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Chapter 1.

Introduction

Geometric phases are extra phase factors (additional to the dynamical
ones, i.e. integral of system’s energy over time), that are acquired by moving
along a closed -adiabatic- path [147, 161] in the parametric space of a given
Hamiltonian. The use of the term geometric here stems from the fact that
this phase depends on the path taken in the phase space, and not for example
on the rate of moving along that path. Consider for example the quantum
mechanical wavefunction of an electron which is described in terms of an
amplitude 𝑎 and a phase 𝜑 as 𝜓(r) = 𝑎𝑒𝑖𝜑. After switching on a magnetic �eld,
the electron’s wavefunction is modi�ed into 𝜓(r) = 𝑎𝑒𝑖𝜑−𝑖𝑒A·r, where 𝑒 is
the electrical charge, and A is the vector gauge �eld. (Throughout this thesis
we set ~ = 1.) Now, consider the movement of this electron on a cyclic path
in space, denoted by 𝒞: while the amplitude remains intact, the wavefunction
acquires a phase

Φ = −𝑒
˛
𝒞
A · 𝑑r, (1.1)

which is equal to the total magnetic �ux inside the region that is enclosed
by 𝒞. This e�ect is independent of whether the electron experiences the
magnetic �eld directly, especially when the magnetic �eld is con�ned in a
region, this phase is independent of the path taken by the electron surrounding
that region. This fundamental feature of quantum mechanics is the essence of
the Aharonov-Bohm e�ect [185], see Fig. 1.1(a).

The notion of geometric phases was independently developed in the
context of electromagnetic waves by Pancharatnam [186] and in the adiabatic
Hamiltonian evolution in quantum mechanical systems by Berry [155, 161]
as a more general concept. Later on, Hannay used the same mathematical
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2 Chapter 1. Introduction

concept for classical systems [160]. The Hannay angle, which is the geometric
phase that, for instance, makes the Foucault pendulum precess, is an example
of how a geometric concept in quantum mechanics can lead to a new frame
of looking at a classical problem. One of the tasks of this thesis is to follow a
similar passage by adopting an already existing concept (usually formulated
in an electronic or cold atom language) to a classical, soft matter platform.

When considering the broadness of a subject and its applicability, Berry’s
formulation of the quantum adiabatic phase has proven to be a very fruitful
discovery of theoretical physics in the past few decades. The range of phe-
nomena that involves this phase spans from the quantum Hall e�ect [153, 157,
166, 169, 170] and topological insulators [96, 100] to classical mechanics [159,
160], to optical �bers [134, 155, 186], and the rotation of a cat when falling from
a height [148]. The geometrical phases are usually measured through interfer-
ence experiments: the geometrical phases that are acquired by a wavefunction
are di�erent when moving along di�erent paths in the parametric space. In
the example above, this was done by the interferometry between the electrons
that traverse di�erent paths[183, 185].

(a) (b)

B

eiΦ1

eiΦ2

P
P ′

P ′′

ΩA B

Figure 1.1: (a) The Aharanov-Bohm e�ect. An electron acquires di�erent phases
when its quantum mechanical paths encircle a region that contains a magnetic �eld.
The phase di�erence Φ = Φ1 − Φ2 is equal to the total magnetic �ux multiplied
by electron’s electric charge and is unchanged under the smooth deformations of
the paths. (b) Light polarization represented on a Poincaré sphere. Similar to the
Aharanov-Bohm e�ect for electrons, the change in the polarization is non-transitive
and after traversing a loop, the light beam acquires a geometrical Pancharatnam-Berry
phase equal to Ω/2, where Ω is the solid angle that is enclosed by this loop on the
Poincaré sphere.

We shall now review the Berry phase and its relation to the �eld of
topological insulators among other applications.



1.1. Adiabatic theorem and the Berry phase 3

1.1 Adiabatic theorem and the Berry phase

In quantum mechanics, where the dynamics of a system’s wavefunction is
described by the Schrödinger equation,

𝑖𝜕𝑡 |𝜓⟩ = 𝐻 |𝜓⟩ , (1.2)

the adiabatic theorem states that a system that is in one of its eigenstates
continues to stay in that state as long as the changes in the Hamiltonian
occur slowly enough compared to the energy gap between the corresponding
eigenenergy of this state and the rest of the spectrum [45]. Let us then consider
the case of a Hamiltonian that evolves along a cyclic adiabatic path in a
parameter space, that we represent by a vector 𝜆(𝑡) ♠. The adiabatic theorem
above ensures that upon completion of a loop in this parametric space, the
system will be in the same quantum eigenstate as the one it started from. This
can be represented as 𝜓𝑛(𝑡) = 𝑒𝑖𝛾𝑛𝜓𝑛(𝑡0), where 𝛾𝑛 is a phase that is acquired
along the evolution, 𝑛 denotes the eigenstate index, and 𝑡0 and 𝑡 are the initial
and �nal time.

Berry showed that apart from a trivial dynamical contribution

𝛾dyn = −
ˆ 𝑡

𝑡0

∇𝜆𝐸𝑛(𝜆(𝑡)) ·
𝑑𝜆

𝑑𝑡
𝑑𝑡, (1.3)

the phase 𝛾𝑛 has a second nontrivial part that is related to the geometric
features of the cyclic path of the Hamiltonian in the parameter space. The
Berry phase is de�ned by

𝛾geom = −
˛
𝒞𝜆

𝒜𝑛(𝜆(𝑡)) · 𝑑𝜆 (1.4)

as the integrand of the Berry connection

𝒜𝑛(𝜆) = −𝑖 ⟨𝜓𝑛(𝜆)| ∇𝜆 |𝜓𝑛(𝜆)⟩ (1.5)

over the cyclic path 𝒞𝜆 in parameter space. Note the resemblance between
this de�nition and Eq. 1.1. In fact, this similarity in the structure is not ac-
cidental, but rather suggests that the Berry connection stems from a gauge
freedom [152] that is arising from the invariance of a theory under a gauge trans-
formation |𝜓⟩ → 𝑒𝑖𝛼(𝜆) |𝜓⟩. Here, such a transformation leads to 𝒜𝑛(𝜆) →

♠These control parameters are usually tuned through an external mechanism, such as by
inducing an electromagnetic �eld, or shining light to the system. As we will see later on, it can
also represent the Bloch momentum in the Fourier space.
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𝒜𝑛(𝜆) +∇𝜆𝛼 and, therefore, the loop integral in Eq. 1.4 is invariant under
this transformation using the Stokes’ theorem:

𝛾geom = −
ˆ
𝒮
ℱ𝑑2𝜆, (1.6)

where ℱ𝑖𝑗 =
𝜕𝒜𝑖

𝜕𝜆𝑗
− 𝜕𝒜𝑗

𝜕𝜆𝑖
is called the Berry curvature and 𝒮 is the interior

region of 𝒞𝜆 in the parameter space. (We dropped the state index 𝑛 for the
sake of simple notations.) There is a fundamental di�erence between 𝛾dyn and
𝛾geom. The former is rate dependent: one can stay at the same point in the
parameter space and still acquire a dynamical phase, whereas the adiabatic
phase is merely determined by the geometrical structure of the eigenmodes
associated with the loop 𝒞𝜆.

1.1.1 Topology and geometric phases

We saw above that the adiabatic phase has a geometric nature. For exam-
ple, when measured locally ( by narrowing down the loop so that 𝒮 is an
in�nitesimally small region in the parameter space), it can determine the Berry
curvature on a smooth manifold. This phase is an example of a more general
di�erential geometry concept called holonomy [167]. Let us see how this
works in a real-life situation. Consider the cyclic path of a motorcycle on a
wall of death in such a way that the initial and �nal positions coincide. It is
then imaginable that the initial and �nal states of the motorcycle plus the
cyclist are the same, except maybe some e�ects of time-dependent dynamical
nature (the petroleum level being reduced, internal states of the cyclist and
the motorcycle is changed, etc.). Note also that this lack of the geometric
phase does not also depend on the path taken between the initial and �nal
points. Now, imagine this experiment is done on a Möbius strip, as shown in
Fig. 1.2(c) ♠. We can see that this time the �nal state of the motorcycle and
the cyclist is �ipped with respect to their initial state by gaining a geometric
phase 𝜋. Again, this geometric phase is independent from the intermediate
path that is taken between the initial and �nal points.

This is an example of a holonomy that is dependent on a global geometric
character of a manifold that is determined by its topology. To a�ect such
topological characteristics, one needs to consider discontinuous changes in
the shape of the manifold, such as the one is shown by Fig. 1.2(b).

♠This is not recommended in a real world situation, since some positive curvature is in
play!
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(a) (b) (c)

Figure 1.2: A Möbius strip can be obtained from a cylindrical object by a non-
continuous deformation, as in (b). The di�erence between topology of the initial, (a),
and �nal, (c), objects can be shown by tracking a director �eld on a loop and �nd the
di�erence in its orientation between the initial and �nal states.

A fruitful result of Berry’s geometric phases was its role in the develop-
ment of topological modes which led to an explanation of the quantized Hall
conductance in the quantum Hall e�ect [170]. While discussing this connec-
tion in full detail and in its rigorous mathematical formalism is beyond the
scope of this introduction, it is worthwhile to see how this fascinating subject
of modern physics was rooted in the geometric phases which we discussed
above.

Let us consider a general Hamiltonian that is invariant under a translation
operator. The eigenmodes of such a Hamiltonian will be Bloch waves 𝜓𝑘(𝑥) =
𝑢(𝑥)𝑒𝑖𝑘𝑥, where 𝑢(𝑥) is a periodic function and 𝑘 is a wavenumber that belongs
the a periodic region in the reciprocal space that is called the �rst Brillouin
zone (BZ). The eigenenergies of the system can be derived by diagonalizing the
Fourier transformed Hamiltonian𝐻(𝑘) for each wavenumber. This calculation
results in a set of continuous bands of energies in the BZ, constructing the
band structure of 𝐻 . This procedure can be formulated as below: For each
Hamiltonian 𝐻(𝑥) on a periodic boundary condition, there exists a set of
Fourier transformed (Bloch) Hamiltonians 𝐻(𝑘) that are parametrized by a
wavenumber 𝑘 ∈ 1𝑠𝑡 BZ. Hence, if the band structure of 𝐻 is gapped, one can
apply the adiabatic theorem to calculate the Berry phase of the 𝑛th band on
the momentum space

𝛾𝑛 = 𝑖

˛
1𝑠𝑡 BZ

⟨𝜓𝑛(k)| ∇k |𝜓𝑛(k)⟩ · 𝑑k (1.7)
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where |𝜓𝑛(k; 𝑡)⟩ is the𝑛-th eigenstate of the Hamiltonian andk is the adiabatic
parameter. The integral in the right hand side is related by Stoke’s theorem
to the integral of the Berry curvature, ℱ = ∇ × 𝒜, where 𝒜 is the Berry
connection, as de�ned by Eq. 1.5 in the reciprocal space. The later integral is
related to the �rst Chern number through [187]

𝐶 =
1

2𝜋

ˆ
ℱ𝑑2k, (1.8)

which is an integer number and is the one that was used by TKNN [169] to
explain the quantization of the quantum Hall conductivity which was observed
by von Klitzing [170] ♠.

1.2 Geometric phases in classical systems

Geometric phases are not quantum e�ects. Hannay formulated them in the
context of classical Hamiltonian systems [150, 160]. For example, such geomet-
ric phases lead to the precession of a pendulum in a rotating frame. Another
example is in the context of light polarization dynamics, which was discovered
by Pancharatnam a few decades before Berry’s adiabatic phase. A monochro-
matic light wave with a wavevector k and frequency 𝜔 that travels along a
�xed direction acquires a dynamical phase

Φdyn = 𝑒𝑖k·𝑟−𝑖𝜔𝑡. (1.9)

However, this contribution does not consider a polarization degree of freedom
which adds a vectorial nature to the state of the light wavepacket, for example
when it passes through a polarizer. The polarization can be represented by a
complex vector on a Poincaré (or Bloch) 2-sphere. Passing through a polarizer,
which we show by [𝑃 → 𝑃 ′] in the example above is then represented by
a geodesic path between two polarization states on the Poincaré sphere, as
shown by Fig. 1.1(b).

Pancharatnam showed that such phases acquired by the light beam are
non-transitive, i.e. [𝑃 → 𝑃 ′] ∪ [𝑃 ′ → 𝑃 ′′] ̸= [𝑃 → 𝑃 ′′] and the di�erence is
given by the half of the solid angle of the closed loop between these three
points [186], namely

Φgeom =
1

2
Ω𝑃𝑃 ′𝑃 ′′ , (1.10)

♠Notice that this sentence is describing two Nobel physics prizes!



1.2. Geometric phases in classical systems 7

θi

θt

A

B

ni

ntΦ(x)

Φ(x + dx)

Figure 1.3: Generalized Snell’s law, after Ref. [98].

see Fig. 1.1(b). Once again, it is important to note that this phase is not the same
as the regular dynamical phase that the light beam acquires along its evolution.
Rather, it is an extra phase that is merely determined by the geometry of the
path that is taken by the polarization state of light on the Poincaré sphere.
This phase is equivalent to the adiabatic phase on the Bloch sphere of a an
electron in a magnetic �eld, similar to the Aharonov-Bohm experiment [155].
This means that the Pancharatnam phase regards the light polarization state
as a spin-1/2 particle, in contrast to the photon’s spin-1, which for example
is relevant in spin-orbit interaction of light with a non-straight pathway in
space [60, 110, 111]. These non-straight pathways lead to a di�erent geometric
phase due to the change in light’s momentum direction that was studied
by Rytov and Vladimirskii [188, 189]. In this thesis, we will use the terms
Pancharatnam-Berry phase and Rytov-Vladimirskii-Berry phase to refer to
these two di�erent geometric phases of the light beams.
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As an example of the e�ects of the geometric phases on physical ob-
servables, we here review the e�ect of the Pancharatnam-Berry phase on the
refraction of light. A Pancharatnam-Berry phase, unlike the dynamical or
Rytov-Vladimirskii-Berry phase is independent from the spatial path that is
traversed by light. Therefore, it can change abruptly on a subwavelength scale
in space. To illustrate this, let us consider a two-dimensional liquid-crystalline
metasurface that acts as a polarizer on an incident light beam that travels
between two regions with di�erent refractive indices, as shown in Fig. 1.3. A
spatial inhomogeneity on the orientation of the liquid crystal molecules then
leads to a spatial variation in the induced Pancharatnam-Berry phase of the
incident light beam. The e�ective optical path between two points A and B
is then obtained by 𝐿opt =

´ 𝐵
𝐴 k(r) · dr + Φ𝑟𝑠 , where the wavevector k is

spatially dependent on the media’s refractive index and Φ𝑟𝑠 is the geometric
phase that the light acquires at the incident point 𝑟𝑠 to the metasurface. To
�nd the classical path of the light beam one uses Fermat’s principle, which
can be stated as 𝛿𝐿opt = 0 with respect to the variations around this classical
path. For the situation that is depicted in Fig. 1.3, this leads to the generalized
Snell’s law of refraction given by [98]

𝑘0 [𝑛𝑡 sin 𝜃𝑡 − 𝑛𝑖 sin 𝜃𝑖] = 𝜕𝑥Φ. (1.11)

Thus, a spatial change in the geometric phase can a�ect the refraction of light
in a medium. For a Pancharatnam-Berry geometric phase, this e�ect can take
place on a subwavelength scale.

Additional to various examples of geometric phases in classical models,
the topological concepts are also well-known in these systems. Liquid crystal
disclinations are singularities around which a parallel transport of the director
�eld yields a ±𝜋 phase regardless of the path that is taken around them, similar
to what happens in the Möbius strip example above. These are examples of
topological defects [127, 171]. Such defects also appear in lines of curvature
around a degenerate umbilical point on curved surfaces [173], and crystalline
defects in solids and mechanical systems [138].

Interestingly, topology in the sense of topological states in integer quan-
tum Hall e�ect is also found in classical models. The crosspoint lies at the
concept of band topology: waves in classical systems, such as light waves in
photonic crystals or phonon modes in mechanical systems, have a dispersion
relation associated to them, similar to quantum band structure of solids [114,
136]. Thus, one can imagine Chern numbers are being calculated for isolated
bands in these wave dispersions as well [82, 109, 113, 115].
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1.3 This thesis

We will discuss in this thesis topology and geometric phases of the phonon
modes in a metamaterial, the photonic states in an arti�cial lattice in liquid
crystals, and hydrodynamic instabilities in a rotating Rayleigh-Bénard cell.

In chapter two, we consider phonon modes of an elastic metamaterial. For
this we consider a simpli�ed model of beads and springs [109]. The vibrational
modes of this system are obtained by analysing its linear response around the
equilibrium state. It is then possible to start from the Newton’s second law for
each bead and write down 𝑚ü = 𝐷u, where 𝐷 is the dynamical matrix, 𝑚 is
the bead’s mass, and u is the bead’s displacement from the equilibrium state.
Inspired by Dirac’s derivation of the Klein-Gordon equations [193], Kane and
Lubensky argued in 2014 in an in�uential paper that one can take the square
root of this equation to get to a Schrodinger equation with a Hamiltonian that
is given by [82]

𝐻 =

(︂
0 𝑄
𝑄T 0

)︂
, (1.12)

where 𝑄 is called the equilibrium matrix that relates the force applied on the
bead 𝑖 to the spring tensions through [66]

𝐹𝑖 = 𝑄𝑖𝑚𝑇𝑚. (1.13)

It is then possible to relate the phonon dispersion of the system to the band
structure of the Hamiltonian 𝐻 . In this chapter, we use this connection to
quantum mechanics to design a mechanical metamaterial which has a Dirac
cone in its band structure. We �nd an equivalent to a vector potential for
the phonon modes that minimally couples to their momentum around the
Dirac points in the BZ by applying strain or a variation of the material’s local
sti�ness. We further �nd the phenomena associated with the presence of
this synthetic gauge �eld, such as Landau levels for sound. We then �nd that
the zeroth Landau level of this system is a speci�c case of a more general
Jackiw-Rebbi-type topological zero mode in our model and de�ne a sublattice
polarization to connect our system to this model.

In the third chapter, we consider the propagation of a monochromatic
light wave in a liquid crystal medium. Starting from Maxwell’s equation, one
can derive the Helmholtz wave equations for the electromagnetic wavefunc-
tion, considering a transverse electromagnetic (TEM) wave, 𝜓 = (𝐸𝑥, 𝐸𝑦)
as

𝜕2

𝜕𝑧2
𝜓 = −(∇2

⊥ + 𝑘20𝜖)𝜓, (1.14)
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where 𝑘0 is the wavenumber in the free space, ∇⊥ is the spatial gradient in
the transverse plane, and 𝜖 is the dielectric tensor of the host material. In a
so-called paraxial regime, the wave equation above becomes �rst order along
the propagation direction, 𝑧 and the equation of motion for a monochromatic
electromagnetic wave is cast as

𝑖𝜕𝑧𝜓 = − 1

2𝑛𝑘0
∇2

⊥𝜓 − 𝑉 [𝜖]𝜓, (1.15)

where 𝑛 is the average refractive index, and 𝑉 [𝜖] is an e�ective photonic
potential due to the dielectric medium [104, 108]. It then becomes possible to
look at the system in this regime as a quantum mechanical problem. In the
liquid crystal system that we consider, when the director �eld’s variation in the
perpendicular plane is slow, the system is in the paraxial regime. A periodic
modulation of the liquid crystal pattern will then map this system to a quantum
mechanical problem with a time-periodic Hamiltonian that are studied with
Floquet theory [61, 79]. We then show that such Floquet Hamiltonians, when
the director �eld varies adiabatically, can induce Pancharatnam-Berry phases
for a light beam. As a result of such spatially varying geometric phase, the
light beam becomes transversely con�ned, leading to soft light waveguides.
We then use the tools of Floquet theory to obtain the guided modes for more
general nematic textures.

In the fourth chapter, we couple these soft electromagnetic waveguides
to each other. We show that coupling between these waveguides, also known
as coupled mode approximation in optical systems, follow the rules of a semi-
classical tunneling picture, establishing an analogy with quantum mechanics
in a many-waveguide level. We then develop a tight-binding model for these
waveguide interactions. As a result of this model, we present two archetypal
example of topological photonics to be realized in liquid crystals: a 1d SSH
chain [172] and a 2d Haldane model [151]. Along the way, we develop two
recipes to break the e�ective time-reversal symmetry by merely using the
structural degree of freedom. Another result of this chapter is to have a system
which has two di�erent kinds of geometric phases: a Pancharatnam-Berry
phase to achieve single waveguides and a Berry geometric phase corresponding
to the topological band structure.

In the �fth chapter, we consider a rotating Rayleigh-Bénard convection
cell. This time, instead of oscillatory waves we consider growing hydrody-
namic instabilities that form patterns in this system. The evolution of such a
system is described by a nonlinear, but deterministic set of partial di�erential
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equations [140] such as the Swift-Hohenberg model [174]. Formally, such
system can be e�ectively described by

𝜕𝑡𝜓 = N [𝜓], (1.16)

where N is a nonlinear operator and 𝜓 is system’s state function. We will
focus on the regimes that the �nal state of the system is a steady-state ordered
pattern. The linear stability analysis around this steady state leads to a complex
band structure where the real part is the growth rate and the imaginary part
is the frequency of the hydrodynamic modes. We apply the insights discussed
above to characterize the topology of these bands. In a separate attempt, we
then try to sketch a proposal to apply nonlinear geometric phases [10] for
studying patterns close to the threshold of the instability transition in this
system, where one can use a perturbative method, that is called the amplitude
equations approach, to simplify the full nonlinear equations.





Chapter 2.

Sonic Landau levels and synthetic gauge
�elds in mechanical metamaterials

Electronic systems subject to a uniform magnetic �eld experience a
wealth of fascinating phenomena such as topological states [122] in the integer
quantum Hall e�ect [100] and anyons associated with the fractional quantum
Hall e�ect [123]. Recently, it has been shown that in a strained graphene
sheet, electrons experience external potentials that can mimic the e�ects of
a magnetic �eld, which results in the formation of Landau levels and edge
states [99, 101]. Working in direct analogy with this electronic setting, pseudo-
magnetic �elds have been engineered by arranging CO molecules on a gold
surface [92] and in photonic honeycomb-lattice metamaterials [88, 89].

In this chapter, we apply insights about wave propagation in the presence
of a gauge �eld to acoustic phenomena in a nonuniform phononic crystal, using
the appropriate mechanisms of strain-phonon coupling and frictional dissipa-
tion, in contrast to those present in electronic and photonic cases. The acoustic
metamaterial context in which we implement gauge �elds provides us with sig-
ni�cant control [30, 90, 97] over frequency, wavelength, and attenuation scales
unavailable in the analogous electronic realizations. For example, a metamate-
rial composed of sti� (e.g. metallic) components of micron-scale length may be
suitable for control over ultrasound with gigahertz-scale frequencies, whereas
cm-scale metamaterials may provide control over kHz-scale sound waves. We
develop two strategies for realizing a uniform pseudo-magnetic �eld in a meta-
material based on the honeycomb lattice, i.e. “mechanical graphene” [63]. In
the �rst strategy, we apply stress at the boundary to obtain nonuniform strain

13
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in the bulk, which leads to a Landau-level spectrum, whereas in the second
strategy, we exploit built-in, nonuniform patterning of the local metamate-
rial sti�ness. This second strategy shows how the unique controllability of
metamaterials can lead to novel designs inaccessible in the electronic context.

2.1 Mechanical graphene

We begin with a minimal, microscopic model of an acoustic metamaterial – a
set of nodes positioned at the vertices of a honeycomb lattice and connected by
rods to their nearest neighbors (see Fig. 2.1a) [63]. The compressional sti�ness
of the rods 𝜅 is determined by their �xed Young’s modulus 𝐸, variable cross-
section area 𝑆, and length 𝑎 via 𝐸𝑆/𝑎. We assume the rods to be so slender
that their bending sti�ness is signi�cantly lower than their compressional
sti�ness. We model the rods as central-force harmonic springs, whose elastic
energy 𝑈 is given in terms of the strain 𝛿𝑟/𝑎 by 𝑈(𝛿𝑟) = 1

2𝜅 (|r+ 𝛿r| − 𝑎)2.
For small strains, this energy can be linearized in terms of node displacements
u1 and u2 as 𝑈(u1,u2) = 1

2𝜅 (e · [u1 − u2])
2, where e ≡ r/|r| is the unit

vector along the spring. (In Fig. 2.1a, we de�ne the initial con�guration for the
node positions and sti�nesses.) The total elastic energy associated with a unit
cell at spatial point R can be cast as

𝑈tot(R) = 𝑈1(R,R) +
1

2
[𝑈2(R,R− a1) + 𝑈2(R+ a1,R)]

+
1

2
[𝑈3(R,R− a2) + 𝑈3(R+ a2,R)] , (2.1)

where by considering u𝑠(R) as the displacement of the 𝑠 sublattice node of
the unit cell centered at R we de�ned

𝑈𝛼(R1,R2) =
𝜅

2
[e𝛼 · (u2(R2)− u1(R1))]

2 , (2.2)

which gives the potential energy of a single rod in the direction e𝛼 connecting
two unit cells at points R1 and R2. Note that we only considered the interac-
tion between nearest neighbors, which guarantees that the interactions are
only between the nodes from di�erent sublattices. This consideration will lead
to an e�ective chiral symmetry in this system, which as we will discuss later,
will be crucial for the existence of topological sound modes in this setup.

Given this potential, we write down and solve the linear equation of
motion for acoustic vibrations of the lattice:

−𝑚𝑢̈𝜇𝑖 =
𝜕𝑈

𝜕𝑢𝜇𝑖
=
∑︁
𝑗,𝜈

𝐷𝜇𝜈
𝑖𝑗 𝑢

𝜈
𝑗 , (2.3)
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Figure 2.1: (a) Mechanical graphene – a set of rods and nodes based on the honeycomb
structure. The dashed line indicates the shape of a unit cell. (b) The lattice with a pure
shear strain. (c) The shift of a Dirac point within the phonon spectrum of mechanical
graphene due to the applied strain can be used to de�ne an e�ective vector potential.
(d) An externally applied nonuniform pure shear deformation that corresponds to a
constant magnetic �eld. The external stress is applied by a torque 𝜏 on the boundary
rods. (e) A non-uniform patterning of the local material sti�ness that leads to a
constant magnetic �eld. We consider periodic boundary conditions along 𝑥 and free
boundary conditions along 𝑦.
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where 𝑢𝜇𝑖 are the 𝜇 = 𝑥, 𝑦 components of displacement of the 𝑖th site and
𝐷𝜇𝜈
𝑖𝑗 are components of the dynamical matrix. In a periodic lattice, the solu-

tions to this equation of motion are plane waves uq𝑒
𝑖(𝜔(q)𝑡−q·x), where both

the dispersion relation 𝜔(q) and the normal modes uq are found from the
corresponding eigenvalue problem for each wavevector q:

𝐷(q)uq = 𝑚𝜔2(q)uq, (2.4)

The dynamical matrix of the two-dimensional honeycomb lattice is:

𝐷(q) =
1

𝑚

3∑︁
𝛼=1

𝜅𝛼

(︂
𝑃𝛼 −𝑃𝛼𝑒𝑖q·𝛿𝛼
−𝑃𝛼𝑒−𝑖q·𝛿𝛼 𝑃𝛼

)︂
, (2.5)

where the projections 𝑃𝛼 = e𝛼e
𝑇
𝛼 and for the honeycomb lattice

𝑃1 =

(︂
0 0
0 1

)︂
; 𝑃2 =

(︂
3/4

√
3 /4√

3 /4 1/4

)︂
; 𝑃3 =

(︂
3/4 −

√
3 /4

−
√
3 /4 1/4

)︂
(2.6)

The phonon dispersion relation 𝜔(q) of the system can then be obtained
from the square root of the eigenvalues of this dynamical matrix. This band
structure exhibits a linear dispersion of the phonon modes around the Dirac
point K [de�ned by q𝐾 ≡ (0, 4𝜋/3

√
3 𝑎)], where the two middle bands are

degenerate. Using �rst-order perturbation theory around the Dirac point, we
�nd the following form for the dynamical matrix:

𝐷(q𝐾+𝛿q) ≈ 𝜔2
0

⎛⎜⎜⎜⎜⎜⎝
0 0

𝑎(𝛿𝑞𝑥−𝑖𝛿𝑞𝑦)
2
√
2

𝑎(𝛿𝑞𝑥+𝑖𝛿𝑞𝑦)

2
√
2

0 2 −𝑎(𝛿𝑞𝑥−𝑖𝛿𝑞𝑦)
2
√
2

𝑎(𝛿𝑞𝑥+𝑖𝛿𝑞𝑦)

2
√
2

𝑎(𝛿𝑞𝑥+𝑖𝛿𝑞𝑦)

2
√
2

−𝑎(𝛿𝑞𝑥+𝑖𝛿𝑞𝑦
2
√
2 )

1
𝑎(−𝛿𝑞𝑥−𝑖𝛿𝑞𝑦)

2
𝑎(𝛿𝑞𝑥−𝑖𝛿𝑞𝑦)

2
√
2

𝑎(𝛿𝑞𝑥−𝑖𝛿𝑞𝑦)
2
√
2

𝑎(−𝛿𝑞𝑥+𝑖𝛿𝑞𝑦)
2 1

⎞⎟⎟⎟⎟⎟⎠ ,

(2.7)
where 𝜔0 =

√︀
3𝜅/2𝑚 is the frequency of the degenerate bands at the Dirac

point. We can then project the dynamical matrix for the two degenerate bands
to get

𝐷𝑟(q𝐾 + 𝛿q) = 𝜔2
0I − 1

2
𝜔2
0𝑎𝛿q · 𝜎 +𝒪(𝛿q2), (2.8)

where 𝐷𝑟 is the reduced dynamical matrix for the two middle bands, I is the
2× 2 identity matrix, 𝛿q ≡ q− q𝐾 , and 𝜎 ≡ (𝜎𝑥, 𝜎𝑦) is composed of Pauli
spin matrices

𝜎𝑥 =

(︂
0 1
1 0

)︂
and𝜎𝑦 =

(︂
0 −𝑖
𝑖 0

)︂
. (2.9)
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From this reduced form, one can deduce that small perturbations on
this system will lead to the following general form up to the lowest order in
perturbation theory♠:

𝐷𝑟(q𝐾 + 𝛿q) = −1

2
𝜔2
0(𝑎𝛿q+A) · 𝜎 + (1 + 𝑉 )𝜔2

0I + 𝜇𝜎𝑧, (2.10)

where a gauge �eld A minimally coupled to the momentum of the phonons ♡

and a potential 𝑉 are introduced as a result. The sublattice breaking term
which is proportional to the third Pauli matrix

𝜎𝑧 =

(︂
1 0
0 −1

)︂
(2.11)

will remain zero, as long as the perturbation does not violate the chiral sym-
metry. From the structure of Eq. (2.10), we note that the dispersion around q𝐾
has the form of a Dirac cone.

2.2 Synthetic gauge �eld

We now proceed to show that unlike uniform lattice deformations that merely
shift this Dirac cone in wavevector space, nonuniform deformations can lead
to an e�ective synthetic gauge �eld for sound. For uniform strain (Fig. 2.1b),
A and 𝑉 are both constant throughout the lattice. On the other hand, for a
nonuniform but slowly varying strain, the position of the local Dirac point
varies from one region to another (Fig. 2.1c), which corresponds to �elds A
and 𝑉 that depend on spatial coordinates.

To see this, we consider a general deformation on the honeycomb struc-
ture with a�ne componentU and nona�ne componentW of the displacement
denoting, respectively, the common and relative displacements of the two sub-
lattices. The deformation of each sublattice is then given by U1,2 = U±W/2,
where the di�erent signs correspond to the di�erent sublattices. This defor-
mation changes the components of the dynamical matrix via 𝛿𝛼 → 𝛿𝛼 and
𝑃𝛼 → 𝑃𝛼, where

𝛿𝛼 = (I+∇U)𝛿𝛼 +W (2.12)

𝑃𝛼 = 𝑃𝛼 + (∇U)𝑃𝛼 + 𝑃𝛼(∇U)𝑇

+ (e𝑇
𝛼 𝜖 e𝛼 + e𝑇

𝛼W/𝑎) (I− 3𝑃𝛼) + e𝛼W
𝑇/𝑎+We𝑇

𝛼/𝑎, (2.13)
♠Here, we use the fact that any general 2× 2 Hermitian matrix can be expanded in the

{𝜎𝑥, 𝜎𝑦, 𝜎𝑧, I} basis.
♡corresponding to a gauge transformation 𝑢 → 𝑢𝑒−𝑖A·x/𝑎 in the wavefunction
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and (∇U)𝑖𝑗 = 𝜕𝑖U𝑗 . The potential energy of a single rod can now be ex-
pressed as

𝑈̃𝛼(R1,R2) =
𝜅

2

(︁⃒⃒⃒
𝛿𝛼 + u2(R2)− u1(R1)

⃒⃒⃒
− 1
)︁2
. (2.14)

Taking the same steps as before, we �nd that the lattice deformations modify
the dynamical matrix according to

𝐷̃(q) =
1

𝑚

3∑︁
𝛼=1

𝜅𝛼

(︃
𝑃𝛼 −𝑃𝛼𝑒𝑖q·𝛿𝛼
−𝑃𝛼𝑒−𝑖q·𝛿𝛼 𝑃𝛼

)︃
. (2.15)

We then obtain the gauge �eld

A(𝑥, 𝑦; 𝜖,𝑊 ) =𝑎(q𝐾 · ∇)U+

[︂
3

2
(𝜖𝑥𝑥 − 𝜖𝑦𝑦),−3𝜖𝑥𝑦

]︂
+ (𝑊𝑦,−𝑊𝑥)/𝑎, (2.16)

and 𝑉 = 1
2 Tr 𝜖, where 𝜖𝑖𝑗 ≡ (𝜕𝑖𝑈𝑗 + 𝜕𝑗𝑈𝑖)/2 is the linear a�ne strain.

To simplify the design of an acoustic device based on this strained lattice,
we now consider those lattice strains that can be obtained by applying forces
only on the boundary. Such a con�guration requires that the forces in the
bulk of the material balance each other. In the material we consider, this
force-balance condition is satis�ed provided that the nona�ne displacements
depend on the a�ne strain via 𝑊𝑥 = 𝜖𝑥𝑦𝑎 and 𝑊𝑦 =

1
2(𝜖𝑥𝑥 − 𝜖𝑦𝑦)𝑎, which

can be obtained by solving the force-balance equation 𝛿𝑈𝑡𝑜𝑡/𝛿W = 0 using
the total elastic potential energy. Thus, the resulting expression for the gauge
�eld in a boundary-strained material is

A(𝑥, 𝑦; 𝜖) = 𝑎(q𝐾 · ∇)U+ [2(𝜖𝑥𝑥 − 𝜖𝑦𝑦),−4𝜖𝑥𝑦)] . (2.17)

For the acoustic systems under study we can also follow a second strategy:
patterning the local material sti�ness to achieve a spatially dependent gauge
�eld A. For example, we can smoothly vary the composition or thickness of
the rods to change their e�ective spring constants to 𝜅𝑖 = 𝜅 + 𝛿𝜅𝑖, where
𝑖 = 1 . . . 3 labels springs in the lattice unit cell. In this case, we �nd that the
gauge �eld and potential are given by

A(𝑥, 𝑦; 𝛿𝜅) =

(︂
−1

3

2𝛿𝜅1 + 𝛿𝜅2 + 𝛿𝜅3
𝜅

,
𝛿𝜅2 − 𝛿𝜅3√

3 𝜅

)︂
,

𝑉 =
𝛿𝜅1 + 𝛿𝜅2 + 𝛿𝜅3

3𝜅
. (2.18)
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One can then obtain a Landau-level spectrum by selecting A and 𝑉 such
that (for units in which a = 1)

∇×A = 𝐵𝑧 = const; 𝑉 = 0. (2.19)

For any selection satisfying the conditions of Eqs. (2.19), the dynamical matrix
in Eq. (2.10) has the form of the Hamiltonian for a Dirac electron in a plane
with a constant magnetic �eld 𝐵 applied perpendicular to that plane [163, 165].
Let us now consider two practical solutions to Eqs. (2.19): (i) an externally
applied nonuniform pure shear deformation, and (ii) nonuniform patterning
of the spring constants along the 𝑦-direction.

For case (i), we �nd the particle displacements throughout the lattice
by substituting Eq. (2.17) into Eqs. (2.19) and solving the resulting partial dif-
ferential equation: 𝜕𝑦𝑈𝑥 + 𝜕𝑥𝑈𝑦 = −𝐵𝑥/2, with the additional constraint
𝜕𝑥𝑈𝑥 = 𝜕𝑦𝑈𝑦 = 0, which corresponds to nonvolumetric pure shear deforma-
tions. The resulting displacements satisfy

𝑈𝑥 = 0; 𝑈𝑦 = −𝐵𝑥2/4. (2.20)

Note that for the honeycomb lattice, this condition can be realized using the
boundary stresses illustrated in Fig. 2.1d.

For case (ii), we substitute Eqs. (2.18) into Eqs. (2.19) to �nd the condition
√
3 𝜕𝑥(𝛿𝜅2 − 𝛿𝜅3)− 𝜕𝑦(𝛿𝜅2 + 𝛿𝜅3) = 3𝜅𝐵 (2.21)

for the spatial dependence of the spring constants. We consider a material
uniform along the 𝑥-direction. In this case, the condition in Eq. (2.21) is satis�ed
for spring constants given by

𝜇 ≡ 𝛿𝜅2
𝜅

=
𝛿𝜅3
𝜅

= −𝛿𝜅1
2𝜅

=
𝐵𝑦

3
, (2.22)

which is visualized in Fig. 2.1e.

2.3 Mechanical Landau levels

Now that we have proposed metamaterial architectures that realize the acous-
tic analog of a constant magnetic �eld, we go on to explore the physical
consequences of this �eld for sound waves. To proceed, we focus on an archi-
tecture that is peculiar to the acoustic context, i.e. we select the realization of a
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Figure 2.2: Mechanical Landau levels: (a) A pseudo-magnetic �eld leads to Landau
levels around the Dirac point. (b) As the magnetic �eld increases, the zeroth-Landau-
level band �attens. Band �atness can be characterized by the inverse magnetic length
ℓ−1. (c) The inverse magnetic length scales as the square root of the magnetic �eld. (d)
Density of states for the zeroth Landau level, for the same values of 𝐵 as in (b). The
peak at the Dirac frequency rises as the bands �atten. (e) Visualizations of the zeroth
Landau level at two di�erent wavevectors. For q = q𝐾 , this mode has a Gaussian
pro�le around the waveguide center, whereas far from this point, at q = 0, the mode
decays exponentially away from the edge.
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patterned metamaterial waveguide described by Eqs. (2.22). Such a quasi-one-
dimensional waveguide is uniform along the 𝑥-direction, graded along the
𝑦-direction, and is subject to no-stress boundary conditions on its top and bot-
tom (see Fig. 2.1e). The constant pseudo-magnetic �eld leads to a Landau-level
spectrum for frequencies near 𝜔0 (Fig. 2.2a).

Let us focus on the acoustic band corresponding to the most prominent
Landau level: 𝑛 = 0. In Fig. 2.2b, this band is plotted for several values of
the pseudo-magnetic �eld 𝐵; as the pseudo-magnetic �eld increases, the band
�attens over a larger region in wavevector space, which leads to an increasing
peak in the density of acoustic states (shown in Fig. 2.2d). The width of this
�at region de�nes an inverse length scale ℓ−1, which scales as ℓ−1 ∼

√︀
𝐵/𝑎

(Fig. 2.2c). This length scale is the acoustic analog of the magnetic length of a
Landau-level state. Consequently, an acoustic mode in the Landau level has
a Gaussian pro�le with a transverse con�nement given by ℓ (Fig. 2.2e). The
transverse location of this mode within the waveguide is controlled by the
mode wavenumber 𝑞𝑥, in contrast to an index-graded waveguide in which the
location is determined by the mode frequency. Consequently, in our case, the
location of sound at a targeted frequency can be signi�cantly tuned via the
mode wavenumber (Fig. 2.2e and 2.4).

2.4 Sublattice-polarized domain wall modes

The 𝑛 = 0 Landau level at 𝑞𝑥 = 𝑞𝐾,𝑥 ≡ 2𝜋/3𝑎 has frequency 𝜔𝐾 , is located at
the waveguide center, and involves displacements exclusively on one sublattice.
Modes with these properties generically appear in regions across which 𝐴𝑥
changes sign, i.e. their local dispersions have Dirac cones on opposite sides of
point𝐾 . As an example, we consider a waveguide with two domain walls that
separate a uniform central region with spring constants set by 𝜇 = −0.08 from
two regions, one above and one below, that each have 𝜇 = 0.08 (Fig. 2.3a).
At 𝑞𝑥 = 𝑞𝐾,𝑥, the spectrum as a function of 𝑞𝑦 near point 𝐾 is described
by a gapped 1D Dirac Hamiltonian centered about 𝜔𝐾 , with e�ective mass
proportional to 𝐴𝑥. The “spin” degree of freedom corresponds to the two
sublattices of the honeycomb lattice: eigenstates of𝜎𝑧 with eigenvalues+1 and
−1 involve displacements solely on sublattice A and sublattice B, respectively.
When the mass 𝑚(𝑦) varies spatially, domain walls at which 𝑚(𝑦) changes
sign harbor exponentially localized midgap modes that are “spin-polarized”,
i.e. con�ned to a single sublattice [172, 175]. The sublattice on which the mode
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(d) (e)

Figure 2.3: (a) Waveguide with two domain walls separating two regions with 𝜇 =
0.08 from a central region with 𝜇 = −0.08. The bonds are colored according to their
spring constants as in Fig. 1(e). Periodic boundary conditions are applied along 𝑥.
(b) Variation of the e�ective Dirac mass 𝑚(𝑦) (dashed line) and of the amplitude of
the midgap mode at 𝑞𝑥 = 2𝜋/3𝑎 on either sublattice (solid lines). (c) Visualization
of the midgap mode with the sublattices distinguished. Each point is represented
by a disc whose area is proportional to the amplitude of the midgap mode at that
point. Points on sublattices A and B are drawn as green and blue discs respectively,
showing the strong polarization of each domain wall mode onto a distinct sublattice.
(d) The dependence of sublattice polarization of the domain-wall-bound mode on
disorder in the spring constants. The polarization remains signi�cant due to the
topological origin of the mode (e) Even in the presence of strong (14%) disorder, we
clearly observe the sublattice-polarized domain-wall-bound mode.
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is localized is determined by the sign of the change in mass upon crossing
the domain wall. Fig. 2.3b–c shows the numerically-obtained midgap mode
for the domain wall geometry in Fig. 2.3a, whose components on sublattice A
(sublattice B) fall o� exponentially from the top (bottom) domain wall.

2.4.1 Connection to the Jackiw-Rebbi model

Some of our results for the sublattice-polarized modes can be understood using
a connection between mechanical graphene and the Jackiw-Rebbi model [175].
Note that, for the waveguide described above, 𝜅2 = 𝜅3 and 𝑉 = 0, which is
equivalent to 𝛿𝜅2 = 𝛿𝜅3 = −𝛿𝜅1/2 ≡ 𝜅𝜇. This case with staggered spring
constants along the 𝑦-direction is reminiscent of the Su-Schrie�er-Heeger
model [172]. Using the formula for the synthetic gauge �eld in Eq. 2.18, we
�nd the following form for the dynamical matrix:

𝐷 = 𝐷0 +
1

3
𝜔2
0𝜇(𝑦)𝜎𝑥. (2.23)

Thus, we see that the dimensionless parameter 𝜇 plays the role of the e�ective
mass in the Jackiw-Rebbi model. For modes of the honeycomb-lattice waveg-
uide near the Dirac frequency, we can obtain the form of the eigenmodes using
the zero mode solution of the Jackiw-Rebbi model: u(𝑦) ∝ exp

[︀
−
´ 𝑦
0 𝜇(𝑦) 𝑑𝑦

]︀
.

Thus, for the sharp domain wall of Fig. 3, for which the e�ective mass is a
step-function, we �nd solutions at the domain wall which decay exponentially
away from the domain wall. On the other hand, for a mechanical Landau-level
mode obtained using material patterning, the mass varies linearly with 𝑦, i.e.
𝜇 ∝ 𝑦, and the mode indeed has a Gaussian pro�le (see Fig. 2.4). Further-
more, the solutions to the Jackiw-Rebbi model exhibit a parity anomaly, which
can be used to ascertain that the domain-wall-bound modes as well as the
Landau-level modes are both sublattice-polarized.

2.4.2 Topological robustness of the domain-wall mode

In this part, we explain in detail the robustness of the sublattice-polarized
domain wall mode in the presence of disorder.

As explained in the previous section, a domain wall across which the
mass 𝜇(𝑦) in Eq. (2.23) changes sign will always carry a domain-wall-bound
mode. Intuitively, this mode corresponds to a Landau-level-like mode but in
the presence of a spatially dependent magnetic �eld given by the derivative
𝜇′(𝑦). Thus, the existence of the domain-wall bound mode requires 𝜇 to
change (and, in particular, change in sign) across the domain wall.
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Figure 2.4: Visualizations of the zeroth Landau level for di�erent wavenumbers. For
𝑞𝑥 = 2𝜋/3𝑎, this mode has a Gaussian pro�le and is located precisely at the waveguide
center due to a symmetry of the Dirac cone: the modes with frequency above (below)
𝜔𝐾 live on the lower (upper) half of the waveguide. We observe edge states with
Gaussian pro�les for wavenumber 𝑞𝑥 near 2𝜋/3𝑎. For example, when 𝑞𝑥 = 2/𝑎 (thus
𝑞𝑥 < 2𝜋/3𝑎) the mode has a Gaussian pro�le and is located near the top edge of the
waveguide (brown curve). In contrast, when 𝑞𝑥 = 2.2/𝑎 (thus 𝑞𝑥 > 2𝜋/3𝑎) the mode
has a similar shape, but is located near the bottom edge of the waveguide (light blue
curve). Far from the Landau level, at 𝑞𝑥 = 0 (𝜋), the mode decays exponentially away
from the top (bottom) edge. This �gure is an expansion of Fig. 2.2e.
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One of the consequences of nonzero𝜇 is to break a chiral symmetry in this
system. This chiral symmetry preserves the re�ection symmetry of the Dirac
cone: the cone looks the same right-side up as upside-down. Furthermore,
this is the symmetry necessary to preserve the sublattice polarization (i.e. the
fact that the mode lives on only one of the two sublattices) of the domain-wall
bound mode. From the fact that 𝜇 has to vary across the domain wall and this
violation of chiral symmetry, one might suppose that the domain-wall mode’s
existence also seems to presuppose that it will not be robust against disorder.
However, quantitatively, the terms that break this chiral symmetry are small
so that the domain-wall modes are nearly perfectly polarized on one sublattice
(see Figs. 2.6 and 2.7).

Let us �rst explain the origins of topological robustness in this system
and how it relies on chiral symmetry. If the dynamical matrix has form

𝐷 =

(︂
0 𝐻
𝐻† 0

)︂
, (2.24)

then we say that the system does have chiral symmetry. For this dynamical
matrix, we can calculate the winding number of det𝐻 , which is the integral of
∇k ln det𝐻 , over a periodic contour 𝛾 in the Brillouin zone. The determinant
det𝐻 is a complex number for each wavevector, and traces out a closed path
in the complex plane as the wavevector follows the contour 𝛾 (see Fig. 2.5b).
The integral counts how many times the path encloses the origin det𝐻 = 0,
and in particular, 1

2𝜋𝑖

´
𝛾 𝑑k · ∇k ln det𝐻 is unity when the origin is enclosed

once and zero otherwise. It thus forms a topological invariant for our system,
which is called the Herring number in the context of Dirac cones [63, 190].
Only in the case when the vector potential is zero does this integral become
not well-de�ned, because in that case the contour passes through the center
of the Dirac cone, at which point det𝐻 = 0.

Notably, in our system, 𝐷 has the form of Eq. (2.24) only near the Dirac
cone. Away from points 𝐾 and 𝐾 ′, chiral symmetry does not hold and other
diagonal terms enter the dynamical matrix. However, near the Dirac cone,
where all of the phenomena considered in this work take place, these achiral
terms are small and the chiral symmetry holds approximately. As a result,
the topological robustness associated with this chiral symmetry can also be
observed, as we explore in Fig. 2.7 for the sublattice polarization.
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Figure 2.5: Topological invariants in a 2D Brillouin zone with a constant gauge �eld
A. (a) A schematic of the location of the Dirac points when the gauge �eld is constant.
When A = (𝐴𝑥, 0) and the 𝑥-component 𝐴𝑥 is positive, the Dirac cone at q𝐾 shifts
to the left and the cone at q𝐾′ shifts to the right (top panel). For 𝐴𝑥 negative, these
cones shift in the opposite direction. When the Dirac cones shift, it is possible to
de�ne a winding contour around the Dirac cones that connects q𝐾′ with itself via
a vertical path across the Brillouin zone. (b) When the quantity ∇k ln det𝐻 [see
Eq. (S7)] is integrated along the contour de�ned in (a), as long as the chiral symmetry
of the honeycomb lattice is respected, the resulting quantity is an integer called the
Herring number. This number is zero when 𝐴𝑥 > 0 (small circle, which doesn’t
enclose the origin) and unity when 𝐴𝑥 < 0 (large circle, which does enclose the
origin). Thus, this number counts the Dirac cones within the contour and can only
change when the sign of 𝐴𝑥 changes as, e.g. in the case of the Landau level or the
domain wall.
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Figure 2.6: Amplitude of the midgap mode for quasi-one dimensional waveguides
with di�erent sizes𝑁 = 20 (black) and𝑁 = 60 (yellow) along the transverse direction
plotted on a log-linear scale. For each system size, the amplitude of the vibrational
mode on the two sublattices A and B are shown as solid and dashed lines respectively,
as a function of 𝑦-position relative to the domain wall at 𝑦 = 0. The component
on sublattice 𝐴 decays exponentially away from the domain wall, similar to the
exponentially decaying domain-wall mode shown in Fig. 2.3b. The mode also has a
component on sublattice B, which decays exponentially away from the waveguide
edges. This component arises because an edge termination is similar to a domain wall
with a di�erent mass sign change compared to the actual domain wall in the system.
The relative amplitudes of the two components are set by the boundary conditions at
the edges: the loose node condition at the system edge requires that u𝐴 = u𝐵 , as the
nodes at the boundary can not balance a nonzero force from the interior springs.
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To check that the sublattice polarization remains signi�cant in the pres-
ence of system disorder, we have performed numerical simulations of disor-
dered waveguides. In Figure 2.7 we present the results of these simulations
in which we note that although increasing disorder does somewhat a�ect
the sublattice polarization, the e�ect is small in absolute terms. Even when
the disorder strength is around 15% of the initial spring sti�ness, the mode
remains polarized within 5% of its initial, near-perfect, polarization.

2.5 Selective enhancement

The sublattice polarization of the Landau-level states can be used to selectively
enhance these modes under external drive by employing site-dependent damp-
ing. For example, for positive magnetic �elds, the Landau-level states live
only on the A-sublattice of the honeycomb unit cell [99, 163]. If we introduce
damping of the form −𝛾u̇B into the equation of motion, Eq. (2.3), such that
only the displacements of the B-sublattice are damped, then the Landau-level
acoustic waves would not be attenuated, whereas the rest of the sound waves,
which generically are split between the A and B sublattices, would have a
nonzero attenuation. To characterize this selective enhancement, we study
the attenuation rate 𝜂(q) as a function of mode wavevector, as well as the
self-response function 𝜒(𝜔) which measures the displacements in response to
a drive at frequency 𝜔.

We use the drag matrix Γ =

(︂
𝛾I 0
0 𝛾′I

)︂
with 𝛾′ = 0 to model

sublattice-biased dissipation. With the presence of these drag forces, the
equation of motion becomes 𝑚ü+ Γu̇+𝐷u = 0. Now consider an external
driving force F(R, 𝑡) = F(R)𝑒𝑖𝜔𝑡 which oscillates in time. With this force,
the inhomogenous equation of motion is 𝑚ü+ Γu̇+𝐷u = F. To �nd the
solutions, we use Bloch functions, i.e. the normal modes of the periodic struc-
ture, to expand the drive as F(R, 𝑡) = 𝑒𝑖𝜔𝑡

∑︀
𝑛kF𝑛ku𝑛k𝑒

𝑖k·R. A steady-state
solution, if it exists, oscillates with the same frequency 𝜔 as the drive. The
steady-state solution can be expanded as u(R, 𝑡) = 𝑒𝑖𝜔𝑡

∑︀
k 𝑐𝑛k𝑢𝑛k𝑒

𝑖k·R.
From the equation of motion, we �nd that the coe�cients 𝑐𝑛k obey

𝑐𝑛k =
F𝑛k

−𝑚𝜔2 + 𝑖Γ𝑛k𝜔 + 𝜆𝑛k
, (2.25)
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Figure 2.7: E�ect of disorder in the spring constants on the sublattice polarization
of modes bound to domain walls (see Fig. 2.3). (a) We consider waveguides that are
in�nite along the 𝑥-direction and have𝑁 unit cells along the 𝑦-direction. The disorder
is implemented by rescaling each spring constant with spring constant 𝜅+ 𝛿𝜅 by a
random number𝑋 via (1+𝑋)𝜅+𝛿𝜅, where𝑋 is chosen from a uniform distrubution
on the interval [−𝑠, 𝑠] where we call the number 𝑠 the disorder strength (𝑥-axis of
panel a). We then plot the relative weight of each mode on a sublattice averaged over
100 realizations of the disorder in panel (a). We note that it is always near unity (see
inset). Even for disorder strength ∼ 10%, we note that the modes are still mostly
polarized on one sublattice. Even for the most disordered cases we consider, the
relative sublattice weight is 0.95, which indicates that the sublattice polarization of
the domain-wall bound mode is robust against disorder in the spring constant. (b)
Domain-wall bound mode amplitudes on each lattice site for several realizations of
the disorder, with di�erent disorder strengths. We note that even in the case in which
the e�ects of the disorder on the mode are appreciable, the mode is still very strongly
polarized on one of the sublattices.
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Figure 2.8: Single-mode response 𝜒 of Landau-level states in mechanical graphene,
including the e�ect of damping on one sublattice and for pseudo-magnetic �eld
values (a) 𝐵 = 0.0 and (b) 𝐵 = 0.3. Colors correspond to the di�erent Landau-level
bands identi�ed in Fig. 2a. Insets: wavenumber-dependent attenuation rate 𝜂 of the
corresponding bands. (c) The steady-state response (for 𝐵 = 0.3) to external periodic
forcing with frequency close to the Dirac frequency and at an edge that is situated 50
unit cells to the left of the section shown. Each point is represented by a disc whose
area is proportional to the amplitude of the response. (d) Zoom-in of (c) shows that
the Landau-level mode is selectively enhanced due to the presence of sublattice-biased
damping.
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where Γ𝑛k =
∑︀

𝑛′ u
†
𝑛′kΓu𝑛k and 𝜆𝑛k are the eigenvalues of the dynamical

matrix, Eq. 2.4. We expect the response to depend strongly on the damp-
ing. To see this, consider Γ𝑛k to be a real number. If Γ2

𝑛k > 2𝜆𝑛k𝑚 (corre-
sponding to the overdamped limit), then the amplitude of the response never
rises above F𝑛k/𝜆𝑛k – it attains this limiting value at low frequencies and
falls o� as F/𝑚𝜔2 at higher frequencies. If on the other hand, Γ2

𝑛k < 2𝜆𝑛k
(corresponding to the underdamped limit), the response develops a peak at
𝜔2
𝑝 = 𝜆𝑛k/𝑚− Γ2

𝑛k/2𝑚
2, whose height diverges as 1/Γ𝑛k. Therefore, at low

damping, the response will be dominated by modes whose natural frequency
is close to the driving frequency. If for example, the lattice is driven by forcing
atoms along one edge in an oscillatory manner, then F𝑛k will be appreciable
for several modes, but the only modes to have a strong response will be those
whose natural frequency is close to the driving frequency.

This observation can be used to selectively enhance the zeroth Landau
level mode, as seen in Fig. 2.8. In Fig. 4a-b, we plot 𝜒(𝜔) ≡ 𝑐𝑛k/𝐹𝑛k for the
Landau-level bands with −2 ≤ 𝑛 ≤ 2, in response to an oscillatory drive that
is proportional to the corresponding mode displacement vector, for k = q𝐾 .
In the absence of the pseudo-magnetic �eld 𝐵, the response is underdamped,
but no mode stands out as having a largest peak in 𝜒 (Fig. 2.8a), whereas for
nonzero 𝐵, 𝜒 exhibits a strong peak at a frequency 𝜔0, corresponding to the
zeroth Landau-level (Fig. 2.8b). In the insets, we plot the attenuation rates 𝜂,
corresponding to the imaginary parts of the frequency spectrum, for these
modes as a function of k along the Γ𝐾𝑀 cut of the Brillouin zone. We also
observe from here that the zeroth Landau level mode is selected for nonzero𝐵:
it smaller attenuation than the other modes. We then drive the lattice with force
F(𝑡) = 𝑒𝑖𝜔𝑡𝑥̂ (𝜔 near 𝜔0), on two of the lattice points (near but slightly above
the waveguide center), and observe the amplitude of the steady-state response
su�ciently far away from this drive. We note that the pseudo-magnetic �eld
combined with selective damping leads to selective enhancement of acoustic
Landau-level modes relative to the rest of the attenuated acoustic spectrum.

2.6 Towards mechanical lasers

This phenomenon is the acoustic analog of selective enhancement of mi-
crowave modes realized in Ref. [72]. Just as selective enhancement for light
waves may lead to the design of novel parity-time-symmetric [78, 81] and topo-
logical [89] lasers, analogously, the selective enhancement of sound waves
may be useful in the design of sound ampli�cation by stimulated emission
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of radiation (SASERs), i.e. the acoustic analog of lasers, as well as acoustic
couplers and recti�ers. The detailed design of such devices [87] would involve
acoustic resonators, an acoustic drive, and nonlinearity of the response. A
potential architecture for this device may involve resonators at every node
in the metamaterial, with an external acoustic source populating the states
within each resonator.

2.7 Conclusion

We explored acoustic phenomena associated with the Landau-level spectrum.
For example, the acoustic analog of Shubnikov-de Haas oscillations [192] cor-
responds to a sharp peak in the phonon density of states at the Landau-level
frequency. In addition, sound modes are con�ned within a length scale set by
the analog of the magnetic length. Our theoretical �ndings pave the way to-
wards realizations of these acoustic phenomena associated with the synthetic
gauge �elds [21]. In S2.4, we showed that even stronger con�nement of sound
modes can be engineered at a domain wall associated with a change in the e�ec-
tive mass of the phononic excitations, which localizes phonon modes that are
analogous to the topological domain-wall states in the Su-Schrie�er-Heeger
model of polyacetylene [172]. In S2.5, we showed how this domain-wall-bound
mode exhibits robustness against a type of disorder that may come in the
manufacturing of acoustic metamaterials – disorder in the sti�ness of each
component. Like other realizations of topological states [95, 109] in mechani-
cal [44, 49, 53, 54, 55, 68, 70, 71, 73, 77, 82], acoustic [37, 57, 62, 64, 67, 74, 75,
76], and photonic [17, 83, 85, 86, 88], metamaterials, this characterization may
help with the design of robust devices. We show that introducing dissipation
on just one of the two sublattices enhances the domain-wall-bound sound
mode. This feature may be implemented in the acoustic context by consid-
ering a material immersed in a viscous �uid (appropriate for low-Reynolds
number, e.g. micro-scale metamaterials), or by including dampers (e.g. small
dashpot dampers at every components for cm-scale realizations) within the
material design. We suggest this feature may be exploited for the design of
acoustic couplers, recti�ers, and sound ampli�cation by stimulated emission
of radiation (SASERs).
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Photonic waveguides in liquid crystals

Liquid crystals are soft matter phases characterized by their orienta-
tional order [141]. As a result of this order, liquid crystals can control the
propagation of light in a recon�gurable way, with applications ranging from
liquid crystal displays (LCD) [125] to adaptive lenses [12]. Light waves that
propagate through a birefringent material such as a liquid crystal acquire a
Pancharatnam-Berry phase. We have seen in the �rst chapter of this thesis
that a spatially varying Pancharatnam-Berry phase has an e�ect similar to a
change of the refractive index in the form of a generalized Snell’s law, Eq. 1.11
and interferes with the defraction of light beams [40]. Therefore, light incident
to a birefringent medium can change direction, even when the refractive index
of the medium is homogeneous [5, 7].

Light beams acquire a geometric Pancharatnam-Berry phase when pass-
ing through a thin �lm of birefringent molecules [118, 131]. Therefore, as we
have seen in the �rst chapter, subwavelength liquid crystal metasurfaces can
be designed to scatter a light beam towards a certain direction, making these
materials suitable for �at optics elements [84, 93]. Furthermore, recently de-
veloped plasmonic photopatterning techniques [22, 51] can be used to achieve
control over the patterns of the nematic textures in thin liquid crystal polymers,
paving the way to achieve various optical performances using these materi-
als [24, 28]. These techniques are used for designing and manufacturing of
geometric phase lenses [120] and achieving a controlled continuous pro�le of
the Pancharatnam-Berry phase [23]. In this chapter, we study the propagation
of light in a liquid crystal medium with a particular focus on the waveguiding
regimes in these materials.

33
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Optical waveguides, i.e. electromagnetic waveguides at optical frequen-
cies, have been realized in a number of ways, including using spatial gradients
in the refractive index [128] and using photonic bandgaps [114, 136]. The ex-
amples include graded index �bers [168] and photonic crystal �bers [124, 139].
However, all these methods are based on changing the refractive index of the
medium, e.g. through laser writing the dielectric material or by using optical
cavities, such as in photonic crystal �bers. Slussarenko et al. [56] observed
such waveguiding regimes by using consecutive geometric phase lenses of
liquid crystals. In this chapter, we generalize this work by presenting a theo-
retical framework to study the guided modes in a liquid crystal. The analysis
in this chapter will provide the basis for a discussion of topological photonics
in liquid crystals which we will follow in the next chapter.

We study the paraxial light propagation (i.e. at small angles with the
direction of propagation) in a birefringent medium that is described by a
Schrödinger-type equation with the distance along the propagation direction
as an e�ective time [104, 108]. A spatial modulation of the director �eld
introduces a time-dependent vector and scalar potential into this e�ective
theory. We will study a speci�c pattern that is periodic with the same length
scale as the periodicity of the ordinary and extraordinary polarized light
dynamics [141]. We focus on the regime where the orientational variations
of the molecules happen in a scale that is smaller than the defocusing length
of the light beam which leads to a separation of the scales in the dynamics of
light wavepacket from smaller scale variations. This slow dynamics is then
mapped to the dynamics of a quantum wavefunction under a time-periodic
Hamiltonian which are studied using Floquet theory [61, 79]. We then use the
techniques of the Floquet quantum mechanics to derive a numerical scheme
to determine the guided modes of the medium in such regimes. We also show
the resemblance of the birefringence e�ect with a variation of the refractive
index by studying curved liquid crystal waveguides what reminds one to an
optical �ber [128].
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3.1 Paraxial light propagation in uniaxial media

Consider the propagation of a Gaussian light beam in a uniform uniaxial
medium where the nematic molecules are oriented along the plane orthogonal
to the direction of propagation. We start by Helmholtz equations for the
transverse electromagnetic (TEM, 𝐸𝑧 = 𝐵𝑧 = 0) waves,

𝜕2

𝜕𝑧2
𝜓xy = −∇2

⊥𝜓xy − 𝑘20𝜖𝜓xy, (3.1)

where𝜓xy = (𝐸𝑥, 𝐸𝑦) is the transverse electric �eld, 𝑘0 is the light wavenum-
ber in the free space, and 𝜖 is the dielectric of the medium. In liquid crystals,
because of the shape of the nematic molecules, beams with di�erent polariza-
tions experience di�erent refractive indices. In such so-called uniaxial media,
the dielectric tensor is given by

𝜖(𝑥, 𝑦, 𝑧) = 𝜖⊥I+ (𝜖‖ − 𝜖⊥)n
𝑇n, (3.2)

where 𝜖⊥ and 𝜖‖ are the components of the dielectric tensor along the ordinary
and extraordinary axes of the molecules, respectively and n(𝑥, 𝑦, 𝑧) is the
director �eld of the nematic orientations. The refractive indices for these two
axes are combined in the following matrix:

N =
√
𝜖𝐷 = diag(𝑛o, 𝑛e), (3.3)

where 𝜖𝐷 = diag(𝜖⊥, 𝜖‖) is the diagonalized dielectric tensor. Thus, the
uniaxial medium is characterized by two particular indices 𝑛o and 𝑛e, that
correspond to the so-called ordinary and extraordinary polarizations that
propagate unchanged. Therefore, three characteristic length scales naturally
appear: the light wavelength 𝜆, the beating length Λ = 𝜆/(𝑛e − 𝑛o) between
the ordinary and extraordinary polarizations, and the Rayleigh length 𝑍R
that determines the size of the Gaussian beam given in terms of the beam’s
wavelength and its width, 𝑤 by

𝑍R = 𝜋𝑛̄𝑤2/𝜆, (3.4)

where 𝑛̄ = (𝑛e + 𝑛o)/2. Additional length scales characterize the spatial
pattern of the liquid crystal. Here, we focus on patterns where only the
orientation of the nematic liquid crystal molecules (i.e. the director �eld)
is changed, while the ordinary and extraordinary indices 𝑛o and 𝑛e are the
same in the whole system. For a liquid crystal composed of uniaxial elements



36 Chapter 3. Photonic waveguides in liquid crystals

with orientations in the 𝑥𝑦-plane, which is the case that is considered in this
thesis, the director �eld is determined in terms of a single parameter, 𝜃, as
n = (− sin 𝜃, cos 𝜃, 0), where 𝜃 is the angle between the extraordinary and
the 𝑦 axes, see Fig. 3.1. The ordinary-extraordinary frame is rotated with
respect to the Cartesian coordinates with the angle 𝜃 that corresponds to the
orientation of the molecules. Therefore, one can rewrite Eq. 3.1 for the ordinary-
extraordinary waves using the substitution 𝜓oe = R−1(𝜃)𝜓xy, where R(𝜃)
is the rotation operator with angle 𝜃, and obtain

𝜕2𝑧𝜓oe − 2𝑖(𝜕𝑧𝜃)𝜎𝑦𝜕𝑧𝜓oe = −∇2
⊥𝜓oe

+ 2𝑖(∇⊥𝜃)𝜎𝑦 · ∇⊥𝜓oe + 𝑖(∇2𝜃)𝜎𝑦𝜓oe

+ (∇𝜃)2𝜓oe − 𝑘20𝜖𝐷𝜓oe. (3.5)

We now present the regimes in which the dynamic of a wavepacket can
be separated from the variations in small scales using slowly varying envelope
approximation (SVEA). These regimes are determined by the relative ratios
of the length scales that are discussed above. More precisely, we assume that
between these scales, 𝜆 is usually the smallest (or fastest), but for the other
two length scales various situations could take place, depending on the ratio

Λ

𝑍R
=

(𝜆/𝑍R)
2

𝜋𝑛̄Δ𝑛
. (3.6)

In the following, we study the large birefringence regime, where the light
focusing can be a�ected from the dynamics inside each beating length. The
small birefringence regimes are discussed in the appendix 3.5.1.

3.1.1 Large birefringent medium: interaction picture

When the birefringence of the medium, Δ𝑛 = 𝑛e −𝑛o is su�ciently large, we
are in a regime where Λ is a fast variable compared to the Rayleigh length, 𝑍R
as given by Eq. 3.4. Thus, there are two small quantities

𝜀1 = 𝜆/𝑍R and 𝜀2 = Λ/𝑍R (3.7)

concerning the paraxial light propagation in this regime. In such case, the e�ect
of changes happening over length𝑍R can be considered as perturbations on top
of the faster dynamics which takes place over the birefringence wavelength Λ.
This 𝑧-dependent interaction can be treated by separating the dynamics over
the fast and slow length scales, similar to exploiting the interaction picture in
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quantum mechanics [45]. This is done by writing down the wavefunction as
𝜓oe(𝑥, 𝑦, 𝑧, 𝜀1𝑧, 𝜀2𝑧) = Uoe(𝑧, 𝜀2𝑧)𝜓(𝑥, 𝑦, 𝑧, 𝜀1𝑧), where

Uoe(𝑧) = 𝑒𝑖𝑘0N𝑧 (3.8)

is the evolution of the polarization in a homogeneous uniaxial medium. The
dynamical equation for the wavepacket in the interaction picture can be cast
as

𝜕2𝑧𝜓 + [2𝑖𝑘0N− 2𝑖(𝜕𝑧𝜃)S(𝑧)] 𝜕𝑧𝜓 = −∇2
⊥𝜓

− 2𝑘0(𝜕𝑧𝜃)S(𝑧)N𝜓 + 2𝑖(∇⊥𝜃)S(𝑧) · ∇⊥𝜓

+ 𝑖(∇2𝜃)S(𝑧)𝜓 + (∇𝜃)2𝜓, (3.9)

where

S(𝑧) = U−1
oe (𝑧)𝜎𝑦Uoe(𝑧) = 𝑒𝑖

2𝜋𝑧
Λ
𝜎𝑧𝜎𝑦 (3.10a)

= 𝜎𝑦 cos(𝑘0Δ𝑛𝑧) + 𝜎𝑥 sin(𝑘0Δ𝑛𝑧) (3.10b)

is the spin-dependent part of the the dynamics in terms of the Pauli matrices.
To see how the terms involved in this equation are compared to each other,
we write them in terms of dimensionless variables 𝑋 = 𝑥/𝑤, 𝑌 = 𝑦/𝑤, and

𝑍 = 𝑧/𝑍R and then multiply the entire equation by
𝑍R

2𝑛̄𝑘0
=
𝑤2

4
to get

𝜀1
4𝜋𝑛̄

𝜕2𝑍𝜓 +

[︂
𝑖
N

𝑛̄
− 𝑖

2𝜋𝑛̄
𝜀𝜃(𝜕𝑍𝜃

𝜃)S(𝑧/Λ)

]︂
𝜕𝑍𝜓

=− 1

4
∇2

⊥̃𝜓 − (𝑍R/𝑍𝜃)(𝜕𝑍𝜃
𝜃)S(𝑧/Λ)

N

𝑛̄
𝜓

+
𝑖

2
(∇⊥̃𝜃)S(𝑧/Λ) · ∇⊥̃𝜓

+
𝑖

4

[︁
∇2

⊥̃𝜃 + (𝑤/𝑍𝜃)
2𝜕2𝑍𝜃

𝜃
]︁
S(𝑧/Λ)𝜓

+
𝑖

4

[︁(︀
∇⊥̃𝜃

)︀2
+ (𝑤/𝑍𝜃)

2 (𝜕𝑍𝜃
𝜃)2
]︁
S(𝑧/Λ)𝜓, (3.11)
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where ∇⊥̃ is the gradient with respect to dimensionless variables and 𝑍𝜃 is
a charactristic length scale over which the orientation of the molecules vary
along the 𝑧 axis, and 𝜀𝜃 = 𝜆/𝑍𝜃 . Assuming 𝜆≪ 𝑍R which implies 𝑤 ≪ 𝑍R
leads to the following dynamical equation after reviving the original variables:

𝑖𝜕𝑧𝜓 =− 1

2𝑛̄𝑘0
∇2

⊥𝜓 − (𝜕𝑧𝜃)S(𝑧)𝜓

+
𝑖

𝑛̄𝑘0
(∇⊥𝜃)S(𝑧) · ∇⊥𝜓 +

𝑖

2𝑛̄𝑘0
(∇2𝜃)S(𝑧)𝜓

+
1

2𝑛̄𝑘0
(∇𝜃)2𝜓, (3.12)

which can be rearranged into the following form:

𝑖𝜕𝑧𝜓 = − 1

2𝑛̄𝑘0
[∇⊥ − 𝑖(∇⊥𝜃)S(𝑧)]

2 𝜓 − (𝜕𝑧𝜃)S(𝑧)𝜓

+
1

2𝑛̄𝑘0

[︀
𝑖(𝜕2𝑧𝜃)S(𝑧) + (𝜕𝑧𝜃)

2
]︀
𝜓. (3.13)

The last two terms are of order
1

𝑍R

(︂
𝑤

𝑍𝜃

)︂2

, and therefore can be neglected

in the limit where 𝑤 ≪ 𝑍𝜃 . This leads to the wavepacket evolution

𝑖
𝜕𝜓

𝜕𝑧
= − 1

2𝑛̄𝑘0
[∇⊥ + 𝑖A]2 𝜓 +V𝜓, (3.14)

with A(𝑧) = −(∇⊥𝜃)S(𝑧) and V(𝑧) = −(𝜕𝑧𝜃)S(𝑧), where S(𝑧) is a 𝑧-
dependent matrix that only depends onΛ and is responsible for the polarization
dynamics. Formally, this equation resembles the Schrödinger equation of
quantum mechanics, provided that the paraxial direction 𝑧 is replaced by time.
From now on, in this chapter and the next one we refer to 𝑧 as time.

3.2 Guiding regimes for light in a uniaxial medium

We now use the results in the previous section to study the photonic guiding
regimes in liquid crystals as a result of the interplay between light and the
director of the nematic molecules.

In the quantum mechanical language, a guided mode to the paraxial
equation of motion, Eq. 3.14 is an eigenmode of the Hamiltonian, if it does
not depend on time. However, note that since in this e�ective Schrodinger
equation the Hamiltonian is time-dependent, and therefore, it is not generally
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Figure 3.1: (a) The liquid crystal con�guration corresponding to one waveguide,
Eq. 3.16 with Γ0 = 𝜋/12 and 𝑤𝑝 = 1 and (b) the e�ective potential associated
with it. Left panels in (c) and show the evolution of the guided modes while right
panels correspond to the repelled modes of this system. Top and bottom panels in (c)
correspond to the zeroth and �rst order modes of the system.

possible to �nd an eigenmode of the evolution for the entire period of time.
This time dependence comes from two sources of drive: the phase evolution
Uoe and the periodicity of the con�guration along the 𝑧-direction. When the
orientation 𝜃(𝑥, 𝑦, 𝑧) of the director �eld is periodic in the paraxial direction 𝑧
with a the same period Λ of the phase evolution, the Hamiltonian is Λ-periodic
in 𝑧, and can be analyzed using Floquet theory [61, 79]. The main idea is that
the propagation of light over large distances 𝑧 ≫ Λ is essentially captured by
repeating its evolution over one period Λ, which is described by the evolution
operator𝑈(Λ) associated with equation (3.14). The eigenvalues of the operator
𝑈(Λ) are phases of the form e−i𝜅Λ where 𝜅 is the quasi-momentum in the
paraxial direction of the corresponding eigenmode. Here, the eigenmodes
describe guided modes of the soft waveguide, and up to variations at the (small)
scale Λ their intensity remains constant.
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The use of Floquet eigenmodes generalizes the previously used methods
in �nding the eigenmodes of the time-averaged Hamiltonian [56]. A perturba-
tive approach can be used to �nd the dynamics inside a Floquet period using
quasi-modes as an approximation for the Floquet-Bloch modes [40, 182]. Here,
we use a more general approach that is based on �nding the eigenmodes of the
system’s evolution in the stroboscopic picture. Using this new method, one
can also �nd the higher-order guided modes of such systems, i.e. modes that
repeat themselves (up to a global phase), but with a di�erent quasi-momentum
and intensity pattern. Also, the eigenmodes of the Floquet evolution operator
will remain guided over larger distances in 𝑧, given the other sources of losses
are not there ♠.

We construct this evolution operator numerically by slicing period Λ into
small steps 𝛿𝑧 and by using the following feature of the evolution operator:

𝑈(𝑧3, 𝑧2)𝑈(𝑧2, 𝑧1) = 𝑈(𝑧3, 𝑧1). (3.15)

Since 𝑈(Λ) is a unitary operator, its eigenvalues reside on the unit circle.
Hence, unlike a usual quantum problem, a highly oscillating mode in this
spectrum can lie very close to another mode that is well localized in its spatial
pattern. This makes the numerical diagonalization of this operator unstable
and subject to accidental degeneracies. We solve this issue by exploiting the
Sambe space representation of the Floquet Hamiltonian and their modes, which
we explain in the appendix 3.5.3.

We applied this method to a few systems. Here, we show the calculations
that reproduce the results by Ref. [56]. We consider a Gaussian nematic director
patterning that is described by the following orientational �eld:

𝜃(𝑥, 𝑦, 𝑧) = Γ0𝑒
−(𝑥2+𝑦2)/𝑤2

𝑝 sin (2𝜋𝑧/Λ) , (3.16)

where Γ0 = 𝜋/12 is the amplitude of the director �eld’s rotation, 𝑤𝑝 is the
width of the Gaussian pattern, and Λ the periodicity of the pattern along the
e�ective time and is equal to the beating length between the ordinary and
extraordinary light beams. The refractive indices for this birefringent medium
are 𝑛𝑜 = 1.5 and 𝑛𝑒 = 1.7 and thus we have Λ = 𝜆/Δ𝑛 = 5𝜆. We also
consider 𝑤𝑝 = 𝜆. The liquid crystal pattern associated with this pattern is
shown in Fig. 3.1(a).

♠In this study we do not consider the internal sources of loss that can give rise due to the
interaction of the electromagnetic waves with a liquid crystal. We will discuss this in more
detail in a discussion about non-Hermiticity of this system in the next chapter.
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We use our numerical methods to generalize the results of the Ref. [56] by
�nding the various guided modes with di�erent spatial intensity pattern. We
order these modes by the �rst moment of their spatial distribution around the

waveguide center,
1

𝒩
´
𝑟𝐼(𝑟)𝑑𝑟, where 𝐼(𝑟) = 𝜓†(𝑟)𝜓(𝑟) is the light intensity

and is non-negative everywhere, and𝒩 =
´
𝐼(𝑟)𝑑𝑟 is the normalization factor.

The evolution of the �rst two guided modes obtained with this method is
shown in the left panels of the Fig. 3.1(c). With each guided mode is associated
a repelled mode obtained by its complex conjugation. To understand why this
is the case, we note that in our numerical method we build a 2𝑁 × 2𝑁 matrix
for𝑈(Λ), where𝑁 is the size of the mesh in the simulation box in each of the 𝑥-
and 𝑦 directions, and the doubling factor comes from the polarization degree
of freedom. However, the guided modes of a waveguide can not span the
entire vector space of the initial modes, as not all the modes are guided by this
waveguide. We note that the eigenvectors of the evolution operator come in
pairs of modes with similar intensity patterns, of which one is a physical mode
that corresponds to a guided mode of the evolution. The other mode in each
pair is unphysical, i.e. their polarization components oscillate with the grid.
Thus, the doubling of the degrees of freedom in this numerical scheme leads to
spurious modes to construct half of the spectrum. Instead of these unphysical
modes, the system supports the presence of repelled modes, which in the
Ref. [56] are the modes with opposite circular polarizations of the guided
modes. In our numerical scheme here, the complex conjugation does this
transformation in the polarization. The complex conjugated modes correspond
to the eigenmodes of a new Hamiltonian which has a scalar potential with
opposite sign. This change in the sign leads to the transformation from a
potential well to a potential barrier for the guided modes of the initial system
in the e�ective picture. In Fig. 3.1 (c) we show two guided modes and the
repelled modes associated to them.

3.3 Curved waveguides

We saw in the �rst chapter that the Snell’s law, Eq. 1.11, in the presence of the
birefringent medium acquires a modifying term that is proportional to the
gradient of the Pancharatnam-Berry phase of the light beam. Therefore, the
liquid crystal optical waveguides that we described in the previous section
might also be seen as a consequence of the similar e�ect of the spatial variation
in the Pancharatnam-Berry phase with the refractive index grading of the
medium. Here, we present a test of this comparison by studying the liquid
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Figure 3.2: Curved (a) parabolic and (b) sinusoidal waveguides. The results from
solving Maxwell’s equations using the software MEEP and solving the e�ective
Schrödinger equations using BPM methods show agreement. Dashed lines correspond
to the waveguide borders, i.e. the width of the transverse Gaussian patterns that
create them.

crystal waveguides with curvature. These curved waveguides can be useful
when for example a time-varying coupling strength of the waveguides is
needed. This will allow us to investigate the phenomena associated with
tight-binding quantum systems with time-varying hopping amplitudes, once
we develop this framework in the next chapter.

More importantly, the curvature can lead to a new coupling between the
polarization of light and its path via a spin-orbit coupling [60, 110, 111]. Light
beam inside these waveguides acquire both Pancharatnam-Berry phase and
Rytov-Vladimirskii-Berry phase simultaneously, see S 1.2. The interplay of
theses two di�erent geometric phases and the phenomena associated to this
interplay are subjects to future investigations.
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For the numerical study of these systems we use both MEEP soft-
ware [102] as well as a beam propagation method (BPM) in Python. MEEP
solves the full Maxwell’s equations using �nite-di�erence time-domain (FDTD)
method which makes it numerically expensive for large-scale systems. The
BPM method uses the slowly varying envelope approximation and the result-
ing �rst order di�erential equation along the 𝑧-axis to solve this system as
an initial value problem. Using the paraxial equation of motion, Eq. 3.14, we
develope a code based on the Crank-Nicolson method to solve this equation
with a given initial condition. The latter is a considerably computationally
faster code for larger-scale systems, such as those we consider for a lattice
of waveguides in the next chapter. The Schrödinger solver code can also be
adapted to solve the Floquet propagators and their diagonalization to �nd the
guided modes, as we discuss in appendix 3.5.3.

We observe that similar to before, for a small curvatures in the waveguide
shapes, the lights are guided for a speci�c circular polarized light, whereas the
light beam with opposite polarization is completely repelled. The numerical
results for the propagation of a guided mode (that is obtained in the previous
section for a straight waveguide) inside a curved waveguide is shown in Fig. 3.2.
These results also show a good agreement of our python code with the MEEP
simulations.

We further notice an e�ect similar to re�ection of light from waveguide
walls in optical �bers [132], for example in Fig. 3.2. This is remarkable, since
there is not a solid wall like in a index-graded optical �ber and shows a strong
evidence to the generalized Snell’s law, 1.11. This bouncing e�ect makes it
important to have a bound on how much these waveguides can be curved so
that the incident light is not transmitted outside. We further con�rm this in
Fig. 3.3 for a waveguide that has the sinusoidal shape with a curvature that is
two times larger from the waveguide in Fig. 3.2(b).

3.4 Fully rotating nematic waveguides

So far we considered modulations of the nematic �elds that are non-monotonic
along the 𝑧 direction, for example by the orientation that is spatially varied as

𝜃(𝑥, 𝑦, 𝑧) = 𝜃0(𝑥, 𝑦) sin 2𝜋𝑧/Λ. (3.17)

This consideration was done to achieve a smooth director �eld that is periodic
along the 𝑧-axis. However, since 𝜃 is an orientation, it can also be periodic
when it fully rotates on a cycle. Here, we consider a pattern that is periodic
while we require the center of the waveguides to fully rotate. A full rotation
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Figure 3.3: The e�ect of curvature in the ability of the waveguides we study for
light con�nement. We observe the coinciding light is transmitted outside when the
waveguide curvature is twice as the one depicted in Fig. 3.2(b).

of the nematic pattern introduces a handedness which can be mapped to an
e�ective time-reversal symmetry breaking in the paraxial limit, similar to the
e�ect of a helical path [88]. However, as we discussed in our description of
geometric phases of light, the nature of the rotation in the two problems above
are di�erent: in a fully rotating nematic waveguide this is a Pancharatnam-
Berry phase, whereas in a helical waveguide it is a Rytov-Vladimirskii-Berry
phase, resulting from a change in the orientation along the orbital path of the
light beam.

Since the orientation of the molecules have a spatial dependent amplitude,
e.g. in our �rst example in 3.16 that is given by

𝜃0(𝑥, 𝑦) = Γ0 exp
[︀
−(𝑥2 + 𝑦2)/𝑤2

𝑝

]︀
, (3.18)

it is not possible to apply the full rotation in the entire 𝑥𝑦-plane. In the
example above, this can be seen by noticing the assymptotic behavior of the
director �eld’s orientation that vanishes at large distances from waveguide’s
center. Therefore, one needs to consider a fully rotating director �eld only in
a �nite region in the 𝑥𝑦-plane. This full rotation at the center can be achieved
by simply requiring that the director �eld continues in the same rotating
manner after reaching its maximum (this can be achieved with Γ0 = 𝜋/2
as well), as shown in Fig. 3.4(a). When Γ0 = 𝜋, the center of the pattern
reaches to its initial direction at 𝑧 = Λ/4, but the nearby molecules are at
their maximum rotation with an angle smaller than smaller than 𝜋. For the
latter, the periodicity would still be achieved by the non-monotonic pattern
suggested by Eq. 3.17.
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As a result we can expect defects arising in the nematic texture due to
this di�erence between the topology in the center and points far away. Conse-
quently, a large gradient of the orientation is expected in the perpendicular
plane. These defects can introduce large peaks in the gauge �eld around the
discontinuity of the orientational order. To avoid large perturbations due to
the discontinuity of the orientation along the 𝑥𝑦-plane, we put these defects
on a relatively far distance from the center of the waveguide. We consider the
following pattern in a circle 𝐶𝑅(0) around the center:

𝜃2 =

⎧⎪⎪⎨⎪⎪⎩
𝜃0(𝑥, 𝑦) sin

(︀
2𝜋𝑧
Λ

)︀
if (𝑥, 𝑦) /∈ 𝐶𝑅(0) or 𝑧

Λ ∈ [0, 14 ]
2𝜋 − 𝜃0(𝑥, 𝑦) sin

(︀
2𝜋𝑧
Λ

)︀
if (𝑥, 𝑦) ∈ 𝐶𝑅(0) and 𝑧

Λ ∈ [14 ,
3
4 ]

4𝜋 + 𝜃0(𝑥, 𝑦) sin
(︀
2𝜋𝑧
Λ

)︀
if (𝑥, 𝑦) ∈ 𝐶𝑅(0) and 𝑧

Λ ∈ [34 ,
1
4 ]

...

(3.19)

This pattern is illustrated in Fig. 3.4(a). Note that 𝑅 can essentially be large
enough to make the discontinuity in the nematic orientation in the 𝑥𝑦-plane
negligible. However, now there are large gradients of the director �eld when
passing through 𝑧 = Λ/4 and 3Λ/4 planes, see Fig. 3.4(b). To make this
perturbation smaller, the Gaussian pattern 𝜃(𝑥, 𝑦) can be kept less sharp, i.e.
wider. The width associated to the variations in the perpendicular plane can
a�ect the validity of the paraxial approximation through changing the Rayleigh
defocusing length.

With these considerations we now look at the guided modes of a fully
rotating LC system in 𝑧. We use large 𝑅 values for now, hence the entire
nematic texture follows the modi�ed variation Eq. 3.19. We observe that at
𝑤𝑝 / 5 the guided modes deviate largely from a Gaussian, but for more
stretched patterns with larger width, we observe the guided modes that are
close to a Gaussian pattern.

In conclusion, we have shown in this chapter that paraxial light propaga-
tion in a liquid crystal medium can be mapped to Floquet quantum mechanical
systems. We then developed a numerical scheme to extract the guided modes
in liquid crystals with beating length between ordinary and extraordinary
lights much smaller than the defocusing length of the light beam. We used this
numerical method to �nd guided photonic modes of a liquid crystal medium
with certain nematic patterns. Our results include higher-order guided modes,
guided modes in curved waveguides, and guided modes in fully rotating ne-
matic patterns. Looking forward, we would like to investigate the interplay
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between various geometric phases that a monochromatic light beam acquires
in such waveguides. We will also discuss in the next chapter symmetries of
these waveguides, which we will use towards implementation of topological
photonics in designer liquid crystal media.
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Figure 3.4: (a) Half a Floquet period of the liquid crystal con�guration corresponding
to rotating (top) and non-rotating (bottom) director �elds. For clarity at each time
step, one nematic for both inside and outside of the region 𝐶𝑅, depicted by the dashed
circle, are shown. (b) The orientation �eld for rotating (solid lines) and non-rotating
(dashed lines) at the center (𝑟 = 0) and one o�-center, 𝑟 = 2.5, point inside 𝐶𝑅.
The full rotating director �eld at the center imposes discontinuity in the director
�eld at o�-center points inside 𝐶𝑅. We set 𝑤𝑝 = 5 and 𝑅 = 15 for this plot; larger
pattern widths would lead to smaller discontinuity at 𝑧/Λ = 0.25, 0.75, but larger
discontinuity in nematic orientation at the 𝑥𝑦-plane when crossing from 𝐶𝑅.

3.5 Appendix

3.5.1 Dynamics of circularly polarized waves through a uni-
form uniaxial medium

In a uniform medium, where 𝜃(𝑥, 𝑦, 𝑧) = 𝜃0, the dielectric tensor is diagonal-
ized as

𝜖𝐷 = R(𝜃0)

(︂
𝜖⊥ 0
0 𝜖‖

)︂
R−1(𝜃0), (3.20)

where

R(𝜃) =

(︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︂
. (3.21)
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Figure 3.5: Floquet eigenmode of a fully rotating nematic waveguide for three values
of the transverse pattern Gaussian widths. The narrower patterns correspond to larger
discontinuities along the 𝑧 direction, as depicted in Fig. 3.4(b). This discontinuity leads
then to a deviation of the eigenmodes from Gaussian shapes. For these simulations
we use 𝑅 = 15.

Thus, the change of basis 𝜓oe = R−1(𝜃0)𝜓xy from Cartesian to ordi-
nary/extraordinary (oe) basis diagonalizes the equation of motion 3.1. In the
oe basis, the solution to the equation of motion is given by

𝜓oe(𝑧) = Uoe(𝑧)𝜓oe(0) (3.22)

where
Uoe =

(︂
𝑒𝑖𝑘0𝑛𝑜𝑧 0

0 𝑒𝑖𝑘0𝑛𝑒𝑧

)︂
, (3.23)

where 𝑛𝑜 =
√
𝜖⊥ and 𝑛𝑒 =

√
𝜖‖ are refractive indices for ordinary and

extraordinary lights, respectively.
Let us now consider propagation of a circularly polarized light in such a

medium. We thus change our basis to left/right circularly polarized basis. The
dynamics is then given by

𝜓L(𝑧) = 𝑒𝑖𝑛̄𝑘0𝑧
[︁
cos(𝛿/2)𝜓L(0)− 𝑖 sin(𝛿/2)𝑒2𝑖𝜃0𝜓R(0)

]︁
, (3.24)

𝜓R(𝑧) = 𝑒𝑖𝑛̄𝑘0𝑧
[︁
cos(𝛿/2)𝜓R(0)− 𝑖 sin(𝛿/2)𝑒−2𝑖𝜃0𝜓L(0)

]︁
, (3.25)

where 𝑛̄ = (𝑛𝑜 + 𝑛𝑒)/2 is the average refractive index and 𝛿 = 𝑘0(𝑛𝑒 − 𝑛𝑜)𝑧
is the phase retardation via propagation. The length-scale corresponding to
the polarization dynamics is then given by

Λ = 2𝜋/(𝑘0Δ𝑛) = 𝜆/Δ𝑛, (3.26)

where Δ𝑛 = 𝑛𝑒 − 𝑛𝑜.
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3.5.2 Dynamics of paraxial light propagation in liquid crystals
with medium to low birefringence

In the chapter, we derived the dynamics of light wavepackets for a regime
where Λ ≪ 𝑍R. We now focus on the intermediate values of the birefringence
where the two length scales Λ and 𝑍R become of the same order, the light
propagation dynamics enters a di�erent regime where both of these length
scales are slow compared to 𝜆. Thus, the small quantities of the problem are

𝜀1 = 𝜆/𝑍R, (3.27)
𝜀2 = 𝜆/Λ. (3.28)

In this regime, we can not apply the interaction picture that is introduced
above. Instead, the SVEA can directly be applied on the equation of motion
Eq. (3.5). To do that, we start by expanding the wavefunction in the L/RCP
basis as

𝜓oe(𝑧) = 𝐹R(𝑧)𝜓R + 𝐹L(𝑧)𝜓L, (3.29)

where 𝜓R =
1√
2
(1; 𝑖) and 𝜓L =

1√
2
(1;−𝑖) are the eigenvectors of the Pauli

matrix 𝜎𝑦 . Plugging this expansion into Eq. (3.5), we �nd the following set of
coupled di�erential equations:

𝜕2𝑧𝐹R(𝑧)− 2𝑖(𝜕𝑧𝜃)𝜕𝑧𝐹R(𝑧) =−∇2
⊥𝐹R(𝑧) + 2𝑖(∇⊥𝜃) · ∇⊥𝐹R(𝑧)

+ 𝑖(∇2𝜃)𝐹R(𝑧) + (∇𝜃)2𝐹R(𝑧)

− 𝑘20
𝑛2𝑜 + 𝑛2𝑒

2
𝐹R(𝑧)− 𝑘20

𝑛2𝑜 − 𝑛2𝑒
2

𝐹L(𝑧),

(3.30)
𝜕2𝑧𝐹L(𝑧) + 2𝑖(𝜕𝑧𝜃)𝜕𝑧𝐹L(𝑧) =−∇2

⊥𝐹L(𝑧)− 2𝑖(∇⊥𝜃) · ∇⊥𝐹L(𝑧)

− 𝑖(∇2𝜃)𝐹L(𝑧) + (∇𝜃)2𝐹L(𝑧)

− 𝑘20
𝑛2𝑜 + 𝑛2𝑒

2
𝐹L(𝑧)− 𝑘20

𝑛2𝑜 − 𝑛2𝑒
2

𝐹R(𝑧).

(3.31)

To perform SVEA, we extract and separate the fast dynamics from 𝐹R(𝑧) and
𝐹L(𝑧), i.e. the dynamics over the small length scale 𝜆 . The electromagnetic
wavefunction 𝜓oe(𝑧) can also be expressed as

𝜓oe(𝑧) = 𝐹R𝜓R(𝑧) + 𝐹L𝜓L(𝑧), (3.32)
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where 𝜓R,L(𝑧) =
𝜓o(𝑧)± 𝜓e(𝑧)√

2
. The dynamics of this wavefunction in the

limit when 𝜆≪ Λ is given by (see Eq. (3.22) in the appendix)

𝜓o(𝑧) = 𝑒𝑖𝑘0𝑛o𝑧𝜓o +𝒪(𝜆/Λ), (3.33)

𝜓e(𝑧) = 𝑒𝑖𝑘0𝑛e𝑧𝜓e +𝒪(𝜆/Λ). (3.34)

Inserting this into Eq. (3.32) and comparing with Eq. (3.29) we �nd that(︂
𝐹R(𝑧)
𝐹L(𝑧)

)︂
=

[︂
𝑒𝑖𝑘0𝑛̄𝑧

(︂
cos 𝜋𝑧Λ −𝑖 sin 𝜋𝑧

Λ
−𝑖 sin 𝜋𝑧

Λ cos 𝜋𝑧Λ

)︂
(1 +𝒪(𝑍))

]︂(︂
𝐹R
𝐹L

)︂
, (3.35)

where 𝑍 = 𝜀2𝑧 is the slow variable along the propagation direction in this
regime. Thus, the amplitudes’ dynamics include two di�erent length scales
𝜆 and Λ. If we assume Λ to be comparable with the Rayleigh length, we can
consider that the fast dynamics is only given by the exponential in the �rst
term , which leads to the following separation:(︂

𝐹R(𝑧)
𝐹L(𝑧)

)︂
= 𝑒𝑖𝑘0𝑛̄𝑧

(︂
𝐹R(𝑍)
𝐹L(𝑍)

)︂
. (3.36)

By Inserting this into Eqs. (3.30) and (3.31) we get to the following coupled
equations of motion:

− 𝑘20𝑛̄
2𝐹R,L(𝑍) + 2𝑖𝑘0𝑛̄𝜕𝑍𝐹R,L(𝑍) + 𝜕2𝑍𝐹R,L(𝑍)

∓ 2𝑖𝜕𝑍𝜃 [𝜕𝑍𝐹R,L(𝑍) + 𝑖𝑘0𝑛̄𝐹R,L(𝑍)] = − (∇⊥ ∓ 𝑖∇⊥𝜃)
2 𝐹R,L(𝑍)

− 𝑘20

[︁
𝑛̄2 + (Δ𝑛/2)2

]︁
𝐹R,L(𝑍)− 𝑘20𝑛̄Δ𝑛𝐹L,R(𝑍) (3.37)

Now, after introducing the fast and slow variables the SVEA can be performed
by considering 𝜆≪ Λ, 𝑍R. It follows that

𝑖𝜕𝑍𝐹R(𝑍) = − 1

2𝑛̄𝑘0
(∇⊥ − 𝑖∇⊥𝜃)

2 𝐹R(𝑍)− 𝜕𝑍𝜃𝐹R(𝑍)−
𝜋

Λ
𝐹L(𝑍),

(3.38)

𝑖𝜕𝑍𝐹L(𝑍) = − 1

2𝑛̄𝑘0
(∇⊥ + 𝑖∇⊥𝜃)

2 𝐹L(𝑍) + 𝜕𝑍𝜃𝐹L(𝑍)−
𝜋

Λ
𝐹R(𝑍).

(3.39)

So in this case, we �nd the following expressions for the scaler potential and
the gauge �eld:

A =− 𝑖∇⊥𝜃𝜎𝑧, (3.40)

V =−∇𝑍𝜃𝜎𝑧 −
𝜋

Λ
𝜎𝑥. (3.41)
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Table 3.1: Summary of SVEA

Fast scales Slow scales V A

case I 𝜆, Λ 𝑍R −(𝜕𝑧𝜃)S(𝑧) +
1

2𝑛̄𝑘0

[︀
𝑖(𝜕2𝑧𝜃)S(𝑧) + (𝜕𝑧𝜃)

2
]︀

−(∇⊥𝜃)S(𝑧)
𝑤
𝑍𝜃

≪1

====== −(𝜕𝑧𝜃)S(𝑧)

case II 𝜆 Λ, 𝑍R ∇𝑍𝜃𝜎𝑧 −
𝜋

Λ
𝜎𝑥 −𝑖∇⊥𝜃𝜎𝑧

case III 𝜆, 𝑍R Λ —— ——

Low birefringence limit

The third physically relevant regime occurs when the birefringence vanishes.
According to Eq.(3.6), this implies that the beat length, Λ is slow even with
respect to the Rayleigh length. Thus, we would expect that the polarization
dynamics does not a�ect the defocusing of light and hence its con�nement
within a waveguiding region. In this sense, this limit is not of interest in the
waveguiding regime we are looking for. In other words, the variations of the
nematic texture in this regime are so slow that they do not have an e�ect on
the light ray’s propagation and its expansion.

We conclude this section by summing up the discussion on the fast and
slow scales in the Table. 3.1.

3.5.3 Floquet theory for a periodically driven system

The physical systems we study here are examples of periodically driven systems
which are vastly studied in the context of Floquet theory. A periodically driven
quantum mechanical system is described by a time-periodic Hamiltonian
𝐻(𝑡 + 𝑇 ) = 𝐻(𝑡) [61, 79]. However, the examples of such systems are not
restricted to quantum mechanics. Namely, the 𝑧-periodic photonic liquid
crystal system that we study is described by an e�ective paraxial equation,
Eq. 3.14, that can be mapped to a time-periodic Schrödinger equation. Here
we review some of the most basic ideas behind the Floquet theory and study
its application in our system.

The time-dependent Schrodinger equation 𝑖𝜕𝑡 |𝜑(𝑡)⟩ = 𝐻(𝑡) |𝜑(𝑡)⟩ is
solved as follows;

|𝜑(𝑡)⟩ = 𝑈(𝑡, 𝑡0) |𝜑(𝑡0)⟩ , (3.42)

where the evolution operator is given by the following time-ordered integral

𝑈(𝑡, 𝑡0) = 𝒯 exp

(︂
𝑖

ˆ 𝑡

𝑡0

𝐻(𝑡′)𝑑𝑡′
)︂
. (3.43)
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For a time periodic Hamiltonian the evolution operator is also periodic, namely

𝑈(𝑡2, 𝑡1) = 𝑈(𝑡2 + 𝑇, 𝑡1 + 𝑇 ), (3.44)

and thus, for 𝜏 ∈ [0, 𝑇 ] and for any integer 𝑛

𝑈(𝜏 + 𝑛𝑇 ) = 𝑈(𝜏) [𝑈(𝑇 )]𝑛 , (3.45)

where we set the initial time 𝑡0 to zero. Therefore, the full evolution of the
wavefuction can be characterized by the evolution operator in one time pe-
riod. Particularly for large time scales the wavefunction time evolution is in
the stroboscopic picture given by the set of wavefunction at the time peri-
ods {|𝜑(𝑛𝑇 )⟩ = [𝑈(𝑇 )]𝑛 |𝜑(0)⟩} |𝑛. The advantage of using the stroboscopic
picture is that it contains the relevant information about the wavefunction
dynamics for time scales much larger than the Floquet period 𝑇 . For example,
although the time dependence of the Hamiltonian does not allow for an eigen-
mode of the full evolution operator, in the stroboscopic picture the eigenmodes
of the evolution operator over one time period are the eigenstates of the full
evolution.

Furthermore, for a system described by a Hermitian Hamiltonian, 𝑈(𝑇 )
is a unitary operator and thus its eigenvalues are given by 𝑒𝑖𝛽𝑇 , where 𝛽 is
called quasi-energy and is de�ned modulo 2𝜋/𝑇 . Therefore, the stroboscopic
evolution of the eigenstate 𝑢 is given by

|𝜑(𝑛𝑇 )⟩ = 𝑒𝑖𝑛𝛽𝑇 |𝜑⟩ . (3.46)

In the photonic system under study, these eigenstates are associated with the
guided modes of the system. Also, the eigenvalues are quasi-momenta in this
case, as the e�ective time is actually of a spatial origin in this problem and the
periodicity of the system is set by the length Λ. Note that the validity of this
result for the photonic system depends on the condition that the dynamics of
the wavefunction inside a Floquet period is small enough that the e�ective
paraxial equation is always a valid description. This condition is satis�ed
in the adiabatic regime where the Floquet period is much smaller than the
Rayleigh length, that is given by Eq. 3.4. This result implies that there are
higher order guided modes with non-Gaussian distributions which are guided
in a non-uniform uniaxial media, as shown by Fig. 3.1.
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Representation in the Sambe space

We saw above that to obtain the guided modes of a periodic liquid crystal
structure we need to solve the diagonalization problem

𝑈(𝑡0 + 𝑇, 𝑡0) |𝜑(𝑡0)⟩ = 𝑒𝑖𝛽𝑇 |𝜑(𝑡0)⟩ . (3.47)

Since 𝑈(𝑡0 + 𝑇, 𝑡0) is a unitary operator, its eigenvalues are all located on the
circumference of the unit circle. It thus become likely that for high resolution
simulation boxes, the di�erent modes of the system have very close quasi-
energies and become practically degenerate. A numerical scheme then can
become unstable due to these arti�cial degenerate spaces. To solve this issue,
we use the Floquet Hamiltonian’s Sambe-space representation, which is a
time-independent equivalent problem to solving the time-periodic quantum-
mechanical system [176].

This method requires writing the Hamiltonian in the Sambe space, which
is an enlarged space composed of the sidebands of the Floqeut Hamiltonian [50].
The eigenvalue problem above then can be expressed in this space as

ℋ𝑆 |𝒰⟩ = 𝛽 |𝒰⟩ , (3.48)

where ℋ𝑆 is the Sambe Hamiltonian whose blocks are given by the Fourier
components of the Floquet Hamiltonian 𝐻(𝑡)− 𝑖𝜕𝑡 as

ℋ𝑆
𝐼𝐽 = 𝐻(𝐼−𝐽) − 𝐼𝛿𝐼,𝐽𝜔, (3.49)

where 𝐼, 𝐽 ∈ Z, 𝐻(𝑝) is the 𝑝th Fourier harmonic of the Hamiltonian, 𝛿𝐼,𝐽 is
the Kronecker delta, and 𝜔 is the drive frequency. The eigenstate |𝒰⟩ is also
obtained by the column stacking of the Fourier components of the periodized
wavefunctin |𝑢⟩♠:

|𝒰⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

.

.

|𝑢⟩(𝐼−1)

|𝑢⟩(𝐼)
|𝑢⟩(𝐼+1)

.

.

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.50)

♠This can be obtained from a Floquet eigenstate as |𝑢𝛼(𝑡)⟩ = 𝑉 (𝑡) |𝜑𝛼⟩, where 𝑉 (𝑡) is
the short-term (within a Floquet period) propagator.
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Note that the eigenvalues of this method can have arbitrary norms that solves
the issue that we described above: the two eigenvalues 𝛽0 and 𝛽0 + 𝜖+ 2𝑛𝜋
where 𝜖 is small with respect to the resolution of the diagonalization code are
in this method well separated from each other, while in the previous method
they were pointing to very close points on the unit circle which could lead to
accidental degeneracies.

We skip the details of the calculations of ℋ𝑆 for the various cases that
we consider in this thesis. We solve the time-independent problem above
numerically using usual diagonalization methods. To �nd the lowest order
guided modes, we look for the maximally spatially localized modes that are
obtained from the eigenmodes of the Sambe Hamiltonian.





Chapter 4.

Liquid-crystal-based photonic topological
insulators

Topological photonics harnesses the physics of topological insulators
to control the behavior of light. Photonic modes robust against material
imperfections are an example of such control. In this chapter, we propose a
soft-matter platform for assembling topological photonic materials that hold
promise for protected unidirectional waveguides, sensors and lasers [17]. The
orientation of liquid crystal molecules introduces an extra geometric degree
of freedom which in conjunction with suitably designed structural properties
leads to the creation of topologically protected states of light. The use of soft
building blocks potentially allows for recon�gurable systems that exploit the
interplay between light and the soft responsive medium.

Topological materials are a class of structured materials that exhibit re-
markable features such as the existence of chiral edge states robust against
backscattering at their boundaries. These materials inspired from topological
insulators [100] have proven ubiquitous in physics, including examples in
photonics [17, 18, 26, 83, 85, 86, 88], mechanics [15, 33, 52, 67, 68, 73], hydro-
dynamics [19, 20, 38, 46], stochastic systems [42] and electrical circuits [29,
59, 69]. The unique properties of topological photonic materials suggest sev-
eral potential applications [17, 18, 83] ranging from high-power single-mode
lasers [25, 27] to slow light [14].

55
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In this chapter, we show how liquid crystals can be used as a soft-matter
platform to realize the building blocks of topological photonics [17, 18, 83]. In
the previous chapter, we developed a strategy purely based on liquid crystals
where the orientation of the nematic molecules, described by their director
�eld, is used to realize waveguiding [40, 47, 56]. Here, we use the same degrees
of freedom in these materials to build Floquet topological materials [36, 41, 88]
by coupling these waveguides.

We �rst develop a tight-binding model (coupled-modes description) for
the coupled liquid-crystal waveguides [177]. We establish its domain of validity
through a careful comparison with direct simulations of Maxwell equations.
Along with a precise analysis of the symmetries in the system, these results
allow us to engineer a liquid-crystal realization of two archetypal topological
systems: a system with non-trivial winding numbers analogous to the one-
dimensional Su-Schrie�er-Heeger (SSH) model [36, 172] and a system with non-
trivial Chern numbers inspired by the two-dimensional Haldane model [151].

In Ref. [88] it was demonstrated that periodic modulations induced by
helix-shaped waveguides allow one to implement photonic Floquet topological
insulators. In a curved waveguide, the change in the local direction of prop-
agation leads to geometric phases [13, 161] called Rytov-Vladimirskii-Berry
phases [188, 189], which are eventually responsible for the existence of the
photonic topological insulator in Ref. [88]. In contrast, the geometric phases
present in our liquid-crystal system are Pancharatnam-Berry phases [155, 186]
and stem from the change in the local optical axes. As a consequence, the
symmetries of the photonic topological material are entirely controlled by the
spatial symmetries of the nematic texture.

4.1 Coupled liquid crystal waveguides

In the previous chapter, we studied soft photonic waveguides in a liquid crystal
medium. We now consider a system that consists of two such waveguides
by transversely repeating the director modulation which corresponds to one
waveguide, see Fig. 4.1(a). When two of these waveguides are located close
to each other, they become coupled as light can tunnel from a waveguide
to another through evanescent waves: the electromagnetic �eld inside one
waveguide induces a �eld inside the other one. Fig. 4.1(c) shows that if a
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Figure 4.1: Coupling of two waveguides, corresponding to the liquid-crystal pattern
in (a) and with an e�ective optic potential shown in (b). The 𝑧-axis in (a) shows the
orientation of the molecules in the centre of a waveguide for one Floquet period, given
by Λ. (c)-(d) The intensity pro�le obtained with the guided mode of one of the waveg-
uides as an initial condition shows an oscillatory pattern, which is reminiscent of Rabi
oscillations in two-level quantum systems. (e) Dependence of the dimensionless Rabi
frequency 𝑓𝑅 = 𝜆/𝑇𝑅 with the distance between waveguides for both the continuum
paraxial simulations and the tight-binding method. The e�ective interaction between
two such waveguides, proportional to 𝑓𝑅, decays exponentially with their distance.
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guided mode is initially inside one of the two identical waveguides, it will
eventually leak into the other one. The light intensity pattern obtained from
such interaction oscillates sinusoidally with a period 𝑇R (see Fig. 4.1(d)) exactly
like Rabi oscillations in two-level quantum systems.

We wish to consider a system made of a large number of coupled waveg-
uides. To do so, we need a simpli�ed description of the waveguides and of
their couplings, that allows to capture the essential features of the system
(such as the Rabi oscillations described above) without having to describe
the full liquid crystal con�guration. Hence, we use a time-dependent Hückel
method [34, 191] to develop a tight-binding model for the photonic waveguides
(see appendix 4.6.2). The tight-binding (TB) Hamiltonian 𝐻TB obtained using
this method for the evolution of a system of 𝑁 waveguides reads

𝑖𝜕𝑧 |𝜓𝑛⟩ =
𝑁∑︁
𝑚=1

𝐻TB
𝑛𝑚(𝑧) |𝜓𝑚⟩ , (4.1)

where 𝜓𝑛 is the mode inside waveguide 𝑛. This tight-binding model brings
the essential simplicity that is needed to analyze a system with many coupled
waveguides such as a lattice con�guration. The Rabi oscillations obtained
from this tight-binding model for a two-waveguide system are in agreement
with the solutions of the Schrödinger equation (3.14) in the continuum using
appropriate initial conditions, validating our approach, see Fig. 4.1(e). Using
this tight-binding model, we further quantify the interaction between two such
waveguides and observe that its strength decays exponentially with respect to
the distance between them, see Fig. 4.1(e).

4.2 Photonic crystals in 1+1d: SSH chain

A lattice of coupled waveguides is obtained by a periodic patterning of the
nematic director in the transverse plane. Here, we consider a 1+1d lattice,
where the second dimension stands for the paraxial direction 𝑧 that plays the
role of time in this system. We consider a system inspired by the Su-Schrie�er-
Heeger (SSH) model [36, 172]. Using the interaction-distance dependence
from the previous section, we design a lattice of these waveguides on a chain
so that the interaction between two neighboring waveguides changes in an
alternating way, as shown in Fig. 4.2(a-b). The distance between waveguides
is chosen such that the ratio between the two di�erent hopping amplitudes is
𝐽−/𝐽+ = 0.25(1).



4.2. Photonic crystals in 1+1d: SSH chain 59

V

-1.0

0.0

y
-1.0

0.0

x

0 1000z/Λ

x

(a)J−

J+

(b)

(c)

(d)

Figure 4.2: An SSH chain of photonic waveguides in a liquid crystal medium. (a)-(b)
The e�ective photonic potential for two topologically distinct dimerizations of the
waveguides in such a system which correspond to an SSH chain with and without an
edge mode, respectively, as shown in (c)-(d). The e�ective tunneling between these
waveguides is controlled by their distance as illustrated in Fig. 4.1(e). Insets in panels
(a)-(b) sketch an SSH chain corresponding to each system. Strong (𝐽+) and weak (𝐽−)
couplings are shown by double and single bonds, respectively. (c) The propagation of
an edge mode whose existence is topologically protected. (d) Shows the scattering
into the bulk of the same initial mode in a trivial chain.
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Figure 4.2(a-b) also shows that depending on the ordering of the strong
and weak bonds at the boundary, there are two di�erent dimerizations of
the neighboring waveguides. The tight-binding description of the system in
Fig 4.2(a-b) is a time-dependent version of the SSH chain [172]. We �nd a
photonic state that remains at the edge of one of the two con�gurations of this
system, as shown in Fig. 4.2 (c), whereas in the other con�guration, in panel
(d), the initial mode at the edge leaks into the bulk while it propagates forward.
The intensity pro�le of the localized edge mode shows an exponential decay
away from the waveguide at the boundary.

The presence of this edge mode is due to the topology of the Hamiltonian
describing the system, which is characterized by an integer winding number
across the Brillouin zone (BZ). To see this, note that the dimerized chain’s
tight-binding Hamiltonian in the momentum space is in general a 2×2 matrix
(due to two sublattices) and can be cast as

𝐻(k) = d(k) · 𝜎 + 𝜖I, (4.2)

where 𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) is a vector of Pauli matrices, d is a vector in the
momentum space, and 𝜖 is the onsite energy term. When sublattice symmetry
is preserved, 𝑑𝑧 = 0 and

𝑤 =
1

2𝜋𝑖

ˆ
BZ
𝑑2k lnd(k) (4.3)

counts the number of windings of d over the BZ. Since d(k) is a periodic
function, the integration is performed over a closed loop, and thus the param-
eter 𝑤 is integer valued and characterizes the topology of the Hamiltonian.
For the SSH chain, we �nd that 𝑤 = 1 for the topological and 𝑤 = 0 for the
trivial system. In this particular case, this topological invariant depends on
whether 𝐽− is smaller or greater that 𝐽+, which explains why this edge mode
is present in only one of the two con�gurations in Fig. 4.2.

4.3 Symmetries and topological modes in 2+1d

So far, we only considered systems in which there is a symmetry between the
photonic modes that propagate forwards and backwards along the 𝑧 direc-
tion. This 𝑧-reversal symmetry corresponds to time-reversal (TR) symmetry
in the e�ective quantum picture. We would now like to explore the phe-
nomena that can arise with introducing an asymmetry in this direction. The
TR symmetry acts on Eq. (3.14) through the operator 𝑇 = 𝜎𝑧Θ, where Θ
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is complex conjugation and where the Pauli matrix 𝜎𝑧 exchanges right and
left circular polarizations. It follows that a con�guration is TR invariant if
there is a reference point 𝑧0 such that the orientation of the directors satis�es
𝜃(𝑧0 − 𝑧) = −𝜃(𝑧0 + 𝑧) (see appendix 4.6.3).

In the tight-binding model of this system, we focus on the subspace of
guided modes, since the unguided ones do not follow a coupled-mode picture.
In this reduced description, the TR operator is simply the complex conjugation
operator Θ. We prove analytically in the appendix 4.6.3 that the TR invariance
in the paraxial Hamiltonian leads to the TR invariance of the tight-binding
model.

We break TR symmetry by considering the director �eld con�guration

𝜃(𝑥, 𝑦, 𝑧) = 𝜃0(𝑥, 𝑦) [sinΩ𝑧 + 𝜂 cos(2Ω𝑧 − 𝜙)] , (4.4)

where 𝜃0(𝑥, 𝑦) describes the nematic pattern in the transverse plane (it is a
sum of Gaussians centred at desired positions), Ω = 2𝜋/Λ is the frequency of
the drive (an inverse length scale here), 𝜂 is a dimensionless coe�cient that
controls the strength of the TR symmetry breaking, and 𝜙 is the dephasing
between the harmonics of the pattern. We focus on con�gurations of these
waveguides in 2+1 dimensions where the absence of TR invariance can lead
to topological modes [17, 88, 151]. A 2+1d lattice of these waveguides can
be designed by considering transverse modulations of the nematic directors
that are periodic in two directions. We consider a modulation that creates a
honeycomb lattice of such waveguides in the transverse plane, as shown in
Fig. 4.3(a).

We �nd that in our Floquet model, the TR symmetry breaking is not
su�cient to get a topological band structure. This can be understood through
a high-frequency Magnus expansion [61] of a general Floquet tight-binding
Hamiltonian on a honeycomb lattice, by mapping the obtained e�ective Hamil-
tonian with that for the Haldane model [151] (see appendix 4.6.4). We �nd that
breaking the three-fold symmetry between the three neighboring bonds is
required to get a non-zero Haldane mass at the �rst order of the expansion.
Many Floquet driven models involve a rotating gauge �eld, arising for exam-
ple from the coupling with a circularly polarized light radiation [80] or an
e�ective gauge �eld originating from spin-orbit coupling of light on a helical
waveguide [88]. In this case, the rotating gauge �eld e�ectively breaks the 𝐶3

symmetry via a Peierls substitution in the hoppings.
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Figure 4.3: (a) A photonic lattice on a honeycomb structure that is obtained by
patterning of the nematic directors in the transverse plane. Each node of the lattice
corresponds to a photonic waveguide, as shown in the zoomed-in panels. (b) A unit
cell of this photonic lattice, where the waveguides are colored according to their
relative phase shift in the 𝑧-direction. The unit cell is enlarged with respect to the
honeycomb one because of the di�erent phase shifts. (c) The Rabi period between
two photonic waveguides as a function of the relative shift between them. We focus
on the parameter space enclosed by the blue dotted rectangle, where there is a close
agreement between the tight-binding model and the continuum paraxial simulations.
(d) Evolution of a topological edge mode on the projected 𝑥− 𝑦 plane. The size of
each circle corresponds to the light intensity on that site. This mode propagates along
the edge without backscattering on obstacles. (e)-(f) One sideband in the Floquet
band structure of a honeycomb lattice of photonic waveguides (e) without and (f) with
relative phase shift. In both cases the TR symmetry is violated using the structural
parameter 𝜂 = 0.67. The band structure in (f) shows the presence of one mode at the
right (blue) and left (red) edge of this system for a range of transverse momenta in
the BZ. The presence of these edge modes and their unidirectional propagation are
predicted by the di�erence between �rst Chern numbers 𝐶1 of the bands which are
separated by the gap.
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Here, we do not have access to such a rotating gauge �eld. Instead, we
break this symmetry by shifting the waveguides along the z-axis, with a shift
that is di�erent for each of the neighboring waveguides, see Fig. 4.3(b). The
relative shift of waveguides a�ects both the strength of their interactions,
as shown in Fig. 4.3(c), and induces a dephasing between the hoppings. We
choose a spatially periodic con�guration of phase shifts. However, the unit
cell is enlarged with respect to the hexagonal lattice, as shown in Fig. 4.3(b)
where the colors represent the shifts.

We note that the tight-binding description is only reliable when the shifts
are small enough, see Fig. 4.3(c). We use the guided mode of each waveguide as
a basis for the tight-binding description. This works well when the waveguides
are not shifted. When they are, our procedure does not span the whole space
where the modes evolve when the waveguides are shifted, because the guided
modes of waveguides with relative shifts are di�erent: the guided mode of one
waveguide can be repelled from a similar waveguide with a relative shift of
origin. In the following, we focus on the range of shifts where the tight-binding
description still provides a reliable approximation (blue dashed rectangle in
Fig. 4.3(c)).

The band structures associated with the tight-binding model of the lattices
of waveguides in Fig. 4.3(a-b) on a cylinder are shown in panels (e)-(f). Panel
(e) corresponds to a honeycomb lattice of waveguides without relative phase
shifts. Panel (f) corresponds to the unit cell shown in panel (b), where the
waveguides are shifted with respect to each other. In this case, we observe
chiral modes localized at the edges of the cylinder. A direct calculation of the
�rst Chern number [100, 121, 169] (given by Eq. 1.8) of the top and bottom
bands shows that these edge modes have a topological origin. They circulate
unidirectionally along the edge in the transverse plane as they propagate along
the 𝑧-direction despite the presence of a defect at the boundary, see Fig. 4.3(d).
The decay length of the edge modes in the bulk is related to the inverse size of
the bulk band gap in which these modes reside, compared to the frequency of
the Rabi oscillation. Thus, we �nd that the decay length is only a few lattice
sites, even though the gap is very small with respect to the Floquet frequency.
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4.4 Non-Hermitian description of shiftedwaveguides

A full description of the photonic crystal should encompass both guided and
repelled modes. The analysis above shows that waveguides shifted with respect
to each other can be coupled. In this situation, both the guided and repelled
modes should be taken into account. In principle, this would entail the use of
a non-Hermitian Hamiltonian [133] to describe the system, to account for the
loss of light intensity due to the repelled light (eventually converted to heat in
the bulk of the material). In this section, we provide details about the coupling
between waveguides with relative shifts.

In particular, we show that an e�ective Hermitian description of the
coupled waveguides is still possible in the regimes considered above. There
is e�ectively no coupling between the guided and repelled modes, despite
the di�erence between guided modes of the relatively shifted waveguides.
Fig. 4.4 shows simulation results for the two coupled shifted waveguides with
𝜂 = 0.67 and 𝛿 = 1, where the distance between the two waveguides is given
by 2𝑤𝑝+𝛿. As can be seen in the �gure, there is a drastic change in qualitative
behavior of the intensity patterns depending on the relative shift between the
waveguides.

To understand this qualitative di�erence, we now determine the e�ective
coupling between these relatively shifted waveguides. As we saw in Fig. 4.3, the
Hückel method fails to fully account for the couplings when the relative shift
between the waveguides is close to Λ/2. Therefore, we extract the e�ective
Hamiltonians directly from the intensity patterns. We restrict ourselves to
extracting these parameters from the intensities and not from phases, since the
latter would require projection of the temporal modes inside each waveguides
into a basis of a linear combination of both waveguides’ guided modes. We
start with the following ansatz for the e�ective Hamiltonian:

𝐻 = −𝑖𝜖I + (𝐽𝑥𝜎𝑥 + 𝐽𝑦𝜎𝑦) + (𝑚+ 𝑖𝜂)𝜎𝑧 (4.5)

in which the basis vectors [1, 0]𝑇 and [0, 1]𝑇 correspond to the two waveguides.
We consider real values for 𝐽𝑥 and 𝐽𝑦 for now. A more complicated model
with non-reciprocal couplings would require loosening this condition, but we
will see that it is not necessary in our system. When the initial condition is
corresponds to the guided mode of the �rst waveguide, the evolution is given
by

|𝜓1(𝑡)⟩ = 𝑈(𝑡)

[︂
1
0

]︂
= 𝑒−𝜖𝑡

[︂
cos 𝑡𝐽 + 𝑖𝑚𝐽 sin 𝑡𝐽

−𝑖𝐽𝑥𝜎𝑥+𝐽𝑦𝜎𝑦𝐽 sin 𝑡𝐽

]︂
. (4.6)
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Figure 4.4: Coupling between waveguides with relative shifts. Left panels show the
intensity pro�le of the couplings and right panels compare the total intensity in the
two waveguides. The relative shift between waveguides is 0.3Λ for (a)-(b), 0.4Λ for
(c)-(d), and 0.5Λ for (e)-(f).

The mode intensity inside the second waveguide is

⃒⃒
⟨[0, 1]𝑇 |𝜓1⟩

⃒⃒2
= 𝑒−2𝜖𝑡

𝐽2
𝑥 + 𝐽2

𝑦

𝐽2
𝑟 + 𝐽2

𝑐

(︀
sin2 𝐽𝑟𝑡+ sinh2 𝐽𝑐𝑡

)︀
, (4.7)

where 𝐽𝑟 and 𝐽𝑐 are the real and imaginary parts of the e�ective hopping
determined by

𝐽𝑟 + 𝑖𝐽𝑐 =
√︁

(𝑚+ 𝑖𝜂)2 + 𝐽2
𝑥 + 𝐽2

𝑦 . (4.8)
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By �tting Eq. (4.7) to the intensity pattern obtained from the system’s evolution
in the paraxial regime, we can obtain 𝜂, 𝑚, 𝐽𝑟 , 𝐽𝑐, and 𝑗 = |𝐽𝑥 + 𝑖𝐽𝑦|. 𝑚 and
𝜂 are determined by solving

(𝑚+ 𝑖𝜂)2 = (𝐽𝑟 + 𝑖𝐽𝑐)
2 − 𝑗2, (4.9)

(𝑚− 𝑖𝜂)2 = (𝐽𝑟 − 𝑖𝐽𝑐)
2 − 𝑗2. (4.10)

We obtain these parameters for three di�erent waveguide distances and for
𝜂 = 0.67 and shift/Λ = 0.5 for a simulation on a period of 6000Λ. The results
are summarized in Table 4.1.

Table 4.1: Quantities characterizing the coupling between waveguides with relative
shifts.

𝛿 𝜖 𝑚 𝜂 𝑗 |det𝑈 |
0.0 3.2𝑒−5 0.0021 0. 0.0049 1.0
1.0 3.5𝑒−5 0.0013 3.0𝑒−5 0.0019 0.99997
2.0 3.9𝑒−5 0.0013 2.9𝑒−5 0.0007 0.9998

In the last column we calculate the absolute value of the determinant of
the matrix of eigenvectors: 𝑈 = (|𝜓1⟩ , |𝜓2⟩). If 𝐻 is Hermitian, |det𝑈 | = 1.
In our system, the deviation from unity is very small. Based on this result, we
conclude that the non-Hermitian e�ects in our system should be negligible.
The peculiar behavior in the intensity patterns of Fig. 4.4 is due to the Hermitian
mass term (with a real mass 𝑚), which becomes comparable to the hopping
amplitude 𝑗.

We have then veri�ed that non-Hermitian e�ects involving non-
orthogonal eigenmodes are negligible in the topological system described in
the previous section, validating our approach based on Hermitian topological
invariants. Looking forward, the natural occurrence of non-Hermiticity in
the description suggests liquid crystal-based soft waveguides as a promising
platform for non-Hermitian optics [16, 39, 91, 103].

4.5 Conclusion

In this chapter, we have shown how to realize photonic Floquet topological
systems using liquid crystals. As an example, we have shown how Floquet
versions of the SSH and Haldane models can be realized. As photonic crystals,
these photonic Floquet topological insulators are semimetal phases with a
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strong anisotropy; for instance, a (2 + 1)-dimensional Chern insulator can be
seen as a photonic Weyl material [43, 65]. Our analysis based on a reduction of
the paraxial wave equation to a tight-binding description provides a blueprint
to design photonic structures with targeted topological properties in liquid
crystal systems through Pancharatnam-Berry phases.

Our proposal is inspired by recent advances in liquid crystal technology
that make it possible to e�ectively print out any target director �eld either
by stacking two-dimensional photoaligned slices [22, 28, 48, 51, 56, 94, 112]
or through three-dimensional photopatterning techniques [116]. Electrically
controlled and light-driven liquid crystals [48, 107] could be further exploited
to engineer recon�gurable topological photonic devices.

Also, the TR symmetry can be broken using the fully rotating nematic
�elds given by Eq. 3.19. Using this approach introduces a handedness that
breaks the symmetry between forward- and backward-moving modes. Further-
more, the handedness introduces a second e�ective vector potential by moving
into a rotating frame [88]. The consequences of such symmetry breaking terms
are a subject for further investigations.

4.6 Appendix

We now provide details for the information for the realization of the model in
an actual liquid crystal environment, a derivation of the tight-binding model,
symmetries of the photonic crystal system, and non-Hermitian e�ects in the
interaction of waveguides with relative shifts in their origin.

4.6.1 Liquid crystal con�guration

The waveguiding in the system under study is achieved when the following
modulation for the director �eld is used [56]:

𝜃(𝑥, 𝑦, 𝑧) = exp

[︂
−𝑥

2 + 𝑦2

𝑤2
𝑝

]︂
sin

(︂
2𝜋𝑧

Λ

)︂
, (4.11)

where 𝑤 is the width of the Gaussian pattern. The e�ective gauge and scalar
�elds are then determined as

A =
2(𝑥𝑥̂+ 𝑦𝑦)

𝑤2
𝑝

exp

[︂
−𝑥

2 + 𝑦2

𝑤2
𝑝

]︂
sin

(︂
2𝜋𝑧

Λ

)︂
S(𝑧), (4.12)

V = −2𝜋

Λ
exp

[︂
−𝑥

2 + 𝑦2

𝑤2
𝑝

]︂
cos

(︂
2𝜋𝑧

Λ

)︂
S(𝑧). (4.13)
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Note that the con�guration is chosen to be periodic after each beating length.
Considering Eq. 3.10, it follows that this feature of the liquid crystal structure
leads to a 𝑧-periodic Hamiltonian in the right-hand side of Eq. 3.14. Therefore,
this system can be studied using the machinery of the Floquet Hamiltoni-
ans [56].

Note also that the mode evolution equations of this system are linear in
𝜃. Therefore, one can build a lattice of the waveguides above by repeating the
modulation of one waveguide, Eq. 4.11, in the transverse plane. For example, a
1-d SSH chain is described by

𝜃(𝑥, 𝑦, 𝑧) =
𝑁∑︁
𝑖=1

𝜃𝑖(𝑥, 𝑧), (4.14)

with

𝜃𝑖(𝑥, 𝑧) = sin

(︂
2𝜋𝑧

Λ

)︂
× (4.15)(︂

exp

[︃
− [𝑥− (𝑥𝑖 − 𝑑1/2)]

2

𝑤2
𝑝

]︃
+exp

[︃
− [𝑥− (𝑥𝑖 + 𝑑1/2)]

2

𝑤2
𝑝

]︃)︂
,

where 𝑥𝑖 = 𝑥0 + (𝑖 − 1)(𝑑1 + 𝑑2) are the positions of the centre of pairs
of potentials in terms of the alternating distances between the neighboring
waveguides, 𝑑1 and 𝑑2.

4.6.2 Floquet tight-binding model

To build-up a lattice model for a photonic crystal in this system, we exploit
the Floquet tight-binding approach. We start by writing down the many-
waveguide wavefunction |Φ⟩ as a linear combination of single-waveguide
modes |𝜑𝐼⟩ as follows:

|Φ(𝑧)⟩ =
∑︁
𝐼

𝑎𝐼(𝑧) |𝜑𝐼(𝑧)⟩ , (4.16)

where 𝜑𝐼(𝑧) is obtained by the evolution of the guided mode inside the waveg-
uide 𝐼 . The validity of this approximation can be determined by the closeness
of the dynamics of this wavefunction to the actual system’s evolution. Plug-
ging the wavefunction above into the Schrödinger equation of the system
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leads to

𝐻 |Φ(𝑧)⟩ = 𝑖𝜕𝑧 |Φ⟩ (4.17)

=
∑︁
𝐽

[𝑖𝜕𝑧(𝑎𝐽(𝑧)) |𝜑𝐽(𝑧)⟩+ 𝑖𝑎𝐽(𝑧)𝜕𝑧 |𝜑𝐽(𝑧)⟩].

We can now multiply both sides of this equation with ⟨𝜑𝐽 | to obtain∑︁
𝐼

𝑖 ⟨𝜑𝐽 |𝜑𝐼⟩ 𝜕𝑧𝑎𝐼 (4.18)

=
∑︁
𝐼

⟨𝜑𝐽 |𝐻 |𝜑𝐼⟩ 𝑎𝐼 −
∑︁
𝐼

⟨𝜑𝐽 | 𝑖𝜕𝑧 |𝜑𝐼⟩ 𝑎𝐼 .

This result can be written as

𝑖𝜕𝑧𝑎 = 𝑆−1(𝐻 −𝑅)𝑎, (4.19)

where 𝑎 = (𝑎1, 𝑎2, ...) is a vector in the basis of waveguides, and the matrix
elements in this basis are

𝑆𝐽𝐼 = ⟨𝜑𝐽 |𝜑𝐼⟩ , (4.20)
𝐻𝐽𝐼 = ⟨𝜑𝐽 |𝐻 |𝜑𝐼⟩ , (4.21)
𝑅𝐽𝐼 = ⟨𝜑𝐽 | 𝑖𝜕𝑧 |𝜑𝐼⟩ . (4.22)

Note that these matrices act on the space of guided modes, not on the space of
light polarizations. When starting the coupled-mode theory in Eq. 4.16, we
project the initial model into the space of the guided modes, which is a one-
dimensional subspace of the polarization space. The e�ective tight-binding
Hamiltonian associated with the continuous problem is then

𝐻TB = 𝑆−1(𝐻 −𝑅). (4.23)

4.6.3 Time-reversal symmetry

In this section we consider the time-reversal symmetry (TRS) of the e�ective
Schrodinger equation that describes the light propagation in this system. Here
we are interested in the behaviour of systems under the inversion of the
e�ective time by the operation 𝑇 : 𝑧 → −𝑧. A system is invariant under TRS
if there is a 𝑧0 such that

𝑇𝐻(𝑧0 + 𝑧)𝑇−1 = 𝐻(𝑧0 − 𝑧). (4.24)

We �rst look at the physical set-up that gives a time-reversal invariant
system and then derive the tight-binding version of the Eq. (4.24).
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TRS in real space

The question we would like to answer �rst is that what features of the liquid
crystal system will lead to its invariance under time-reversal. A di�culty
in de�ning a proper time-reversal (TR) operator arises when we notice that
the light beam dynamics in this system is extremely a�ected by its initial
polarization. Especial cases of guided and repelled modes for the right/left
circularly polarized (RCP/LCP) initial conditions are studied in [56]. To avoid
potential problems related to this issue, we pick up a TR operator that preserves
LCP and RCP lights so that we can study the e�ect of this operator in the
projected space of initial conditions with certain polarization ♠. This projection
can be done by using

𝑇 = 𝜎𝑧Θ, (4.25)

where 𝜎𝑧 = diag(1,−1) is the third Pauli matrix andΘ is the complex conjuga-
tion operator. It then follows that𝑇𝜓R,L = 𝜓R,L. Thus, if the initial polarization
of the light beam is a linear combination of the LCP/RCP polarizations (with
real coe�cients), we have

𝑇 |𝜓(0)⟩ = |𝜓(0)⟩ . (4.26)

Now note that the system’s wavefunction evolution is given by |𝜓(𝑧)⟩ =
𝑈(𝑧) |𝜓(0)⟩, where

𝑈(𝑧) = lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

exp (−𝑖𝛿𝑧𝐻(𝑧 − 𝑛𝛿𝑧)) (4.27)

The time reversal of the wavefunction is

𝑇 |𝜓(𝑧)⟩

= 𝑇 lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

exp (−𝑖𝛿𝑧𝐻(𝑧 − 𝑛𝛿𝑧))𝑇−1𝑇 |𝜓(0)⟩

= lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

[︀
𝑇 exp (−𝑖𝛿𝑧𝐻(𝑧 − 𝑛𝛿𝑧))𝑇−1

]︀
𝑇 |𝜓(0)⟩

= lim
𝛿𝑧/𝑧→0

[𝑧/𝛿𝑧]∏︁
𝑛=0

[exp (𝑖𝛿𝑧𝐻(−𝑧 + 𝑛𝛿𝑧))] |𝜓(0)⟩ , (4.28)

♠Note that the operator we de�ne does not necessarily work for initial conditions with
arbitrary polarization
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where in the last line we assumed the time reversal invariance of the system
around 𝑧 = 0 as well as the invariance of the initial wavefunction at the
same point given by Eq. (4.26). The last line is the wavefunction’s evolution
backward in time till −𝑧. Thus, the above calculation actually gives

𝑇 |𝜓(𝑧)⟩ = |𝜓(−𝑧)⟩ , (4.29)

where |𝜓(−𝑧)⟩ = 𝑈−1(0,−𝑧) |𝜓(0)⟩. Apart from its convenience, this rela-
tion gives a tool to numerically check whether a given system is TR invariant
or not.

We now �nd the physical systems which are invariant under this TR
operator. In other words, we want to �nd con�gurations of the system such
that the Hamiltonian

𝐻(𝑧) = −1

2
[∇⊥ + 𝑖A( 𝑧)]2 +V(𝑧), (4.30)

with A(𝑧) = −(∇⊥𝜃)S(𝑧) and V(𝑧) = −(𝜕𝑧𝜃)S(𝑧) satis�es (4.24). Now if
we use

𝑇S(𝑧)𝑇−1 = 𝑇 [cos(2𝜋𝑧/Λ)𝜎𝑦 + sin(2𝜋𝑧/Λ)𝜎𝑥]𝑇
−1

= cos(2𝜋𝑧/Λ)𝜎𝑦 − sin(2𝜋𝑧/Λ)𝜎𝑥

= S(−𝑧), (4.31)

we will have

𝑇𝐻(𝑧)𝑇−1 = −1

2
[∇⊥ − 𝑖(−∇⊥𝜃)(−𝑧)S(−𝑧)]2

+ (−(𝜕𝑧𝜃)(−𝑧)S(−𝑧)). (4.32)

Now one can see that an odd 𝜃 around any point in 𝑧0 is a su�cient condition
for the system to be TR invariant. Thus the system is TRI when there is a 𝑧0
such that

𝜃(𝑧0 + 𝑧) = −𝜃(𝑧0 − 𝑧) (4.33)

We thus can break the e�ective TRS in this system using the orientation �eld
that is given in Eq. 4.4. Fig. 4.5 shows examples of 𝜃 �elds which preserve or
break the TR symmetry.
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Figure 4.5: Examples of nematic director �elds corresponding to TR invariant and
broken systems. The TR broken case is obtained from the Eq. 4.24 using 𝜂 = 0.67
and 𝜙 = arctan 0.5.

TRS in tight-binding Hamiltonian

Here, we consider the e�ect of the time reversal operation in the tight-binding
model of the system under study. It is also insightful to understand the impli-
cations of a continuous TRS Hamiltonian on the tight-binding version. Here
we consider the terms of 𝐻TB in Eqs. (4.20) - (4.22) separately. Switching to
inner product notation we have for a TR invariant system

𝑆𝐽𝐼(−𝑧) = (𝜓𝐽(−𝑧), 𝜓𝐼(−𝑧))
= (𝑇𝜓𝐽(𝑧), 𝑇𝜓𝐼(𝑧))

= (Θ𝜓𝐽(𝑧),Θ𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧), 𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧), 𝜓𝐼(𝑧)) = 𝑆𝐽𝐼(𝑧), (4.34)

where the bar means the complex conjugation.

ℎ𝐽𝐼(−𝑧) = (𝜓𝐽(−𝑧), 𝐻(−𝑧)𝜓𝐼(−𝑧))
= (𝑇𝜓𝐽(𝑧), 𝑇𝐻(𝑧)𝑇−1𝑇𝜓𝐼(𝑧))

= (Θ𝜓𝐽(𝑧),Θ𝐻(𝑧)𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧), 𝐻(𝑧)𝜓𝐼(𝑧)) = ℎ𝐽𝐼(𝑧), (4.35)
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and

𝑅𝐽𝐼(−𝑧) = (𝜓𝐽(−𝑧), 𝑖𝜕𝑧𝜓𝐼(−𝑧))
= (𝑇𝜓𝐽(𝑧), 𝑖𝜕𝑧𝑇𝜓𝐼(𝑧))

= (Θ𝜓𝐽(𝑧), 𝑖𝜕𝑧Θ𝜓𝐼(𝑧))

= (𝜓𝐽(𝑧),−𝑖𝜕𝑧𝜓𝐼(𝑧))
= (𝜓𝐽(𝑧), 𝑖𝜕𝑧𝜓𝐼(𝑧)) = 𝑅𝐽𝐼(𝑧). (4.36)

Thus we conclude that

𝑇𝐻(𝑧)𝑇−1 = 𝐻(−𝑧) (4.37)

implies
Θ𝐻TB(𝑧)Θ

−1 = 𝐻TB(−𝑧). (4.38)

4.6.4 Why is 𝐶3-symmetry breaking needed?

Here we would like to consider the e�ect of the TRS breaking in a Floquet
system. The example of such systems is the Floquet photonic topological
insulators �rst proposed and observed by Rechtsman et al. [88]. Let us start
with a Floquet tight-binding Hamiltonian on a honeycomb lattice. For now,
we only consider a nearest neighbour interaction, for which the tight-binding
Hamiltonian in the momentum space is given by

𝐻(𝑘) =

(︂
𝑀 𝐽(k)

𝐽*(k) −𝑀

)︂
, (4.39)

where 𝑘 is the momentum and 𝑀 is the mass. Let us consider the massless
case 𝑀 = 0. For a Floquet system, the hopping amplitudes in terms of their
Fourier components are given by

𝐽(k) =
∑︁
ℓ∈Z

𝐽ℓ(k)𝑒
𝑖ℓΩ𝑡 =

∑︁
ℓ∈Z

3∑︁
𝑗=1

𝐽ℓ,𝑗𝑒
𝑖k.𝛿𝑗𝑒𝑖ℓΩ𝑡, (4.40)

where 𝛿1,2,3 are the three neighbouring vectors, and Ω is the drive frequency.
We drop the explicit k dependence notation for now. The Hamiltonian in
terms of its harmonics is determined by

𝐻 =
∑︁
ℓ∈Z

𝐻ℓ𝑒
𝑖ℓΩ𝑡, (4.41)

𝐻ℓ =

(︂
0 𝐽ℓ
𝐽*
−ℓ 0

)︂
. (4.42)
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We are interested in the large frequency limit of the system that is described
by this Hamiltonian. In this limit, the stroboscopic picture gives most of the
relevant physics of the problem. We consider the Floquet-gauge invariant high
frequency expansion of the Hamiltonian [61]

𝐻e� = 𝐻0 +
1

Ω

(︂
𝑀e� 0
0 −𝑀e�

)︂
+𝒪

(︀
1/Ω2

)︀
, (4.43)

where 𝐻0 is the time-averaged Hamiltonian and the �rst-order e�ective mass
is given by

𝑀e� =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝐽ℓ|2 − |𝐽−ℓ|2

]︀
. (4.44)

We see from here that in the �rst order of the expansion, the drive behaves
as if a mass term is introduced to the Hamiltonian. This e�ective mass can
become non-zero when 𝐽ℓ ̸= 𝐽−ℓ for which the TRS needs to be broken.

However, we observe in Fig. (3)e-f that to have a gapped band structure
of this system, the point-group 𝐶3 symmetry also needs to be broken. To
see why this should be the case, we look back at the Eq. (4.40), where for a
𝐶3-symmetric system one can write

𝐽ℓ(k) = 𝐽ℓ(k = 0)
3∑︁
𝑗=1

𝑒𝑖k.𝛿𝑗 . (4.45)

This leaves us with an e�ective mass proportional to the
(︁∑︀3

𝑗=1 𝑒
𝑖k.𝛿𝑗

)︁2
which is zero and has also a zero �rst derivative at the Dirac point. Note that
this asymmetry between harmonics of the hopping parameter along di�erent
directions is present in the system where a time-periodic rotating gauge �eld
renormalizes the hoppings via Peierls substitution [88].

Now that we found a way to open up a gap in the Floquet band structure,
we still need to investigate if this gap is topological or trivial. To do so, we
now take a look at the band structure of a �nite system and look for signatures
of topological edge modes in their band structure. One important requirement
for this gap to be topological is that the mass has di�erent signs on the two
inequivalent Dirac points. Let us consider the previous case where we break
the 𝐶3 symmetry by introducing an asymmetric set of hoppings which satisfy
𝐽ℓ,1
𝑟ℓ,1

=
𝐽ℓ,2
𝑟ℓ,2

=
𝐽ℓ,3
𝑟ℓ,3

= 𝜅ℓ. Now If we take a look back at the e�ective mass
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term in our model, we have

𝑀e�(𝐾) =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2𝐴ℓ(𝐾)− |𝜅−ℓ|2𝐴−ℓ(𝐾)

]︀
,

𝑀e�(−𝐾) =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2𝐵ℓ(𝐾)− |𝜅−ℓ|2𝐵−ℓ(𝐾)

]︀
,

where

𝐴ℓ(k) = 𝐵ℓ(−k) =

⃒⃒⃒⃒
⃒⃒∑︁
𝑗

𝑟ℓ,𝑗𝑒
𝑖k.𝛿𝑗

⃒⃒⃒⃒
⃒⃒
2

. (4.46)

Now as we see from here, if we only break the 𝐶3 symmetry by a set of real
directional hopping scales 𝑟ℓ,𝑗 , this will lead to 𝑀e�(𝐾) = 𝑀e�(−𝐾), for
which the gap in the band structure will be trivial. For a simpli�ed case where
the 𝑟 factors are independent from the harmonic ℓ, it follows that

𝑀e�(𝐾) =

∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2 − |𝜅−ℓ|2

]︀
𝐴(𝐾) (4.47)

𝑀e�(−𝐾) =
∞∑︁
ℓ=1

1

ℓ

[︀
|𝜅ℓ|2 − |𝜅−ℓ|2

]︀
𝐵(𝐾). (4.48)

For general complex 𝑟-factors the e�ective masses can become di�erent.





Chapter 5.

Edge modes in rotating Rayleigh-Bénard
systems

Pattern forming systems are a hallmark of studying non-equilibrium
physics. A system that is driven out of equilibrium and is starting from a
thermally �uctuating state �nally reaches a state with clearly distinguishable
patters on a mesoscopic or macroscopic scale. The patterns can be stationary
or time-dependent. This time dependence can range from coherent periodic
behaviors or traveling waves to chaotic motions.

Here, we consider a well-studied example of these out-of-equilibrium
systems that is called the Rayleigh-Bénard convection [119]. An experimental
setup for this phenomenon is a cylindrical cell �lled with a �uid that is exposed
to two heat baths with di�erent temperatures, the below plate being the
hottest one, see Fig. 5.1(a). The buoyancy force resulting from this temperature
di�erence leads to a heavier �uid near the top plate, which then together
with the gravity force induce �ows in the �uid. If temperature and gravity
overcome the viscous forces of the �uid, convective �ows start to emerge. This
competition between drive and viscous forces is expressed quantitatively by
the Rayleigh number

Ra =
𝛼𝑔𝑑3Δ𝑇

𝜈𝜅
, (5.1)

where 𝛼 is the thermal expansion coe�cient, 𝑔 is the gravitational acceleration,
𝑑 is the vertical length scale, 𝜈 is the kinetic viscosity, and 𝜅 is the thermal
di�usivity of the �uid. The critical value for this parameter indicates the point
beyond which convection takes place. The qualitative description above can be
modeled by a set of modes for such systems which are linearly instable above
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the convection threshold. These unstable modes grow out of the thermally
�uctuating states. However, this growth will have to stop eventually, as
the nonlinearities get involved and saturate the growth, steering the system
towards its steady state.

Ω

g

y

x

z

T2

T1

(a)

(b)

Figure 5.1: (a) A schematic picture of the Rayleigh-Bénard convection cell from the
side view. The temperature �eld of the �ow as well as that for the top and bottom
plates is depicted by the intensity of the red color (𝑇2 > 𝑇1). Above a critical point,
the rolls start to develop and lead to the heat convection. A rotating Rayleigh-Bénard
can be achieved by an angular velocity Ω. Panel (b) is a snapshot of this system from
the top and shows a stripe pattern.

An important aspect of the description above is a competition between
the modes themselves: the modes with maximum growth rates grow faster and
thus eventually dominate the �nal steady state. At the onset of the instability
transition, there is a �nite number of most unstable modes of the system.
These modes induce a slower length- and time scale into the system through
their wavelength and frequency.
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These slow characteristic length- (and time- for the case of oscillatory
steady states) scales make the steady states periodic in space (and time). This
explains the important observation of the system’s self-organization towards
patterns of hydrodynamic instabilities in the Rayleigh-Bénard experiments.
There is a variety of shapes and types patterns that can appear in the Rayleigh-
Bénard system [106]. The simplest of such patterns are in the shape of stripes
(or rolls), as depicted in Fig. 5.1. Each roll is created as a result of the balance
between the buoyancy forces and the dissipation due to viscosity and tem-
perature di�usion between cold and hot �ows. The separation of the rolls is
determined by the characteristic length scale of the most unstable mode of
the system. Also, depending on the frequency, this steady state pattern can be
stationary or oscillatory in time.

Rotating Rayleigh-Bénard experiments are considered as simpli�ed mod-
els for internally rotating convection systems, with examples in geophysical
and astrophysical systems [105]. In a rotating Rayleigh-Bénard cell, the so-
called wall modes, which are localized modes close to the vertical boundaries,
precess in forms of unidirectionally moving traveling waves [142, 146, 179].
The observation of this unidirectional traveling edge states, along with similar
observations in other pattern forming systems [58], suggests a possible rela-
tion between these modes and the topologically protected chiral edge modes
in topological insulators. Inspired by the observation of topological modes
in other hydrodynamics systems with Coriolis force [20, 38] or with chiral
active constituents [19, 35], we became interested in studying such a possible
explanation for the traveling wall modes in the rotating Rayleigh-Bénard ex-
periments. For example, in a rotating Rayleigh-Bénard cell with a rotation rate
Ω, the Coriolis force 𝜌Ω× v also breaks the chiral symmetry between right
and left moving �ows along the azimuthal direction [140, 142]. This chapter is
a summary of this ongoing study that has been done in last two years.

Recently, Favier and Knobloch obtained a strong evidence of the robust-
ness of the traveling wall modes by showing their immunity from extreme
boundary deformations through full numerical simulations [4]. These �ow
patterns of wall modes seem to exist for a wide range of Rayleigh numbers
beyond the onset of the convection transition, i.e. ranging from a stable to
chaotic bulk [9, 11]. However, a theoretical explanation is yet lacking for
these observations. In this chapter, we report our progress in formulating a
theoretical framework for such a theoretical investigation.
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We use a generalized Swift-Hohenberg equation to e�ectively describe
the behavior of the rotating Rayleigh-Bénard cell [106, 174]. Using these
equations we reproduce a variety of phenomena, such as pattern shapes. Fur-
thermore, we linearize a one-dimensional Swift-Hohenberg model around its
steady state and use periodic boundary conditions to extract its band structure.
Furthermore, by calculating the Zak phase of these bands we �nd signs of non-
trivial topology in this band structure and relate this to an up-down symmetry
breaking of the model. To describe the topology of the wall modes in a rotating
Rayleigh-Bénard experiment, one needs to consider a two-dimensional model,
such as the generalized Swift-Hohenberg model. We numerically verify that
this model leads to wall modes and traveling states, as well as their robustness
to rough boundary deformations.

An important distinction of the Rayleigh-Bénard system with the other
topological hydrodynamic examples above is the dissipative and the nonlinear
aspects that are needed for pattern formation. With recent formulation of
nonlinear Zak phases and their relation to topological states in nonlinear
systems [10], the future focus of this project will be in generalizing our results
to describe the topology of the full nonlinear models of the rotating Rayleigh-
Bénard experiments. Also, the dissipative aspect introduces non-Hermiticity
in the dynamics of this model [8], for which one needs to consider the topology
of the non-Hermitian systems [1, 2, 31, 32].

5.1 Model equations

We consider a generalized Swift-Hohenberg equation [106],

𝜕𝑡𝑢 = 𝑟𝑢− (1 +∇2)2𝑢+ ℎ𝑢2 − 𝑔1𝑢
3

+ 𝑔2rot
(︁
[∇𝑢]2∇𝑢

)︁
+ 𝑔3div

(︁
[∇𝑢]2∇𝑢

)︁
, (5.2)

where 𝑢 represents the physical �eld such as velocity or temperature, and 𝑟 is
proportional to the reduced Rayleigh number

𝜖 = Ra/Ra𝑐 − 1, (5.3)

where Ra is the Rayleigh number and Ra𝑐 is its critical value corresponding to
the transition to convection transition. When ℎ = 𝑔2 = 𝑔3 = 0, this equation
is called the Swift-Hohenberg equation [174], which despite its simplicity
(compared to full Navier-Stokes description of these systems) recreates some of
the complex phenomena associated with the Rayleigh-Bénard experiment [140,
143, 162]. We now discuss the additional terms in the generalized model above.
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5.1.1 Symmetries of the Rayleigh-Bénard system

The Swift-Hohenberg model has inversion symmetry that is between up and
down �ows, i.e. under 𝑢→ −𝑢. This symmetry is violated once, for example,
the �uid properties are temperature dependent, and thus the coe�cients of
the model change in the vertical direction as the higher �ows are colder [184].
This is called the non-Boussinesq regimes [180] and can be mimicked in the
model equation by adding a quadratic term which now breaks the up-down
symmetry.

Apart from hexagonal patterns [145, 154, 181], symmetry breaking can
bring new e�ects in the types of modes that can exist in a system. Let us focus
for now on a quasi-1d model by considering stripe patterns in a Rayleigh-
Bénard cell. A cross-sectional view of this �ow pattern is shown in Fig. 5.2.
We explained above that near the threshold one can consider a separation
of scales by looking at the amplitude of slowly varying modes. Therefore,
this picture can be qualitatively thought as amplitudes of a wavefunction that
are located on the center of each roll and thus map this system into a lattice
model. In a very qualitative way, let us consider that each roll interacts with a
neighboring roll by passing alongside it ♠. A non-Boussinesq regime can then
be translated into a di�erent coupling between the neighboring rolls that go
upward and the one between downward �ows. Thus, in this naive picture one
can see that this system might be mapped to a SSH chain [172].

Mapping to a SSH chain might help with the existence of wall modes in
Rayleigh-Bénard systems. However, we also tend to explain the traveling wall
modes when such systems start to rotate. Therefore, we consider the rotational
symmetry breaking of the Rayleigh-Bénard system with the introduction of
rotation to the convection cell. This is also called a chiral or azimuthal sym-
metry in the literature [140, 142] and is the system’s symmetry under �ipping
the horizontal velocities of the �uid. The term chiral symmetry breaking here
is used di�erently from the chiral symmetry that corresponds to the sublattice
symmetry in a SSH chain, e.g. in the chapter 2. Here, this symmetry can be
understood from the observation of unidirectionally moving wall modes in
the rotating Rayleigh-Bénard system. That is a reminder of the presence of
chiral edge modes in the quantum Hall e�ect, and was our key motivation
to try to understand the possible connections between the two systems. In a
rotating cell the Coriolis force breaks this symmetry between right moving
and left moving modes. In Eq. 5.2, the rotation term is the consequence of

♠We will try to quantify this approach later in this chapter.
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Figure 5.2: A qualitative map between a 1d Rayleigh-Bénard pattern forming system
in the non-Boussinesq regime and the SSH chain. Putting a boundary to the system
can break the translation symmetry of the e�ective lattice picture. This lack of the
translation symmetry is a crucial factor in �nding a topological edge mode in a SSH
chain.

such force in the system and 𝑔2 is proportional to the rotation rate Ω. The
symmetry breaking of the Coriolis force is also present in the emergence of
topological modes in ocean waves [38]. Topological modes are also found in
�uids which break this symmetry through chiral constituents [19, 35, 58].

The last term in Eq. 5.2 is a potential term that is of the same order as
the rotation term and becomes relevant in some regimes [158]. In our attempt
to understand a minimal model to describe a rotating Rayleigh-Bénard cell,
we drop this last term in our simulations by setting 𝑔3 = 0.
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5.1.2 Simulations of the generalized Swift-Hohenberg equa-
tions

We simulate generalized Swift-Hohenberg model, Eq. 5.2 using Dedalus, a
package for solving partial di�erential equations based on spectral methods [3].
The convective domain is separated from a non-convective one via a change
in the value of 𝑟. We perform these simulations for both quasi-1d and circular
geometries of the convective domain. In our simulations, we observe the
regimes of the system where the pattern is moving unidirectionally along the
edge, while the bulk patterns are stationary up to local vibrations and not
moving in a speci�c direction, see Fig. 5.3, where the bottom insets in panels
(b)-(d) depicts a tracking of the hexagons. We observe this behavior for both
stripe and hexagonal patterns. Here, we only focus on the regime of hexagonal
patterns in order to avoid complicated behavior of the partially moving stripes
in terms of defect creation and annihilation.

Furthermore, in our simulations we observe that the patterns are ro-
bust against boundary deformations. The hexagons at the domain wall act
as unidirectionally moving particles without being backscattered from the
obstacle at the boundary. These results reproduce the results of Ref. [4] using
the generalized Swift-Hohenberg model.

5.2 Linear dispersion relation

Let us consider a general pattern forming system that is described by a non-
linear deterministic dynamics

𝜕𝑡𝜓 = N [𝜓], (5.4)

where N is in general a nonlinear operator. Let us now constraint the systems
to have a steady state that is obtained by N (𝜓ss) = 0 for spatial patterns♠.
For any perturbation around this steady state we have

𝜕𝑡𝜓 = L (𝜓 − 𝜓ss) + nonlinear terms, (5.5)

where
L =

𝜕N

𝜕𝜓

⃒⃒⃒⃒
𝜓ss

(5.6)

♠For an instability pattern, one can generalize this de�nition to non-stationary steady
states by requiring a frequency term in the right-hand side.
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Figure 5.3: Simulation of the Rayleigh-Bénard system using Swift-Hohenberg model,
Eq. 5.2. (a) The initial state is a thermal �uid. Hexagonal patterns appear in a quasi-1D
(b) or a circular (cylindrical) setup. The top inset shows the 𝑟 �eld that is used in
the simulations to build a domain wall between ordered and non-convective (𝑟 < 0)
states. The bottom inset shows a track of the hexagons in these simulations. The
red arrows in these insets show the pattern movement direction at the walls. As can
be seen in (b)-(c) the hexagons close to the domain wall move along the wall, while
the ones in bulk vibrate. (d) Robustness of the wall modes in a rotating Rayleigh-
Bénard systems with respect to boundary deformations. For these simulations we
used ℎ = 1, 𝑔1 = 1, 𝑔2 = 0.1, 𝑔3 = 0, 𝑟inside = 0.3, and 𝑟inside = −1.
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is the linearized operator that describes the dynamics of the system around its
steady pattern. Here, we extract this dispersion relation by directly applying a
Fourier transformation to the linear operator L .

5.2.1 Fourier response and edge modes in 1d Swift-Hohenberg
model

With a qualitative approach we reasoned that the breaking of the up-down
symmetry in the 1d Swift-Hohenberg model in the non-Boussinesq regime,
described by

𝜕𝑡𝑢 = (𝑟 − 1)𝑢− 2𝜕2𝑥𝑢− 𝜕4𝑥𝑢− 𝑔1𝑢
3 + ℎ𝑢2 (5.7)

can be similar to the chiral symmetry breaking in an SSH chain.
Here we quantitatively test this idea using the linear stability analysis

method that is described before in Eq. 5.5. We look at the spectrum of the
excitations around the steady state of the model, given it exists. To do so, we
�rst linearize the Swift-Hohenberg equation around its steady state

𝜕𝑡𝛿𝑢 = (𝑟 − 1)𝛿𝑢− 2𝜕2𝑥𝛿𝑢− 𝜕4𝑥𝛿𝑢− 3𝑔1𝑢
2
ss(𝑥)𝛿𝑢+ 2ℎ𝑢ss(𝑥), (5.8)

where 𝛿𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥)− 𝑢ss(𝑥) is the perturbation around the steady state.
Now we move to the Bloch space by writing 𝛿𝑢(𝑥) = e−i𝑘𝑥𝑣(𝑥), where
𝑣(𝑥 + 2𝜋) = 𝑣(𝑥). The equation of motion for 𝑣 reads 𝜕𝑡𝑣(𝑡) = L (𝑘)𝑣,
where L (𝑘) is a di�erential operator acting on periodic functions. The real
and imaginary values of the spectrum of this operator give the growth rate
and the frequency of the excitations around the steady state. In Fig. 5.4 we
show the growth rates for some values of 𝑟, 𝑔, andℎ. The excitations are
non-oscillatory in this model, i.e. all frequencies are zero and the patterns are
stationary.

We further examine the topological nature of these excitations by com-
puting the Zak phase which is the integral of the Berry connection over the
�rst BZ, and is determined for a single band 𝑖 as [149]

𝛾𝑖 =

ˆ
1𝑠𝑡 BZ

𝐴𝑖. (5.9)

Interestingly, we observe that when ℎ ̸= 0 gaps start to open in the band
structure of L (𝑘), as shown in Fig. 5.4. Alos, the Zak phases for the gapped
bands are quantized and in some cases are ±𝜋, which is an indication of the
topological non-equivalence of these bands with the ones with 𝛾 = 0.
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Figure 5.4: Growth rates, 𝜎, of the modes in the linear stability analysis of the Swift-
Hohenberg model around its steady state for various values of the up-down symmetry
breaking parameter ℎ. The horizontal axis shows the modes wavenumbers throughout
the �rst Brillouin Zone. Legend shows the calculated Zak phase for each of the bands.
We observe that the Zak phase is quantized for ℎ ̸= 0. For ℎ = 0, the Zak phase is
unde�ned as the band structure is not gapped.

We further build a domain wall in this system to examine the e�ect of this
topological non-equivalence and check whether it leads to any domain-bound
mode, as in the Jackiw-Rebbi model [163, 175]. In �gure 5.5 we show the results
of this numerical investigation for a choice of parameters 𝑟 = 0.1, 𝑔1 = 2,
and the e�ective wall is between regions with ℎ = 1.2 and ℎ = 2.0. In panel
(a), we show the projected growth rate bands for the two systems at di�erent
sides of the domain wall as well as the calculated Zak phases of each of the
bands. In each shared gap (some of them can be very small) we indicate the
observation of a domain-bound mode by ◁▷, and use x otherwise. Fig. 5.5)(b)
shows an the edge mode that corresponds to the non-trivial gap between the
two sides of the domain wall.
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Figure 5.5: Search for domain-bound modes in the Swift-Hohenberg model with do-
main wall in the re�ection-symmetry breaking parameter ℎ. Inset shows a projection
of the band structure for the linearized Swift-Hohenberg model for two regions. We
search for the presence of the domain-bound modes induced by the domain wall
between the two systems, and mark the presence of such modes in a shared gap
with ◁▷ and the absence with x. The corresponding mode to the ◁▷ is localized at the
boundary between the two domains and is exponentially decaying in intensity away
from the domain wall.

These observations, although promising, are not a complete proof of
a map between this system and a Jackiw-Rebbi model [175]. First of all, we
examine a bulk-boundary correspondence between the presence of non-trivial
gaps and the existence of domain-wall modes via direct numerical calculations.
A systematic proof of the bulk-boundary correspondence above will be subject
of further investigations.

Furthermore, it is not clear if the observation above proves a connection
to other domain-wall systems, e.g. Jackiw-Rebbi model. In the Jackiw-Rebbi
model, as we also saw in the second chapter of this thesis, the modes that
localize at the domain wall of the system are polarized. This polarization
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depends on the speci�c system and can for example be a mode’s spin or
sublattice degree of freedom. The existence of such polarization for the domain-
bound modes in the Swift-Hohenberg equations that we derived above is yet
to be understood.

Another concern is how to observe these edge modes, since all these
edge modes are unstable with negative growth rates. One solution might be
in the use of strong nonlinear terms at the boundary and larger perturbations
around the steady state, similar to a pumping drive, such as in topological
lasers [25, 27]. Having a negative growth rate from the stability analysis of the
system around its steady state is inevitable by de�nition. Therefore, although
getting to a topological band structure is plausible, we might still lose some
of the physics of the problem by restricting ourselves to the linear regimes.
In the rest of this chapter, we try to examine the topology of the system in
nonlinear models. We then �rst start by a nonlinear regime of the problem
very close to the threshold, where the separation of scales happens due to
strong selection of most unstable modes in long-term dynamics. The formal
description of this theory is through the amplitude expansion.

5.3 Nonlinear amplitude equations and system’s
discretization

At the threshold of the instability, the system starts to have a steady-state
pattern. The state of the system around its steady state can be expressed as

physical �elds = 𝑢ss(𝑡) +
∑︁
𝑗

𝐴ss
𝑗 𝑒

𝑠𝑗𝑡𝜑𝑗 + c.c., (5.10)

where the perturbations around the steady state are expressed in the basis of the
eigenmodes of the linearized operator, ℒ with the corresponding eigenvalues
𝑠𝑗 = 𝜎𝑗 + 𝑖𝜔𝑗 , where 𝜎 is the growth rate and 𝜔 is the frequency of each
mode. Of all the modes in this expansion, the ones with the maximum growth
rate contribute to the long-term dynamics of the system: these modes grow in
amplitude to trigger the nonlinearities in the system.

Very close to the threshold, the modes with positive growth rates have
a wavenumber very close to the one from the most unstable mode(s) at the
onset. The state of the system is thus e�ectively described by this subset
of modes. One can describe this system using the following perturbatively
expansion [140]:

𝑢p = 𝜖1/2𝑢0 + 𝜖3/4𝑢1 + 𝜖𝑢2 + · · · , (5.11)
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where 𝜖 is the distance from the threshold, and each order of the expansion
can be written as

𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒𝑖k.r𝐴𝑖(𝑋,𝑌, 𝑇 )𝑣(𝑥, 𝑦, 𝑧, 𝑡) + 𝑐.𝑐., |k| = 𝑞𝑐, (5.12)

where we separated the dynamics along the 𝑧 direction from the amplitude
𝐴𝑖. Moreover, the spatial dynamics in the direction perpendicular to the top-
bottom surfaces of the cylinder is also separated for patterns with characteristic
wavenumber 𝑞𝑐. The amplitudes 𝐴𝑖 are slowly varying envelopes that can
mimic a periodic structure of stripes. That is close to a Bloch tight-binding
description of a continuum wavefunction of a lattice in quantum mechanics.
This approximation can lead to a discretized model of this complex system
close to the threshold of pattern formation. In the situations where two or more
modes constitute to a system’s steady state, this e�ective discretized model
might be helpful in describing the interaction of these modes. Examples of
such systems are observed in Rayleigh-Bénard cells where square or hexagonal
patterns become linearly more stable than the stripe instabilities [156, 164, 181].

The slow parameters 𝑋,𝑌, 𝑇 are scaled spatial and temporal variables
which should be deducted from the dynamics of the physical �elds. They
are such that |∇r𝐴| ≪ |𝑞𝑐𝐴| and |𝜕𝑡𝐴| ≪ |𝜔𝑐𝐴|, where 𝜔𝑐 = 𝜔(𝑞𝑐) is the
frequency of the most unstable mode. One can then reduce the dynamical
model into �nding the dynamics of the slowly varying envelopes 𝐴𝑖. By using
this steps, we derive the following amplitude equations for the generalized
Swift-Hohenberg model given by Eq. 5.2 (details in the appendix):

𝜕𝑇𝐴0 =

[︃
1 + 4

(︂
𝜕𝑋 − 𝑖

2
𝜕2𝑌

)︂2
]︃
𝐴0 − (3𝑔1 −

10

3
ℎ2 + 3𝑔3)𝐴0|𝐴0|2 (5.13)

𝜕𝑇𝐴1 =

[︃
1 + 4

(︂
𝜕𝑋 − 𝑖

2
𝜕2𝑌

)︂2
]︃
𝐴1 − 3𝑔1

[︀
𝐴2

0𝐴
*
1 + 2|𝐴0|2𝐴1

]︀
− 4𝑖𝑔2

[︀
𝐴0𝜕𝑌 |𝐴0|2

]︀
+

4

3
ℎ2
[︀
𝐴2

0𝐴
*
1 + 5|𝐴0|2𝐴1

]︀
− 3𝑔3

[︀
𝐴2

0𝐴
*
1 + 2|𝐴0|2𝐴1

]︀
. (5.14)

with slow variables

𝑋 = 𝜖1/2𝑥, (5.15a)

𝑌 = 𝜖1/4𝑦, (5.15b)
𝑇 = 𝜖𝑡. (5.15c)
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The Eqs. 5.13-5.14 are in agreement with the the results obtained from the full
Boussinesq equations [117]. There are some di�erences, including a second
slower time scale 𝑇 ′

= 𝜖5/4𝑇 which we did not fully explore, but that might
have to do with the fact that the dynamics of the modes along the edge are
happening at a di�erent time scale compared to the other directions.

Amplitude equations above give a simpli�ed nonlinear description of the
Rayleigh-Bénard system’s dynamics using the assumption that close to the
threshold the fast and slow scale dynamics become separated. In the following,
we will try to use this simpli�ed model towards a description of the topology
of the Rayleigh-Bénard system.

5.4 Band structure and topology of nonlinear sys-
tems

So far, we observed that the in 1d, the linearization of the Swift-Hohenberg
model around its steady state solution leads to a band structure with Zak
phases equal to ±𝜋. One issue with this approach is that, by de�nition the
perturbations of the system around its steady state are decaying. Therefore,
even if there are topological edge modes in such spectrum, it will not lead to
the presence of this mode in the pattern forming system, except for a temporal
rapidly deteriorating mode.

Following along this lines, we then could conclude that it might be more
relevant to look for the topological properties of the modes in the full nonlinear
regime. We then would like to see if the patterns, as the steady states of the
system, are themselves topological modes of the fully nonlinear models.

To search for these modes in the context of band topology, we need
to consider a generalized version of at least two concepts from the standard
Hamiltonian problems. First, we need to generalize the band structure for a
fully nonlinear Schrodinger equation, i.e. by solving the eigenvalue problem
𝐻[𝑢]𝑢 = 𝜀𝑢 for a state-dependent Hamiltonian 𝐻[𝑢]. We then would like to
be able to repeat this for the Fourier components of this nonlinear Hamiltonian
to obtain the energy spectrum in the Bloch space. Since 𝐻 is state dependent,
solving this equation in general can be very complicated. For example, a
single plane-wave ansatz might be insu�cient to diagonalize the Hamiltonian.
Instead, we might want to generalize this to a more general space of functions
using spectral methods.
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There is however at least a family of such nonlinear Hamiltonians for
which one can still use the Bloch Fourier transformation to �nd eigenstates of
the system. That is, when the state-dependent terms are mere radial maps of
the state 𝑢, such as |𝑢|2𝑢, etc. Models of this sort describe various physical
system including examples from interacting Bose-Einstein systems described
by Gross-Pitaevskii equations [130], KdV equations, nonlinear electronics and
optics systems [6]. These systems are known to harbor solitary waves [144].

The second generalizations we will need to consider is how to character-
ize the topology in such nonlinear band structures. In a recent preprint [10],
it was shown that adding nonlinearity to the Schrodinger equation can have
an e�ect on the topological properties of the band structure. Particularly, this
paper shows that adding nonlinearity to a SSH chain [172] can push the bands
that are continuously evolved from the linear model, to revive an e�ective
chiral symmetry (or a sublattice symmetry), even in the presence of the terms
which break this symmetry. This result is then supported by generalization
of Zak phase for nonlinear models, and showing that the quantization of the
sum of these new phases revives as the nonlinearity becomes stronger in
this system. Nonetheless, the nonlinear Zak phase continuously convert to
the regular one in the linear models. Another interesting result in this paper
was the presence of in-gap solitons, or the localized bulk states. The authors
relate the presence of such modes to the emergent e�ective edges in the bulk
due to the nonlinear terms and larger mode amplitudes. Considering these
results, one would wonder whether the non-trivial Zak phases in the linearized
Swift-Hohenberg model that we measured in the previous section is a hint to
more general topological phases in the full nonlinear regime.

The non-linear band topology in the Ref. [10] above is examined for
e�ective 1d models, whereas a rotating Rayleigh-Bénard systems is described
by a two-dimensional model. An amplitude expansion for a two-dimensional
model one can introduce a coupling term 𝐺(𝜃) between the modes with
di�erent orientation of their wavevectors [178]. This coupling can also break
a rotational symmetry in the system, for example when it rotates (𝐺(𝜃) ̸=
𝐺(−𝜃)) [106]. These symmetry breaking terms are present in other timer-
reversal broken topological insulators [100]. A more complete treatment of
the rotating Rayleigh-Bénard systems in terms of topological properties of
nonlinear systems will be subject of our future investigations.
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5.5 Discussion and outlook

In this chapter, we discussed the results of an ongoing study on the topological
phases in the rotating Rayleigh-Bénard system. Using numerical computations,
we have observed topological Zak phases in the linearized band structure of the
1d Swift-Hohenberg model. An unknown fact about the model above is about
the notion of polarization for these modes. As we have seen in the second
chapter about the mechanical graphene, edge modes on Jackiw-Rebbi-type
models are spin polarized (in that case sublattice polarized). The translation of
this concept to a 1d Swift-Hohenberg model is still to be understood. Also, the
bands of this linearized model are constructed by modes with negative growth
rates. Hence, it is still not clear how these modes can have an e�ect on the
non-transient dynamics of the system or can give rise to the topological edge
modes, as suggested by recent numerical simulations [4]. Nonlinear drives
at the boundary can have an e�ect on bringing the topological modes with
negative linear growth rates into long-term dynamics of the Rayleigh-Bénard
system.

Therefore, an explanation of the topological origin of the traveling states
at the wall of the rotating Rayleigh-Bénard cell requires the generalization
this result for the full non-linear equations. To do this, we �rst used a gener-
alized Swift-Hohenberg model to reproduce the results of the Ref. [4] about
the robustness of the wall modes in a rotating Rayleigh-Bénard system. A
description of these wall modes will then probably require a generalization of
the topological indices for a non-linear model. A �rst step will be to calculate
the recently developed generalized Zak phase [10] for a 1d Swift-Hohenberg
model, for which we already have a strong indication from the band topology
of the linearized equations. We note that the topological indices for non-
linear models are new concepts which we need to consider for the study of an
out-of-equilibrium system.

Furthermore, A discretized model, as we described in S5.3, is useful in
mapping the Rayleigh-Bénard system to a lattice model. This approach can
be particularly useful for the 2d pattern forming systems. For example, It
will be interesting to see how a three-coupled mode for hexagonal patterns
are described with this theory, as for such patterns the amplitude description
contains a chiral symmetry breaking term.
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Also, a full description of such models will likely require non-Hermitian
operators due to dissipation from the viscous forces. Looking forward, we will
study a discretized model with the relevant symmetry-breaking terms. This
model then will be both nonlinear and non-Hermitian. In future investigations,
we will focus on the topological phases of the modes in such systems.

5.6 Appendix

5.6.1 Band structure of nonlinear Schrödinger/Gross-Pitaevskii
equations

We discussed above that the generalization of the concept of band structure
for the nonlinear Schrödinger can be far from straightforward. Especially,
when the nonlinear terms are not radial, solving the eigenvalue problem will
require a more general spectral method instead of Bloch waves. The nonlinear
terms in the Swift-Hohenberg equation, even in the 1d version, are of this form.
Thus, we will have to see how we should deal with the full diagonalization
problem, when we decide to generalize this approach to this equation. Interest-
ingly, when we linearize the model around the onset of the pattern formation
system, i.e. for small values for the reduced Rayleigh number 𝜖, it leads to a
separation of scales in the form of amplitude equations, see Eqs. 5.13 and 5.14.
When this separation happens, we no longer need to consider a mixture of
Bloch modes in a spectral method in order to diagonalize the Hamiltonian.
The amplitude equations are in form closer to Gross-Pitaevskii equations, or
nonlinear Ginsburg-Landau equations. For example, it is shown that a complex
Ginsburg-Landau equation can describe the one-way propagating mode in a
rotating Rayleigh-Bénard cell [135].

Here, we derive the energy spectrum of the nonlinear Schrödinger equa-
tions that was considered in the nonlinear Landau-Zener tunnelling e�ect [126,
129]. Consider the following Hamiltonian of a two-level system:

𝐻𝑁𝐿𝑍

[︂(︂
𝑎
𝑏

)︂]︂
=
𝛾

2
𝜎𝑧 +

𝑣

2
𝜎𝑥 +

𝑐

2

(︀
|𝑏|2 − |𝑎|2

)︀
𝜎𝑧, (5.16)

which modi�es the Hamiltonian of a standard Landau-Zener model by adding
a nonlinear term which is proportional to the population di�erence of the
system. The time-dependent version of this problem is achieved by considering
𝛾(𝑡) = 𝛼𝑡. When 𝛼 is small compared to the energy gap, the evolution of the
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system is expected to follow an adiabatic path. However, it is shown in the
Ref. [129] that when 𝑐 > 𝑣 this model predicts a tunneling even in the adiabatic
limit. This nonadiabatic behavior appears as a result of loop structures in the
band structure of the model.

We now give the steps to calculate the band structure of this model. We
start by writing down the Schrödinger equation

𝑖𝜕𝑡𝑎 =
𝑣

2
𝑏+

[︁𝛾
2
+
𝑐

2

(︀
|𝑏|2 − |𝑎|2

)︀]︁
𝑎, (5.17a)

𝑖𝜕𝑡𝑏 =
𝑣

2
𝑎−

[︁𝛾
2
+
𝑐

2

(︀
|𝑏|2 − |𝑎|2

)︀]︁
𝑏. (5.17b)

The total population of the two bands |𝑏|2+ |𝑎|2 is constant (it is easy to check
with the equations above). It is then possible to write(︂

𝑎
𝑏

)︂
= 𝑒𝑖𝜙1

(︂
sin 𝜙

2
𝑒𝑖𝜃 cos 𝜙2

)︂
. (5.18)

We de�ne the population di�erence variable 𝑠 = |𝑏|2 − |𝑎|2 = cos𝜙. In terms
of these new parameters, the Schrodinger equations converts to

𝑖

2
𝜙̇ cos

𝜙

2
− 𝜙1 sin

𝜙

2
=
𝑣

2
𝑒𝑖𝜃 cos

𝜙

2
+
[︁𝛾
2
+
𝑐

2
cos𝜙

]︁
sin

𝜙

2
, (5.19)

−𝑖
2
𝜙̇ sin

𝜙

2
− (𝜃 + 𝜙1) cos

𝜙

2
=
𝑣

2
𝑒−𝑖𝜃 sin

𝜙

2
−
[︁𝛾
2
+
𝑐

2
cos𝜙

]︁
cos

𝜙

2
.

(5.20)

The real and imaginary parts of these equations lead to

𝑠̇ = −𝑑𝐻cl,NLZ

𝑑𝜃
= −𝑣

√︀
1− 𝑠2 sin 𝜃 (5.21a)

𝜃 =
𝑑𝐻cl,NLZ

𝑑𝑠
=
𝛾 + 𝑐𝑠

1 + 𝑠
(5.21b)

𝜙1 = −[
𝛾

2
+
𝑐

2
𝑠]− 𝑣

√
1 + 𝑠

2
√
1− 𝑠

𝑒𝑖𝜃 (5.21c)

The eigensystem of the nonlinear Hamiltonian 𝐻𝑁𝐿𝑍 translates into 𝑠̇ =
𝜃 = 0 and 𝜙1 = 𝜀. Thus, the eigenmodes of the nonlinear Hamiltonian will
correspond to the �xed points of the classical Hamiltonian [126, 137]

𝐻cl,NLZ =
𝑐

2
𝑠2 + 𝛾𝑠− 𝑣

√︀
1− 𝑠2 cos 𝜃. (5.22)
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Therefore, the eigenmodes of the nonlinear Hamiltonian correspond to

𝜃* = 0, 𝜋; 𝑐𝑠* + 𝛾 =
±𝑣√

1− 𝑠*2
, (5.23)

which leads to

𝑓(𝑠*) = (1− 𝑠*2)(𝑠* + 𝛾/𝑐)2 = (𝑣𝑠*/𝑐)2. (5.24)

The function 𝑓 is positive in the interval[−1, 1] and takes one maximum (two
local maxima) when |𝛾/𝑐| > 1 (|𝛾/𝑐| > 1). Fiollowing a standard process,
we �nd that Eq. 5.24 has two solutions for 𝑣/𝑐 > 1 and four solutions when
𝑣/𝑐 < 1 and |𝛾| < 𝛾𝑐 for a critical 𝛾𝑐 value. These extra solutions to the
nonlinear equations lead to loop shapes in system’s energy spectrum. As
a result, an adiabatic change in the Hamiltonian can lead to a nonadiabatic
change in the ground state of the system which is what the authors call
nonlinear Landau-Zener (NLZ) tunnelling.

5.6.2 A nonlinear SSH chain

We now try to study these generalizations in the context of a nonlinear SSH
chain, following the results in the Ref. [10]. By starting from discrete system
and considering the Bloch wavefunctions Ψ𝐴/𝐵,𝑗 = Φ𝐴/𝐵,𝑗𝑒

𝑖𝑘𝑗 , the authors
arrive to the following model:

𝐻(Σ) = (𝐽1 + 𝐽2 cos 𝑘)𝜎𝑥 + 𝐽2 sin 𝑘𝜎𝑦 + ℎ(Σ)𝜎𝑧 +
𝑔

2
𝐼2, (5.25)

where 𝐽1 and 𝐽2 are the hoppings in the chain, ℎ(Σ) = 𝑣 + 𝑔
2 [|Φ𝐵|2 − |Φ𝐴|2]

contains the nonlinear term that is state dependent with 𝑔 as nonlinearity
strength, and 𝑣 a chiral symmetry breaking term. Due to lack of the latter
symmetry, in the usual case of the linear SSH the topological edge mode does
not exist and the winding number of the Hamiltonian becomes ill de�ned.
Interestingly, it is shown in Ref. [10] that in the presence of strong nonlinearity,
the chiral symmetry e�ectively revives in the system’s band structure and
therefore it is possible to calculate a nonlinear Zak phase which is quantized.
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Without going to further details, here we try to study the band structure
for this system corresponding to the eigenvalue problem𝐻(Σ)Φ = 𝜀Φ, where

Φ =

(︂
Φ𝐴
Φ𝐵

)︂
. First, it is easy to check that Eq. 5.25 leads to |Φ𝐴|2 + |Φ𝐵|2 = 1

(up to constants). We have

𝑖𝜕𝑡Φ𝐴 = 𝑣Φ𝐴 +
𝑔

2
|Φ𝐴|2Φ𝐴 + (𝐽1 + 𝐽2𝑒

−𝑖𝑘)Φ𝐵, (5.26a)

𝑖𝜕𝑡Φ𝐵 = −𝑣Φ𝐵 +
𝑔

2
|Φ𝐵|2Φ𝐵 + (𝐽1 + 𝐽2𝑒

𝑖𝑘)Φ𝐴. (5.26b)

These equations are similar in structure to the NLZ problem, Eqs. 5.17. Using
the same method as above we �nd

𝑠̇ = −𝑑𝐻cl,NSSH

𝑑𝜃
= −2

√︀
1− 𝑠2 [𝐽1 sin 𝜃 + 𝐽2 sin (𝜃 − 𝑘)] , (5.27a)

𝜃 =
𝑑𝐻cl,NSSH

𝑑𝑠
= 2𝑣 − 𝑔

2
𝑠+

2𝑠√
1− 𝑠2

[𝐽1 cos 𝜃 + 𝐽2 cos (𝜃 − 𝑘)] , (5.27b)

𝜀𝑘 = −𝜙1 = 𝑣 + 𝑔
1− 𝑠

4
+

√︂
1 + 𝑠

1− 𝑠
[𝐽1 cos 𝜃 + 𝐽2 cos (𝜃 − 𝑘)] , (5.27c)

where 𝐻cl,NSSH = 2𝑣𝑠 − 𝑔
4𝑠

2 − 2
√
1− 𝑠2 [𝐽1 cos 𝜃 + 𝐽2 cos (𝜃 − 𝑘)]. Here

one needs to diagonalize the system for each wavenumber 𝑘 in order to obtain
a band structure. This calculation leads to the loop shapes in the band structure
of the model in some regions of the BZ in the strong nonlinear regimes [10].



References

[1] Yuto Ashida, Zongping Gong, and Masahito Ueda. Non-Hermitian
Physics. 2020. arXiv: 2006.01837 (80).

[2] Emil J. Bergholtz, Jan Carl Budich, and Flore K. Kunst. Exceptional
Topology of Non-Hermitian Systems. 2020. arXiv: 1912.10048 (80).

[3] Keaton J. Burns, Geo�rey M. Vasil, Je�rey S. Oishi, Daniel Lecoanet,
and Benjamin P. Brown. Dedalus: A �exible framework for numeri-
cal simulations with spectral methods. Physical Review Research
2 2, 023068, 2020 (83)
url: https://doi.org/10.1103/PhysRevResearch.2.023068.

[4] Benjamin Favier and Edgar Knobloch. Robust wall states in rapidly
rotating Rayleigh–Bénard convection. Journal of Fluid Mechanics
895, R1, 2020 (79, 83, 92)
url: https://doi.org/10.1017/jfm.2020.310.

[5] Andrew J. Hess, Guilhem Poy, Jung-Shen B. Tai, Slobodan Žumer, and
Ivan I. Smalyukh. Control of Light by Topological Solitons in Soft Chiral
Birefringent Media. Phys. Rev. X 10, 031042, 2020 (33)
url: https://link.aps.org/doi/10.1103/PhysRevX.10.031042.

[6] F. Palmero, L.Q. English, J. Cuevas-Maraver, and P.G. Kevrekidis.
Nonlinear edge modes in a honeycomb electrical lattice near the Dirac
points. Physics Letters A 384 26, 126664, 2020 (91)
url: http://www.sciencedirect.com/science/article/pii/S0375960120305314.

[7] Guilhem Poy, Andrew J. Hess, Ivan I. Smalyukh, and Slobodan Žumer.
Chirality-Enhanced Periodic Self-Focusing of Light in Soft Birefringent
Media. Phys. Rev. Lett. 125, 077801, 2020 (33)
url: https://link.aps.org/doi/10.1103/PhysRevLett.125.077801.

[8] Suraj Shankar, Anton Souslov, Mark J. Bowick, M. Cristina Marchetti,
and Vincenzo Vitelli. Topological active matter. 2020. arXiv: 2010.00364
(80).

97

https://arxiv.org/abs/2006.01837
https://arxiv.org/abs/1912.10048
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.1017/jfm.2020.310
https://link.aps.org/doi/10.1103/PhysRevX.10.031042
http://www.sciencedirect.com/science/article/pii/S0375960120305314
https://link.aps.org/doi/10.1103/PhysRevLett.125.077801
https://arxiv.org/abs/2010.00364


98 References

[9] Olga Shishkina. Tenacious wall states in thermal convection in rapidly
rotating containers. Journal of Fluid Mechanics 898, F1, 2020 (79)
url: https://doi.org/10.1017/jfm.2020.420.

[10] Thomas Tuloup, Raditya Weda Bomantara, Ching Hua Lee, and Jiang-
bin Gong. Nonlinearity induced topological physics in momentum space
and real space. 2020. arXiv: 2006.09753 (11, 80, 91, 92, 95, 96).

[11] Xuan Zhang, Dennis P. M. van Gils, Susanne Horn, Marcel Wedi, Lukas
Zwirner, Guenter Ahlers, Robert E. Ecke, Stephan Weiss, Eberhard
Bodenschatz, and Olga Shishkina. Boundary Zonal Flow in Rotating
Turbulent Rayleigh-Bénard Convection. Phys. Rev. Lett. 124, 084505,
2020 (79)
url: https://link.aps.org/doi/10.1103/PhysRevLett.124.084505.

[12] José Francisco Algorri, Dimitrios C. Zografopoulos, Virginia Urruchi,
and José Manuel Sánchez-Pena. Recent Advances in Adaptive Liquid
Crystal Lenses. Crystals 9 5, 460–500, 2019 (33)
url: https://doi.org/10.3390/cryst9050272.

[13] Eliahu Cohen, Hugo Larocque, Frédéric Bouchard, Farshad Nejad-
sattari, Yuval Gefen, and Ebrahim Karimi. Geometric phase from
Aharonov-Bohm to Pancharatnam-Berry and beyond. Nature Reviews
Physics, 437–449, 2019 (56)
url: https://doi.org/10.1038/s42254-019-0071-1.

[14] Jonathan Guglielmon and Mikael C. Rechtsman. Broadband Topological
Slow Light through Higher Momentum-Space Winding. Phys. Rev. Lett.
122, 153904, 2019 (55)
url: https://link.aps.org/doi/10.1103/PhysRevLett.122.153904.

[15] Guancong Ma, Meng Xiao, and C. T. Chan. Topological phases in
acoustic and mechanical systems. Nature Reviews Physics 1 4, 281–
294, 2019 (55)
url: https://doi.org/10.1038/s42254-019-0030-x.

[16] Mohammad-Ali Miri and Andrea Alù. Exceptional points in optics and
photonics. Science 363 6422, 2019 (66)
url: https://science.sciencemag.org/content/363/6422/eaar7709.

[17] Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman,
Mohammad Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster,
Jonathan Simon, Oded Zilberberg, and Iacopo Carusotto. Topological
photonics. Rev. Mod. Phys. 91, 015006, 2019 (32, 55, 56, 61)
url: https://link.aps.org/doi/10.1103/RevModPhys.91.015006.

https://doi.org/10.1017/jfm.2020.420
https://arxiv.org/abs/2006.09753
https://link.aps.org/doi/10.1103/PhysRevLett.124.084505
https://doi.org/10.3390/cryst9050272
https://doi.org/10.1038/s42254-019-0071-1
https://link.aps.org/doi/10.1103/PhysRevLett.122.153904
https://doi.org/10.1038/s42254-019-0030-x
https://science.sciencemag.org/content/363/6422/eaar7709
https://link.aps.org/doi/10.1103/RevModPhys.91.015006


References 99

[18] Marie S. Rider, Samuel J. Palmer, Simon R. Pocock, Xiaofei Xiao,
Paloma Arroyo Huidobro, and Vincenzo Giannini. A perspective on
topological nanophotonics: Current status and future challenges. Jour-
nal of Applied Physics 125 12, 120901, 2019 (55, 56)
url: https://doi.org/10.1063/1.5086433.

[19] Anton Souslov, Kinjal Dasbiswas, Michel Fruchart, Suriyanarayanan
Vaikuntanathan, and Vincenzo Vitelli. Topological Waves in Fluids with
Odd Viscosity. Phys. Rev. Lett. 122, 128001, 2019 (55, 79, 82)
url: https://link.aps.org/doi/10.1103/PhysRevLett.122.128001.

[20] C. Tauber, P. Delplace, and A. Venaille. A bulk-interface correspondence
for equatorial waves. Journal of Fluid Mechanics 868, R2, 2019 (55,
79)
url: https://doi.org/10.1017/jfm.2019.233.

[21] Xinhua Wen, Chunyin Qiu, Yajuan Qi, Liping Ye, Manzhu Ke, Fan
Zhang, and Zhengyou Liu. Acoustic Landau quantization and quantum-
Hall-like edge states. Nature Physics 15 4, 352–356, 2019 (32)
url: https://doi.org/10.1038/s41567-019-0446-3.

[22] Hao Yu, Miao Jiang, Yubing Guo, Taras Turiv, Wu Lu, Vishva Ray,
Oleg D. Lavrentovich, and Qi-Huo Wei. Plasmonic Metasurfaces with
High UV-Vis Transmittance for Photopatterning of Designer Molecular
Orientations. Advanced Optical Materials 7 11, 1900117, 2019 (33, 67)
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201900117.

[23] Hao Yu, Ziyuan Zhou, Yongle Qi, Xinfang Zhang, and Qi-Huo Wei.
Pancharatnam-Berry optical lenses. J. Opt. Soc. Am. B 36 5, D107–D111,
2019 (33)
url: http://josab.osa.org/abstract.cfm?URI=josab-36-5-D107.

[24] Ziyuan Zhou, Yubing Guo, Hao Yu, Miao Jiang, Taras Turiv, Irakli
Chaganava, Oleg D. Lavrentovich, and Qi-Huo Wei. “Liquid crystal
Pancharatnam-Berry optical elements.” In: Liquid Crystals XXIII. Ed.
by Iam Choon Khoo. Vol. 11092. International Society for Optics and
Photonics. SPIE, 2019, 31–38. url: https://doi.org/10.1117/12.2528086
(33).

[25] Miguel A. Bandres, Ste�en Wittek, Gal Harari, Midya Parto, Jinhan
Ren, Mordechai Segev, Demetrios N. Christodoulides, and Mercedeh
Khajavikhan. Topological insulator laser: Experiments. Science 359 6381,
2018 (55, 88)
url: https://science.sciencemag.org/content/359/6381/eaar4005.

https://doi.org/10.1063/1.5086433
https://link.aps.org/doi/10.1103/PhysRevLett.122.128001
https://doi.org/10.1017/jfm.2019.233
https://doi.org/10.1038/s41567-019-0446-3
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201900117
http://josab.osa.org/abstract.cfm?URI=josab-36-5-D107
https://doi.org/10.1117/12.2528086
https://science.sciencemag.org/content/359/6381/eaar4005


100 References

[26] Michel Fruchart, Seung-Yeol Jeon, Kahyun Hur, Vadim Cheianov, Ul-
rich Wiesner, and Vincenzo Vitelli. Soft self-assembly of Weyl materials
for light and sound. Proceedings of the National Academy of Sci-
ences 115 16, E3655–E3664, 2018 (55)
url: https://doi.org/10.1073/pnas.1720828115.

[27] Gal Harari, Miguel A. Bandres, Yaakov Lumer, Mikael C. Rechtsman,
Y. D. Chong, Mercedeh Khajavikhan, Demetrios N. Christodoulides,
and Mordechai Segev. Topological insulator laser: Theory. Science
359 6381, 2018 (55, 88)
url: https://science.sciencemag.org/content/359/6381/eaar4003.

[28] Miao Jiang, Hao Yu, Xiayu Feng, Yubing Guo, Irakli Chaganava,
Taras Turiv, Oleg D. Lavrentovich, and Qi-Huo Wei. Liquid Crystal
Pancharatnam-Berry Micro-Optical Elements for Laser Beam Shaping.
Advanced Optical Materials 6 23, 1800961, 2018 (33, 67)
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201800961.

[29] Ching Hua Lee, Stefan Imhof, Christian Berger, Florian Bayer, Jo-
hannes Brehm, Laurens W. Molenkamp, Tobias Kiessling, and Ronny
Thomale. Topolectrical Circuits. Communications Physics 1 1, 39,
2018 (55)
url: https://doi.org/10.1038/s42005-018-0035-2.

[30] Kathryn H. Matlack, Marc Serra-Garcia, Antonio Palermo, Sebastian D.
Huber, and Chiara Daraio. Designing perturbative metamaterials from
discrete models. Nature Materials 17 4, 323–328, 2018 (13)
url: https://doi.org/10.1038/s41563-017-0003-3.

[31] Huitao Shen, Bo Zhen, and Liang Fu. Topological Band Theory for
Non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402, 2018 (80)
url: https://link.aps.org/doi/10.1103/PhysRevLett.120.146402.

[32] Shunyu Yao and Zhong Wang. Edge States and Topological Invariants
of Non-Hermitian Systems. Phys. Rev. Lett. 121, 086803, 2018 (80)
url: https://link.aps.org/doi/10.1103/PhysRevLett.121.086803.

[33] Xiujuan Zhang, Meng Xiao, Ying Cheng, Ming-Hui Lu, and Johan
Christensen. Topological sound. Communications Physics 1 1, 2018
(55)
url: https://doi.org/10.1038/s42005-018-0094-4.

[34] Mark J. Ablowitz and Justin T. Cole. Tight-binding methods for general
longitudinally driven photonic lattices: Edge states and solitons. Phys.
Rev. A 96, 043868, 2017 (58)
url: https://link.aps.org/doi/10.1103/PhysRevA.96.043868.

https://doi.org/10.1073/pnas.1720828115
https://science.sciencemag.org/content/359/6381/eaar4003
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201800961
https://doi.org/10.1038/s42005-018-0035-2
https://doi.org/10.1038/s41563-017-0003-3
https://link.aps.org/doi/10.1103/PhysRevLett.120.146402
https://link.aps.org/doi/10.1103/PhysRevLett.121.086803
https://doi.org/10.1038/s42005-018-0094-4
https://link.aps.org/doi/10.1103/PhysRevA.96.043868


References 101

[35] Debarghya Banerjee, Anton Souslov, Alexander G. Abanov, and Vin-
cenzo Vitelli. Odd viscosity in chiral active �uids. Nature Communi-
cations 8 1, 1573, 2017 (79, 82)
url: https://doi.org/10.1038/s41467-017-01378-7.

[36] M. Bellec, C. Michel, H. Zhang, S. Tzortzakis, and P. Delplace. Non-
di�racting states in one-dimensional Floquet photonic topological insula-
tors. EPL (Europhysics Letters) 119 1, 14003, 2017 (56, 58)
url: https://doi.org/10.1209/0295-5075/119/14003.

[37] Christian Brendel, Vittorio Peano, Oskar J. Painter, and Florian Mar-
quardt. Pseudomagnetic �elds for sound at the nanoscale. Proceedings
of the National Academy of Sciences, 201615503, 2017 (32)
url: https://www.pnas.org/content/early/2017/04/10/1615503114.

[38] Pierre Delplace, J. B. Marston, and Antoine Venaille. Topological origin
of equatorial waves. Science 358 6366, 1075–1077, 2017 (55, 79, 82)
url: https://science.sciencemag.org/content/358/6366/1075.

[39] Liang Feng, Ramy El-Ganainy, and Li Ge. Non-Hermitian photonics
based on parity-time symmetry. Nature Photonics 11 12, 752–762, 2017
(66)
url: https://doi.org/10.1038/s41566-017-0031-1.

[40] Chandroth P. Jisha, Alessandro Alberucci, Lorenzo Marrucci, and Gae-
tano Assanto. Interplay between di�raction and the Pancharatnam-
Berry phase in inhomogeneously twisted anisotropic media. Phys. Rev.
A 95, 023823, 2017 (33, 40, 56)
url: https://doi.org/10.1103/PhysRevA.95.023823.

[41] Lukas J. Maczewsky, Julia M. Zeuner, Stefan Nolte, and Alexander Sza-
meit. Observation of photonic anomalous Floquet topological insulators.
Nature Communications 8 1, 13756, 2017 (56)
url: https://doi.org/10.1038/ncomms13756.

[42] Arvind Murugan and Suriyanarayanan Vaikuntanathan. Topologically
protected modes in non-equilibrium stochastic systems. Nature Com-
munications 8 1, 13756, 2017 (55)
url: https://doi.org/10.1038/ncomms13881.

[43] Jiho Noh, Sheng Huang, Daniel Leykam, Y. D. Chong, Kevin P. Chen,
and Mikael C. Rechtsman. Experimental observation of optical Weyl
points and Fermi arc-like surface states. Nature Physics 13 6, 611–617,
2017 (67)
url: https://doi.org/10.1038/nphys4072.

https://doi.org/10.1038/s41467-017-01378-7
https://doi.org/10.1209/0295-5075/119/14003
https://www.pnas.org/content/early/2017/04/10/1615503114
https://science.sciencemag.org/content/358/6366/1075
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1103/PhysRevA.95.023823
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13881
https://doi.org/10.1038/nphys4072


102 References

[44] D. Zeb Rocklin, Shangnan Zhou, Kai Sun, and Xiaoming Mao. Trans-
formable topological mechanical metamaterials. Nature Communica-
tions 8 1, 14201, 2017 (32)
url: https://doi.org/10.1038/ncomms14201.

[45] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. 2017 (3,
37)
url: https://doi.org/10.1017/9781108499996.

[46] Anton Souslov, Benjamin C. van Zuiden, Denis Bartolo, and Vin-
cenzo Vitelli. Topological sound in active-liquid metamaterials. Nature
Physics 13 11, 1091–1094, 2017 (55)
url: https://doi.org/10.1038/nphys4193.

[47] Alessandro Alberucci, Chandroth P. Jisha, Sergei Slussarenko, Bruno
Piccirillo, Enrico Santamato, Lorenzo Marrucci, and Gaetano Assanto.
“A new waveguiding mechanism based upon geometric phase.” In:
Frontiers in Optics 2016. Optical Society of America, 2016, FF3H.3. url:
http://www.osapublishing.org/abstract.cfm?URI=FiO-2016-FF3H.3 (56).

[48] Hari Krishna Bisoyi and Quan Li. Light-Driven Liquid Crystalline Ma-
terials: From Photo-Induced Phase Transitions and Property Modulations
to Applications. Chemical Reviews 116 24, 15089–15166, 2016 (67)
url: https://doi.org/10.1021/acs.chemrev.6b00415.

[49] Bryan Gin-ge Chen, Bin Liu, Arthur A. Evans, Jayson Paulose, Itai
Cohen, Vincenzo Vitelli, and C. D. Santangelo. Topological Mechanics
of Origami and Kirigami. Phys. Rev. Lett. 116, 135501, 2016 (32)
url: https://link.aps.org/doi/10.1103/PhysRevLett.116.135501.

[50] Michel Fruchart. “Topological phases of periodically driven crystals.”
Theses. Université de Lyon, 2016. url: https://tel.archives-ouvertes.
fr/tel-01398614 (52).

[51] Yubing Guo, Miao Jiang, Chenhui Peng, Kai Sun, Oleg Yaroshchuk,
Oleg Lavrentovich, and Qi-Huo Wei. High-Resolution and High-
Throughput Plasmonic Photopatterning of Complex Molecular Orienta-
tions in Liquid Crystals. Advanced Materials 28 12, 2353–2358, 2016
(33, 67)
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201506002.

[52] Sebastian D. Huber. Topological mechanics. Nature Physics 12 7, 621–
623, 2016 (55)
url: https://doi.org/10.1038/nphys3801.

https://doi.org/10.1038/ncomms14201
https://doi.org/10.1017/9781108499996
https://doi.org/10.1038/nphys4193
http://www.osapublishing.org/abstract.cfm?URI=FiO-2016-FF3H.3
https://doi.org/10.1021/acs.chemrev.6b00415
https://link.aps.org/doi/10.1103/PhysRevLett.116.135501
https://tel.archives-ouvertes.fr/tel-01398614
https://tel.archives-ouvertes.fr/tel-01398614
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201506002
https://doi.org/10.1038/nphys3801


References 103

[53] Anne S. Meeussen, Jayson Paulose, and Vincenzo Vitelli. Geared Topo-
logical Metamaterials with Tunable Mechanical Stability. Phys. Rev. X
6, 041029, 2016 (32)
url: https://link.aps.org/doi/10.1103/PhysRevX.6.041029.

[54] Hoi Chun Po, Yasaman Bahri, and Ashvin Vishwanath. Phonon analog
of topological nodal semimetals. Phys. Rev. B 93, 205158, 2016 (32)
url: https://link.aps.org/doi/10.1103/PhysRevB.93.205158.

[55] D. Zeb Rocklin, Bryan Gin–ge Chen, Martin Falk, Vincenzo Vitelli,
and T. C. Lubensky. Mechanical Weyl Modes in Topological Maxwell
Lattices. Phys. Rev. Lett. 116, 135503, 2016 (32)
url: https://link.aps.org/doi/10.1103/PhysRevLett.116.135503.

[56] Sergei Slussarenko, Alessandro Alberucci, Chandroth P. Jisha, Bruno
Piccirillo, Enrico Santamato, Gaetano Assanto, and Lorenzo Marrucci.
Guiding light via geometric phases. Nature Photonics 10 9, 571–575,
2016 (34, 40, 41, 56, 67, 68, 70)
url: https://doi.org/10.1038/nphoton.2016.138.

[57] Roman Süsstrunk and Sebastian D. Huber. Classi�cation of topological
phonons in linear mechanical metamaterials. Proceedings of the Na-
tional Academy of Sciences 113 33, E4767–E4775, 2016 (32)
url: https://www.pnas.org/content/113/33/E4767.

[58] Benjamin C. van Zuiden, Jayson Paulose, William T. M. Irvine, Denis
Bartolo, and Vincenzo Vitelli. Spatiotemporal order and emergent edge
currents in active spinner materials. Proceedings of the National
Academy of Sciences 113 46, 12919–12924, 2016 (79, 82)
url: https://www.pnas.org/content/113/46/12919.

[59] Victor V. Albert, Leonid I. Glazman, and Liang Jiang. Topological Proper-
ties of Linear Circuit Lattices. Physical Review Letters 114 17, 173902,
2015 (55)
url: https://doi.org/10.1103/physrevlett.114.173902.

[60] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats. Spin–
orbit interactions of light. Nature Photonics 9 12, 796–808, 2015 (7, 42)
url: https://doi.org/10.1038/nphoton.2015.201.

[61] Marin Bukov, Luca D’Alessio, and Anatoli Polkovnikov. Universal
high-frequency behavior of periodically driven systems: from dynamical
stabilization to Floquet engineering. Advances in Physics 64 2, 139–
226, 2015 (10, 34, 39, 50, 61, 74)
url: https://doi.org/10.1080/00018732.2015.1055918.

https://link.aps.org/doi/10.1103/PhysRevX.6.041029
https://link.aps.org/doi/10.1103/PhysRevB.93.205158
https://link.aps.org/doi/10.1103/PhysRevLett.116.135503
https://doi.org/10.1038/nphoton.2016.138
https://www.pnas.org/content/113/33/E4767
https://www.pnas.org/content/113/46/12919
https://doi.org/10.1103/physrevlett.114.173902
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1080/00018732.2015.1055918


104 References

[62] Pierre A. Deymier, Keith Runge, Nick Swinteck, and Krishna Muralid-
haran. Torsional topology and fermion-like behavior of elastic waves
in phononic structures. Comptes Rendus Mćanique 343 12, 700–711,
2015 (32)
url: http://www.sciencedirect.com/science/article/pii/S1631072115000789.

[63] Toshikaze Kariyado and Yasuhiro Hatsugai. Manipulation of Dirac
Cones in Mechanical Graphene. Scienti�c Reports 5 1, 18107, 2015 (13,
14, 25)
url: https://doi.org/10.1038/srep18107.

[64] Alexander B. Khanikaev, Romain Fleury, S. Hossein Mousavi, and
Andrea Alù. Topologically robust sound propagation in an angular-
momentum-biased graphene-like resonator lattice. Nature Communi-
cations 6 1, 8260, 2015 (32)
url: https://doi.org/10.1038/ncomms9260.

[65] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić.
Experimental observation of Weyl points. Science 349 6248, 622–624,
2015 (67)
url: https://doi.org/10.1126/science.aaa9273.

[66] T C Lubensky, C L Kane, Xiaoming Mao, A Souslov, and Kai Sun.
Phonons and elasticity in critically coordinated lattices. Reports on
Progress in Physics 78 7, 073901, 2015 (9)
url: https://doi.org/10.1088/0034-4885/78/7/073901.

[67] S. Hossein Mousavi, Alexander B. Khanikaev, and Zheng Wang. Topo-
logically protected elastic waves in phononic metamaterials. Nature
Communications 6 1, 8682, 2015 (32, 55)
url: https://doi.org/10.1038/ncomms9682.

[68] Lisa M. Nash, Dustin Kleckner, Alismari Read, Vincenzo Vitelli, Ari M.
Turner, and William T. M. Irvine. Topological mechanics of gyroscopic
metamaterials. Proceedings of the National Academy of Sciences
112 47, 14495–14500, 2015 (32, 55)
url: https://www.pnas.org/content/112/47/14495.

[69] Jia Ningyuan, Clai Owens, Ariel Sommer, David Schuster, and Jonathan
Simon. Time- and Site-Resolved Dynamics in a Topological Circuit.
Physical Review X 5 2, 021031, 2015 (55)
url: https://doi.org/10.1103/physrevx.5.021031.

[70] Jayson Paulose, Bryan Gin-ge Chen, and Vincenzo Vitelli. Topologi-
cal modes bound to dislocations in mechanical metamaterials. Nature
Physics 11 2, 153–156, 2015 (32)
url: https://doi.org/10.1038/nphys3185.

http://www.sciencedirect.com/science/article/pii/S1631072115000789
https://doi.org/10.1038/srep18107
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1038/ncomms9682
https://www.pnas.org/content/112/47/14495
https://doi.org/10.1103/physrevx.5.021031
https://doi.org/10.1038/nphys3185


References 105

[71] Jayson Paulose, Anne S. Meeussen, and Vincenzo Vitelli. Selective
buckling via states of self-stress in topological metamaterials. Proceed-
ings of the National Academy of Sciences 112 25, 7639–7644, 2015
(32)
url: https://www.pnas.org/content/112/25/7639.

[72] Charles Poli, Matthieu Bellec, Ulrich Kuhl, Fabrice Mortessagne, and
Henning Schomerus. Selective enhancement of topologically induced
interface states in a dielectric resonator chain. Nature Communica-
tions 6 1, 6710, 2015 (31)
url: https://doi.org/10.1038/ncomms7710.

[73] Roman Süsstrunk and Sebastian D. Huber. Observation of phononic
helical edge states in a mechanical topological insulator. Science
349 6243, 47–50, 2015 (32, 55)
url: https://science.sciencemag.org/content/349/6243/47.

[74] Pai Wang, Ling Lu, and Katia Bertoldi. Topological Phononic Crystals
with One-Way Elastic Edge Waves. Phys. Rev. Lett. 115, 104302, 2015
(32)
url: https://link.aps.org/doi/10.1103/PhysRevLett.115.104302.

[75] Meng Xiao, Wen-Jie Chen, Wen-Yu He, and C. T. Chan. Synthetic gauge
�ux and Weyl points in acoustic systems. Nature Physics 11 11, 920–
924, 2015 (32)
url: https://doi.org/10.1038/nphys3458.

[76] Zhaoju Yang, Fei Gao, Xihang Shi, Xiao Lin, Zhen Gao, Yidong Chong,
and Baile Zhang. Topological Acoustics. Phys. Rev. Lett. 114, 114301,
2015 (32)
url: https://link.aps.org/doi/10.1103/PhysRevLett.114.114301.

[77] Bryan Gin-ge Chen, Nitin Upadhyaya, and Vincenzo Vitelli. Nonlinear
conduction via solitons in a topological mechanical insulator. Proceed-
ings of the National Academy of Sciences 111 36, 13004–13009,
2014 (32)
url: https://www.pnas.org/content/111/36/13004.

[78] Liang Feng, Zi Jing Wong, Ren-Min Ma, Yuan Wang, and Xiang
Zhang. Single-mode laser by parity-time symmetry breaking. Science
346 6212, 972–975, 2014 (31)
url: https://science.sciencemag.org/content/346/6212/972.

[79] N. Goldman and J. Dalibard. Periodically Driven Quantum Systems:
E�ective Hamiltonians and Engineered Gauge Fields. Phys. Rev. X
4, 031027, 2014 (10, 34, 39, 50)
url: https://link.aps.org/doi/10.1103/PhysRevX.4.031027.

https://www.pnas.org/content/112/25/7639
https://doi.org/10.1038/ncomms7710
https://science.sciencemag.org/content/349/6243/47
https://link.aps.org/doi/10.1103/PhysRevLett.115.104302
https://doi.org/10.1038/nphys3458
https://link.aps.org/doi/10.1103/PhysRevLett.114.114301
https://www.pnas.org/content/111/36/13004
https://science.sciencemag.org/content/346/6212/972
https://link.aps.org/doi/10.1103/PhysRevX.4.031027


106 References

[80] Álvaro Gómez-León, Pierre Delplace, and Gloria Platero. Engineering
anomalous quantum Hall plateaus and antichiral states with ac �elds.
Phys. Rev. B 89, 205408, 2014 (61)
url: https://link.aps.org/doi/10.1103/PhysRevB.89.205408.

[81] Hossein Hodaei, Mohammad-Ali Miri, Matthias Heinrich, Demetrios N.
Christodoulides, and Mercedeh Khajavikhan. Parity-time–symmetric
microring lasers. Science 346 6212, 975–978, 2014 (31)
url: https://science.sciencemag.org/content/346/6212/975.

[82] C. L. Kane and T. C. Lubensky. Topological boundary modes in isostatic
lattices. Nature Physics 10 1, 39–45, 2014 (8, 9, 32)
url: https://doi.org/10.1038/nphys2835.

[83] Ling Lu, John D. Joannopoulos, and Marin Soljaačić. Topological pho-
tonics. Nature Photonics 8, 821–829, 2014 (32, 55, 56)
url: https://doi.org/10.1038/nphoton.2014.248.

[84] Nanfang Yu and Federico Capasso. Flat optics with designer metasur-
faces. Nature Materials 13 2, 139–150, 2014 (33)
url: https://doi.org/10.1038/nmat3839.

[85] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor. Imaging
topological edge states in silicon photonics. Nature Photonics 7, 1001–
1005, 2013 (32, 55)
url: https://doi.org/10.1038/nphoton.2013.274.

[86] Alexander B. Khanikaev, S. Hossein Mousavi, Wang-Kong Tse, Mehdi
Kargarian, Allan H. MacDonald, and Gennady Shvets. Photonic topo-
logical insulators. Nature Materials 12, 233–239, 2013 (32, 55)
url: https://doi.org/10.1038/nmat3520.

[87] I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi. Phonon
Lasing in an Electromechanical Resonator. Phys. Rev. Lett. 110, 127202,
2013 (32)
url: https://link.aps.org/doi/10.1103/PhysRevLett.110.127202.

[88] Mikael C. Rechtsman, Julia M. Zeuner, Yonatan Plotnik, Yaakov Lumer,
Daniel Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev, and
Alexander Szameit. Photonic Floquet topological insulators. Nature
496, 196–200, 2013 (13, 32, 44, 55, 56, 61, 67, 73, 74)
url: https://doi.org/10.1038/nature12066.

[89] Henning Schomerus and Nicole Yunger Halpern. Parity Anomaly and
Landau-Level Lasing in Strained Photonic Honeycomb Lattices. Phys.
Rev. Lett. 110, 013903, 2013 (13, 31)
url: https://link.aps.org/doi/10.1103/PhysRevLett.110.013903.

https://link.aps.org/doi/10.1103/PhysRevB.89.205408
https://science.sciencemag.org/content/346/6212/975
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nmat3839
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nmat3520
https://link.aps.org/doi/10.1103/PhysRevLett.110.127202
https://doi.org/10.1038/nature12066
https://link.aps.org/doi/10.1103/PhysRevLett.110.013903


References 107

[90] Filippo Casadei, Tommaso Delpero, Andrea Bergamini, Paolo Er-
manni, and Massimo Ruzzene. Piezoelectric resonator arrays for tunable
acoustic waveguides and metamaterials. Journal of Applied Physics
112 6, 064902, 2012 (13)
url: https://doi.org/10.1063/1.4752468.

[91] Liang Feng, Ye-Long Xu, William S. Fegadolli, Ming-Hui Lu, José
E. B. Oliveira, Vilson R. Almeida, Yan-Feng Chen, and Axel Scherer.
Experimental demonstration of a unidirectional re�ectionless parity-time
metamaterial at optical frequencies. Nature Materials 12 2, 108–113,
2012 (66)
url: https://doi.org/10.1038/nmat3495.

[92] Kenjiro K. Gomes, Warren Mar, Wonhee Ko, Francisco Guinea, and
Hari C. Manoharan. Designer Dirac fermions and topological phases in
molecular graphene. Nature 483 7389, 306–310, 2012 (13)
url: https://doi.org/10.1038/nature10941.

[93] Ming Kang, Tianhua Feng, Hui-Tian Wang, and Jensen Li. Wave front
engineering from an array of thin aperture antennas. Opt. Express
20 14, 15882–15890, 2012 (33)
url: http://www.opticsexpress.org/abstract.cfm?URI=oe-20-14-15882.

[94] Oleg Yaroshchuk and Yuriy Reznikov. Photoalignment of liquid crystals:
basics and current trends. J. Mater. Chem. 22 2, 286–300, 2012 (67)
url: https://doi.org/10.1039/c1jm13485j.

[95] Nina Berg, Kira Joel, Miriam Koolyk, and Emil Prodan. Topological
phonon modes in �lamentary structures. Phys. Rev. E 83, 021913, 2011
(32)
url: https://link.aps.org/doi/10.1103/PhysRevE.83.021913.

[96] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and
superconductors. Rev. Mod. Phys. 83, 1057–1110, 2011 (2)
url: https://link.aps.org/doi/10.1103/RevModPhys.83.1057.

[97] Liang-Yu Wu and Lien-Wen Chen. An acoustic bending waveguide
designed by graded sonic crystals. Journal of Applied Physics
110 11, 114507, 2011 (13)
url: https://doi.org/10.1063/1.3664856.

[98] Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, Jean-
Philippe Tetienne, Federico Capasso, and Zeno Gaburro. Light Propa-
gation with Phase Discontinuities: Generalized Laws of Re�ection and
Refraction. Science 334 6054, 333–337, 2011 (7, 8)
url: https://science.sciencemag.org/content/334/6054/333.

https://doi.org/10.1063/1.4752468
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nature10941
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-14-15882
https://doi.org/10.1039/c1jm13485j
https://link.aps.org/doi/10.1103/PhysRevE.83.021913
https://link.aps.org/doi/10.1103/RevModPhys.83.1057
https://doi.org/10.1063/1.3664856
https://science.sciencemag.org/content/334/6054/333


108 References

[99] F. Guinea, M. I. Katsnelson, and A. K. Geim. Energy gaps and a zero-
�eld quantum Hall e�ect in graphene by strain engineering. Nature
Physics 6 1, 30–33, 2010 (13, 28)
url: https://doi.org/10.1038/nphys1420.

[100] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev.
Mod. Phys. 82, 3045–3067, 2010 (2, 13, 55, 63, 91)
url: https://link.aps.org/doi/10.1103/RevModPhys.82.3045.

[101] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea,
A. H. Castro Neto, and M. F. Crommie. Strain-Induced Pseudo–Magnetic
Fields Greater Than 300 Tesla in Graphene Nanobubbles. Science
329 5991, 544–547, 2010 (13)
url: https://science.sciencemag.org/content/329/5991/544.

[102] Ardavan F. Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, J.D.
Joannopoulos, and Steven G. Johnson. Meep: A �exible free-software
package for electromagnetic simulations by the FDTD method. Com-
puter Physics Communications 181 3, 687–702, 2010 (43)
url: http://www.sciencedirect.com/science/article/pii/S001046550900383X.

[103] Christian E. Rüter, Konstantinos G. Makris, Ramy El-Ganainy,
Demetrios N. Christodoulides, Mordechai Segev, and Detlef Kip.
Observation of parity-time symmetry in optics. Nature Physics
6 3, 192–195, 2010 (66)
url: https://doi.org/10.1038/nphys1515.

[104] Alexander Szameit and Stefan Nolte. Discrete optics in femtosecond-
laser-written photonic structures. Journal of Physics B: Atomic,
Molecular and Optical Physics 43 16, 163001, 2010 (10, 34)
url: https://doi.org/10.1088/0953-4075/43/16/163001.

[105] Guenter Ahlers, Siegfried Grossmann, and Detlef Lohse. Heat transfer
and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev.
Mod. Phys. 81, 503–537, 2009 (79)
url: https://doi.org/10.1103/RevModPhys.81.503.

[106] Michael Cross and Henry Greenside. Patterb Formation and Dynamics
in Nonequilibrium Systems. 2009 (79, 80, 91)
url: https://webhome.phy.duke.edu/~hsg/pattern-formation-book/.

[107] Andrii B. Golovin and Oleg D. Lavrentovich. Electrically recon�gurable
optical metamaterial based on colloidal dispersion of metal nanorods in
dielectric �uid. Applied Physics Letters 95 25, 254104, 2009 (67)
url: https://doi.org/10.1063/1.3278442.

https://doi.org/10.1038/nphys1420
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://science.sciencemag.org/content/329/5991/544
http://www.sciencedirect.com/science/article/pii/S001046550900383X
https://doi.org/10.1038/nphys1515
https://doi.org/10.1088/0953-4075/43/16/163001
https://doi.org/10.1103/RevModPhys.81.503
https://webhome.phy.duke.edu/~hsg/pattern-formation-book/
https://doi.org/10.1063/1.3278442


References 109

[108] S. Longhi. Quantum-optical analogies using photonic structures. Laser
& Photonics Review 3 3, 243–261, 2009 (10, 34)
url: https://doi.org/10.1002/lpor.200810055.

[109] Emil Prodan and Camelia Prodan. Topological Phonon Modes and
Their Role in Dynamic Instability of Microtubules. Phys. Rev. Lett.
103, 248101, 2009 (8, 9, 32)
url: https://link.aps.org/doi/10.1103/PhysRevLett.103.248101.

[110] Konstantin Y. Bliokh, Yuri Gorodetski, Vladimir Kleiner, and Erez
Hasman. Coriolis E�ect in Optics: Uni�ed Geometric Phase and Spin-
Hall E�ect. Phys. Rev. Lett. 101, 030404, 2008 (7, 42)
url: https://link.aps.org/doi/10.1103/PhysRevLett.101.030404.

[111] Konstantin Y. Bliokh, Avi Niv, Vladimir Kleiner, and Erez Hasman.
Geometrodynamics of spinning light. Nature Photonics 2 12, 748–753,
2008 (7, 42)
url: https://doi.org/10.1038/nphoton.2008.229.

[112] V.G. Chigrinov, V.M. Kozenkov, and H.S. Kwok. Photoalignment of
Liquid Crystalline Materials: Physics and Applications. Wiley Series in
Display Technology. 2008 (67)
url: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470751800.

[113] F. D. M. Haldane and S. Raghu. Possible Realization of Directional
Optical Waveguides in Photonic Crystals with Broken Time-Reversal
Symmetry. Phys. Rev. Lett. 100, 013904, 2008 (8)
url: https://link.aps.org/doi/10.1103/PhysRevLett.100.013904.

[114] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert
D. Meade. Photonic Crystals: Molding the Flow of Light (Second Edition).
2008 (8, 34)
url: https : / / press . princeton . edu / books / hardcover / 9780691124568 /

photonic-crystals.
[115] S. Raghu and F. D. M. Haldane. Analogs of quantum-Hall-e�ect edge

states in photonic crystals. Phys. Rev. A 78, 033834, 2008 (8)
url: https://link.aps.org/doi/10.1103/PhysRevA.78.033834.

[116] Tomoyuki Sasaki, Hiroshi Ono, and Nobuhiro Kawatsuki. Anisotropic
photonic structures induced by three-dimensional vector holography in
dye-doped liquid crystals. Journal of Applied Physics 104 4, 043524,
2008 (67)
url: https://doi.org/10.1063/1.2970172.

[117] J. D. Scheel. The amplitude equation for rotating Rayleigh–Bénard
convection. Physics of Fluids 19 10, 104105, 2007 (90)
url: https://doi.org/10.1063/1.2785702.

https://doi.org/10.1002/lpor.200810055
https://link.aps.org/doi/10.1103/PhysRevLett.103.248101
https://link.aps.org/doi/10.1103/PhysRevLett.101.030404
https://doi.org/10.1038/nphoton.2008.229
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470751800
https://link.aps.org/doi/10.1103/PhysRevLett.100.013904
https://press.princeton.edu/books/hardcover/9780691124568/photonic-crystals
https://press.princeton.edu/books/hardcover/9780691124568/photonic-crystals
https://link.aps.org/doi/10.1103/PhysRevA.78.033834
https://doi.org/10.1063/1.2970172
https://doi.org/10.1063/1.2785702


110 References

[118] L. Marrucci, C. Manzo, and D. Paparo. Optical Spin-to-Orbital Angular
Momentum Conversion in Inhomogeneous Anisotropic Media. Phys.
Rev. Lett. 96, 163905, 2006 (33)
url: https://link.aps.org/doi/10.1103/PhysRevLett.96.163905.

[119] Innocent Mutabazi, Jose Eduardo Wesfreid, and Etienne Guyon. Dy-
namics of Spatio-Temporal Cellular Structures, Henry Bénard Centenary
Review. 2006 (77)
url: https://doi.org/10.1007/b106790.

[120] Filippus S. Roux. Geometric phase lens. J. Opt. Soc. Am. A 23 2, 476–
482, 2006 (33)
url: http://josaa.osa.org/abstract.cfm?URI=josaa-23-2-476.

[121] Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki. Chern Num-
bers in Discretized Brillouin Zone: E�cient Method of Computing
(Spin) Hall Conductances. Journal of the Physical Society of Japan
74 6, 1674–1677, 2005 (63)
url: https://doi.org/10.1143/JPSJ.74.1674.

[122] C. L. Kane and E. J. Mele. Quantum Spin Hall E�ect in Graphene. Phys.
Rev. Lett. 95, 226801, 2005 (13)
url: https://link.aps.org/doi/10.1103/PhysRevLett.95.226801.

[123] C. L. Kane and E. J. Mele. Quantum Spin Hall E�ect in Graphene. Phys.
Rev. Lett. 95, 226801, 2005 (13)
url: https://link.aps.org/doi/10.1103/PhysRevLett.95.226801.

[124] Philip Russell. Photonic Crystal Fibers. Science 299 5605, 358–362,
2003 (34)
url: https://science.sciencemag.org/content/299/5605/358.

[125] H. Kawamoto. The history of liquid-crystal displays. Proceedings of
the IEEE 90 4, 460–500, 2002 (33)
url: https://doi.org/10.1109/JPROC.2002.1002521.

[126] Jie Liu, Libin Fu, Bi-Yiao Ou, Shi-Gang Chen, Dae-Il Choi, Biao Wu,
and Qian Niu. Theory of nonlinear Landau-Zener tunneling. Phys. Rev.
A 66, 023404, 2002 (93, 94)
url: https://link.aps.org/doi/10.1103/PhysRevA.66.023404.

[127] David R. Nelson. Defects and Geometry in Condensed Matter Physics.
2002 (8)
url: http://www.cambridge.org/9780521801591.

[128] “Fiber Optics.” In: Fundamentals of Photonics. John Wiley Sons,
Ltd, 2001. Chap. 8, 272–309. isbn: 9780471213741. url: https :

//onlinelibrary.wiley.com/doi/abs/10.1002/0471213748.ch8 (34).

https://link.aps.org/doi/10.1103/PhysRevLett.96.163905
https://doi.org/10.1007/b106790
http://josaa.osa.org/abstract.cfm?URI=josaa-23-2-476
https://doi.org/10.1143/JPSJ.74.1674
https://link.aps.org/doi/10.1103/PhysRevLett.95.226801
https://link.aps.org/doi/10.1103/PhysRevLett.95.226801
https://science.sciencemag.org/content/299/5605/358
https://doi.org/10.1109/JPROC.2002.1002521
https://link.aps.org/doi/10.1103/PhysRevA.66.023404
http://www.cambridge.org/9780521801591
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471213748.ch8
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471213748.ch8


References 111

[129] Biao Wu and Qian Niu. Nonlinear Landau-Zener tunneling. Phys. Rev.
A 61, 023402, 2000 (93, 94)
url: https://link.aps.org/doi/10.1103/PhysRevA.61.023402.

[130] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro
Stringari. Theory of Bose-Einstein condensation in trapped gases. Rev.
Mod. Phys. 71, 463–512, 1999 (91)
url: https://link.aps.org/doi/10.1103/RevModPhys.71.463.

[131] Franco Gori. Measuring Stokes parameters by means of a polarization
grating. Opt. Lett. 24 9, 584–586, 1999 (33)
url: http://ol.osa.org/abstract.cfm?URI=ol-24-9-584.

[132] Je�. Hecht. City of light : the story of �ber optics. 1999 (43)
url: https://nla.gov.au/nla.cat-vn17702.

[133] Carl M. Bender and Stefan Boettcher. Real Spectra in Non-Hermitian
Hamiltonians Having 𝑃𝑇 Symmetry. Physical Review Letters
80 24, 5243–5246, 1998 (64)
url: https://doi.org/10.1103/physrevlett.80.5243.

[134] Rajendra Bhandari. Polarization of light and topological phases.
Physics Reports 281 1, 1–64, 1997 (2)
url: http://www.sciencedirect.com/science/article/pii/S0370157396000294.

[135] Martin van Hecke and Wim van Saarloos. Convection in rotating annuli:
Ginzburg-Landau equations with tunable coe�cients. Phys. Rev. E 55,
R1259–R1262, 1997 (93)
url: https://link.aps.org/doi/10.1103/PhysRevE.55.R1259.

[136] J. D. Joannopoulos, Pierre R. Villeneuve, and Shanhui Fan. Photonic
crystals: putting a new twist on light. Nature 386, 143–149, 1997 (8, 34)
url: https://doi.org/10.1038/386143a0.

[137] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy. Quantum Coher-
ent Atomic Tunneling between Two Trapped Bose-Einstein Condensates.
Phys. Rev. Lett. 79, 4950–4953, 1997 (94)
url: https://link.aps.org/doi/10.1103/PhysRevLett.79.4950.

[138] P. M. Chaikin and T. C. Lubensky. Principles of Condensed Matter
Physics. 1995 (8)
url: https://doi.org/10.1017/CBO9780511813467.

[139] T.J. Shepherd. Full 2-D photonic bandgaps in silica/air structures. Elec-
tronics Letters 31, 1941–1943(2), 1995 (34)
url: https://digital-library.theiet.org/content/journals/10.1049/el_

19951306.

https://link.aps.org/doi/10.1103/PhysRevA.61.023402
https://link.aps.org/doi/10.1103/RevModPhys.71.463
http://ol.osa.org/abstract.cfm?URI=ol-24-9-584
https://nla.gov.au/nla.cat-vn17702
https://doi.org/10.1103/physrevlett.80.5243
http://www.sciencedirect.com/science/article/pii/S0370157396000294
https://link.aps.org/doi/10.1103/PhysRevE.55.R1259
https://doi.org/10.1038/386143a0
https://link.aps.org/doi/10.1103/PhysRevLett.79.4950
https://doi.org/10.1017/CBO9780511813467
https://digital-library.theiet.org/content/journals/10.1049/el_19951306
https://digital-library.theiet.org/content/journals/10.1049/el_19951306


112 References

[140] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilib-
rium. Rev. Mod. Phys. 65, 851–1112, 1993 (11, 79–81, 88)
url: https://link.aps.org/doi/10.1103/RevModPhys.65.851.

[141] Pierre-Gilles De Gennes and Jacques Prost. The Physics of Liquid Crys-
tals. 1993 (33, 34)
url: https://doi.org/10.1063/1.2808028.

[142] R. E Ecke, Fang Zhong, and E Knobloch. Hopf Bifurcation with Broken
Re�ection Symmetry in Rotating Rayleigh-Bénard Convection. Euro-
physics Letters (EPL) 19 3, 177–182, 1992 (79, 81)
url: https://doi.org/10.1209%2F0295-5075%2F19%2F3%2F005.

[143] K. R. Elder, Jorge Viñals, and Martin Grant. Dynamic scaling and
quasiordered states in the two-dimensional Swift-Hohenberg equation.
Phys. Rev. A 46, 7618–7629, 1992 (80)
url: https://link.aps.org/doi/10.1103/PhysRevA.46.7618.

[144] M. A. Ablowitz and P. A. Clarkson. Solitons, Nonlinear Evolution Equa-
tions and Inverse Scattering. London Mathematical Society Lecture
Note Series. 1991 (91)
url: https://doi.org/10.1017/CBO9780511623998.

[145] Eberhard Bodenschatz, John R. de Bruyn, Guenter Ahlers, and David S.
Cannell. Transitions between patterns in thermal convection. Phys. Rev.
Lett. 67, 3078–3081, 1991 (81)
url: https://link.aps.org/doi/10.1103/PhysRevLett.67.3078.

[146] Fang Zhong, Robert Ecke, and Victor Steinberg. Asymmetric modes and
the transition to vortex structures in rotating Rayleigh-Bénard convection.
Phys. Rev. Lett. 67, 2473–2476, 1991 (79)
url: https://link.aps.org/doi/10.1103/PhysRevLett.67.2473.

[147] Alfred Shapere and Frank Wilczek. Gauge kinematics of deformable
bodies. American Journal of Physics 57 6, 514–518, 1989 (1)
url: https://doi.org/10.1119/1.15986.

[148] Alfred Shapere and Frank Wilczek. Geometric phases in physics. 1989
(2)
url: https://doi.org/10.1142/0613.

[149] J. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett.
62, 2747–2750, 1989 (85)
url: https://link.aps.org/doi/10.1103/PhysRevLett.62.2747.

[150] M V Berry and J H Hannay. Classical non-adiabatic angles. Journal
of Physics A: Mathematical and General 21 6, L325–L331, 1988 (6)
url: https://doi.org/10.1088%2F0305-4470%2F21%2F6%2F002.

https://link.aps.org/doi/10.1103/RevModPhys.65.851
https://doi.org/10.1063/1.2808028
https://doi.org/10.1209%2F0295-5075%2F19%2F3%2F005
https://link.aps.org/doi/10.1103/PhysRevA.46.7618
https://doi.org/10.1017/CBO9780511623998
https://link.aps.org/doi/10.1103/PhysRevLett.67.3078
https://link.aps.org/doi/10.1103/PhysRevLett.67.2473
https://doi.org/10.1119/1.15986
https://doi.org/10.1142/0613
https://link.aps.org/doi/10.1103/PhysRevLett.62.2747
https://doi.org/10.1088%2F0305-4470%2F21%2F6%2F002


References 113

[151] F. D. M. Haldane. Model for a Quantum Hall E�ect without Landau
Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys.
Rev. Lett. 61, 2015–2018, 1988 (10, 56, 61)
url: https://doi.org/10.1103/PhysRevLett.61.2015.

[152] R. Jackiw. Three Elaborations on Berry’s Connection, Curvature and
Phase. International Journal of Modern Physics A 03 02, 285–297,
1988 (3)
url: https://doi.org/10.1142/S0217751X88000114.

[153] R. B. Laughlin. Superconducting Ground State of Noninteracting Particles
Obeying Fractional Statistics. Phys. Rev. Lett. 60, 2677–2680, 1988 (2)
url: https://link.aps.org/doi/10.1103/PhysRevLett.60.2677.

[154] Christopher W. Meyer, David S. Cannell, Guenter Ahlers, J. B. Swift,
and P. C. Hohenberg. Pattern Competition in Temporally Modulated
Rayleigh-Bénard Convection. Phys. Rev. Lett. 61, 947–950, 1988 (81)
url: https://link.aps.org/doi/10.1103/PhysRevLett.61.947.

[155] M.V. Berry. The Adiabatic Phase and Pancharatnam’s Phase for Polarized
Light. Journal of Modern Optics 34 11, 1401–1407, 1987 (1, 2, 7, 56)
url: https://doi.org/10.1080/09500348714551321.

[156] D. R. Jenkins. Rolls versus squares in thermal convection of �uids
with temperature-dependent viscosity. Journal of Fluid Mechanics
178, 491–506, 1987 (89)
url: https://doi.org/10.1017/S0022112087001332.

[157] Klaus von Klitzing. The quantized Hall e�ect. Rev. Mod. Phys. 58, 519–
531, 1986 (2)
url: https://link.aps.org/doi/10.1103/RevModPhys.58.519.

[158] L.M. Pismen. Inertial e�ects in long-scale thermal convection. Physics
Letters A 116 5, 241–244, 1986 (82)
url: http://www.sciencedirect.com/science/article/pii/0375960186901416.

[159] M V Berry. Classical adiabatic angles and quantal adiabatic phase.
Journal of Physics A: Mathematical and General 18 1, 15–27, 1985
(2)
url: https://doi.org/10.1088%2F0305-4470%2F18%2F1%2F012.

[160] J H Hannay. Angle variable holonomy in adiabatic excursion of an
integrable Hamiltonian. Journal of Physics A: Mathematical and
General 18 2, 221–230, 1985 (2, 6)
url: https://doi.org/10.1088%2F0305-4470%2F18%2F2%2F011.

https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1142/S0217751X88000114
https://link.aps.org/doi/10.1103/PhysRevLett.60.2677
https://link.aps.org/doi/10.1103/PhysRevLett.61.947
https://doi.org/10.1080/09500348714551321
https://doi.org/10.1017/S0022112087001332
https://link.aps.org/doi/10.1103/RevModPhys.58.519
http://www.sciencedirect.com/science/article/pii/0375960186901416
https://doi.org/10.1088%2F0305-4470%2F18%2F1%2F012
https://doi.org/10.1088%2F0305-4470%2F18%2F2%2F011


114 References

[161] Michael Victor Berry. Quantal phase factors accompanying adiabatic
changes. Proceedings of the Royal Society of London. A. Mathe-
matical and Physical Sciences 392 1802, 45–57, 1984 (1, 56)
url: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.

0023.
[162] H. S. Greenside and W. M. Coughran. Nonlinear pattern formation near

the onset of Rayleigh-Bénard convection. Phys. Rev. A 30, 398–428,
1984 (80)
url: https://link.aps.org/doi/10.1103/PhysRevA.30.398.

[163] R. Jackiw. Fractional charge and zero modes for planar systems in a
magnetic �eld. Phys. Rev. D 29, 2375–2377, 1984 (19, 28, 86)
url: https://link.aps.org/doi/10.1103/PhysRevD.29.2375.

[164] D. R. Jenkins and M. R. E. Proctor. The transition from roll to square-cell
solutions in Rayleigh–Bénard convection. Journal of FluidMechanics
139, 461–471, 1984 (89)
url: https://doi.org/10.1017/S0022112084000458.

[165] Gordon W. Semeno�. Condensed-Matter Simulation of a Three-
Dimensional Anomaly. Phys. Rev. Lett. 53, 2449–2452, 1984 (19)
url: https://link.aps.org/doi/10.1103/PhysRevLett.53.2449.

[166] J. E. Avron, R. Seiler, and B. Simon. Homotopy and Quantization in
Condensed Matter Physics. Phys. Rev. Lett. 51, 51–53, 1983 (2)
url: https://link.aps.org/doi/10.1103/PhysRevLett.51.51.

[167] Barry Simon. Holonomy, the Quantum Adiabatic Theorem, and Berry’s
Phase. Phys. Rev. Lett. 51, 2167–2170, 1983 (4)
url: https://link.aps.org/doi/10.1103/PhysRevLett.51.2167.

[168] T. Suhara, K. Kobayashi, H. Nishihara, and J. Koyama. Graded-index
Fresnel lenses for integrated optics. Appl. Opt. 21 11, 1966–1971, 1982 (34)
url: http://ao.osa.org/abstract.cfm?URI=ao-21-11-1966.

[169] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quan-
tized Hall Conductance in a Two-Dimensional Periodic Potential. Phys.
Rev. Lett. 49, 405–408, 1982 (2, 6, 63)
url: https://link.aps.org/doi/10.1103/PhysRevLett.49.405.

[170] K. v. Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy
Determination of the Fine-Structure Constant Based on Quantized Hall
Resistance. Phys. Rev. Lett. 45, 494–497, 1980 (2, 5, 6)
url: https://link.aps.org/doi/10.1103/PhysRevLett.45.494.

[171] N. D. Mermin. The topological theory of defects in ordered media. Rev.
Mod. Phys. 51, 591–648, 1979 (8)
url: https://link.aps.org/doi/10.1103/RevModPhys.51.591.

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023
https://link.aps.org/doi/10.1103/PhysRevA.30.398
https://link.aps.org/doi/10.1103/PhysRevD.29.2375
https://doi.org/10.1017/S0022112084000458
https://link.aps.org/doi/10.1103/PhysRevLett.53.2449
https://link.aps.org/doi/10.1103/PhysRevLett.51.51
https://link.aps.org/doi/10.1103/PhysRevLett.51.2167
http://ao.osa.org/abstract.cfm?URI=ao-21-11-1966
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
https://link.aps.org/doi/10.1103/PhysRevLett.45.494
https://link.aps.org/doi/10.1103/RevModPhys.51.591


References 115

[172] W. P. Su, J. R. Schrie�er, and A. J. Heeger. Solitons in Polyacetylene.
Phys. Rev. Lett. 42, 1698–1701, 1979 (10, 21, 23, 32, 56, 58, 60, 81, 91)
url: https://link.aps.org/doi/10.1103/PhysRevLett.42.1698.

[173] M V Berry and J H Hannay. Umbilic points on Gaussian random surfaces.
Journal of Physics A: Mathematical and General 10 11, 1809–1821,
1977 (8)
url: https://doi.org/10.1088%2F0305-4470%2F10%2F11%2F009.

[174] J. Swift and P. C. Hohenberg. Hydrodynamic �uctuations at the convec-
tive instability. Phys. Rev. A 15, 319–328, 1977 (11, 80)
url: https://link.aps.org/doi/10.1103/PhysRevA.15.319.

[175] R. Jackiw and C. Rebbi. Solitons with fermion number ½. Phys. Rev. D
13, 3398–3409, 1976 (21, 23, 86, 87)
url: https://link.aps.org/doi/10.1103/PhysRevD.13.3398.

[176] Hideo Sambe. Steady States andQuasienergies of a Quantum-Mechanical
System in an Oscillating Field. Phys. Rev. A 7, 2203–2213, 1973 (52)
url: https://link.aps.org/doi/10.1103/PhysRevA.7.2203.

[177] A. Yariv. Coupled-mode theory for guided-wave optics. IEEE Journal
of Quantum Electronics 9 9, 919–933, 1973 (56)
url: https://doi.org/10.1109/jqe.1973.1077767.

[178] Alan C. Newell and J. A. Whitehead. Finite bandwidth, �nite amplitude
convection. Journal of Fluid Mechanics 38 2, 279–303, 1969 (91)
url: https://doi.org/10.1017/S0022112069000176.

[179] H. T. Rossby. A study of Bénard convection with and without rotation.
Journal of Fluid Mechanics 36 2, 309–335, 1969 (79)
url: https://doi.org/10.1017/S0022112069001674.

[180] F. H. Busse. The stability of �nite amplitude cellular convection and
its relation to an extremum principle. Journal of Fluid Mechanics
30 4, 625–649, 1967 (81)
url: https://doi.org/10.1017/S0022112067001661.

[181] A. Schlüter, D. Lortz, and F. Busse. On the stability of steady �nite
amplitude convection. Journal of Fluid Mechanics 23 1, 129–144,
1965 (81, 89)
url: https://doi.org/10.1017/S0022112065001271.

[182] Jon H. Shirley. Solution of the Schrödinger Equation with a Hamiltonian
Periodic in Time. Phys. Rev. 138, B979–B987, 1965 (40)
url: https://link.aps.org/doi/10.1103/PhysRev.138.B979.

[183] R. G. Chambers. Shift of an Electron Interference Pattern by Enclosed
Magnetic Flux. Phys. Rev. Lett. 5, 3–5, 1960 (2)
url: https://link.aps.org/doi/10.1103/PhysRevLett.5.3.

https://link.aps.org/doi/10.1103/PhysRevLett.42.1698
https://doi.org/10.1088%2F0305-4470%2F10%2F11%2F009
https://link.aps.org/doi/10.1103/PhysRevA.15.319
https://link.aps.org/doi/10.1103/PhysRevD.13.3398
https://link.aps.org/doi/10.1103/PhysRevA.7.2203
https://doi.org/10.1109/jqe.1973.1077767
https://doi.org/10.1017/S0022112069000176
https://doi.org/10.1017/S0022112069001674
https://doi.org/10.1017/S0022112067001661
https://doi.org/10.1017/S0022112065001271
https://link.aps.org/doi/10.1103/PhysRev.138.B979
https://link.aps.org/doi/10.1103/PhysRevLett.5.3


116 References

[184] Enok Palm. On the tendency towards hexagonal cells in steady convection.
Journal of Fluid Mechanics 8 2, 183–192, 1960 (81)
url: https://doi.org/10.1017/S0022112060000530.

[185] Y. Aharonov and D. Bohm. Signi�cance of Electromagnetic Potentials in
the Quantum Theory. Phys. Rev. 115, 485–491, 1959 (1, 2)
url: https://link.aps.org/doi/10.1103/PhysRev.115.485.

[186] S. Pancharatnam. Generalized theory of interference, and its applica-
tions. Proceedings of the Indian Academy of Sciences - Section
A 44 5, 247–262, 1956 (1, 2, 6, 56)
url: https://doi.org/10.1007/BF03046050.

[187] Shiing-shen Chern. On the Curvatura Integra in a Riemannian Manifold.
Annals of Mathematics 46 4, 674–684, 1945 (6)
url: http://www.jstor.org/stable/1969203.

[188] V.V. Vladimirskii. The rotation of polarization plane for curved light ray.
Dokl. Akad. Nauk. USSR 21, 222, 1941 (7, 56).

[189] S.M. Rytov. Transition from wave to geometrical optics. Dokl. Akad.
Nauk. USSR XVIII, 263, 1938 (7, 56).

[190] Conyers Herring. Accidental Degeneracy in the Energy Bands of Crystals.
Phys. Rev. 52, 365–373, 1937 (25)
url: https://link.aps.org/doi/10.1103/PhysRev.52.365.

[191] Erich Hückel. Quantentheoretische Beiträge zum Benzolproblem.
Zeitschrift für Physik 70 3, 204–286, 1931 (58)
url: https://doi.org/10.1007/BF01339530.

[192] Lev Shubnikov and Wander Johannes de Haas. Magnetische Wider-
standsvergrösserung in Einkristallen vonWismut bei tiefen Temperaturen.
Comm. Phys. Lab. Univ. Leiden 207a, 3–6, 1930 (32)
url: https://www.dwc.knaw.nl/DL/publications/PU00015868.pdf.

[193] Paul Adrien Maurice Dirac and Ralph Howard Fowler. The quantum
theory of the electron. Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical
Character 117 778, 610–624, 1928 (9)
url: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1928.

0023.

https://doi.org/10.1017/S0022112060000530
https://link.aps.org/doi/10.1103/PhysRev.115.485
https://doi.org/10.1007/BF03046050
http://www.jstor.org/stable/1969203
https://link.aps.org/doi/10.1103/PhysRev.52.365
https://doi.org/10.1007/BF01339530
https://www.dwc.knaw.nl/DL/publications/PU00015868.pdf
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1928.0023
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1928.0023


Summary

Geometric phases lead to a nontrivial interference result when an elec-
tron’s di�erent quantum mechanical paths choices encircle a magnetic coil
in an Aharonov-Bohm experiment. They are also responsible for the daily
precession of a Foucault pendulum in Paris. A dynamical shape change in-
duces a geometric phase, which, for instance, cats use to rotate when falling
and swimmers use to swim forward. A modern application of such geometric
phases has led to the notion of topological phases, which are described by
a global property of the system. These phases are very di�erent from the
classical phases of matter, which are characterized by a local order parameter.
A topological phase transition is therefore a fundamentally di�erent process
compared to a classical one as in a liquid-gas transition, because the former
requires a change of a global topological index of the system. Topological
phases can, for example, lead to the presence of traveling electronic modes
which are robust against being backscattered by obstacles at the boundary
of an insulator. This thesis describes some applications of geometric and
topological phases in soft-matter systems.

Chapter 2 focuses on a mechanical metamaterial which is modeled as a
network of beads that are connected by means of elastic rods. A designer shape
deformation or a spatial variation of the elastic modulus is shown to lead to
topologically nonequivalent states in such systems. A boundary between two
such nonequivalent systems is predicted to host a domain-bound vibrational
mode. This mode amounts to half of the beads vibrating, while the other
half are nearly stationary through breaking of a sublattice symmetry of such
modes. An application of such a phenomenon is presented as a recipe to
enhance this topological mode over all other vibrational modes of the system
by damping the vibrations of the second half of the beads. A speci�c case of
such domain-bound modes is extracted as a zeroth Landau-level state by a
formulation that maps the dynamical evolution of the vibrational modes of
this system to the quantum-mechanical motion of an electron in a magnetic
�eld.
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The third and fourth chapters study the light propagation in a liquid-
crystal medium. Liquid crystals are complex �uids that combine a unique
ability to manipulate light with the recon�gurability of soft materials. They are
at the core of modern display technology. Chapter 3 exploits a spatially varying
nematic pattern in such systems to �nd light waveguides that act similar to
an optical �ber. An explanation of such waveguiding regimes is through a
modifying term to Snell’s refraction law due to a spatial inhomogeneity of the
geometric Pancharatnam-Berry phase that light acquires by passing through
a liquid crystal medium.

Chapter 4 suggests that nematic liquid crystals can also be used as build-
ing blocks of topological materials that are key to realize protected unidi-
rectional waveguides, sensors and lasers. Building on recent advances in
liquid-crystal technology, it proposes that suitable spatial modulations of the
nematic director �eld are su�cient to assemble topological photonic materials.
These ideas pave the way for fully recon�gurable photonic devices based on
topologically protected states.

Chapter 5 shifts the focus to convective hydrodynamic systems. Rotating
Rayleigh-Bénard experiments as a prototypical model of rotating convective
systems are analyzed and the results of an ongoing study on the topological
origin of the so-called wall modes in such systems are presented. Simulations
of a simpli�ed Swift-Hohenberg model shows wall modes that are robust
against severe boundary changes. A linearization of this model around its
non-equilibrium steady state in one dimension shows signatures of the topo-
logical origin of this protection against backscattering through a non-trivial
topological index. A full description of such an out-of-equilibrium system
requires a generalization of this topological index for nonlinear models.



Samenvatting

In een Aharonov-Bohm experiment leiden geometrische fasen tot niet-
triviale interferentie wanneer de verschillende kwantummechanische paden
van een elektron een magnetische spoel omringen. Deze zijn ook verant-
woordelijk voor de dagelijkse precessie van de Foucault slinger in Parijs. Een
dynamische vormverandering veroorzaakt een geometrische fase die bijvoor-
beeld katten gebruiken om te draaien als ze vallen of zwemmers gebruiken om
vooruit te zwemmen. Een moderne toepassing van de geometrische fase heeft
tot het begrip geleid van een topologische fase, die door een globale eigen-
schap van het systeem wordt beschreven. Deze topologische fase is iets heel
anders dan het klassieke begrip van de fase van materie die wordt gekenmerkt
door een lokale ordeparameter. Een topologische faseovergang is daarom een
fundamenteel ander proces vergeleken met een klassieke, zoals bijvoorbeeld
een vloeistof-gasovergang, omdat bij de eerste een globale topologische index
van het systeem moet veranderen. Topologische fasen kunnen bijvoorbeeld
ook leiden tot de aanwezigheid van zich voortplantende elektronische modes
die robuust zijn tegen terugverstrooiing door obstakels op de grens van een
isolator. Dit proefschrift beschrijft enkele toepassingen van geometrische en
topologische fasen in zogenaamde zachte-materie systemen.

Hoofdstuk twee richt zich op een mechanisch metamateriaal dat gemodel-
leerd wordt als een netwerk van kralen die door elastische staven verbonden
zijn. Een slim ontworpen vervorming of een ruimtelijke variatie van de elasti-
citeitsmodulus blijkt tot topologisch niet-equivalente toestanden in dergelijke
systemen te leiden. Er wordt voorspeld dat de grens tussen twee van derge-
lijke niet-equivalente systemen een domeingebonden trillingsmode herbergt.
Het komt erop neer dat in deze mode de helft van de kralen trilt, terwijl de
andere helft bijna stationair is, een gevolg van het breken van een subrooster-
symmetrie. Als toepassing van een dergelijk fenomeen wordt voorgesteld om
deze topologische mode ten opzichte van alle andere vibratiemodes van het
systeem te versterken door de demping van de trillingen van de tweede helft
van de kralen te vergroten. Een speci�ek geval van zo een domeingebonden
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mode blijkt equivalent aan het nulde Landau-niveau, in een formulering die de
dynamische evolutie van de vibratiemodes van een dergelijk systeem afbeeldt
op de kwantummechanische beweging van een elektron in een magnetisch
veld.

In het derde en vierde hoofdstuk beschrijf ik de voortplanting van licht in
een vloeibaar kristal medium. Vloeibare kristallen zijn complexe vloeisto�en
die een uniek vermogen hebben om licht met behulp van de hercon�gureer-
baarheid van zachte materialen te manipuleren. Ze staan aan de basis van
moderne beeldscherm technologie. Hoofdstuk drie maakt gebruik van een
ruimtelijk variërend nematisch patroon in dergelijke systemen om lichtgolfge-
leiders te vinden die vergelijkbaar zijn met een optische �ber. De golfgeleiding
kan verklaard worden door een term aan te passen in de brekingswet van
Snellius als gevolg van een ruimtelijke inhomogeniteit van de geometrische
Pancharatnam-Berry fase die het licht verkrijgt als het door een vloeibaar-
kristalmedium heen gaat.

Hoofdstuk vier suggereert dat nematische vloeibare kristallen ook kun-
nen worden gebruikt als bouwstenen van topologische materialen om be-
schermde éénrichtings-golfgeleiders, sensoren en lasers te realiseren. Op basis
van recente ontwikkelingen in de vloeibaarkristaltechnologie, stellen we voor
dat geschikte ruimtelijke modulaties van de nematische as voldoende zijn
om topologische fotonische materialen samen te stellen. Deze ideeën kunnen
de weg banen voor volledig instelbare fotonische structuren op basis van
topologisch beschermde toestanden.

Hoofdstuk vijf focust op convectieve hydrodynamische systemen. Draai-
ende Rayleigh-Bénard vloeisto�en kunnen als een prototypisch model van
roterende convectie systemen worden geanalyseerd en de resultaten van een
studie naar de topologische oorsprong van de zogenaamde wand modes in
dergelijke systemen worden gepresenteerd. Simulaties van een vereenvoudigd
Swift-Hohenberg model tonen wand modes die goed tegen ernstige grensver-
anderingen kunnen. Een linearisatie van dit model rond zijn niet-evenwicht
stabiele toestand in één dimensie toont signaturen van de topologische oor-
sprong van deze bescherming tegen terugverstrooiing in de vorm van een
niet-triviale topologische index. Een volledige beschrijving van een dergelijk
systeem dat niet in evenwicht is, vereist een generalisatie van deze topologische
index voor niet-lineaire modellen.
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