hamiltonian on a honeycomb lattice. For now,
we only consider a nearest neighbour interaction, for which the tight-binding
Hamiltonian in the momentum space is given by

𝐻(𝑘) =

(︂
𝑀 𝐽(k)

𝐽*(k) −𝑀

)︂
, (4.39)

where 𝑘 is the momentum and 𝑀 is the mass. Let us consider the massless
case 𝑀 = 0. For a Floquet system, the hopping amplitudes in terms of their
Fourier components are given by

𝐽(k) =
∑︁
ℓ∈Z

𝐽ℓ(k)𝑒
𝑖ℓΩ𝑡 =

∑︁
ℓ∈Z

3∑︁
𝑗=1

𝐽ℓ,𝑗𝑒
𝑖k.𝛿𝑗𝑒𝑖ℓΩ𝑡, (4.40)

where 𝛿1,2,3 are the three neighbouring vectors, and Ω is the drive frequency.
We drop the explicit k dependence notation for now. The Hamiltonian in
terms of its harmonics is determined by

𝐻 =
∑︁
ℓ∈Z

𝐻ℓ𝑒
𝑖ℓΩ𝑡, (4.41)

𝐻ℓ =

(︂
0 𝐽ℓ
𝐽*
−ℓ 0

)︂
. (4.42)
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We are interested in the large frequency limit of the system that is described
by this Hamiltonian. In this limit, the stroboscopic picture gives most of the
relevant physics of the problem. We consider the Floquet-gauge invariant high
frequency expansion of the Hamiltonian [61]

𝐻e� = 𝐻0 +
1

Ω

(︂
𝑀e� 0
0 −𝑀e�

)︂
+𝒪

(︀
1/Ω2

)︀
, (4.43)

where 𝐻0 is the time-averaged Hamiltonian and the �rst-order e�ective mass
is given by

𝑀e� =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝐽ℓ|2 − |𝐽−ℓ|2

]︀
. (4.44)

We see from here that in the �rst order of the expansion, the drive behaves
as if a mass term is introduced to the Hamiltonian. This e�ective mass can
become non-zero when 𝐽ℓ ̸= 𝐽−ℓ for which the TRS needs to be broken.

However, we observe in Fig. (3)e-f that to have a gapped band structure
of this system, the point-group 𝐶3 symmetry also needs to be broken. To
see why this should be the case, we look back at the Eq. (4.40), where for a
𝐶3-symmetric system one can write

𝐽ℓ(k) = 𝐽ℓ(k = 0)
3∑︁
𝑗=1

𝑒𝑖k.𝛿𝑗 . (4.45)

This leaves us with an e�ective mass proportional to the
(︁∑︀3

𝑗=1 𝑒
𝑖k.𝛿𝑗

)︁2
which is zero and has also a zero �rst derivative at the Dirac point. Note that
this asymmetry between harmonics of the hopping parameter along di�erent
directions is present in the system where a time-periodic rotating gauge �eld
renormalizes the hoppings via Peierls substitution [88].

Now that we found a way to open up a gap in the Floquet band structure,
we still need to investigate if this gap is topological or trivial. To do so, we
now take a look at the band structure of a �nite system and look for signatures
of topological edge modes in their band structure. One important requirement
for this gap to be topological is that the mass has di�erent signs on the two
inequivalent Dirac points. Let us consider the previous case where we break
the 𝐶3 symmetry by introducing an asymmetric set of hoppings which satisfy
𝐽ℓ,1
𝑟ℓ,1

=
𝐽ℓ,2
𝑟ℓ,2

=
𝐽ℓ,3
𝑟ℓ,3

= 𝜅ℓ. Now If we take a look back at the e�ective mass
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term in our model, we have

𝑀e�(𝐾) =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2𝐴ℓ(𝐾)− |𝜅−ℓ|2𝐴−ℓ(𝐾)

]︀
,

𝑀e�(−𝐾) =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2𝐵ℓ(𝐾)− |𝜅−ℓ|2𝐵−ℓ(𝐾)

]︀
,

where

𝐴ℓ(k) = 𝐵ℓ(−k) =

⃒⃒⃒⃒
⃒⃒∑︁
𝑗

𝑟ℓ,𝑗𝑒
𝑖k.𝛿𝑗

⃒⃒⃒⃒
⃒⃒
2

. (4.46)

Now as we see from here, if we only break the 𝐶3 symmetry by a set of real
directional hopping scales 𝑟ℓ,𝑗 , this will lead to 𝑀e�(𝐾) = 𝑀e�(−𝐾), for
which the gap in the band structure will be trivial. For a simpli�ed case where
the 𝑟 factors are independent from the harmonic ℓ, it follows that

𝑀e�(𝐾) =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2 − |𝜅−ℓ|2

]︀
𝐴(𝐾) (4.47)

𝑀e�(−𝐾) =
∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2 − |𝜅−ℓ|2

]︀
𝐵(𝐾). (4.48)

For general complex 𝑟-factors the e�ective masses can become di�erent.




