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ABSTRACT
We show how an existing concurrent multi-scale method named hybrid particle field-molecular dynamics (hPF-MD) can be adapted to
enable the simulation of structure and/or structural dynamics in compressible systems. Implementing such new equations of state (EOS) into
hPF-MD, while conserving the efficiency associated with treating intermolecular interactions in a continuum fashion, opens this method up
to describe a new class of phenomena in which non-uniform densities play a role, for example, evaporation and crystallization. We care-
fully consider how compressible hPF-MD compares to its mean-field counterpart for two particular EOS, adopted from the Cell Model for
polymers and the Carnahan–Starling expression for hard spheres. Here, we performed a very basic analysis for a single-component system,
focusing on the significance of various particle-based parameters and the particle-to-field projection. Our results illustrate the key role of the
particle density per field grid cell and show that projection based on a Gaussian kernel is preferred over the standard cloud-in-cell projection.
They also suggest that the behavior of hPF-MD close to the critical point is non-classical, i.e., in agreement with a critical exponent for a pure
particle description, despite the mean-field origin of the method.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027778., s

I. INTRODUCTION

Most of the conventional computational methods that are capa-
ble of describing structuring and structure formation in multi-
component systems at the mesoscale, for instance, dissipative
particle dynamics (DPD) and self-consistent field (SCF) theory, are
incapable of describing liquid–liquid or liquid–vapor coexistence in
a single-component or “pure” system. The origin of this limitation
is hidden in the representation of the excluded volume interactions
by a Helfand penalty term for nearly incompressible systems in SCF
or by (purely repulsive) interparticle forces in DPD that are linearly
dependent on the particle separation distance. As both choices give
rise to a quadratic equation of state (EOS) for pressure in terms
of the density, they lack the necessary van der Waals loop. Vari-
ous experimental phenomena, however, involve phase coexistences,

with prominent examples in polymeric systems being the solvent
evaporation that takes place upon thermal annealing of spin-coated
block copolymer films, which may particularly affect microstructure
orientation, and the coexistence of liquid ordered and disordered
phases in lipid membranes. A pragmatic but not necessarily accurate
work-around for simulating evaporation phenomena by conven-
tional DPD or SCF is the introduction of an “air” component, either
in terms of particles or a field, with the excluded volume interactions
of a solvent.

In a seminal paper that appeared in 2001, Pagonabarraga and
Frenkel1 introduced a hybridization procedure to set up simula-
tions within the DPD framework according to a preferred EOS,
in their case the ones associated with a van der Waals fluid and
that of a binary mixture. To do so, they introduced interactions
that depend on a local excess free energy in terms of smoothed
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density fields, which can be extracted from the (local) particle struc-
ture via an appropriate projection scheme. The projection that
they considered is natural in the sense that it agrees with a well-
known procedure in field-theoretic modeling in which densities are
obtained from instantaneous particle configurations via the micro-
scopic density operator. However, to introduce an effective vol-
ume for individual (DPD) particles, they replaced the standard δ-
functions by normalized weight functions w(r), which has the effect
of smoothing the density. The name “multibody” or “many-body”
DPD (MDPD), particularly referring to the mean-field aspects of
this approach, was soon after (2002) attributed to the method by
Trofimov,2 who proposed a way to capture the effect of particle
correlations that are absent in the original MDPD method, but are
of particular significance in stronger non-ideal systems for which
the method was designed. By matching MDPD simulation results
with the target (mean-field) EOS, which includes multi-body effects
by construction, their self-consistent scheme is able to iteratively
determine corrections to the densities obtained from the original
projection scheme of Pagonabarraga and Frenkel.1 They illustrated
the success of their approach by reproducing phase behavior for a
Lennard-Jones (LJ) fluid and a compressible Huggins fluid.

Next, in 2003, Warren3 published a study that provided a new
interpretation of MDPD. By splitting the conservative forces into
purely attractive and density-dependent repulsive contributions, he
obtained an EOS of third order in the density that contains a van der
Waals loop. The weight functions used for the conservative MDPD
forces and for the density assignment turn out to be related, meaning
that they cannot be chosen independently, and he introduced dif-
ferent ranges for the attractive and repulsive interactions in order to
stabilize the liquid–vapor interface, which he validated by simulating
a pendant droplet. Although not illustrated, the use of Trofimov’s
approach for correcting the assignment scheme toward reproduc-
tion of the mean-field EOS remains an option. The equivalence
of liquid–vapor interface properties calculated using the MDPD
approach of Warren3 and Multi-body Monte Carlo (MMC) was
reported by Ghoufi and Malfreyt.4 They showed that the contri-
bution of the repulsive part of the conservative forces to the total
surface tension is rather sensitive to the range of these density-
dependent interactions, thereby highlighting the sensitivity to this
parameter.

The community that describes structure formation and dynam-
ics in polymeric materials by field-theoretic models has also explored
the opposite direction, i.e., to hybridize (mean-field) SCF method-
ology by the introduction of molecular details. As with MDPD, we
only shortly review principal directions, noting that most generally
applicable hybrid descriptions have started from a mean-field free
energy for (nearly) incompressible systems such as polymers, i.e.,
based on the conventional treatment of excluded volume interac-
tions. Among the class of methods that aim at incorporating fluctu-
ations in a mean-field description, the Single Chain in Mean Field
(SCMF) method of Daoulas and Müller5,6 employs a Monte Carlo
(MC) technique to update particle-based chain conformations until
their projected densities are consistent with (external) potentials that
are derived from such a mean-field (SCF) free energy. It is also the
starting point for the hybrid MD-SCF method that Kawakatsu and
Milano7 introduced in 2009, which employs similar potentials but,
unlike SCMF, evolves particle-based systems via Newton’s equations
of motion, replacing “hard” non-bonded interaction forces by much

“softer” forces that are obtained as spatial derivatives of field-based
potentials. To avoid confusion between classical mean-field SCF and
these newer hybrid approaches, we adopt the recently introduced
acronym hPF-MD (hybrid particle field method-molecular dynam-
ics) for MD-SCF, and we acknowledge these two principle direc-
tions in hybrid particle-field modeling by further referring to the
method of Daoulas and Müller as hPF-MC. Both hPF approaches
have been successfully applied to simulate structure formation and
structural processes in polymeric and lipidic systems. An interesting
but more particular development considers incorporating the effect
of molecular-scale density correlations into the van der Waals the-
ory for the liquid–vapor interface, as set forward in a series of papers
by Katsov, Weeks, and coworkers.8

While MDPD and the hPF approaches are conceptually closely
linked, they do inherit properties from their parent techniques.
Numerical evaluation of continuum theories such as SCF requires
the introduction of a computational grid, which, in addition to
general issues such as the isotropy and precision of finite differ-
ence (FD) operators, introduces a sensitivity to the chosen projec-
tion scheme. In particular, whereas the pairwise interactions and
the density assignment in MDPD are translationally invariant, the
projection scheme in hPF methods usually does not satisfy this
property. As a consequence, particles may experience anomalous
self-interactions,11 which appears to be the reason why hPF appli-
cations have thus far focused on dense, nearly incompressible sys-
tems for which this effect is less relevant and a quadratic density
functional representation of excluded volume interactions is appro-
priate. Nevertheless, higher-order density functionals that are capa-
ble of representing liquid–vapor coexistences have been considered
within the hPF-MC approach for studying phenomena in polymeric
and amphiphilic systems in which density variations do play a key
role.5,9,10 Yet, in 2010, Homberg and Müller considered a third order
density functional and MDPD, rather than hPF-MC, to evaluate a
liquid-to-gel transition in a single-component lipid bilayer mem-
brane.12,13 Moreover, in contrast to taking the standard quadratic
weight functions in combination with different ranges for the attrac-
tive and repulsive interactions proposed by Warren,3 they proposed
to consider another weight function for the attractive term and
equal ranges for all interactions. The apparent trade-off with hPF,
however, is the need for setting up neighbor lists to evaluate the
density projection and pairwise interactions, which renders MDPD
computationally much less favorable than hPF.14

In the present study, we propose new hybrid particle-field
Hamiltonians for compressible systems, which give rise to compress-
ible hPF-MD or c-hPF-MD that couples efficiency to the ability to
simulate phase coexistences. We do so by replacing the conven-
tional harmonic Helfand term for excluded volume interactions by
a term that introduces higher order contributions of the density in
the equation of state for the pressure, inspired by the excess free
energy with respect to an ideal gas.15 We considered two existing
expressions: one adopted from the Cell Model (CM) for polymer
melts and another from the Carnahan–Starling (CS) model for hard
spheres, but, in principle, any excluded volume term that relates to a
desired EOS could be implemented. We particularly focus on inves-
tigating the role of the projection scheme, which is a key issue in
hPF approaches for a much broader range of applications. Finally,
we evaluate the role of hybridization in the phase behavior for our
new c-hPF-MD method.
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II. THEORY
A. The hPF-MD method

For algorithmic and/or technical details of hPF-MD, or MD-
SCF as it is referred to in older publications, we refer to published
work. Here, we only repeat the essentials, and note that this method
follows the SCF philosophy for treating the intermolecular interac-
tions, by replacing “hard” Lennard-Jones interactions between par-
ticles by “soft” mean-field interactions between particle concentra-
tion fields, while treating the intramolecular interactions associated
with particles in a molecule in the spirit of MD. For reasons of
consistency, we adopt the existing notations as much as possible.
In the hybrid approach of hPF-MD, the interaction term for the
non-bonded interactions between molecules is given by

W[{ρK(r)}] = Fc
[{ρK(r)}] + Fe

[{ρK(r)}], (1)

with Fc and Fe containing the cohesive and excluded volume inter-
actions given by

Fc
[{ρK(r)}] =

1
2 ∫

V

∑
KK′

χKK′ρK(r)ρK′(r)dr, (2)

Fe
[{ρK(r)}] =

κH

2 ∫
V

(∑
K
ρK(r) − ρ0)

2dr, (3)

where V is the (simulation) volume, ρK (r) is the particle den-
sity for particles of type K at position r, and χKK ′ = χK ′K is an
interaction matrix that has the dimension of energy times volume.
The expression in (2) is the familiar Flory–Huggins parameter to
describe mean-field cohesive interactions between concentration
fields labeled by particle types K and K′.

The second term in (1), i.e., the Helfand penalty function (3),
relates to the compressibility of the system, which should be con-
strained when simulating liquids. Penalizing deviations from a con-
stant background value ρ0 = ∫V ∑KρK (r)dr/V rather than introduc-
ing strict constraints on the total mass transfer introduces small
variations of the total density field∑KρK around this reference value,
thereby enabling a control of excluded volume interactions. The
strength κH , where the subscript H refers to the Helfand origin, is
of the same units as χ and sets the tolerated deviation from the con-
stant total number density of segments ρ0. Although its value can
be estimated based on theoretical considerations, it is usually cho-
sen based on considerations about the permitted (small) amplitude
of fluctuations or noise.

In the hybrid approach of hPF-MD, it is essential to realize that
the free energy is a functional of the instantaneous distribution of
particles (in the form of density fields), which fluctuates over time.
Its mean-field character is derived from the assumption that its func-
tional derivative defines a conservative mean-field potential that can
be used to calculate forces on each particle from the (fluctuating)
surrounding density field. Non-bonded interactions are thus taken
into account by introducing this mean-field interaction potential

VK(r) =
δ(W[{ρK(r)}])

δρK(r)

=∑
K′

χKK′ρK′(r) + κH(∑
K
ρK(r) − ρ0). (4)

The resulting mean-field forces on a particle of type K are then given
by

FK(r) = −∇rVK(r) = −∑
K′
(χKK′ + κH)∇rρK′(r). (5)

If we were to consider a one-component system with a uniform
particle density ρK (r)→ ρ(r) = ρ = n/V, the pressure of the system is
then straightforwardly calculated by considering the volume deriva-
tive of the total free energy, F = Fid + W with Fid = kBTn ln(nΛ3/V),
giving

p = −(
∂F
∂V
)

n,T
= kBTρ + 1

2(χ + κH) ρ2, (6)

which one could relate to the isothermal compressibility of water to
obtain a realistic estimate for κH .

B. Incorporating other equations of state
In this study, we are interested in simulating compressible sys-

tems, in particular liquid–vapor coexistence. It is then necessary
to replace the harmonic Helfand term (3) by a term that intro-
duces higher order density contributions in the equation of state
for the pressure. Here, we introduce an interaction term inspired
by the excess free energy with respect to an ideal gas15 and replace
the Helfand penalty term in (3) by

Fe
[{ρK(r)}] = −kBT∑

K
∫

V
ρK(r) ln c(r)dr, (7)

where the functional c(r) represents an insertion probability corre-
sponding to the effective fraction of accessible free space.

In the following, we focus on systems containing only particles
of a single type with density ρ(r) and consider two known options
for the insertion probability c(r) that have not been considered
before in the context of hPF,

c(r) =
⎧⎪⎪
⎨
⎪⎪⎩

(1 − η
1
3 )

3 (Cell Model)

e−
η(4−3η)
(1−η)2 (Carnahan–Starling),

(8)

where η = η(r) is a dimensionless volume fraction related to the
density as η(r) = νρ(r). For more general expressions in the case
of multiple particle species, we refer to the work of Maurits et al.15

While the parameter ν is introduced as the particle volume, we show
that it acts as a scaling factor that restrains the insertion probability
c(r) to a certain interval.

To determine the mean-field forces corresponding to these
two expressions, we first consider the corresponding interaction
potentials,

Ve
(r)

kBT
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

− ln(1 − η
1
3 )

3
+ η

η
2
3 −η

(CM)
η(4−3η)
(1−η)2 + 4η−2η2

(1−η)3 (CS).
(9)

These expressions give rise to a total force on particles for the Cell
Model (CM),

F(r)
kBT

= −

⎡
⎢
⎢
⎢
⎢
⎣

χ̃ +
4
3η(r)

2
3 − η(r)

(η(r)
2
3 − η(r))2

⎤
⎥
⎥
⎥
⎥
⎦

∇rη(r), (10)

and for the Carnahan–Starling (CS) model,
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F(r)
kBT

= −[ χ̃ +
2(η(r) − 4)
(1 − η(r))4 ]∇rη(r), (11)

where we have defined the dimensionless interaction parameter,

χ̃ ≡
χ

kBT ν
. (12)

In the original CS model for hard spheres, the free energy is writ-
ten in terms of the packing fraction and the volume ν corresponds
to the volume ν = πσ3/6 of a single, spherical hard-sphere particle
with diameter σ. The corresponding equation of state for the pres-
sure has shown to provide a good approximation for hard spheres up
to η ≲ 0.55. Particles in our hPF model, however, possess no intrin-
sic physical size or volume: they are essentially point particles and
there is, in principle, no bound on the number density of the system.
The approach in the compressible hPF-MD scheme is then to per-
form an MD simulation of n particles in a simulation box of volume
V so that the overall number density is ρ0 = n/V. The local particle
density ρ(r) is obtained by projecting individual particles to a cubic
grid with spacing ℓ via a projector scheme that is discussed later on
in more detail. As a next step, the density is rescaled by the total
density ρ0 and the volume parameter ν to define the dimensionless
fraction variable

f (r) ≡
ν ρ(r)
ℓ3 ρ0

. (13)

In addition to this fraction, also the average particle number per grid
cell ρ̃0 = ℓ3 ρ0 is an important dimensionless parameter that should
be conserved when directly comparing different setups. Finally, the
force on each particle is calculated replacing η(r) → f (r) in either
(10) or (11). For a one-phase system, this procedure would lead to
the average fraction being equal to f = ν̃ = ν/ℓ3, but in a two-
phase system, the system phase separates in two regions with average
fractions below and above ν̃, i.e., f = f v and f = f ℓ. By varying χ̃, c-
hPF-MD can be employed to construct a phase diagram (PD). In this
study, we concentrate on the role of hybridization and discretization
in this phase behavior and on a comparison with the phase diagrams
obtained by regular MD simulations and the corresponding CM or
CS mean-field theory.

C. The particle-to-mesh projection
The mean-field potentials needed for the determination of

forces on particles due to non-bonded interactions are self-
consistently obtained from an instantaneous projection of particles
of type K at position r to a corresponding field ρK (r). In com-
putational setups, however, continuum variables or fields are only
known on the nodes of a computational grid or mesh, which is
usually chosen to be uniformly distributed with spacing ℓ; these
mesh values are consequently employed to evaluate forces on a
staggered grid via appropriate finite-difference (FD) gradient oper-
ators. Although some projections consider the simplest assign-
ment of particles to the nearest grid point, most hybrid particle-
field methods, including hPF-MD, employ an efficient cloud-in-cell
(CIC) scheme to assign particle fractions to all the nearest (in 2D:
four and in 3D: eight) grid nodes using trilinear interpolation [see
Fig. 1(a)]. Yet, a disadvantage of this efficient procedure is that it
lacks translational invariance. For instance, a single particle cen-
tered in a grid cell would provide ρ( ) = 1/4 for all four nearest
neighbors, while translating the computational grid as a whole by

FIG. 1. Schematic (2D) illustration for a single particle (black sphere) of the two
considered projection schemes: (a) cloud-in-cell (CIC) scheme in which parti-
cle fractions are geometrically assigned to nearest grid nodes (red cubes). As
an example, the normalized area of the blue shaded rectangle adjacent to node
three is assigned to the opposite node 1. (b) Assignment by Gaussian smearing.
Nodes that receive a weighted (normalized) particle fraction are shown by circles:
nearest—red, next nearest—blue, and next next nearest—green. In both cases,
gradients are computed on a staggered grid (orange) from density values at their
nearest (red) nodes.

s⃗ = (ℓ/2, ℓ/2)T would change that in only one ρ( ) = 1 and all
other three ρ( ) = 0. Although this effect is clearly less significant for
dense particle systems, the CIC assignment procedure brings along
undesired discretization artifacts or an unphysical introduction of
self-interactions.16

One may, however, also consider other projection schemes.
One option is to project and at the same time introduce effec-
tive particle volumes via one of the C1 smoothing kernels pro-
posed in smoothed particle hydrodynamics (SPH). While remain-
ing reasonably local, depending on the choice of the kernel, it
has the advantage over the CIC projection that translation invari-
ance is retained and that these kernels can be analytically differ-
entiable. Some of us have previously employed a Gaussian kernel
to assign density values exp(−d2

/σ2
)/N to the 16 (2D) or 64 (3D)

grid nodes surrounding each particle, with d being the geomet-
ric distance between the particle position and the considered grid

node location, σ = ℓ being the spread, and
being an appropriate normalization constant.17 Although this gives
rise to an eightfold increase of the computational effort needed
for projection when compared to CIC, it retains the separation
between bonded and non-bonded interactions and, thus, the effi-
ciency of parallelization. In particular, since the particle density in
the vapor phase will be low, we will consider this projection as well.
To enable direct comparison, we will not exploit the analytic dif-
ferentiability that comes with using Gaussian kernels in this study
but instead rely on the existing FD gradient operators. Another,
very recent suggestion is to determine densities from the force
density,18

F(r) = ⟨
n

∑
i=1

δ(ri − r)fi⟩, (14)

with fi being the force acting on particle i using the expression
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ρ(r) = ρ0 +
β

4π ∫
r′ − r
∣r′ − r∣3

⋅ F(r)dr′. (15)

Evaluating this integral in Fourier space would resolve the essen-
tial non-locality of (15). Nevertheless, we leave such alternative
projection schemes for the future.

Any projection algorithm attributes fractions of each particle
to the surrounding grid nodes adding up to one, so the sum of all
densities over the computational grid should be given by

∑
K,rk∈grid

ρK(rk) = n, (16)

if we correctly account for periodic boundaries. Moreover, normal-
ization of this particle density ρ(r) by the average value ρ0 renders
the non-bonded interactions independent of the chosen number
of particles n, which is a desired property for any hybrid method
that mixes continuum and discrete variables. Yet, we focus on two
limiting cases for a fixed volume V.

At the lower limit, i.e., for small n, the vapor fraction f v may
relate to an average number of particles per grid cell in the vapor
phase that drops below one, meaning that the discrete particle sys-
tem is inapt to represent the lowest free energy state in the con-
tinuum representation. For this reason, we have to ensure that ρ(r)
≥ 1/ℓ3 for the most stable state, which translates into a lower bound
n = nmin for which the average number of particles per grid ρ̃0
= ℓ3n/V = n/Ṽ satisfies ρ̃0fv/ν̃ = 1. For the other extreme, i.e.,
upon increasing n to a large value nmax, we find that ρ̃0 → ∞.
Thus, if we consider the hybrid method a discrete version of the SCF
description, both models should give fully consistent results (the
continuity condition). Consequently, any realistic choice of nmin < n
< nmax that stems from an experimentally measured density should
be appropriate but may introduce discretization effects in the field
representation, which one may think of as tuning the noise level in
the continuum (field) variable. We will consider this relation further
in Sec. III.

D. Discrete gradients
Gradients of the density fields are obtained using a finite dif-

ference (FD) gradient operator Dℓ on a grid that is staggered with
respect to the density field grid (see Fig. 1 and previous publica-
tions for more details).19 While FD operators are known to pro-
vide an approximate of their continuum counterparts, a direct
relation between the discretization error and the grid spacing ℓ
should be absent for our system that exhibits no genuine length
scale. To quantify this statement, we also considered simulations
for a reduced grid spacing and equally reduced time step. For
the standard case, ℓ = 1.0 nm, we usually selected a time step
of 0.3 ps, noting that there are only soft non-bonded interactions
and that a larger time step will speed up equilibration. We used
the original discrete gradient operator of Milano et al.14 A more
isotropic operator was recently proposed,17 but we note that they
provide equivalent results for the flat interfaces considered in this
study.

An important observation is that the force balance is sensitive
to the way the gradients are evaluated. For the considered setup,
the attractive forces of (5), i.e., Fatt = −∇(χρ), should balance the
repulsive forces Frep = −∇Ve, where Ve is one of the two inter-
action potentials of (9). In our implementation, we simply replace

∇ by Dℓ and interpolate gradient values on the staggered grid to
determine the total force on each particle. Numerical evaluation
showed that replacing ∇ by Dℓ in expression (10) or (11), which
were derived following rules for the continuum gradient, shifts the
balance between attractive and repulsive forces via an effective scal-
ing of Frep. This small but significant shift of the phase bound-
aries was identified by a direct comparison to both the selected
implementation and the phase boundaries determined by mean-field
theory.

To investigate and minimize the role of discrete (gradient)
operators completely, we may also compare the reference mean-field
binodal to the one that is numerically obtained by a Monte Carlo
(MC) approach. In this approach, we determine the (fluctuating)
density field that optimizes the density-dependent mean-field free
energy (1) with a term for the translational entropy included. As
usual in MC, a random move (of maximum size rmax) is performed
on a randomly selected particle in each step, which is accepted or
rejected based on a criterion that involves the free energy of the
updated projected particle distribution. As such, the MC results
provide insight into the validity of our implementation and into
the significance of artifacts that appear due to the chosen projec-
tion scheme. We have considered different rmax and two starting
conditions—a fully mixed state and the final phase-separated state of
the hPF-MD simulations—to evaluate key dependencies and show
only data for one set. Each MC run comprises roughly 4 ⋅ 108 MC
steps.

E. Simulation setup
1. Microscopic representation

It is good to realize that one may select any molecular repre-
sentation and any system composition in the hPF-MD approach,
albeit that a continuum representation is not equally valid for all
resolutions. For the current purpose of computationally analyzing a
liquid–vapor coexistence, we concentrate on a one-component sys-
tem, i.e., a system containing only single particles or beads, which
is the standard coarse grained (CG) description for a solvent. Each
of these CG particles usually represents a small number of solvent
molecules. In the Martini method, for instance, CG water particles
represent four H2O molecules. We note that, in standard condi-
tions, liquid water contains about 33 molecules per a unit volume
of 1 nm3, while an ideal gas has about 0.027 molecules in the same
volume.

2. Dimensionless units
It is convenient, but by no means necessary, to report numeri-

cal results in physically sensible units. We therefore scale lengths and
time as r̃ = r/r0 and t̃ = t/t0, with r0 = 1 nm and t0 = 1 ps, and con-
sequently velocities as ṽ = v/v0 with v0 = 1 m/s. Temperature and
mass are given as T̃ = T/T0, with T0 = 1 K, and m̃ = m/m0, with m0
= 1 amu, while energy is in kJ (=1000 kg m2/s2). All simulations start
from a Maxwell–Boltzmann distribution for the particle velocities at
a given (kinetic) temperature T̃ with an average kinetic energy,

1
2

m̃⟨∣ṽi∣
2
⟩ =

3
2
αT̃, (17)
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with α = kBT0/m0v
2
0 = 0.008 31. The configurational temperature is

sometimes advocated as a better measure,20 but it is based on the
gradient and Laplacians of the interaction potentials, so we rely
on the standard procedure of monitoring the kinetic temperature
instead. In our case, the phase behavior should be insensitive to the
simulation temperature, which only scales time, and indeed, we find
fully matching coexistence curves at T = 100 K and 298 K for a
system considered with Carnahan–Starling (CS) for ν̃ = 1/8 and
ρ̃0 = 2.92.

3. Simulation settings
The grid spacing ℓ should be larger than the effective particle

radius (which is σ = 0.47 nm for Martini) to make physical sense, but
also small enough to keep sufficient spatial resolution (our default
value is ℓ = 1 nm). As a special note, we again mention that the
choice of ℓ is irrelevant for single particle systems, since they carry
no explicit length scale. Initially, all n particles are placed in a volume
V = Lx × Ly × Lz with periodic boundary conditions. For all calcu-
lations of phase coexistence, a rectangular simulation volume with
Lx = 8ℓ, Ly = 8ℓ, and Lz = 42ℓ was chosen. Unless mentioned oth-
erwise, particles are initially placed to occupy only half of the total
volume.

The restricted x- and y-dimensions of the simulation volume
may not allow us to study particular interfacial properties, but they
are sufficient for the determination of the coexistence values of the
(fractional) densities f v and f ℓ in the liquid and vapor phases, which
is our main goal. Updates of the “slow” field variables are usually
performed only every tenth MD steps or even less frequent,14 but,
for this study, we performed field updates every MD time step for
consistency. This setup means that our density and potential fields
are instantaneous quantities. Moreover, although we are primar-
ily interested in thermodynamic (equilibrium) properties, we used
the recently developed Multi Particle Collision Dynamics (MPCD)
extension of hPF-MD that accounts for momentum transfer17 and
has been shown to accelerate phase separation. Owing to the selected
phase-separated starting state and the enhanced MPCD kinetics, we
may restrict ourselves to relatively short trajectories of 30 000 time
steps, with the first 25 000 steps serving the purpose of equilibration
and thermalization. During simulation, we monitor the evolution
of W[ρ] to check convergence. Subsequently, stored particle posi-
tions for 50 instances collected at equal intervals during the last
5000 time steps were used to determine particle profiles in a post-
processing step. Instead of projected densities, we consider particle
profiles obtained by binning with a bin width of 0.05 nm along the
longest z-direction, i.e., perpendicular to the liquid–vapor interface,
where we average over x and y coordinates and scale by a factor ρ̃0/ν
to obtain f (z).

When χ̃ is below the critical value χ̃c, single-component sys-
tems will phase separate into particle-rich (liquid) and particle-
poor (vapor) regions when performing nVT-simulations with an
excluded volume term (7). As in experiments, the average frac-
tion f = ν̃ of the system associated with the homogeneous sit-
uation should be chosen in an interval between the two coexis-
tence curves, i.e., fv < ν̃ < fℓ, for the system to exhibit phase
separation. It is also clear that, as in experiments, the volume of
the liquid and vapor regions is tuned by the choice of the scal-
ing parameter ν̃. Here, we will consider two values of ν̃: ν̃ = 1/4
and ν̃ = 1/8.

III. RESULTS AND DISCUSSION
A. Mean-field phase diagram

To obtain the reference values for the new hybrid model, we
first determine liquid–vapor, mean-field phase diagrams for a one-
component field description, considering both the Cell Model and
the Carnahan–Starling expression for the excluded volume interac-
tions (7).

The usual mean-field expression for the (grand) free energy as
a function of the (number) density ρ is given by

Ω(ρ)
V
≡ g(ρ) = fhs(ρ) +

χ
2
ρ2
− μ ρ, (18)

where f hs(ρ) is the free energy (per volume) of a hard-sphere refer-
ence system and μ is the chemical potential that has to be chosen
such that a liquid and vapor phase coexist, i.e., μ = μcoex. The usual
interaction parameter χ can be expressed in terms of the attractive
interactions between molecules,

χ = ∫ dr⃗12 Uatt(r). (19)

For f hs(ρ), we shall specifically consider both the Carnahan–Starling
expression

f CS
hs (ρ) = kBT ρ ln(ρ) + kBT ρ

(4η − 3η2
)

(1 − η)2 (20)

and the Cell Model expression

f Cell
hs (ρ) = kBT ρ ln(ρ) − 3 kBT ρ ln(1 − η1/3

), (21)

with the usual volume fraction η = (π/6)ρσ3 for a molecular diame-
ter σ. More generally, the volume fraction can be defined as η ≡ νρ,
in line with the simulations. The free energy in terms of the volume
fraction can be recast in a form such that the dependence on ν van-
ishes. For instance, for the Carnahan–Starling expression, the free
energy can be rewritten as

Ω ν
kBT V

≡ g(η) = η ln(η) + η2 (4 − 3η)
(1 − η)2 +

χ̃
2
η2
− μ̃ η, (22)

where again χ̃ ≡ χ/(kBT ν) is the dimensionless parameter.
The procedure to determine the phase diagram from the

expression for g(η) in (22) (or any similar expression) is outlined in
the supplementary material. The resulting phase diagram is shown
in Fig. 2.

Also shown in Fig. 2 are MD simulation results for a Lennard-
Jones system. In order to compare with the MD results, we have set
ν = (π/6)σ3 and χ̃ = −26.394/T∗, where T∗ ≡ kBT/ε is the usual
Lennard-Jones reduced temperature. The numerical factor in the
expression for χ̃ is determined by inserting the attractive part of
the Lennard-Jones potential used by Watanabe et al.21 into (19).
In Fig. 3, the same results are shown in terms of the usual reduced
Lennard-Jones units.

B. Monte Carlo route to the mean-field phase
diagram for CS

Before analyzing the compressible hPF-MD approach, we
shortly review an alternative free energy minimization method for
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FIG. 2. (Left) Mean-field liquid–vapor phase diagram as a function of the interaction parameter χ̃ and volume fraction η for the Carnahan–Starling and cell model expression
for the hard-sphere free energy. The square symbols are MD simulation results from Watanabe et al.21 (Right) The same results using a logarithmic scale for η.

fluctuating fields, which are obtained as the projection of mov-
ing particle ensembles in MC. For simplicity, we focus on the
Carnahan–Starling model. This approach thus complements the
mean-field treatment for CS in Subsection III A, concentrating on
the validity of the implementation and on the performance of the
considered projection schemes. By ruling out the finite difference
operators and interpolation schemes altogether, these results can
also be employed to offset hPF-MD results in Subsections III C
and III D.

In each MC step, a randomly selected particle is displaced over
a random direction by a step size that is upper bounded by rmax. This
move is rejected or accepted based on the standard MC criterion that

FIG. 3. Mean-field liquid–vapor phase diagram as a function of reduced tempera-
ture T∗ = kBT /ε and density ρ∗ = ρσ3 for the Carnahan–Starling expression for
the hard-sphere free energy. The square symbols are MD simulation results from
Watanabe et al.21

considers the difference in free energy for the old and new projected
fields, which can be efficiently calculated since density fields only
change in a few lattice positions. On average, we performed about
8 × 108 steps for different ρ0 with a dimensionless rmax between rmax
= 0.1 − 0.5ℓ. Although MC results do not depend on such algo-
rithmic parameters, selecting proper values for the step size and
the number of MC steps, as well as the average particle density, is
important in our case.

Here, we draw inspiration from two observations. While the
considered free energy functional lacks a square-gradient term that
promotes a reduction in the total surface area, surface tension is
included via the non-locality of the interactions, which can be tuned
by the particle-to-field projection. For the considered number of
MC steps, we nevertheless observe that the high- and low-density
phases do not grow beyond the scale of a few cells, which suggests
that this tension is low. Desiring narrow density distributions, we
therefore selected a small rmax. Moreover, the low-density phase will
install a requirement for the actual number of particles per grid cell
that suggests a choice for a higher ρ0. Numerically, we indeed found
that density distributions become better defined with decreasing rmax
and increased ρ0; we focused our analysis on the results with the
narrowest distributions.

As expected, when starting from a homogeneous particle dis-
tribution, phase separation into vapor and liquid nuclei is quick, but
the growth of these small nuclei into larger domains is significantly
impeded. Lacking a well-defined, extended liquid–vapor interface,
we determined f v and f ℓ from the density distribution by fitting
the two peaks to Gaussians. For the projection using the Gaussian
kernel, which gives rise to a broader density distribution due to its
longer-ranged interactions, we started from the final snapshot of the
hPF-MD simulations for the same χ̃. Here, we report only the mean
and standard deviations of these Gaussian fits.

Concentrating on the phase behavior determined by MC (see
Figs. 4 and 5), it is clear that the results for both projection schemes
agree very well with the mean-field binodal curves. Two types of
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FIG. 4. Phase diagrams for the Carnahan–Starling model determined from the Monte Carlo (MC) treatment for two different projection schemes: CIC (left) and the Gaussian
kernel (right). Simulations were performed at different particle densities, with n = 7836 (ρ̃0 = 2.92), n = 16 896 (ρ̃0 = 6), and n = 37 632 particles (ρ̃0 = 14) occupying a
volume Ṽ = 8 × 8 × 42. The mean-field phase diagram for the Carnahan–Starling model is added as a reference.

deviations from the mean-field prediction can be observed (see Fig. 6
for details): (1) for the cloud-in-cell projection scheme, the f ℓ shows
a constant relative offset to the reference values, while the liquid frac-
tions for the Gaussian kernel show perfect agreement within numer-
ical precision, especially for the largest average particle density con-
sidered, and (2) as expected, the vapor fraction f v determined by
simulation is somewhat sensitive to the issue of representability for
both projection schemes. An equivalent conclusion is that the vapor
phase is more sensitive to fluctuations. Yet, also here, the Gaussian

kernel projection provides the best results, breaking down only when
the reference fractions correspond to a very low number of particles
per grid cell.

In addition to the phase diagrams, we also performed MC for
a system at χ̃ = −16, i.e., above the critical χ̃c or in a single (mixed)
phase. In a mean-field description, such a homogeneous situation
should not carry any structure, meaning that ρ(r) = ρ0 at each grid
node. The density field obtained from MC, however, will fluctuate
over time, but if we average out this fluctuating part by averaging

FIG. 5. Data of Fig. 4, but on a log-linear scale for closer inspection of the vapor branch.
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FIG. 6. Relative differences (f ana − f num)/f ana between the mean-field value f ana

and the numerically determined average value f num for the considered χ̃. Open
symbols denote the fraction fℓ in the liquid phase, and closed symbols denote
the corresponding f v of the vapor phase. The two projection schemes are distin-
guished by different symbols:◻ (CIC) and ○ (Gaussian kernel), while colors reflect
the particle densities considered (see Fig. 4 for the color scheme).

over a long time (in our case: many MC moves), the radial distribu-
tion function (RDF) should approach unity for all radial distances.
In other words, hypothetically, the (averaged) MC result should be
equivalent to a homogeneous field on the field level and to an ideal
gas on the particle level.

Figure 7 shows actual RDFs (left) obtained from MC results
for both projection methods considered. We find that the RDFs are
very similar and show a weak correlation hole at the closest dis-
tances. Concentrating on the particle profiles along the x-direction
in the computational cell [see Fig. 7 (right)], we see that roughly the
same RDF corresponds to a parabolic particle-in-cell distribution for
the CIC projection scheme and a much more evenly spread distri-
bution for the Gaussian kernel projection. As such, they illustrate
distinct features of the two projection schemes. For completeness,
we note that the particle-in-cell profiles along the other Cartesian
directions are equivalent. Moreover, we find that the correlation hole
increasingly fills in and that the particle-in-cell distribution increas-
ingly flattens for an increased choice of ρ0 (results not shown), as
expected.

Overall, we conclude that the MC results for a Gaussian ker-
nel agree within numerical precision with the mean-field reference
curves and that the cloud-in-cell projection also does a proper job.
Since the CIC projection is more efficient than the Gaussian kernel
projection, by a factor of 8 (8 vs 64 grid points for each particle),
a basic investigation of dependencies, i.e., properties that are insen-
sitive to the selected projection scheme, is performed for hPF-MD
with the standard CIC projection.

C. Properties of the hybrid CS model
The comparison of Fig. 2 clearly shows that the mean-field

Carnahan–Starling (CS) model is more accurate than the Cell Model
(CM) in reproducing the phase behavior of the Lennard-Jones par-
ticle system, which, in turn, has been shown to match the phase
behavior of neon in the vicinity of the critical point. For clarity of
presentation, we therefore limit our investigation of the new com-
pressible hPF-MD method to the CS model in this study, just like in

FIG. 7. Radial distribution functions G(r) vs radial distance r (left) and cell profiles f (x) vs x direction (right) for the two projection methods: linear interpolation (CIC, solid line)
and Gaussian kernel (Gaussian, dashed line). Simulations involved 1.5 × 108 MC moves (rmax = 1.5ℓ) and a Ṽ = 10 × 10 × 10 volume, for χ̃ = −16, with ν̃ = 1/8 and
ρ̃0 = 2.92 (n = 2915 particles). Cell profiles were obtained as histograms, averaging over cells and 3 × 104 MC steps (each separated by 2915 steps) at the end of the MC
trajectory by binning with a bin width of 0.01.
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Subsection III B. We refer to the supplementary material for a few
exemplary results for the cell model. Our standard particle density
ρ̃0 = 2.92 particles per grid cell.

Particle fractions in the vapor and liquid phases, f v and f ℓ, are
usually determined by fitting the simulated liquid–vapor interface
profile to the functional form imposed by Maxwell–van der Waals
theory,22

f (z) = fv +
fℓ − fv

2
(tanh(

z − z0

λ
) + 1), (23)

where z0 and λ are the position and thickness of the interface, respec-
tively. Interfacial profiles are obtained from time-averaging and
binning of simulated particle distributions instead of particle con-
centration fields. After all, the compressible hPF-MD scheme is
particle-based. We note however that, close to the critical point,
long-range correlations give rise to composition fluctuations that
render the determination of tanh-profiles far from ambiguous. The
same can be said for systems far away from the critical point, i.e.,
at higher liquid phase density, where the liquid–vapor interface is
found to show the oscillatory behavior that has been predicted and
discussed before.8,23,24 Especially for liquid domains of restricted
dimensions (see the previous discussion about its relation to the
choice of ν̃), one may wonder how these oscillations affect the fit-
ting procedure for f ℓ. To be concise, we alternatively determined
f v and f ℓ from the average bulk densities in the liquid and vapor
phases. Direct comparison shows that both procedures give rise to
very similar results.

First, we consider the same homogeneous system (χ̃ = −16)
that was previously considered with MC (see Fig. 7 for a reference).
Figure 8 shows the RDFs (left) and particle-in-cell distributions
(right) obtained by simulating this system using compressible

hPF-MD for both projection methods considered. The results are
clearly well in line with the expectations expressed in the discussion
in Subsection III B. Close inspection reveals that the Gaussian ker-
nel projection gives rise to a slightly smoother RDF, which is closer
to unity for all radial distances.

Next, we discuss exemplary density profiles for a few selected
χ̃ = χ/(kBTν) < χ̃c (see Figs. 9–11) and focus on the effect of
smoothing as well as the choice of the particle volume ν and the
grid spacing ℓ in the phase separation characteristics. Starting with
smoothing (see Fig. 9), we observe that the interfacial particle pro-
files for the systems closest to the critical values χ̃c agree quite well
with the grid-restricted values of the smoothed continuum represen-
tation, as well as the tanh functional form (23). For deeper quenches
or more negative χ̃, however, profiles relating to the two represen-
tations are still very similar in terms of average properties, but they
start to deviate in detail. We observe distinct oscillatory behavior,
i.e., particle enrichment close to the liquid–vapor interface followed
by depletion in the liquid phase, the amplitude of which increases
with decreasing χ̃. Previously, such excluded volume oscillations
have been attributed to nonlocal correlations that are not fully cap-
tured by short-ranged pair correlations in LJ fluids.8 They can be
seen as a realistic physical phenomenon, albeit that they are usually
considerably damped by capillary wave fluctuations of the interface.8

An aspect worth mentioning is that while the thermodynamic
laws underlying phase-equilibria in hPF simulations and mean-field
SCF are the same, the EOS and density dependence of chemical
potential in hPF differ from the mean-field SCF because of fluctu-
ations and local correlation effects that the mean-field SCF neglects.
Moreover, in hPF-MD, equilibrium is reached via a (dynamic)
balance of particle forces stemming from attractive and repulsive

FIG. 8. Radial distribution functions G(r) vs radial distance r (left) and cell profiles f (x) vs x direction (right) for the two projection methods: linear interpolation (CIC, solid line)
and Gaussian kernel (Gaussian, dashed line). The compressible hPF-MD simulations considered 5 × 104 time steps in total and a Ṽ = 10 × 10 × 10 volume, for χ̃ = −16,
with ν̃ = 1/8 and ρ̃0 = 2.92 (n = 2915 particles). Cell profiles were obtained as histograms, averaging over cells and the last 3 × 104 MD steps by binning with a bin width of
0.01.
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FIG. 9. Density profiles f (z) (solid lines) and grid values (open circles) as a function
of the height z (in nm) determined from compressible hPF-MD simulations for dif-
ferent values of χ̃ with ν̃ = 1/8 and ρ̃0 = 2.92. Profiles are obtained as histograms
by binning with a bin width of 0.1 nm and averaged over time as well as x and y
directions.

interactions, whereas in the mean-field SCF, the chemical poten-
tials in the liquid and vapor phases have to match exactly. In
fact, each particle in the MD-SCF can be seen subjected to an
external field generated by the particle ensemble. By determining

FIG. 10. Density profiles f (z) (solid lines) and grid values (open circles) as a func-
tion of the height z (in nm) determined from compressible hPF-MD simulations for
different values of χ̃ with ν̃ = 1/4 (solid line) and ν̃ = 1/8 (dotted line). Results
are obtained for ρ̃0 = 2.92.

FIG. 11. Density profiles f (z) (solid lines) and grid values (open symbols) as a
function of the height z (in units of ℓ) determined from compressible hPF-MD sim-
ulations for different values of χ̃ with ℓ = 1 nm (solid line with circles) and ℓ = 0.5
nm (dotted line with squares). In some case, results have been shifted along the
horizontal direction for clarity. Results are obtained for ν̃ = 1/8 and ρ̃0 = 2.92.

particle forces from (excess chemical) potentials of SCF via a sequen-
tial particle-to-field and field-to-particle projection, we neglect
higher frequency fluctuations in the underlying particle density. In
particular, although the average density over a grid cell is indeed
found to match the field-based density values quite well, these fluc-
tuations are lost in the smoothed field representations (see Fig. 9).
Consequently, this fluctuating component is also absent in the forces
that each of the particles experience, and we may thus conclude that
the force density is also smoothed. Particularly, when the potential
μ(f ) is very sensitive to minute variations in f, which is the case for
larger f in the CS model, this may have an observable effect on the
detailed force balance. Such an issue is complementary to the issue of
representability, which requires that there are sufficient particles per
grid cell or sufficiently small and non-empty grid cells to warrant a
smooth projected ρ. Since these two conditions are only satisfied for
minute grid cells that are all occupied by at least a single particle, i.e.,
incompatible with liquid–vapor coexistence in most practical setups,
the phase behavior for the hybrid model may always slightly devi-
ate from that of the mean-field SCF even when the fluctuations are
averaged out of the hPF-MD results during post-processing.

As analytically predicted, the particle volume ν is found to
be an independent parameter (see Fig. 10) that sets the volume
ratio between the liquid and vapor phases in the simulation vol-
ume. Yet, while the liquid and vapor fractions f ℓ and f v show no
notable dependence on ν, the amplitude of the oscillations close
to the liquid–vapor interface can be seen to vary. Close inspection
reveals that these oscillations, which are present at either side of the
liquid–vapor interface, are often not fully symmetric.
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Next, we test our observation that a physical length scale is
absent in our setup by simulating the same systems for a twice denser
grid (i.e., for ℓ = 0.5 nm, see the results in Fig. 11). For direct compar-
ison, we have used ℓ as the reference length scale for the visualization
of profiles instead of the usual r0 = 1 nm. We indeed find good agree-
ment between all results for the two different ℓ, albeit that the interfa-
cial properties vary slightly, which is in line with our earlier findings.
Yet, in the absolute sense, the width of the interfacial profile can be
seen to scale with ℓ, which highlights the hPF-MD property that the
range of the non-bonded interactions varies with the grid spacing.
After all, smoothed particle fields are obtained by the projection of
particle fractions to neighboring grid points within a certain range,19

so particle pairs separated by more than that amount of grid points
do not interact.

A comparison of results for the same system but an increas-
ing number of particles that is added to the volume (see Fig. 12)
highlights the role of the hybridization. Particularly for smaller ρ̃0
< 10, the discrete particle system is not fully adequate in describ-
ing the continuum field variable at equilibrium, which gives rise to a
slight mismatch compared to the limiting profile that is increasingly
approximated for higher values of ρ0. In absolute terms, however,
these deviations remain small, particularly when taking into account
that the fluctuations in the binned particle profile are roughly of the
same magnitude as this mismatch.

The effect of the two considered projection schemes, cloud-in-
cell (CIC) and a Gaussian kernel (Gaussian), on the smoothness and
interfacial thickness of the profile is shown in Fig. 13. While restrict-
ing the interaction range is quite standard, e.g., truncating the LJ
potential beyond a certain cutoff is usual in MD, the new aspect
of hPF-MD is that the interaction range varies automatically with
changing ℓ. The consequence is that not only the total (potential)

FIG. 12. Density profile grid values (open symbols connected by lines to guide the
eye) as a function of the height z (in nm) determined from compressible hPF-MD
simulations for different values of ρ̃0, obtained by varying the number of particles
in the simulation volume Ṽ = 8 × 8 × 42 between n = 8064 and n = 75 264. Grid
values are collected by averaging over the last 50 snapshots of a simulation that
considered 20 000 steps in total. Results are obtained for ν̃ = 1/4 and χ̃ = −40.

FIG. 13. Density profiles f (z) as a function of the height z (in nm) determined from
compressible hPF-MD simulations for different values of χ̃. Two types of projec-
tion schemes are considered: cloud-in-cell (CIC, solid line) and a Gaussian kernel
(Gaussian, dotted line). Results are obtained for ν̃ = 1/4 and ρ̃0 = 2.92.

energy of a system depends on the selected ℓ but also that simple
evaluation of discretization artifacts by systematically varying ℓ is
not a viable option. Compared to mean-field SCF on the other hand,
where field interactions are entirely localized [see the cohesive term
in (3)], the same non-ideal term gives rise to a finite interaction range
through the projection algorithm in hPF-MD. This shows that the
hPF method truly belongs to a separate class. We set ℓ = 1.0 nm in
the remainder.

D. Phase diagram for the Carnahan–Starling model
The phase diagram (PD) obtained by hPF-MD simulation with

the Carnahan–Starling model is shown in Figs. 14–16 for several
values of the various parameters, different projection methods, and
two different approaches employed to determining liquid and vapor
fractions from particle density profiles. Profiles were determined
from time-averaging over many instantaneous particle conforma-
tions along a fixed trajectory. Figure 14 compares fractions f v and f ℓ
that are either obtained by fitting the averaged liquid–vapor interface
profile to the tanh-form or by determining averaged plateau values
in the liquid and vapor regions. Mean-field results have been added
as a reference.

We note that this comparison confirms our earlier statement
that both approaches used for analysis give rise to very similar results
for both projection schemes considered. Only for the strongest inter-
actions or lowest χ̃ considered, the selected approach makes a dif-
ference. In this range, determination of f v by averaging provides
slightly reduced values when compared to tanh fitting, for both pro-
jection schemes, and the opposite can be seen for the f ℓ relating to
the cloud-in-cell projection. We note that these findings are easily
understood in terms of a mismatch of the actual profile from the
imposed functional form, which was, after all, derived from mean-
field theory. Fluctuations, which are more pronounced in the dilute
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FIG. 14. (Left) Phase diagram for the Carnahan–Starling model determined from compressible hPF-MD simulations. Two projection schemes and two routines for extracting
f v and fℓ are considered: the cloud-in-cell (CIC) method or projection based on a Gaussian kernel (Gaussian), and fitting the density profile to a tanh-profile or by calculating
the average density in bulk. Simulations were performed for ν̃ = 1/8 and ρ̃0 = 2.92 in a volume Ṽ = 8 × 8 × 42. (Right) The same data but on a log-linear scale for closer
inspection of the vapor branch. The mean-field phase diagram for the Carnahan–Starling model is added as a reference.

phase, are not included in a mean-field description. In particular, as
discussed in some detail before, particle profiles for deeper quenches
start to display increasingly distinct oscillatory behavior close to the
interface, both in the liquid and vapor phases, the amplitude of
which is more pronounced for the cloud-in-cell than the Gaussian
kernel projection and the same χ̃. Clearly, since such features are
absent in any mean-field profile, fitting to such a reference will lead

to a small but notable mismatch. We will thus further consider the
averaging approach.

Finally, we focus on the hPF-MD results and the role of the grid
spacing ℓ and the maximum particle density ρ0/ν. Repeating the ear-
lier argument that our system lacks any distinct length scale, it is
good to find that the phase diagram for ℓ = 1.0 nm and ℓ = 0.5 nm
is consistent over the χ̃-range considered (see Fig. 15). Small

FIG. 15. (Left) Phase diagram for the Carnahan–Starling model determined from the compressible hPF-MD simulations. Simulations were performed using the cloud-in-cell
(CIC) projection method and different parameter combinations: ν̃ = 1/4 or ν̃ = 1/8, ℓ = 0.5 nm or ℓ = 1.0 nm, and ρ0/ν = 23.36 or ρ0/ν = 112. (Right) The same data but on
a log-linear scale for closer inspection of the vapor branch. The mean-field phase diagram for the Carnahan–Starling model is added as a reference.
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FIG. 16. (Left) Phase diagram for the Carnahan–Starling model determined from the compressible hPF-MD simulations. Simulations were performed using the Gaussian
kernel projection method and for two different particle densities n = 7836 (ρ̃0 = 2.92) or n = 37 632 particles (ρ̃0 = 14) occupying a volume Ṽ = 8 × 8 × 42. (Right) The
same data but on a log-linear scale for closer inspection of the vapor branch. The mean-field phase diagram for the Carnahan–Starling model is added as a reference.

mismatches can be seen for deeper quenches where there is a rep-
resentability issue due to the fact that some of the grid cells in the
vapor phase are necessarily devoid of particles. Another issue that
may add to the tiny mismatch in this particular case is the size of
the simulation volume, which is eight times reduced for ℓ = 0.5 nm,
and the likewise reduced volumes of the liquid and vapor domains,
which may play a role in the averaging procedure. As before, the
phase behavior can indeed be seen independent of the effective vol-
ume ν. Results for ν̃ = 1/4 and ν̃ = 1/8, but with the same ρ0/ν, can
be seen to match closely. Moreover, the results for increased ρ0/ν are
in excellent agreement with the mean-field reference curves with the
exception of the lowest χ̃-values considered, which again suffer from
representation issues.

To conclude, we switch to the projection that is based on the
Gaussian kernel (see Fig. 16) and only focus on varying the aver-
age particle density for ν̃ = 1/8. Somewhat surprisingly, the results
for the lowest considered ρ̃0 = 2.92 can be seen to match the vapor
branch of the reference binodal equally well as for the higher con-
sidered ρ̃0, up to very low χ̃-values. The surprise is in the expectation
that the representation is sufficient up to f = 1/23.36 = 0.043 (or
χ̃ = −23.7 of the reference curve) and f = 1/112 = 0.0089 (χ̃ = −30.5)
for ρ̃0 = 2.92 and ρ̃0 = 14, respectively; below these χ̃-values, there is
less than one particle per grid cell in the vapor phase on average for
the considered average densities ρ̃0. As before, close to the critical
point, the reference curve is better matched for the higher average
density ρ̃0 = 14.

The earlier calculated phase diagram for MD with Lennard-
Jones (LJ) interaction potentials was shown to match the experimen-
tal phase behavior of neon quite well close to the critical point.21

Further away, experimental data were not considered or absent.
The accuracy of predicting the experimental phase behavior of a
standard test fluid argon was evaluated for a number of

different equations of state,25 including the Carnahan–Starling–van
der Waals EOS used in this study. A new EOS, which combines CS
for repulsion and Dieterici-type van der Waals attraction, was found
to accurately predict the phase behavior for this mono-atomic liquid
and, when tested, even for polyatomic systems such as water, albeit
with reduced accuracy.

Close to the critical point, a mean-field description fails to
describe the actual phase behavior, but it should be noted that
also molecular simulations, which are generally based on two-body
interaction potentials, are usually less accurate in the regime where
multi-body interactions play a more prominent role. In particu-
lar, molecular (particle) simulations and the mean-field CS model
will generally feature different scaling behavior near criticality, as
determined from

Δf = fℓ − fv ∝ ∣1 − χ/χc∣
β, (24)

with β being the usual critical exponent. For the LJ (particle) system
in 3D, with the interaction strength χ̃ replaced by the temperature
T∗, a critical exponent β = 0.325 and a reduced critical tempera-
ture T∗c = 1.1 were previously reported.21 For mean-field descrip-
tions, the critical exponent βMF = 0.5 is independent of the dimen-
sionality of the system. The small mismatch that is consistently
observed between the mean-field SCF and hPF-MD results may thus
well be due to the conceptual difference between the two methods,
in particular how fluctuations and the entropic contributions are
included.

To test this suggestion, it would be worthwhile to determine
the critical exponent βhPF-MD for our new hybrid approach. To our
knowledge, this was not previously considered, albeit that most hPF
developers are aware that the phase behavior will differ from its
mean-field counterpart. Yet, in order to do so, we should estimate
χ̃c for all different setups at hand, since the results in Fig. 16 clearly
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suggest that the (apparent) critical value may vary with the aver-
age particle density ρ0. Here, we use a very simple approach, and
we postpone a more precise determination of χ̃c using a procedure
like the one developed by Binder26 to the future. In particular, our
approach exploits the finding that the scaling behavior for LJ and
SCF is sustained further away from the critical point, as exemplified
by the results of both methods in Fig. 17. To this aim, we deter-
mined the apparent critical value for both considered systems from
the best fit of the relation (24) with a single exponent β for the
whole considered χ̃ range. Tested χ̃c varied between the mean-field
value χ̃c = −21.2 and the closest χ̃ for which phase separation was
observed by simulation, with ∣Δχ̃∣ = 0.1. This procedure (interme-
diate results not shown) gives rise to the best fits χ̃c = −22.3 for
ρ̃0 = 2.92 and χ̃c = −21.8 for ρ̃0 = 14 (see the additional datasets
in Fig. 17).

Two observations suggest that the results of our crude proce-
dure are consistent. First, as expected, the apparent critical value
estimated for the more dense system (ρ̃0 = 14) is closer to the mean-
field χ̃c than for the more dilute system (ρ̃0 = 2.92). Second, and
required for results obtained by the same method, we may conclude
from the overlapping straight lines for different ρ0 in the log–log plot
that the critical exponents are the same. We thus conclude that the
critical exponent for hPF-MD is indeed in rather good agreement
with βLJ, i.e., the critical exponent for a Lagrangian particle-based
model. This finding illustrates that hPF-MD and mean-field SCF
indeed belong to a different class.

FIG. 17. The liquid–vapor density difference Δf as a function of the reduced inter-
action strength ϵ = |1− χ/χc | for the reference case (mean-field SCF) and the new
hPF-MD simulations for the Carnahan–Starling model and for two particle densi-
ties ρ̃0 = 2.92 and ρ̃0 = 14. The color scheme of Fig. 16 has been adopted to
represent the hPF-MD simulation data. The Lennard-Jones MD simulation results
(LJ) of Watanabe et al.21 for the equivalent order parameter and reduced tempera-
ture have been added to this plot as an additional reference. The critical exponents
for the reference cases have been previously determined as β = 0.325 (LJ) and
β = 0.5 (mean-field SCF) and are provided by the slope of the dotted lines that
connect data points in this log–log plot. These lines have been added to guide the
eye.

IV. CONCLUSIONS

We have established a direct connection between an equation
of state (EOS) of choice—in our case, the ones associated with the
Cell Model for polymers and the Carnahan–Starling model for hard
spheres, which both contain the higher order terms in the density
that are needed for a van der Waals loop—and an existing hPF-MD
method for particle-field molecular dynamics. In this manner, we
extend the applicability of hPF-MD beyond (almost) incompressible
systems. Although various systems can be described in the incom-
pressible limit, e.g., liquid solvents and (block co)polymer mixtures,
exceptions are, in fact, quite common in reality. Prime examples are
cases where crystallization starts in part of a system, e.g., for a liquid-
to-gel transition in lipid membranes, or structures that develop
while the solvent evaporates, like in (block co-)polymer thin films.
In such situations, the standard computational methodology at the
mesoscale is known to be handicapped, and a natural desire for treat-
ments that are more physically appropriate arises. Here, we have
established a method that is capable of addressing such systems in
an efficient fashion.

We have primarily focused on the incorporation of the
Carnahan–Starling EOS into the hPF-MD framework, since the
results for a simple liquid are more consistent with the earlier deter-
mined phase diagram for a Lennard-Jones liquid. We note that it
may come as a bit of a surprise that a model for hard spheres can
represent “soft” interactions, but our results speak for themselves.
We considered both the interfacial profile for increasingly negative
dimensionless mean-field interaction strength χ̃ = χ/(kBTν) and the
phase behavior in terms of χ̃ and effective (vapor and liquid) par-
ticle fractions f v and f ℓ, with f (r) = νρ(r)/(ℓ3ρ0). As a reference,
we use a binodal that was determined directly from the associated
mean-field free energy by precise numerical analysis. Using Monte
Carlo, i.e., including fluctuations but avoiding the use of forces that
are determined on the computational grid or lattice, provides results
that match these reference data very well.

For the profiles determined from hPF-MD snapshots, distinct
oscillatory behavior is observed close to the vapor–liquid interface,
with an amplitude that increases with the depth of the quench. This
can be traced back to the fluctuating, particle-like nature of hPF-
MD, which perturbs the profile when compared to the tanh-shape
that is anticipated from mean-field theory. For this reason, we con-
sidered two methods to determine particle fractions f ℓ and f v in
the liquid and vapor phases from simulated particle profiles. Since
the area of the simulated liquid–vapor interface is small, damp-
ing of these oscillations by capillary waves, a phenomenon that
can be expected based on findings in earlier studies, has not been
considered.

For the χ̃ − f phase diagram, we have confirmed invariance
with respect to the effective particle volume ν and the grid spac-
ing ℓ. The latter agrees well with the observation that there is no
true length scale in our setup. Only the maximum number of parti-
cles per grid cell ρ0/ν is found to play a more prominent role in the
precision with which the SCF binodal is reproduced. This seems to
be in agreement with the constraints associated with representation,
which suggests that the field-based vapor fraction f v cannot be cap-
tured by the underlying particle representation for large negative χ̃,
since this situation relates to less than one particle per grid cell on
average.
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We have tested two types of projections of particles to the field
lattice: the usual cloud-in-cell, in which fractions of each particle are
assigned to the eight direct lattice neighbors, and a procedure based
on a Gaussian kernel that assigns the fractions to 64 neighbors by
Gaussian weighing. We find that the projection based on a Gaussian
kernel stabilizes our method, which becomes unstable for f (r) ≥ 1,
and that the closest match to the reference binodal is identified for
this projection and the highest considered ρ0/ν, i.e., for the effective
field that is sampled by the largest amount of particle. Surprisingly,
however, the match for much lower ρ0/ν to the reference values is
also better than could be expected based on the above-mentioned
representation issues.

Overall, however, one can always identify a small and varying
mismatch between the binodal reconstructed by hPF-MD and the
reference binodal from field theory. For multi-body DPD, a very
similar mismatch between the input EOS and the one obtained by
simulation was identified by Trofimov et al.2 and treated by making
a self-consistent correction to the density projection. Here, the mis-
match is confirmed to vary with the projection method, so we could
potentially employ a similar procedure. Yet, one should wonder if a
perfect match is at all possible. Employing a quick method to esti-
mate the critical exponent suggests that the exponent β for hPF-MD
is not the one associated with a MF method (βMF = 0.5), but closer
to the β = 0.325 determined for a discrete (Ising) model. Additional
study is clearly needed to address this point in detail. Meanwhile, we
will adapt the current procedure to study a number of phenomena
in compressible systems in the near future.

SUPPLEMENTARY MATERIAL

See the supplementary material for the procedure to deter-
mine the phase diagram, from the expression for the considered
free energies, by numerical means and also the relevant hPF-MD
results for the Cell Model in the form of simulated profiles and phase
diagrams.
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