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Chapter 1.

Introduction

Geometric phases are extra phase factors (additional to the dynamical
ones, i.e. integral of system’s energy over time), that are acquired by moving
along a closed -adiabatic- path [147, 161] in the parametric space of a given
Hamiltonian. The use of the term geometric here stems from the fact that
this phase depends on the path taken in the phase space, and not for example
on the rate of moving along that path. Consider for example the quantum
mechanical wavefunction of an electron which is described in terms of an
amplitude 𝑎 and a phase 𝜑 as 𝜓(r) = 𝑎𝑒𝑖𝜑. After switching on a magnetic �eld,
the electron’s wavefunction is modi�ed into 𝜓(r) = 𝑎𝑒𝑖𝜑−𝑖𝑒A·r, where 𝑒 is
the electrical charge, and A is the vector gauge �eld. (Throughout this thesis
we set ~ = 1.) Now, consider the movement of this electron on a cyclic path
in space, denoted by 𝒞: while the amplitude remains intact, the wavefunction
acquires a phase

Φ = −𝑒
˛
𝒞
A · 𝑑r, (1.1)

which is equal to the total magnetic �ux inside the region that is enclosed
by 𝒞. This e�ect is independent of whether the electron experiences the
magnetic �eld directly, especially when the magnetic �eld is con�ned in a
region, this phase is independent of the path taken by the electron surrounding
that region. This fundamental feature of quantum mechanics is the essence of
the Aharonov-Bohm e�ect [185], see Fig. 1.1(a).

The notion of geometric phases was independently developed in the
context of electromagnetic waves by Pancharatnam [186] and in the adiabatic
Hamiltonian evolution in quantum mechanical systems by Berry [155, 161]
as a more general concept. Later on, Hannay used the same mathematical
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2 Chapter 1. Introduction

concept for classical systems [160]. The Hannay angle, which is the geometric
phase that, for instance, makes the Foucault pendulum precess, is an example
of how a geometric concept in quantum mechanics can lead to a new frame
of looking at a classical problem. One of the tasks of this thesis is to follow a
similar passage by adopting an already existing concept (usually formulated
in an electronic or cold atom language) to a classical, soft matter platform.

When considering the broadness of a subject and its applicability, Berry’s
formulation of the quantum adiabatic phase has proven to be a very fruitful
discovery of theoretical physics in the past few decades. The range of phe-
nomena that involves this phase spans from the quantum Hall e�ect [153, 157,
166, 169, 170] and topological insulators [96, 100] to classical mechanics [159,
160], to optical �bers [134, 155, 186], and the rotation of a cat when falling from
a height [148]. The geometrical phases are usually measured through interfer-
ence experiments: the geometrical phases that are acquired by a wavefunction
are di�erent when moving along di�erent paths in the parametric space. In
the example above, this was done by the interferometry between the electrons
that traverse di�erent paths[183, 185].
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Figure 1.1: (a) The Aharanov-Bohm e�ect. An electron acquires di�erent phases
when its quantum mechanical paths encircle a region that contains a magnetic �eld.
The phase di�erence Φ = Φ1 − Φ2 is equal to the total magnetic �ux multiplied
by electron’s electric charge and is unchanged under the smooth deformations of
the paths. (b) Light polarization represented on a Poincaré sphere. Similar to the
Aharanov-Bohm e�ect for electrons, the change in the polarization is non-transitive
and after traversing a loop, the light beam acquires a geometrical Pancharatnam-Berry
phase equal to Ω/2, where Ω is the solid angle that is enclosed by this loop on the
Poincaré sphere.

We shall now review the Berry phase and its relation to the �eld of
topological insulators among other applications.
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1.1 Adiabatic theorem and the Berry phase

In quantum mechanics, where the dynamics of a system’s wavefunction is
described by the Schrödinger equation,

𝑖𝜕𝑡 |𝜓⟩ = 𝐻 |𝜓⟩ , (1.2)

the adiabatic theorem states that a system that is in one of its eigenstates
continues to stay in that state as long as the changes in the Hamiltonian
occur slowly enough compared to the energy gap between the corresponding
eigenenergy of this state and the rest of the spectrum [45]. Let us then consider
the case of a Hamiltonian that evolves along a cyclic adiabatic path in a
parameter space, that we represent by a vector 𝜆(𝑡) ♠. The adiabatic theorem
above ensures that upon completion of a loop in this parametric space, the
system will be in the same quantum eigenstate as the one it started from. This
can be represented as 𝜓𝑛(𝑡) = 𝑒𝑖𝛾𝑛𝜓𝑛(𝑡0), where 𝛾𝑛 is a phase that is acquired
along the evolution, 𝑛 denotes the eigenstate index, and 𝑡0 and 𝑡 are the initial
and �nal time.

Berry showed that apart from a trivial dynamical contribution

𝛾dyn = −
ˆ 𝑡

𝑡0

∇𝜆𝐸𝑛(𝜆(𝑡)) ·
𝑑𝜆

𝑑𝑡
𝑑𝑡, (1.3)

the phase 𝛾𝑛 has a second nontrivial part that is related to the geometric
features of the cyclic path of the Hamiltonian in the parameter space. The
Berry phase is de�ned by

𝛾geom = −
˛
𝒞𝜆

𝒜𝑛(𝜆(𝑡)) · 𝑑𝜆 (1.4)

as the integrand of the Berry connection

𝒜𝑛(𝜆) = −𝑖 ⟨𝜓𝑛(𝜆)| ∇𝜆 |𝜓𝑛(𝜆)⟩ (1.5)

over the cyclic path 𝒞𝜆 in parameter space. Note the resemblance between
this de�nition and Eq. 1.1. In fact, this similarity in the structure is not ac-
cidental, but rather suggests that the Berry connection stems from a gauge
freedom [152] that is arising from the invariance of a theory under a gauge trans-
formation |𝜓⟩ → 𝑒𝑖𝛼(𝜆) |𝜓⟩. Here, such a transformation leads to 𝒜𝑛(𝜆) →

♠These control parameters are usually tuned through an external mechanism, such as by
inducing an electromagnetic �eld, or shining light to the system. As we will see later on, it can
also represent the Bloch momentum in the Fourier space.
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𝒜𝑛(𝜆) +∇𝜆𝛼 and, therefore, the loop integral in Eq. 1.4 is invariant under
this transformation using the Stokes’ theorem:

𝛾geom = −
ˆ
𝒮
ℱ𝑑2𝜆, (1.6)

where ℱ𝑖𝑗 =
𝜕𝒜𝑖

𝜕𝜆𝑗
− 𝜕𝒜𝑗

𝜕𝜆𝑖
is called the Berry curvature and 𝒮 is the interior

region of 𝒞𝜆 in the parameter space. (We dropped the state index 𝑛 for the
sake of simple notations.) There is a fundamental di�erence between 𝛾dyn and
𝛾geom. The former is rate dependent: one can stay at the same point in the
parameter space and still acquire a dynamical phase, whereas the adiabatic
phase is merely determined by the geometrical structure of the eigenmodes
associated with the loop 𝒞𝜆.

1.1.1 Topology and geometric phases

We saw above that the adiabatic phase has a geometric nature. For exam-
ple, when measured locally ( by narrowing down the loop so that 𝒮 is an
in�nitesimally small region in the parameter space), it can determine the Berry
curvature on a smooth manifold. This phase is an example of a more general
di�erential geometry concept called holonomy [167]. Let us see how this
works in a real-life situation. Consider the cyclic path of a motorcycle on a
wall of death in such a way that the initial and �nal positions coincide. It is
then imaginable that the initial and �nal states of the motorcycle plus the
cyclist are the same, except maybe some e�ects of time-dependent dynamical
nature (the petroleum level being reduced, internal states of the cyclist and
the motorcycle is changed, etc.). Note also that this lack of the geometric
phase does not also depend on the path taken between the initial and �nal
points. Now, imagine this experiment is done on a Möbius strip, as shown in
Fig. 1.2(c) ♠. We can see that this time the �nal state of the motorcycle and
the cyclist is �ipped with respect to their initial state by gaining a geometric
phase 𝜋. Again, this geometric phase is independent from the intermediate
path that is taken between the initial and �nal points.

This is an example of a holonomy that is dependent on a global geometric
character of a manifold that is determined by its topology. To a�ect such
topological characteristics, one needs to consider discontinuous changes in
the shape of the manifold, such as the one is shown by Fig. 1.2(b).

♠This is not recommended in a real world situation, since some positive curvature is in
play!
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(a) (b) (c)

Figure 1.2: A Möbius strip can be obtained from a cylindrical object by a non-
continuous deformation, as in (b). The di�erence between topology of the initial, (a),
and �nal, (c), objects can be shown by tracking a director �eld on a loop and �nd the
di�erence in its orientation between the initial and �nal states.

A fruitful result of Berry’s geometric phases was its role in the develop-
ment of topological modes which led to an explanation of the quantized Hall
conductance in the quantum Hall e�ect [170]. While discussing this connec-
tion in full detail and in its rigorous mathematical formalism is beyond the
scope of this introduction, it is worthwhile to see how this fascinating subject
of modern physics was rooted in the geometric phases which we discussed
above.

Let us consider a general Hamiltonian that is invariant under a translation
operator. The eigenmodes of such a Hamiltonian will be Bloch waves 𝜓𝑘(𝑥) =
𝑢(𝑥)𝑒𝑖𝑘𝑥, where 𝑢(𝑥) is a periodic function and 𝑘 is a wavenumber that belongs
the a periodic region in the reciprocal space that is called the �rst Brillouin
zone (BZ). The eigenenergies of the system can be derived by diagonalizing the
Fourier transformed Hamiltonian𝐻(𝑘) for each wavenumber. This calculation
results in a set of continuous bands of energies in the BZ, constructing the
band structure of 𝐻 . This procedure can be formulated as below: For each
Hamiltonian 𝐻(𝑥) on a periodic boundary condition, there exists a set of
Fourier transformed (Bloch) Hamiltonians 𝐻(𝑘) that are parametrized by a
wavenumber 𝑘 ∈ 1𝑠𝑡 BZ. Hence, if the band structure of 𝐻 is gapped, one can
apply the adiabatic theorem to calculate the Berry phase of the 𝑛th band on
the momentum space

𝛾𝑛 = 𝑖

˛
1𝑠𝑡 BZ

⟨𝜓𝑛(k)| ∇k |𝜓𝑛(k)⟩ · 𝑑k (1.7)
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where |𝜓𝑛(k; 𝑡)⟩ is the𝑛-th eigenstate of the Hamiltonian andk is the adiabatic
parameter. The integral in the right hand side is related by Stoke’s theorem
to the integral of the Berry curvature, ℱ = ∇ × 𝒜, where 𝒜 is the Berry
connection, as de�ned by Eq. 1.5 in the reciprocal space. The later integral is
related to the �rst Chern number through [187]

𝐶 =
1

2𝜋

ˆ
ℱ𝑑2k, (1.8)

which is an integer number and is the one that was used by TKNN [169] to
explain the quantization of the quantum Hall conductivity which was observed
by von Klitzing [170] ♠.

1.2 Geometric phases in classical systems

Geometric phases are not quantum e�ects. Hannay formulated them in the
context of classical Hamiltonian systems [150, 160]. For example, such geomet-
ric phases lead to the precession of a pendulum in a rotating frame. Another
example is in the context of light polarization dynamics, which was discovered
by Pancharatnam a few decades before Berry’s adiabatic phase. A monochro-
matic light wave with a wavevector k and frequency 𝜔 that travels along a
�xed direction acquires a dynamical phase

Φdyn = 𝑒𝑖k·𝑟−𝑖𝜔𝑡. (1.9)

However, this contribution does not consider a polarization degree of freedom
which adds a vectorial nature to the state of the light wavepacket, for example
when it passes through a polarizer. The polarization can be represented by a
complex vector on a Poincaré (or Bloch) 2-sphere. Passing through a polarizer,
which we show by [𝑃 → 𝑃 ′] in the example above is then represented by
a geodesic path between two polarization states on the Poincaré sphere, as
shown by Fig. 1.1(b).

Pancharatnam showed that such phases acquired by the light beam are
non-transitive, i.e. [𝑃 → 𝑃 ′] ∪ [𝑃 ′ → 𝑃 ′′] ̸= [𝑃 → 𝑃 ′′] and the di�erence is
given by the half of the solid angle of the closed loop between these three
points [186], namely

Φgeom =
1

2
Ω𝑃𝑃 ′𝑃 ′′ , (1.10)

♠Notice that this sentence is describing two Nobel physics prizes!
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Figure 1.3: Generalized Snell’s law, after Ref. [98].

see Fig. 1.1(b). Once again, it is important to note that this phase is not the same
as the regular dynamical phase that the light beam acquires along its evolution.
Rather, it is an extra phase that is merely determined by the geometry of the
path that is taken by the polarization state of light on the Poincaré sphere.
This phase is equivalent to the adiabatic phase on the Bloch sphere of a an
electron in a magnetic �eld, similar to the Aharonov-Bohm experiment [155].
This means that the Pancharatnam phase regards the light polarization state
as a spin-1/2 particle, in contrast to the photon’s spin-1, which for example
is relevant in spin-orbit interaction of light with a non-straight pathway in
space [60, 110, 111]. These non-straight pathways lead to a di�erent geometric
phase due to the change in light’s momentum direction that was studied
by Rytov and Vladimirskii [188, 189]. In this thesis, we will use the terms
Pancharatnam-Berry phase and Rytov-Vladimirskii-Berry phase to refer to
these two di�erent geometric phases of the light beams.



8 Chapter 1. Introduction

As an example of the e�ects of the geometric phases on physical ob-
servables, we here review the e�ect of the Pancharatnam-Berry phase on the
refraction of light. A Pancharatnam-Berry phase, unlike the dynamical or
Rytov-Vladimirskii-Berry phase is independent from the spatial path that is
traversed by light. Therefore, it can change abruptly on a subwavelength scale
in space. To illustrate this, let us consider a two-dimensional liquid-crystalline
metasurface that acts as a polarizer on an incident light beam that travels
between two regions with di�erent refractive indices, as shown in Fig. 1.3. A
spatial inhomogeneity on the orientation of the liquid crystal molecules then
leads to a spatial variation in the induced Pancharatnam-Berry phase of the
incident light beam. The e�ective optical path between two points A and B
is then obtained by 𝐿opt =

´ 𝐵
𝐴 k(r) · dr + Φ𝑟𝑠 , where the wavevector k is

spatially dependent on the media’s refractive index and Φ𝑟𝑠 is the geometric
phase that the light acquires at the incident point 𝑟𝑠 to the metasurface. To
�nd the classical path of the light beam one uses Fermat’s principle, which
can be stated as 𝛿𝐿opt = 0 with respect to the variations around this classical
path. For the situation that is depicted in Fig. 1.3, this leads to the generalized
Snell’s law of refraction given by [98]

𝑘0 [𝑛𝑡 sin 𝜃𝑡 − 𝑛𝑖 sin 𝜃𝑖] = 𝜕𝑥Φ. (1.11)

Thus, a spatial change in the geometric phase can a�ect the refraction of light
in a medium. For a Pancharatnam-Berry geometric phase, this e�ect can take
place on a subwavelength scale.

Additional to various examples of geometric phases in classical models,
the topological concepts are also well-known in these systems. Liquid crystal
disclinations are singularities around which a parallel transport of the director
�eld yields a ±𝜋 phase regardless of the path that is taken around them, similar
to what happens in the Möbius strip example above. These are examples of
topological defects [127, 171]. Such defects also appear in lines of curvature
around a degenerate umbilical point on curved surfaces [173], and crystalline
defects in solids and mechanical systems [138].

Interestingly, topology in the sense of topological states in integer quan-
tum Hall e�ect is also found in classical models. The crosspoint lies at the
concept of band topology: waves in classical systems, such as light waves in
photonic crystals or phonon modes in mechanical systems, have a dispersion
relation associated to them, similar to quantum band structure of solids [114,
136]. Thus, one can imagine Chern numbers are being calculated for isolated
bands in these wave dispersions as well [82, 109, 113, 115].
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1.3 This thesis

We will discuss in this thesis topology and geometric phases of the phonon
modes in a metamaterial, the photonic states in an arti�cial lattice in liquid
crystals, and hydrodynamic instabilities in a rotating Rayleigh-Bénard cell.

In chapter two, we consider phonon modes of an elastic metamaterial. For
this we consider a simpli�ed model of beads and springs [109]. The vibrational
modes of this system are obtained by analysing its linear response around the
equilibrium state. It is then possible to start from the Newton’s second law for
each bead and write down 𝑚ü = 𝐷u, where 𝐷 is the dynamical matrix, 𝑚 is
the bead’s mass, and u is the bead’s displacement from the equilibrium state.
Inspired by Dirac’s derivation of the Klein-Gordon equations [193], Kane and
Lubensky argued in 2014 in an in�uential paper that one can take the square
root of this equation to get to a Schrodinger equation with a Hamiltonian that
is given by [82]

𝐻 =

(︂
0 𝑄
𝑄T 0

)︂
, (1.12)

where 𝑄 is called the equilibrium matrix that relates the force applied on the
bead 𝑖 to the spring tensions through [66]

𝐹𝑖 = 𝑄𝑖𝑚𝑇𝑚. (1.13)

It is then possible to relate the phonon dispersion of the system to the band
structure of the Hamiltonian 𝐻 . In this chapter, we use this connection to
quantum mechanics to design a mechanical metamaterial which has a Dirac
cone in its band structure. We �nd an equivalent to a vector potential for
the phonon modes that minimally couples to their momentum around the
Dirac points in the BZ by applying strain or a variation of the material’s local
sti�ness. We further �nd the phenomena associated with the presence of
this synthetic gauge �eld, such as Landau levels for sound. We then �nd that
the zeroth Landau level of this system is a speci�c case of a more general
Jackiw-Rebbi-type topological zero mode in our model and de�ne a sublattice
polarization to connect our system to this model.

In the third chapter, we consider the propagation of a monochromatic
light wave in a liquid crystal medium. Starting from Maxwell’s equation, one
can derive the Helmholtz wave equations for the electromagnetic wavefunc-
tion, considering a transverse electromagnetic (TEM) wave, 𝜓 = (𝐸𝑥, 𝐸𝑦)
as

𝜕2

𝜕𝑧2
𝜓 = −(∇2

⊥ + 𝑘20𝜖)𝜓, (1.14)
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where 𝑘0 is the wavenumber in the free space, ∇⊥ is the spatial gradient in
the transverse plane, and 𝜖 is the dielectric tensor of the host material. In a
so-called paraxial regime, the wave equation above becomes �rst order along
the propagation direction, 𝑧 and the equation of motion for a monochromatic
electromagnetic wave is cast as

𝑖𝜕𝑧𝜓 = − 1

2𝑛𝑘0
∇2

⊥𝜓 − 𝑉 [𝜖]𝜓, (1.15)

where 𝑛 is the average refractive index, and 𝑉 [𝜖] is an e�ective photonic
potential due to the dielectric medium [104, 108]. It then becomes possible to
look at the system in this regime as a quantum mechanical problem. In the
liquid crystal system that we consider, when the director �eld’s variation in the
perpendicular plane is slow, the system is in the paraxial regime. A periodic
modulation of the liquid crystal pattern will then map this system to a quantum
mechanical problem with a time-periodic Hamiltonian that are studied with
Floquet theory [61, 79]. We then show that such Floquet Hamiltonians, when
the director �eld varies adiabatically, can induce Pancharatnam-Berry phases
for a light beam. As a result of such spatially varying geometric phase, the
light beam becomes transversely con�ned, leading to soft light waveguides.
We then use the tools of Floquet theory to obtain the guided modes for more
general nematic textures.

In the fourth chapter, we couple these soft electromagnetic waveguides
to each other. We show that coupling between these waveguides, also known
as coupled mode approximation in optical systems, follow the rules of a semi-
classical tunneling picture, establishing an analogy with quantum mechanics
in a many-waveguide level. We then develop a tight-binding model for these
waveguide interactions. As a result of this model, we present two archetypal
example of topological photonics to be realized in liquid crystals: a 1d SSH
chain [172] and a 2d Haldane model [151]. Along the way, we develop two
recipes to break the e�ective time-reversal symmetry by merely using the
structural degree of freedom. Another result of this chapter is to have a system
which has two di�erent kinds of geometric phases: a Pancharatnam-Berry
phase to achieve single waveguides and a Berry geometric phase corresponding
to the topological band structure.

In the �fth chapter, we consider a rotating Rayleigh-Bénard convection
cell. This time, instead of oscillatory waves we consider growing hydrody-
namic instabilities that form patterns in this system. The evolution of such a
system is described by a nonlinear, but deterministic set of partial di�erential
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equations [140] such as the Swift-Hohenberg model [174]. Formally, such
system can be e�ectively described by

𝜕𝑡𝜓 = N [𝜓], (1.16)

where N is a nonlinear operator and 𝜓 is system’s state function. We will
focus on the regimes that the �nal state of the system is a steady-state ordered
pattern. The linear stability analysis around this steady state leads to a complex
band structure where the real part is the growth rate and the imaginary part
is the frequency of the hydrodynamic modes. We apply the insights discussed
above to characterize the topology of these bands. In a separate attempt, we
then try to sketch a proposal to apply nonlinear geometric phases [10] for
studying patterns close to the threshold of the instability transition in this
system, where one can use a perturbative method, that is called the amplitude
equations approach, to simplify the full nonlinear equations.




