Geometry and arithmetic of del Pezzo surfaces of degree 1

 Winter, R.L.
Citation

Winter, R. L. (2021, January 5). Geometry and arithmetic of del Pezzo surfaces of degree 1. Retrieved from https://hdl.handle.net/1887/138942

Version: Publisher's Version
License:
Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/138942

Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle http://hdl.handle.net/1887/138942 holds various files of this Leiden University dissertation.

Author: Winter, R.L.
Title: Geometry and arithmetic of del Pezzo surfaces of degree 1
Issue Date: 2021-01-05

Stellingen

behorende bij het proefschrift
Geometry and arithmetic of del Pezzo surfaces of degree 1 van Rosa Winter

For a del Pezzo surface S of degree 1, we denote by K_{S} its canonical divisor, and by \mathcal{E}_{S} the surface obtained by blowing up the base point of the linear system $\left|-K_{S}\right|$. This surface admits an elliptic fibration $\nu: \mathcal{E}_{S} \longrightarrow \mathbb{P}^{1}$ coming from the map $S \rightarrow \mathbb{P}^{1}$ induced by $\left|-K_{S}\right|$.

1. (Theorem 2.2.1). Let k be a number field, $A, B \in k^{*}$, and S the del Pezzo surface of degree 1 over k in the weighted projective space $\mathbb{P}(2,3,1,1)$ with coordinates ($x: y: z: w)$ defined by

$$
y^{2}=x^{3}+A z^{6}+B w^{6}
$$

The set $S(k)$ of k-rational points on S is dense in S with respect to the Zariski topology if and only if S contains a k-rational point with non-zero z, w coordinates, such that the corresponding point on \mathcal{E}_{S} lies on a smooth fiber of ν, and is non-torsion on that fiber.
2. (Theorems 4.1.1 and 4.1.2). Let S be a del Pezzo surface of degree 1, and P a point on S. The number of exceptional curves on S that contain P is at most 16 in characteristic 2 , at most 12 in characteristic 3 , and at most 10 otherwise.
3. (Theorem 5.1.1). Let S be a del Pezzo surface of degree 1. If at least 9 exceptional curves on S all contain the same point P, then the point on \mathcal{E}_{S} corresponding to P is torsion on its fiber of ν.

Let Γ be the weighted graph of which the vertices are the 240 roots in the E_{8} root system, where two distinct vertices are connected by an edge of weight w if the corresponding roots have dot product w, and where no vertex is connected by an edge to itself.
4. (Theorem 3.1.3 (iii)). For each subset c of the set $\{-2,-1,0,1\}$ of weights of the edges of Γ, let Γ_{c} be the subgraph of Γ consisting of the same vertices as in Γ, and all edges of Γ with weights in c. For all $c \neq\{-1,0,1\}$, two complete subgraphs in Γ_{c} that are maximal with respect to inclusion are isomorphic as weighted graphs if and only if they are conjugate under the action of the automorphism group of Γ.
5. A weighted graph is defined to be k-ultrahomogeneous if every isomorphism between two of its induced weighted subgraphs of at most k vertices can be extended to an automorphism of the whole weighted graph. The graph Γ is 3 -ultrahomogeneous, but not 4-ultrahomogeneous.
6. Let Q_{1}, \ldots, Q_{8} be eight points in \mathbb{P}^{2} in general position, i.e., no three are on a line, no six are on a conic, and no eight are on a cubic that is singular at one of them. Let \mathcal{C} be the pencil of cubics through these points, and denote by Q the unique base point of \mathcal{C}. Let C_{1} and C_{2} be two conics that together contain all 8 points and that intersect in two of them, say Q_{i}, Q_{j}, and let D be a curve of degree 5 that contains all 8 points and is singular in all of them except in Q_{i} and Q_{j}. If C_{1}, C_{2}, and D intersect in a ninth point $P \neq Q$, then the point P has order 3 on the cubic in \mathcal{C} that contains P and whose zero point is Q.

In what follows, k is a number field, and \bar{k} an algebraic closure of k.
7. Joint with V. Cantoral-Farfán, A. Garbagnati, C. Salgado, and A. Trbović.

Let R be a geometrically rational relatively minimal elliptic surface over k with no singular fibers of additive type, and with geometric Mordell-Weil rank 0. Let m be the order of the geometric Mordell-Weil group. The following hold.

- If m is odd and R has a unique reducible fiber over \bar{k}, then R can be contracted over k to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- If m is odd and R has at least two reducible fibers over \bar{k}, then R can be contracted over k to \mathbb{P}^{2}.
- If m is even, then R can be contracted over k to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

8. Joint with V. Cantoral-Farfán, A. Garbagnati, C. Salgado, and A. Trbović.

Let R be a geometrically rational relatively minimal elliptic surface over k with geometric Mordell-Weil rank 0 and exactly one reducible fiber over \bar{k}, which is of type I_{9}. Let X be a K3 surface obtained as a double cover of R branched in two smooth $\operatorname{Gal}(\bar{k} / k)$-conjugate fibers. We call two elliptic fibrations on X equivalent if for each singular fiber type F they have the same number of fibers of type F over \bar{k}, and their geometric Mordell-Weil groups are isomorphic. There are exactly 12 equivalence classes of elliptic fibrations on X, and for each elliptic fibration on X, its geometric Mordell-Weil group is defined over at most a quartic extension of k.

