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GLOSSARY
AIC = Akaike information criterion; Chr.Analg = chronic use of analgesics; CI = confidence interval; 
EFFmorphine = exponential effect of morphine concentration; ICU = intensive care unit; IQR = inter-
quartile range; kbVHC = kernel-based visual hazard comparison; M3G = morphine-3-glucuronide; 
NRS = numerical rating scale; OPCIC = optimization of procedural pain control in intensive care 
unit patients; PK-PD = pharmacokinetic-pharmacodynamic; RSE = relative standard error; RTTE =  
repeated time-to-event; SNP = single nucleotide polymorphism; WDFY4 = WD repeat- and FYVE 
domain–containing protein 4

KEY POINTS
• Question: Can morphine concentrations be related to the hazard of unacceptable pain follow-

ing cardiac surgery using repeated time-to-event modeling?
• Finding: A model was developed that predicts the hazard of unacceptable pain using the mor-

phine concentration, time after surgery, and time of day.
• Meaning: The low morphine concentrations that result from weaning may contribute to the 

high incidence of unacceptable pain following cardiac surgery.

BACKGROUND: Optimal analgesic treatment following cardiac surgery is crucial for both patient 
comfort and successful postoperative recovery. While knowledge of both the pharmacokinet-
ics and pharmacodynamics of analgesics is required to predict optimal drug dosing, models 
quantifying the pharmacodynamics are scarce. Here, we quantify the pharmacodynamics of 
morphine by modeling the need for rescue morphine to treat unacceptable pain in 118 patients 
after cardiac surgery.
METHODS:  The rescue morphine event data were analyzed with repeated time-to-event (RTTE) 
modeling using NONMEM. Postoperative pain titration protocol consisted of continuous mor-
phine infusions (median duration 20.5 hours) with paracetamol 4 times daily and rescue mor-
phine in case of unacceptable pain (numerical rating scale ≥4).
RESULTS: Patients had a median age of 73 years (interquartile range [IQR]: 63–77) and median 
bodyweight of 80 kg (IQR: 72–90 kg). Most patients (55%) required at least 1 rescue morphine 
dose. The hazard for rescue morphine following cardiac surgery was found to be significantly 
influenced by time after surgery, a day/night cycle with a peak at 23:00 (95% confidence interval 
[CI], 19:35–02:03) each day, and an effect of morphine concentration with 50% hazard reduc-
tion at 9.3 ng·mL−1 (95% CI, 6.7–16).
CONCLUSIONS: The pharmacodynamics of morphine after cardiac surgery was successfully 
quantified using RTTE modeling. Future studies can be used to expand the model to better 
predict morphine’s pharmacodynamics on the individual level and to include the pharmacody-
namics of other analgesics so that improved postoperative pain treatment protocols can be 
developed.  (Anesth Analg XXX;XXX:00–00)
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Adequate management of postoperative pain is 
crucial to ensure patient comfort and is asso-
ciated with reduced risk of extended hospi-

tal stay and chronic postoperative pain.1,2 The push 
toward increasingly faster postoperative recovery 
after cardiac surgery limits the extent to which analge-
sic treatment can be used to avoid postoperative pain, 
as this may delay transfer from the intensive care unit 
(ICU) to the ward.3,4 However, inadequate manage-
ment of postoperative pain is detrimental for patient 
comfort and increases the risk for chronic postopera-
tive pain, which occurs in an estimated 30%–55% of 
patients after cardiac surgery.1,2,5 Evidence-based 
management of postoperative pain following cardiac 
surgery should therefore strike a delicate balance 
between providing adequate analgesia when needed, 
and weaning from intravenous analgesia and subse-
quent extubation as early as possible.1,2,6

Postoperative pain titration protocols are com-
monly used to titrate toward adequate analgesia in 
the individual patient, but this cannot prevent the 
majority of patients from still experiencing moderate 
to extreme pain at some point after surgery.1,7,8 This 
is in part due to the inherent reactionary nature of 
pain titration. In an ideal situation, increased anal-
gesic requirements are predicted so that adequate 
analgesia can be administered before unacceptable 
pain occurs, for example, by increasing (background) 
analgesia during certain time frames (eg, directly after 
surgery or after weaning from intravenous analgesia) 
or in patient subgroups that are more likely to experi-
ence postoperative pain (eg, male/female patients or 
younger patients). This requires that we have quanti-
tative knowledge of the pharmacokinetics and phar-
macodynamics of analgesics used in patients after 
cardiac surgery, preferably on an individual level.

Population pharmacokinetic-pharmacodynamic 
modeling is a technique particularly suited for predic-
tions of drug requirements by providing a dynamic 
and quantitative understanding of pain and analge-
sic therapy.9 Repeated time-to-event modeling can be 
used to quantify the pharmacodynamics of analgesics 
by modeling the occurrence of the administration 
of rescue analgesia (eg, bolus dose of morphine).10,11 

Because rescue analgesia is administered in response 
to unacceptable pain, this approach puts a stronger 
focus on clinically relevant pain compared with mod-
eling all changes in self-reported pain scores.

Although there exists a variety of postoperative pain 
protocols, with some relying on multimodal analgesia, 
morphine remains one of the most commonly used 
drugs to treat postoperative pain. While the pharma-
cokinetics of morphine are relatively well understood, 
the knowledge of its pharmacodynamics is limited. To 
quantify the pharmacodynamics of morphine after car-
diac surgery, we performed a repeated time-to-event 
modeling analysis of rescue morphine data from a 
previously published study. This study included 118 
patients after cardiac surgery that were treated with a 
standardized anesthesia and postoperative pain titra-
tion protocol, and data from this study were previously 
used to quantify the pharmacokinetics of morphine.12,13

METHODS
Clinical Study
This study is a secondary analysis of data obtained 
from the optimization of procedural pain control in 
intensive care unit patients (OPCIC) study.12,13 This 
study was approved by the Institutional Review Board 
of the St. Antonius Hospital, Nieuwegein, and written 
informed consent was obtained before cardiac surgery 
from all subjects participating in the trial. The trial was 
registered at ClinicalTrials.gov before patient enroll-
ment (NCT00558090, principal investigator: Catherijne 
A. J. Knibbe, date of registration: November 14, 2007). 
The study included 118 adult patients during their 
stay at the ICU after cardiac surgery.

All patients were treated according to a standard-
ized postoperative pain titration protocol, which 
consisted of continuous intravenous infusions of 
morphine, and 4 times daily intermittent paracetamol 
at scheduled times. The pain was monitored using a 
numerical rating scale (NRS) that ranged from 0 to 10. 
All patients started on a continuous morphine infu-
sion (2 mg·h−1), which was lowered and eventually 
stopped when the patient reported negligible pain 
levels (NRS ≤ 1). In case of unacceptable pain (NRS 
≥ 4), additional rescue morphine was administered 
using bolus injections and, if patients were on con-
tinuous morphine infusion, the infusion rate was also 
increased by 0.5 mg·h−1. The first postoperative morn-
ing after surgery, patients received an additional bolus 
injection of morphine for procedural pain (ie, turn-
ing and/or chest drain removal) as part of the study 
protocol, for which patients were randomly assigned 
to receive either 2.5 or 7.5 mg morphine 30 minutes 
before the procedure. This planned bolus was given 
to all patients regardless of pain, and therefore not 
considered a rescue morphine dose in the pharma-
cokinetic-pharmacodynamic model. On leaving the 
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ICU, patients who still received continuous intrave-
nous morphine were switched to morphine as needed 
(intravenous or subcutaneous), and patient follow-
up ended. Additional details about the study, patient 
demographics, and the pain titration protocol can be 
found in a previous publication.13

Population Pharmacokinetic Model
Morphine and morphine-3-glucuronide plasma 
concentrations were measured 4 times daily in all 
patients, resulting in an average of 8 samples per 
patient.12 Concentrations were determined using high-
performance liquid chromatography-tandem mass 
spectrometry with within-day coefficients of variation 
below 6% for morphine, and below 11% for morphine-
3-glucuronide.12 We used a previously published pop-
ulation pharmacokinetic model, which resulted from 
a nonlinear mixed-effects analysis of these pharma-
cokinetic observations. From this model, considering 
the individual patient’s covariates, dosing history, and 
pharmacokinetic observations, we obtained the indi-
vidual post hoc predicted plasma concentrations of 
morphine and morphine-3-glucuronide. We then used 
these concentrations as input for the repeated time-to-
event model, without reestimating any of the param-
eters of the pharmacokinetic model (Figure 1).14

Pharmacokinetic-Pharmacodynamic Model 
Development
A repeated time-to-event model was used to character-
ize the hazard of (repeated) occurrences of rescue mor-
phine administration between the start of the morphine 
infusion and the last available data record before leav-
ing the ICU.15 This hazard represents the expected num-
ber of rescue morphine doses per hour in an individual 
patient.15 The input data for a repeated time-to-event 
model are the times at which a subject experiences an 
event, as well as the time at which the follow-up ends 
(ie, censoring data point). The likelihood of these data 
given the model is calculated according to16

P t e tevent hazard cumh( ) = ( ) × − ( )

P e tcensoring cumh( ) = − ( )

where hazard (t) represents the hazard of an indi-
vidual subject at the time of the event, and cumh (t) 
represents the cumulative hazard between the time of 
the previous event (or the time of follow-up start if 
the subject did not experience an event before time t)  
and the time t (the time of the event or the time of 
censoring).16

Different repeated time-to-event models were fit-
ted with NONMEM 7.3 (ICON plc, Dublin, Ireland) 
using the stochastic approximation expectation-maxi-
mization method to estimate the parameters that maxi-
mize the likelihood followed by an expectation-only 

step of the importance sampling method to obtain an 
objective function value suitable for hypothesis test-
ing.17 The CTYPE = 3 option was set, meaning that 
the NONMEM’s convergence test considers all model 
parameters. Mu-referencing was used in the model 
code.18 Competing models were compared using the 
objective function value (−2 times log likelihood) for 
nested models or the Akaike information criterion 
(AIC) for nonnested models.19 The visual evaluation of 
repeated time-to-event models is challenging due to the 
fact that the event and censoring data cannot be directly 
visually compared with the model-predicted hazard. 
Therefore, we used the kernel-based visual hazard com-
parison (kbVHC) as a model evaluation tool, which 
compares a kernel-based nonparametric hazard esti-
mate of the data with the mean hazard of the repeated 
time-to-event model over time.20 While the nonparamet-
ric hazard estimate may be smoother than the model-
predicted hazard, the model-predicted hazard should 
display a similar trend of the hazard over time with the 
nonparametric hazard estimate. CVtarget, the parameter 
that controls the smoothness of the nonparametric haz-
ard estimate of the kbVHC, was set to 25%.20

Structural Hazard Model
Constant hazard, Gompertz and Weibull models were 
tested to describe the effect of time after surgery on 
the hazard for requiring rescue morphine doses.15 In 
addition, a circadian or day/night variation of the 
hazard rate was explored, drug effect models based 
on Emax, sigmoid Emax, or exponential functions (with 
and without effect compartment) to characterize the 
effects of morphine and/or morphine-3-glucuronide 
on the hazard.14 To characterize the unexplained inter-
individual variability of the hazard, a log-normally 
distributed frailty term was included in all tested 
models. A significance level of .05 was used when 
comparing nested models using the likelihood ratio 
test. For nonnested models, we used the AIC, where 
the difference in AIC corresponds to stronger evi-
dence to prefer the model with the lower AIC.

Covariate Model
After the structural hazard model was developed, an 
exploratory covariate analysis was performed to iden-
tify covariates that would characterize interindivid-
ual variability of the hazard rate for rescue morphine. 
Covariates considered included patient demograph-
ics, perioperative and postoperative conditions, and a 
limited set of single nucleotide polymorphisms (SNPs) 
that have previously been reported to be associated 
with morphine’s pharmacokinetics or pharmacody-
namics.21,22 Potential covariates were first preselected 
using the Empirical Bayesian Estimates correlation 
test23 and then tested in the repeated time-to-event 
model using the likelihood ratio test in a stepwise 
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forward inclusion procedure (α = .05), followed by a 
backward elimination (α = .01) procedure.24

RESULTS
Clinical Study
The median follow-up of the 118 included subjects 
undergoing cardiac surgery was 42 hours (range, 
16–247 hours). Patients had a median age of 73 years 
(interquartile range [IQR]: 63–77), median body-
weight of 80 kg (IQR: 72–90 kg). Most patients were 
taken off continuous morphine infusion between 12 
and 24 hours after surgery. The median total duration 
of continuous morphine infusion during follow-up 
was 20.5 hours, with 83% of patients receiving <24 
hours of morphine infusion.

During ICU stay, a total of 155 events of rescue 
morphine administration were observed. The major-
ity of patients (55%) received at least 1 dose of rescue 
morphine, while 8% received rescue morphine on 
more than 3 occasions (Figure 2B). Figure 2A shows 
the follow-up of patients and occurrence of morphine 
rescue doses over time together with the period dur-
ing which morphine infusion was given. A relatively 
large number of rescue morphine events occurred 
between 24 and 48 hours after surgery. The major-
ity of rescue morphine events (ie, 74%) occurred 

after the morphine infusion was stopped (Figure 2). 
The median number of NRS scores collected in each 
patient was 8 (IQR: 6–11), with 64% of the scores indi-
cating negligible pain (NRS ≤ 1), and 9% of the scores 
indicating unacceptable pain (NRS ≥ 4).

Pharmacokinetic-Pharmacodynamic Modeling
Model development started with a base model with a 
constant hazard over time, and additional parameters 
were added to the model in a stepwise manner if this 
addition significantly improved the fit of the rescue 
morphine event data (Supplemental Digital Content 1,  
Table S1, http://links.lww.com/AA/D211). Adding 
an exponential effect of morphine concentration 
(EFFmorphine) significantly improved the fit of the data 
(P < .001), and performed better than (sigmoid) Emax 
models. Going from a constant hazard to a Gompertz 
model, where the hazard declines exponentially over 
time from a baseline HAZbase with an estimated slope 
HAZslope, further improved the model (P < .001). To 
reduce a bias observed in the kbVHC, a circadian or 
day/night variation of the hazard was also included in 
the model by estimating the parameters CIRCamp and 
CIRCshift, and fixing CIRCperiod to 24 hours (Table) (P < .05).  
Including an effect of morphine-3-glucuronide on the 
hazard did not improve the model any further (P > .05).  

Figure 1. Flow chart showing how the observed data from the OPCIC study feeds into the current repeated time-to-event modeling analysis of 
rescue morphine after cardiac surgery. The upper part of the figure illustrates the nonlinear mixed-effects or population PK modeling analysis 
of OPCIC PK data by Ahlers et al,12 which provided the individual post hoc estimated PK parameters. These PK parameters, and the morphine 
dosing records, are used in the current PK-PD analysis to obtain morphine and M3G concentrations over time, which are used in the RTTE 
analysis of the OPCIC rescue morphine data. M3G indicates morphine-3-glucuronide; OPCIC, optimization of procedural pain control in inten-
sive care unit patients; PK-PD, pharmacokinetic-pharmacodynamic; RTTE, repeated time-to-event.

http://links.lww.com/AA/D211
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Interindividual variability was identified for the base 
hazard of the Gompertz model and could not be pre-
cisely estimated for any other model parameter.

In the covariate analysis, 3 statistically significant 
covariates were identified, that is, the genotype for the 
WD repeat- and FYVE domain–containing protein 4 
(WDFY4) gene was found as covariate for the slope of 
the exponential relationship between morphine con-
centration and the hazard (COVWDFY4), while sex and a 
history of chronic analgesic use were found as covari-
ates on the hazard for requiring rescue morphine 
(COVsex and COVanalgesics, respectively), see Table. More 
specifically, the slope of the exponential relationship 
between morphine concentration and the hazard was 
reduced by 82% (95% confidence interval [CI], 49–120) 
in patients with the WDFY4 SNP (rs17011183, P < .001, 
11% of study population), women (25% of study pop-
ulation) had an estimated 63% (95% CI, 34–79) lower 
hazard than men (P = .003) and patients with a history 
of chronic use of analgesics (16% of study population) 
had a 121% (95% CI, 11–342) higher hazard (P = .007). 
Final parameter estimates can be found in Table and 
the NONMEM model code in Supplemental Digital 
Content 2, Information, http://links.lww.com/AA/
D258. After the development described above, the 
individual hazard of a patient is defined as

Hazard

sin
2

i

HAZ HAZ time

amp

base slope since start

CIRC

=

× + ×

+ ×( )e

1
ππ × +( )









× +

timeclock shift

period

EFF WDFY

CIRC

CIRC

morphinee
44 ×( ) ×( )

× + ××

COV

sex COV analgesic use COV

WDFY4 mor

sex analges

C

e( iics i) ( )× e η

where Hazardi = individual hazard estimate of sub-
ject i; HAZbase = natural log base hazard of Gompertz 
model; HAZslope = slope natural log base hazard of 
Gompertz model; timesince start = hours since patient 
started initial morphine infusion; CIRCamp = relative 
amplitude of circadian hazard variation; timeclock = 
time in hours since last midnight; CIRCshift = shift of 
circadian hazard variation; CIRCperiod = period of cir-
cadian hazard variation; EFFmorphine = slope of expo-
nential morphine effect; WDFY4 = 1 if patient has the 
WDFY4 SNP and 0 otherwise; COVWDFY4 = additive 
covariate effect of WDFY4 SNP on slope of morphine 
effect; Cmor = morphine concentration in ng·mL−1; sex = 0  
if male and 1 if female; COVsex = natural log covariate 
effect of female sex on base hazard; analgesic use = 1 if 
patient is using analgesic chronically and 0 otherwise; 
COVanalgesics = natural log covariate effect of history 
of analgesic use on base hazard; ηi = post hoc esti-
mate of the individual frailty term of subject i. Due to 
the complexity of this equation, the different hazard 
functions that form the final model are illustrated in 
Figure 3 and Supplemental Digital Content 3, Figure 
S1, http://links.lww.com/AA/D259 (the latter with 
inclusion of the precision of the parameter estimates).

Figure  4 shows the model evaluation of the final 
model using the kbVHC method,20 in which the non-
parametric hazard estimate (representing the observa-
tions) is compared with the mean hazard of the model 
(representing model predictions). The figure shows 
for the nonparametric hazard estimate of the data a 
drop in the hazard for morphine rescue between 12 
and 18 hours, and an elevated hazard between 24 and 
40 hours, which is the period after most morphine 
infusions are stopped. A similar pattern is seen in 

Figure 2. Overview of rescue morphine event data. A, Overview of follow-up time (horizontal lines) and rescue morphine administration (orange 
stars) of 118 patients included in the study. The black part of the horizontal line indicates the time during which a patient received a continu-
ous morphine infusion while the blue part of the horizontal line indicates the absence of a continuous morphine infusion during follow-up. The 
ends of the horizontal lines indicate the censoring time of each patient. B, Overview of the number of rescue morphine events experienced 
by individual patients.

http://links.lww.com/AA/D258
http://links.lww.com/AA/D258
http://links.lww.com/AA/D259
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the mean of the individual hazard predictions of the 
final model, confirming the goodness of fit. The ker-
nel bandwidth is predominantly low (<10 hours) in 
the first 48 hours of the study, which indicates a good 
time resolution of the kernel hazard estimate to show 
changes in the hazard over time (Figure 4B). Later in 
the study, the kernel bandwidth increases above 10 
hours, which results in a smoother kernel hazard esti-
mate that is less likely to show variations in the haz-
ard over time. As the number of subjects in follow-up 
decrease toward the end of the postoperative follow-
up, the 95% CI of the nonparametric hazard estimate 
increases in width (Figure 4).

DISCUSSION
There is a lack of pharmacodynamic knowledge of 
analgesics to support improved pain-management 

protocols. In this study, we quantified the pharmaco-
dynamics of morphine following cardiac surgery in 
118 patients using repeated time-to-event modeling of 
rescue morphine dosing data. Through the develop-
ment of a pharmacodynamic model, we were able to 
quantify the concentration-effect relationship of mor-
phine in this population with good precision and iden-
tified a significant influence of time after surgery and 
a day-night difference in need for rescue morphine 
(Supplemental Digital Content 3, Figure S1, http://
links.lww.com/AA/D259). The model was evalu-
ated using the kbVHC, which compares the model 
predictions with a nonparametric hazard rate, which 
indicated that the model characterized the observed 
rescue morphine data well (Figure  4). The kbVHC 
is an internal model validation tool, and it would be 
valuable to also externally validate the model with a 
new data set.

With the model correctly describing the observed 
rescue morphine doses in these patients after cardiac 
surgery, we here compare the model parameters that 
affected the hazard for rescue morphine over time 
with literature values. The morphine concentration, 
which reduced the hazard of rescue morphine by 50% 
in our model, was estimated at 9.3 ng·mL−1 (95% CI, 
6.7–16), which corresponds with the reported thera-
peutic window of morphine (9–80 ng·mL−1).25 The 
Gompertz function that characterizes the decrease of 
the hazard after surgery is consistent with observa-
tions that average pain levels after cardiac surgery 
slowly decrease during the week after surgery.26,27 
We also identified a day/night variation of the haz-
ard rate in this study, with the highest hazard around 
23:00 (95% CI, 19:35–02:03). Other pain studies have 
found day/night or circadian variations in a variety 
of experiments and clinical settings, but the direction 
of these patterns was context-dependent.28

Because a direct relationship between morphine 
and a lower hazard for rescue morphine was found, 
it seems that slower weaning or alternative strate-
gies are needed to reduce the occurrence of unac-
ceptable pain following cardiac surgery when the 
continuous infusion of morphine is stopped. Possible 
alternative strategies include the use of multimodal 
analgesic regimens and/or the use of oral, epidural, 
or intrathecal opioids.29,30 Data from studies where 
such alternative analgesic regimens are used can be 
used to extend the current model to also quantify the 
pharmacodynamics of other analgesics, so that this 
knowledge may ultimately be used to improve post-
operative pain protocols. This extension would also 
expand the applicability of the model, because the 
current model does not apply to institutions that do 
not use morphine as a first-line analgesic.

Another option to reduce the occurrence of unac-
ceptable pain events would be to adjust the timing 

Table.  Parameter Estimates and RSE of Final 
Pharmacokinetic-Pharmacodynamic Model of 
Rescue Morphine in Patients After Cardiac Surgery
Parameters 
(Units) Submodel Estimate (RSE)
Gompertz hazard

e
HAZ HAZ timebase slope since start+ ×( )  

 HAZbase (h−1)  −2.89 (11%)
 HAZslope (h−1)  −0.0134 (46%)
Circadian rhythm 1

2
+ ×

× ( )
CIRC sin

time + CIRC

CIRCamp
clock shift

period

π
 

 CIRCamp (-)  0.307 (40%)
 CIRCshift (h)  7.18 (23%)
 CIRCperiod (h)  24 fixed
Morphine effect e

EFF + WDFY4 COV Cmorphine WDFY4 mor×( ) ×( )  
 EFFmorphine 

(mL·ng−1)
 −0.0744 (20%) 

 COVWDFY4 
(mL·ng−1)

 0.0609 (26%)

Covariates on 
base hazard e(sex COV +analgesicUse COVsex analgesics× × )

 

 COVsex (-)  −0.98 (29%)
 COVanalgesics (-)  0.794 (45%)
Interindividual 

variability e(ηi)  

 Frailty ω 2 (-)  0.523 (35%)

The final hazard model is Hazardi
HAZ +HAZ timebase slope since start= ×( )e

× + ×
× ( )









×

1 CIRC sin
2 time +CIRC

CIRCamp
clock shift

period

EF

π

e
FF + WDFY4 COV sex COV +analgesic morphine WDFY4 mor sex×( ) ×( ) ××

C
e( uuse COV ( i)analgesics× ×) .e η

where Hazardi = individual hazard estimate of subject i; HAZbase = natural log 
base hazard; HAZslope = slope natural log base hazard; timesince start = hours 
since patient started initial morphine infusion; CIRCamp = relative amplitude 
of circadian hazard variation; timeclock = time in hours since last midnight; 
CIRCshift = shift of circadian hazard variation; CIRCperiod = period of circadian 
hazard variation; EFFmorphine = slope of exponential morphine effect; WDFY4 = 1  
if patient has the WDFY4 SNP and 0 otherwise; COVWDFY4 = additive 
covariate effect of WDFY4 SNP on slope of morphine effect; Cmor = morphine 
concentration in ng·mL−1; sex = 0 if male and 1 if female; COVsex = natural log 
covariate effect of female sex on base hazard; analgesic use = 1 if patient 
is using analgesic chronically and 0 otherwise; COVanalgesics = natural log 
covariate effect of history of analgesic use on base hazard; ηi = post hoc 
estimate of the individual frailty term of subject i; Frailty ω2 = variance of 
frailty term.
Abbreviations: EFFmorphine, exponential effect of morphine concentration; RSE, 
relative standard error; WDFY4, WD repeat- and FYVE domain–containing 
protein 4.
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and doses of the pain titration protocol, because 
many unacceptable pain events that occurred after 
cessation of the morphine infusion might have been 
avoided if the morphine infusion was stopped more 
gradually. Additionally, the risk of unacceptable 
pain levels might be higher when weaning is initi-
ated in the late afternoon or evening, because this 
would cause morphine concentrations to be low 

when the hazard for requiring rescue morphine is at 
the peak of its day/night cycle around 23:00 (95% CI, 
19:35–02:03).

From the patient characteristics that we tested 
as covariates, 3 emerged as significant predictors of 
increased risk for unacceptable pain: male sex, a his-
tory of chronic analgesia use, and WDFY4 genotype. 
One or more of these covariates could theoretically be 

Figure 3. Visual illustration of the different submodels (ie, Gompertz hazard, day/night cycle, and morphine effect) of the final repeated 
time-to-event model, including the covariates sex, Chr.Analg, and WDFY4 genotype. The hazard of a typical individual (without interindividual 
variability) can be obtained by multiplying the Gompertz hazard (left panel) with the relative hazards from the other 2 panels. Chr.Analg = 
indicator whether or not patient chronically used analgesics before the study, indicated by a value of 1 or 0, respectively. WDFY4 = 1 indicates 
patients with the rs17011183 polymorphism in at least 1 allele of the WDFY4 gene. An adaptation of this figure that includes uncertainty of 
the model parameter is provided in Supplemental Digital Content 3, Figure S1, http://links.lww.com/AA/D259. Chr.Analg indicates chronic 
use of analgesics; WDFY4, WD repeat- and FYVE domain–containing protein 4.

Figure 4. kbVHC of the final PK-PD model. A, Model evaluation of the final PK-PD model by visual comparison of the nonparametric hazard and 
the model-predicted hazard using the kbVHC.20 The solid red line depicts the mean of the model-predicted individual hazard estimates of all 
noncensored individuals while the black dashed line and the gray shaded area depict the kernel estimate of the hazard rate in the data and 
its 95% confidence interval. B, Local bandwidth over time used to generate the kernel hazard estimate in (A). The higher the kernel bandwidth, 
the smoother the kernel estimate of the hazard rate becomes. PK-PD indicates pharmacokinetic-pharmacodynamic; kbVHC, kernel-based 
visual hazard comparison.
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used to individualize analgesic treatment, for exam-
ple, by providing more aggressive analgesia to males 
to compensate for a higher baseline risk of unaccept-
able pain. However, it is important to note that the 
covariates identified here would need to be further 
validated in external data sets before the implemen-
tation of pain protocol adjustments based on these 
covariates in the clinic can be considered. This is due 
to the exploratory nature of the covariate search in 
this study, which resulted in wide CIs of the covari-
ate effects (Supplemental Digital Content 3, Figure S1, 
http://links.lww.com/AA/D259) and increased the 
chance that false-positive covariates were identified 
among correlated covariates.31

Although we investigated a wide range of pos-
sible predictors of morphine requirements, we did 
not study potential psychological variables that are 
known to play an important role in pain percep-
tion.32–34 We also did not incorporate the potential 
morphine-sparing effect of paracetamol in the model, 
because pharmacokinetic data of paracetamol were 
not collected during the clinical study, and all subjects 
received the same paracetamol doses.35 Proteomics 
and metabolomics data would have also been valu-
able for their potential prognostic value for postoper-
ative pain treatment, and might also provide insight 
into the mechanisms that underlie the considerable 
between-subject differences in morphine require-
ments.36,37 Finally, the adverse effects of morphine, 
such as the occurrence of ventilatory depression over 
time, were not systematically recorded in this study. 
If they were, the adverse events could also have been 
analyzed with repeated time-to-event modeling, 
which could have allowed predictions of analgesia 
protocols that optimize the benefit-risk profiles of 
morphine.38

In conclusion, we used repeated time-to-event 
modeling to quantify the pharmacodynamics of mor-
phine in the treatment of postoperative pain follow-
ing cardiac surgery. The model adequately described 
the observed data and allowed us to quantitatively 
explain a period of increased unacceptable pain, 
which occurred after continuous infusions of intrave-
nous morphine were stopped in most patients. Our 
findings suggest that slower weaning and/or use 
of alternative strategies might be needed to reduce 
the occurrence of unacceptable pain following car-
diac surgery. The capacity of the model to propose 
improved postoperative pain-management protocols 
can be further enhanced in future studies by (1) inclu-
sion of the pharmacodynamics of drugs used in other 
(multimodal) postoperative pain-management proto-
cols, (2) inclusion of the adverse effects of analgesic 
treatment, and (3) validation of the prediction of the 
pharmacodynamics of morphine on the individual 
level. E
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