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Mathematical Mirroring for Identification of Local Symmetry Centers
in Microscopic Images Local Symmetry Detection in FIJI
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Abstract

Symmetry is omnipresent in nature and we encounter symmetry routinely in our everyday life. It is also common on the microscopic level,
where symmetry is often key to the proper function of core biological processes. The human brain is exquisitely well suited to recognize such
symmetrical features with ease. In contrast, computational recognition of such patterns in images is still surprisingly challenging. In this
paper we describe a mathematical approach to identifying smaller local symmetrical structures within larger images. Our algorithm attri-
butes a local symmetry score to each image pixel, which subsequently allows the identification of the symmetrical centers of an object.
Though there are already many methods available to detect symmetry in images, to the best of our knowledge, our algorithm is the
first that is easily applicable in ImageJ/FIJI. We have created an interactive plugin in FIJI that allows the detection and thresholding of
local symmetry values. The plugin combines the different reflection symmetry axis of a square to get a good coverage of reflection symmetry
in all directions. To demonstrate the plugins potential, we analyzed images of bacterial chemoreceptor arrays and intracellular vesicle traf-
ficking events, which are two prominent examples of biological systems with symmetrical patterns.
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Introduction

Naturally occurring and man-made symmetrical structures sur-
round us on a daily basis (Belaroussi et al., 2010). The widespread
occurrence of symmetry has inspired both artists (like M.C.
Escher) and scientists (Weyl, 1952; Gardner, 1964). In biology,
we also encounter symmetry at every scale, starting from the
whole organism level, where most animals exhibit symmetry
along the vertical axis, down to organs like our brains. Even fur-
ther down the scale, we find symmetry in dividing cells and mito-
chondria. Finally, on the molecular level, we find symmetry in
macromolecular machineries like nuclear pores and receptor
arrays in bacteria. At the microscopic level, symmetry is often
key to the proper function of core biological processes. For exam-
ple, bacteria rely on highly ordered symmetrical arrangement of
thousands of receptors to accurately sense their chemical environ-
ment. Furthermore, changes in symmetry over time give crucial
insight into biological processes, such as cell division or vesicle
trafficking events. In order to study these structures, we need to
first distinguish them from nonsymmetrical areas (Polak &
Trivers, 1994). The need to determine symmetrical areas in
images is not new, and multiple approaches to do this have

been developed p reviously. Most of these methods depend on
the identification of edges and then move forward to analyze
the symmetry of these edges (Van Gool et al., 1995; Zabrodsky
et al., 1995). These methods all require that the intensity of the
structures stand out from the background sufficiently to be detected
by edge filters before detecting symmetry. Some methods use an
even more basic concept of point recognition (Evans et al., 2000;
Dalitz et al., 2013) or are only capable of detecting circles (Davis
et al., 2000; Loy & Zelinsky, 2003; Ponížil et al., 2007; Giachetti
et al., 2013). Overall, most approaches for detecting symmetry are
aimed at enhancing computer vision (Reisfeld et al., 1995), for
example, to recognize cars or road signs, and can without adapta-
tion not be applied to image analysis in a broader sense. While
most methods require edge detections, some are capable of analyz-
ing gray level images but lack a simple implementation method
(Kovesi, 1997; Kiryati & Gofman, 1998; Al-amri et al., 2010; Ni
et al., 2012; Cuevas & Sossa 2013) or require extensive user interac-
tions (Ning et al., 2010). In this paper, we have developed a reflec-
tion concept, based on adaptations to the sobel and prewitt filters
(Prewitt, 1970; Duda & Hart, 1973) similar to that applied by
Zabrosky et al. and Hauagge and Snavely (Zabrodsky et al., 1995;
Hauagge & Snavely, 2012) and applied it locally to each pixel within
an image. For ease of implementation, our tool can be directly
implemented into ImageJ/FIJI (Schneider et al., 2012), which will
allow its use for a broad community of microscopists. Our method
allows the identification of symmetry centers within both gray level
and color images, and in addition, performs an interactive segmen-
tation based on these features.
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Segmentation of images is an essential process in image anal-
ysis, which allows the separation of the different image compo-
nents and the subsequent extraction of the objects of interest.
Typically, segmentation is done based on intensity values, either
before or after applying filters to the images. Recently, many
novel approaches have been published (Al-amri et al., 2010;
Benes & Zitova, 2015; Wu et al., 2015; Han et al., 2017), including
several machine learning-based methods (Sirinukunwattana et al.,
2016; Yin et al., 2017). However, determining the optimal filtering
method to separate your structures of interest from the background
greatly depends on the individual sample and typically takes a sig-
nificant amount of time. Our tool combines filtering and segmen-
tation in one plugin for ImageJ/FIJI; it first filters the image and
subsequently segments that image in one interactive tool. This
allows you to change filter sizes, filter methods, and the segmenta-
tion thresholds directly on the original image. Therefore, this
approach preserves the original image information during the seg-
mentation and simplifies the use of advanced filter methods.

In summary, here we present a novel, easy to use tool for
ImageJ/FIJI that combines advanced filtering methods with seg-
mentation, with the emphasis on symmetry detection in images.

Materials and Methods

Tomographic Data of Chemotaxis Arrays

Cryogenic specimens of lysed Escherichia coli cells were imaged
with a Titan Krios transmission electron microscope equipped
with a Gatan Quantum energy filter and a Gatan K2 summit
direct electron detector. Image acquisition was performed at
300 kV with a zero-loss energy slit of 20 eV. Defocus estimation
and the contrast transfer function (CTF) correction were per-
formed using CTFplotter (Xiong et al., 2009). Tomograms were
reconstructed using the weighted back projection implemented
in the IMOD software package (Kremer et al., 1996; Mastronarde
& Held, 2017). With their native hexagonal packing order, chemo-
receptor arrays can be readily identified in the tomograms displayed
in IMOD. The tomoslices displaying receptor arrays are then
exported as individual 2D images in tiff format for analysis.

In vivo Confocal Imaging of Subcellular Vesicles

Zebrafish used in this study were handled in compliance with
local animal welfare regulations, as overseen by the Animal
Welfare Body of Leiden University (License number: 10,612)
and maintained according to standard protocols (zfin.org). All
experiments were performed on 3 days postfertilization larvae,
which have not yet reached the free-feeding stage. Embryos/larvae
were kept in egg water (60 μg/mL Instant Ocean sea salts) at 28.5°
C and treated with 0.02% ethyl 3-aminobenzoate methanesulfo-
nate (Tricaine, Sigma-Aldrich Chemie, Zwijndrecht, The
Netherlands) for anesthesia before imaging. TgBAC (ΔNp63:
Gal4FF)la213; Tg (4xUAS:EGFP-2xFYVE)la214 larvae (Rasmussen
et al., 2015) were mounted with 1.5% low melting point agarose
(SERVA) in egg water and epithelial cells were imaged in the
thin and optically transparent tail fin area using a Leica TCS
SP8 confocal microscope with a 63× oil immersion objective
(NA = 1.4). For time-lapse imaging, confocal micrographs were
acquired at a time interval of ∼1.3 s/image.

Symmetry Test Sets

We used two symmetry test sets to test our plugin, the first one we
created ourselves from the standard shapes that are available in

PowerPoint. The created slide was then saved as a tiff file and
used for further analysis. Other images were taken from a Flickr
database on symmetry (Liu et al., 2013b) that was constructed
for a competition in symmetry detection.

Results and Discussion

Finding Local Symmetry

Here we developed a mathematical formula in order to determine
local symmetry within an image. This formula attributes a local
symmetry value to a pixel depending on the surrounding pixel val-
ues. To illustrate how this calculation works imagine a table of three
rows (A–C) and three columns (1–3). If we want to determine the
symmetry value using a vertical symmetry axis, column 2 is used as

Fig. 1. Four-axis local symmetry calculations as used by the plugin. All calculations
will yield a symmetry score between 0 and 1, where 1 indicates the highest symmetry.
Taking the mean of these scores will provide the local symmetry score.

Fig. 2. (a) The first symmetry test set containing 60 PowerPoint shapes created to
test the detection of local symmetry. In the top 3 rows, 30 open shapes are shown
followed by an equal number of filled shapes (rows 4–6). For future reference, the
shapes will be identified by column A–J and row 1–6, (b) the average symmetry
scores shown as gray values between 0 (white) and 1 (black). The various symmetry
axes are (c) left to right, (d) top to bottom, (e) left bottom to top right, (e) left top to
bottom right.
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mirror and not taken into account in the symmetry value calcula-
tion. For the other cells, the absolute difference between the mir-
rored cells added up over the vertical axis (column 2) is divided
by the sum of all cells taken into account (equation (1) and
Fig. 1), and this value is subtracted from 1. This will provide us
with a range from 0 to 1 for local symmetry, with the maximum
score attributed to a symmetry center similar to previous methods
(Zabrodsky et al., 1995; Hauagge & Snavely, 2012; Dalitzet al., 2013).

Local Vertical Symmetry=

1−|A1−A3|+ |B1−B3|+ |C1−C3|
A1+A3+B1+B3+C1+C3

.
(1)

Subsequently, we can calculate the symmetry values using the
horizontal axis, as well as the two diagonal axes (Fig. 1), and the

mean of these four scores representing the total local symmetry
score. The plugin attributes these values to a new image consisting
of only these symmetry values, this image can optionally be dis-
played. This new image is then used to set threshold values,
which are displayed as a percentage of the total range of values
in the thresholded image. After application of the selected thresh-
old, the original image will be transformed to a binary image,
which can be used as a mask to measure data on the original image.

Local Symmetry Values in Noise-Free Images

To test how efficient this local symmetry filter is at detecting
symmetrical features, we created a test set of symmetrical struc-
tures on a noise-free background (Fig. 2a). The top two rows of
this figure contain open shapes that are mostly symmetrical,

Table 1. Maximum Local Symmetry Scores of the Shapes from Figure 2a, Both for the Open and Filled Version of Each Shape.

Position Shape Symmetry axis Count Max Open Symmetry score Max Filled Symmetry score

F3 & 6 Lightning 0 0.36 0.56

G3 & 6 Amorphous 1 0 0.32 0.63

H3 & 6 Amorphous 2 0 0.4 0.71

I3 & 6 Amorphous 3 0 0.42 0.65

D3 & 6 Explosion 2 0 0.49 0.81

C3 & 6 Explosion 1 0 0.65 0.83

B1 & 4 Parallelogram 0 0.47 0.89

E3 & 6 Cloud 0 0.55 0.92

B3 & 6 Crescent moon 1 0.4 0.64

I2 & 5 5-point star 1 0.43 0.68

A1 & 4 Triangle 1 0.25 0.72

G2 & 5 Heart 1 0.38 0.84

B2 & 5 Trapezoid 1 0.42 0.84

C2 & 5 Pentagon 1 0.43 0.89

A3 & 6 Accolade 1 0.28 0.92

D2 & 5 Heptagon 1 0.58 0.93

G1 & 4 Smiley 1 0.51 0.95

J2 & 5 6-point star 2 0.58 0.89

D1 & 4 Hexagon 2 0.46 0.95

F1 & 4 Decagon 2 0.67 0.95

H2 & 5 4-point star 4 0.63 0.75

J1 & 4 Quad Arrow 4 0.62 0.89

C1 & 4 Diamond 4 0.5 0.9

A2 & 5 Square 4 0.26 0.92

E2 & 5 Dodecagon 4 0.52 0.93

F2 & 5 Circle 4 0.61 0.94

E1 & 4 Octagon 4 0.4 0.95

I1 & 4 Cross 4 0.5 0.95

H1 & 4 Circle w. cross 4 0.66 0.95

J3 & 6 Windmill Rotation 0.49 0.64

In bold, the false positives are shown, underlined the false negatives based on the 0.42 arbitrary threshold for open shapes and 0.71 for filled shapes, respectively.
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whereas the third row also contains some shapes with less sym-
metry; in rows 4–6, these shapes are repeated with solid filling.
We can calculate the symmetry for each of these shapes along
the four primary reflection axes of a square (top-bottom, left-
right, and the two diagonals). Since all shapes have a width of
20 pixels, we set the radius of the symmetry filter at 10 pixels.
The results of these calculations are shown in Figures 2c–2f.
To calculate the total symmetrical values for the whole image,
the average of the four images is taken (Fig. 2b). If we look at
the results of the calculated symmetry data, we can use the
local maximum symmetry value as an indicator for local symme-
try points. For the open shapes, where the symmetry function
relies on a line with a width of only one pixel within an even
background image, we have relatively low values compared to
the structures that have been filled. To determine a threshold
level above which shapes are considered symmetrical, the maxi-
mal symmetry value of the four least symmetrical shapes
(Lightning, and Amorphous 1–3) was taken as a cutoff point.
Based on these measurements, we find that a threshold of 0.42
will allow us to detect open symmetrical structures (Table 1).
However, this also results in the identification of several false
positives and to visualize the plugin’s performance, receiver
operating characteristic curves [ROC curves (Fawcett, 2006)]
are shown in Figure 3a. Notably, the square shape (A2) and
the octagon (E1) are difficult to detect. This stems from the
fact that for a square with a width of 20 pixels, the
corner-to-corner distance along the diagonal axis is 28 pixels,
which falls outside the symmetry detection range. Thus, increas-
ing the kernel size would help identifying these kinds of struc-
tures, other shapes that do not get identified in this manner
only have one symmetry axis. The open shapes that are identified
as false positives are explainable: the parallelogram, the cloud,
and explosions contain their symmetrical features on the average
outline, and only vary in some extremities. Compared to the
open shapes, the filled version of the same shape generally yields
a higher maximum symmetry value. In these cases, the internal
pixel values also add to the symmetry score. Therefore, a more
stringent cut-off value of 0.71, again identified as the maximum
symmetry value of the nonsymmetrical structures (Table 1),
seems more appropriate. The corresponding ROC curve is
given in Figure 3b. The two false negatives have only one reflec-
tion symmetry axis. The windmill shape has no reflection sym-
metry but rotational symmetry and only gets detected with the
open shapes based on the combination of the four symmetry
axes. The combined symmetry values of each of the four calcu-
lated symmetry axes also help in detecting rotated symmetrical
shapes. To test this, we have rotated a square over 5° increment-
ing angles from −45° to 45° and determined the local maximal
symmetry value. For these rotated squares, the symmetry scores
varied between 0.97 and 1 with the lowest value at 22.5° rotation.
A similar simulation with an 8-point star shape resulted in more
dramatic differences with values between 0.72 and 0.97, again
with the minima at 22.5° rotation (Fig. 4). Nonetheless, these
values remain above the previously identified threshold of 0.71
and show that our symmetry filter successfully detects symmet-
rical structures, even when they have been rotated.

Local Symmetry in Noisy Images

To test whether the algorithm can also detect shapes in a less ideal
pixel environment, we added noise to the image and tried to dis-
tinguish the symmetrical shapes from the nonsymmetrical ones.

When we applied random noise with values between 25 and
100% of the standard deviation, most of the shapes are still recog-
nizable (Tables 2 and 3), and the corresponding ROC curves show
that increasing the noise makes detecting open shapes more diffi-
cult, while the detection of the closed shapes remains equally effi-
cient (Figs. 3c–3l).

Fig. 3. Receiver operating characteristic curves of the plugin. Operated under various
noise conditions ranging from no noise (a,b), 25% noise (c,d), 50% noise (e,f), 75%
noise (g,h) to 100% noise (i,j), and ending with salt and pepper noise (k,l). The ROC
curves on the left are for the open shapes, whereas the right curves are for the closed
shapes.
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Comparison to Machine Learning

To compare our method to machine learning methods, we have
used the Ilastik tool (Sommer et al., 2011) to segment our images.
For training the machine learning, we created two training sets,
the non-symmetrical one used above to determine the symmetry
threshold, and in addition, four shapes were selected to represent
the symmetry class. These shapes were selected by taking two
shapes just above the symmetry threshold determined by our plu-
gin (the 5 point star, and the pentagon), as well as the two highest
scoring shapes (the decagon, and the circle with cross). Based on
these classifications, the other structures were scored as true pos-
itive, false positive, true negative, or false negative (Tables 4 and
5). If we look at the open shapes, the machine learning approach
is more successful in identifying symmetrical structures than our
algorithm, with 1.7 false positives and 5.8 false negatives on aver-
age. Our method, using the same images, yielded on average 3
false positives and 7.8 false negatives. However, if we examine

Fig. 4. Maximum local symmetry plotted over the rotation angles from −45° to 45°. As
is visible from the graph variation in maximum symmetry is higher when more
extremities arise from the main symmetrical body of the objects.

Table 2. Filled Symmetry Detection Based on a Threshold Value Determined by the Least Symmetrical Shapes,
Quantifying the Symmetrical (Y) versus the Nonsymmetrical Structures (N).

Dark gray indicates misidentifications.
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the closed shapes the situation is different, with averages of 2 false
positives, and 8 false negatives on average, our method works bet-
ter on the closed shapes, with averages of 3.8 false positives but
only 3.7 false negatives.

Next, we wanted to see how this plugin performs on real
images from two different biological systems: the bacterial chemo-
receptor arrays and intracellular vesicles in zebrafish larvae.

The first example is the bacterial chemoreceptor arrays: they
provide motile bacteria the means to sense their chemical envi-
ronment and control their motility apparatus to seek out benefi-
cial environments. These are composed of thousands of
chemoreceptors that are arranged in a highly ordered, hexagonal
array. This receptor packing allows for cooperative behavior of the
receptors, leading to a high sensitivity, a wide response range, and
the integration of a wide range of input signals (Hazelbauer et al.,
2008). Symmetry detection in electron microscopy images has
long been a subject of study (Crowther & Amos, 1971). A lot of

progress has been made over the years, both in image analysis
methods like IMAGIC (van Heel et al., 1996), as well as technical
approaches examining local power spectra (Kim & Zuo. 2013; Liu
et al., 2013a). However, none of these methods are easily imple-
mented and require expert knowledge (van Heel et al., 1996;
Kim & Zuo, 2013; Liu et al., 2013a). To simplify the detection
of the receptor arrays automatically without machine learning
approaches, we have first applied a Gaussian blur to reduce the
noise slightly (sigma 1.0). Subsequently, we used the special
threshold method (kernel size 13, selection between 20 and
50%, based on trial and error), and lastly filled the holes in the
detection regions and analyzed large (>1,000 pixels) image
regions. As shown in Figure 5, we were able to detect receptor
arrays in all images with the settings described above, except
the last panel (Fig. 5h). By adjusting the kernel size to 7 in accor-
dance with the different pixel size in Figure 5h, we can still detect
the arrays.

Table 3. Open Symmetry Detection Based on a Threshold Value Determined by the Least Symmetrical Shapes,
Quantifying the Symmetrical (Y) versus the Nonsymmetrical Structures (N).

Dark gray indicates misidentifications.
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The second example is the detection of intracellular vesicles
in zebrafish larvae. The zebrafish is a well-established research
model to study development, fundamental biological processes,
and diseases (Phelps & Neely, 2005). In part, this is due to its
optical transparency during embryonic and larval developmen-
tal stages, which allows imaging of organs, cells, subcellular pro-
cesses, and even single molecules in a living organism (Ko et al.,
2011). To test the symmetry-detecting algorithm on confocal
micrographs, we imaged zebrafish larval epithelial cells express-
ing a GFP-2xFyve probe that labels phosphatidylinositol lipids

(PtdIns) important in the regulation of vesicle trafficking events
(Rasmussen et al., 2015). The resulting images display
GFP-labeled rings since the probe localizes to the membranes
of PtdIns(3)P-positive vesicles like early endosomes. The
images were deconvoluted using the Iterative Deconvolve 3D
plugin for ImageJ/Fiji (https://imagej.net/Iterative_Deconvolve_
3D). Using the symmetry-detecting algorithm with a threshold
setting of 80%, we successfully detected and segmented micron
scale intracellular vesicles imaged in living zebrafish larvae
(Fig. 6).

Table 4. Closed Symmetry Detection Based on Machine Learning, Quantifying the Symmetrical (Y) versus the
Nonsymmetrical Structures (N).

Dark gray indicates misidentifications.
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In addition, we predicted that vesicles undergoing fusion
events temporarily exhibit a lower symmetry value than individ-
ual, circular vesicles. To test this assumption, we performed time-
lapse imaging of vesicles in GFP-2xFyve expressing zebrafish lar-
vae. We identified three fusing vesicles in the time-lapse series
and have plotted the maximum local symmetry score of the
three vesicles undergoing the fusion event (Fig. 7). In the begin-
ning of the time-lapse (t = 0), the vesicles are circular in shape and
display a high local symmetry score. Starting around t = 50, local
symmetry scores drop suddenly when the vesicles start to interact
and tether their membranes. The symmetry score continues to

fluctuate while these interactions occur, with vesicles making
and losing contact over time. The local symmetry score returns
to its initial high level when the fusion event is completed (t =
330) and the newly formed vesicle acquires a circular morphology.
In this manner, we can also apply the symmetry scores deter-
mined by the algorithm to locally score vesicle symmetry and
monitor vesicle fusion events.

In Figure 8, we show examples of real-world images and what
we can detect in them with the symmetry plugin. All examples are
taken from the symmetry dataset of Liu et al. ( 2013b). In these
images, most symmetrical features get accurately detected, but

Table 5. Open Symmetry Detection Based on Machine Learning, Quantifying the Symmetrical (Y) versus the
Nonsymmetrical Structures (N).

Dark gray indicates misidentifications.
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in addition, some background information is also frequently clas-
sified as symmetric. This often happens around straight edges
where there always is some form of symmetry to be found.

Conclusion

In this paper, we have shown that using the above-described sym-
metry formula, applied rotationally on several axes, we are able to
detect the most symmetrical shapes we aimed to identify. When

comparing the method to machine learning approaches, we see
that machine learning methods are better in identifying the sym-
metry in open shapes, whereas our plugin is better at finding sym-
metry in closed shapes. So while the overall identification of
symmetrical shapes is similar, we believe that the actual conver-
sion to a symmetry scored image has an advantage over machine
learning approaches as it allows the subsequent analyses of the

Fig. 5. Detection of chemoreceptor arrays in various tomographic slices in which the
areas with detected symmetry are enclosed in the red line. In all panels, the arrays
can be distinguished as patches of lattices with repeated hexagonal pattern.
Symmetry detection results fit array locations in all panels. Scale bars for (a–f) are
50 nm and the scale bars in (g,h) are 100 nm. White arrows (false negative) point
at certain patches of arrays that are missed by the symmetry detection in (c,f).
The black arrows (false positive) point at isolated areas highlighted by symmetry
detection but without arrays.

Fig. 6. Detection of PtdIns(3)P-positive vesicles in zebrafish larvae. Red outlined
areas show areas that contain the top 20% of symmetry scores in this image. Note
that vesicle-vesicle tethering (marked by arrows) results in a lower symmetry score.
Scale bar: 5 μm.

Fig. 7. Time-lapse imaging of PtdIns(3)P-positive vesicle fusion. (a) Plot of the max-
imum symmetry values of the three vesicles indicated with arrows in B. (b) 30 s inter-
val images taken from the time lapse. The symmetry values decrease over time when
vesicles make contact and tether their membranes. Symmetry scores return to a high
level when the fusion event is complete. Scale bar: 2 μm.
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symmetry scores. The example of the fusing vesicles shows that
this approach can give insight into symmetry dynamics over
time. To allow broad use of this algorithm in an automated man-
ner, the plugin was created in such a way that it can also be called
from another plugin or function and will then return a binarized
and thresholded image. To facilitate this type of implementation,
user friendly API documentation on the plugin can be found at
http://leidenunivapi.epizy.com/, as well as on GitHub (Willemse,
2020). We show several examples where the plugin successfully
detects local symmetries, both in real world images and micro-
scopic images as simulated test sets. Even though the plugin is
able to detect rotated symmetrical shapes, it should be noted
that in certain angles, the plugin is less successful. It would be
possible to extend the plugin as to detect symmetry along these
axes as well, but this would increase the calculation times signifi-
cantly, and is therefore currently not implemented. Many people
have created methods of detecting symmetries in images, but so
far, none of these are easy to implement in FIJI/ImageJ, which
is currently the most used image analysis software for microscopic
images. Furthermore, the symmetry value read out can give quan-
titative information of the local symmetry value of an object, these
values can help analyze biological processes such as vesicle fusions

as shown above. The possibility to adapt the filtering method and
thresholds while observing the original image will ease the subse-
quent analysis. And finally, once the best settings have been
found, the plugin allows the implementation into other plugins
that can call the filtering method with the optimized settings.
In summary, here we have provided a tool for simplifying the
identification of symmetrical structures, the quantitative analysis
of symmetrical objects, as well as the automated implementation
of this detection in image analysis workflows. Therefore, we hope
this plugin will help people in identifying and analyzing symmet-
rical structures within their images and provide them with a tool
to optimally identify them in an automated manner.

Acknowledgments. We thank Gerda Lamers for the useful discussions on
this subject, as well as for the suggestions on which biological images this
could be used.
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