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5

Exceptional curves and
torsion points

The del Pezzo surface of degree 1 in Example 4.5.5 contains a point that
is contained in the intersection of 10 exceptional curves, and whose corre-
sponding point on the elliptic surface associated to the del Pezzo surface
(obtained by blowing up the base point of the anticanonical linear sys-
tem, see Section 1.4.3) is torsion on its fiber. This example comes from
[SvL14, Section 4], where we find several examples of a point on a del
Pezzo surface of degree 1 that is contained in the intersection of at least
6 exceptional curves, and, in all cases, corresponds to a point that is tor-
sion on its fiber. Moreover, we do not know any example of a point that
is contained in more than 6 exceptional curves and that corresponds to
a point that is not torsion on its fiber. A natural question is therefore
whether a point on a del Pezzo surface of degree 1 that is contained in
‘many’ exceptional curves always corresponds to a point that is torsion on
its fiber (where ‘many’ of course needs to be specified). In this final and
short chapter we give a positive answer to this question where we take
‘many’ to be 9 (Theorem 5.1.1), using results from Chapter 3. We also
show that if we take ‘many’ to be 6, the answer to this question is negative
in most characteristics, by providing a counterexample that comes from
Chapter 4 (Example 5.1.5). Computations were done in magma [BCP97],
and the code that we used can be found in [Code].
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5. EXCEPTIONAL CURVES AND TORSION POINTS

5.1 Main results
Let S be a del Pezzo surface of degree 1 with canonical divisor KS , and let
E be the associated elliptic surface obtained by blowing up the basepoint
O of the linear system |−KS |. For a point P in S \{O}, we denote by PE
the corresponding point on E , and by the fiber of PE we mean the fiber of
the elliptic fibration E −→ P1 that contains PE . The main result of this
chapter is the following.

Theorem 5.1.1. If at least 9 exceptional curves on S are concurrent in
a point P , then PE is torsion on its fiber.

Remark 5.1.2. For del Pezzo surfaces of degree 2, the situation is simpler,
and a result similar to our theorem is known [Kuw05, Proposition 7.1]. A
del Pezzo surface of degree 2 is a double cover of P2 ramified along a
smooth quartic curve. On such a surface, a point is contained in at most 4
exceptional curves, and this happens exactly when its projection to P2 is in
the intersection of 4 bitangents of the quartic curve. In [Kuw05], Kuwata
gives a construction for an elliptic surface by blowing up twice on the del
Pezzo surface, and he shows that for a point contained in 4 exceptional
curves, the corresponding point on the elliptic surface is torsion on its
fiber. The situation in Theorem 5.1.1 is more complex, since there are a
priori many different sets of 9 or more exceptional curves on a del Pezzo
surface of degree 1 that can be concurrent in a point.

Remark 5.1.3. Theorem 5.1.1 seems intuitively true by the following
argument, which was pointed out to us by several people. Let P be a point
on S that is contained in at least 9 exceptional curves, say L1, . . . , Ln.
These curves correspond to sections L̃1, . . . , L̃n of the elliptic surface E
associated to S (Remark 1.4.20), which in turn correspond to elements in
the Mordell–Weil group of E (i.e., the Mordell–Weil group of the generic
fiber, which is an elliptic curve over the function field k(t) of P1). This
Mordell–Weil group has rank at most 8 over k (Remark 1.4.17), so in this
group there must be a relation a1L̃1 +· · ·+anL̃n = 0, where a1, . . . , an ∈ Z
are not all zero. Since all n exceptional curves contain the point P , this
specializes to (a1 + · · ·+ an)PE = 0 on the fiber of P on E . If one reasons
too quickly, it seems that this proves that PE is torsion of order dividing
a1+· · ·+an on its fiber. However, it might be the case that a1+· · ·+an = 0,
so this does not prove Theorem 5.1.1. The key part in our proof is therefore
that we show, using results from Chapter 3, that there is always a relation
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5.1. MAIN RESULTS

between L̃1, . . . , L̃n in the Mordell–Weil group of E that specializes to a
non-trivial relation on the fiber of PE ; see Lemma 5.2.2.

Remark 5.1.4. Recall that S can be embedded in the weighted projective
space P(2, 3, 1, 1) as the set of solutions to the equation

y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0, (5.1)

where ai ∈ k[z, w] is homogeneous of degree i for each i in {1, . . . , 6}.
The linear system | − 2KS | of the bi-anticanonical divisor of S induces a
morphism ϕ, which is the composition of the projection to P(2, 1, 1) and
the 2-uple embedding in P3; this morphism realizes S as a double cover of
a cone in P3 ramified over a sextic curve (see also Section 1.4.1). It follows
that points on S that are on the ramification curve of ϕ correspond to
points on E that are 2-torsion on their fiber.

The following example shows that if S is defined over a field of character-
istic 0, for a point P on S that is contained in 6 exceptional curves, the
point PE is not guaranteed to be torsion on its fiber.

Example 5.1.5. Let k be a field of characteristic 0, and consider the eight
points in P2

k given by

P1 = (1 : 0 : 1); P2 = (889 : 0 : 823);
P3 = (2600 : 101 : 2551); P4 = (325 : 12 : 287);
P5 = (0 : 1 : 1); P6 := (0 : −1 : 1);
P7 = (4005 : 2464 : 3499); P8 = (195 : 22 : −113).

We check that these points are in general position, by verifying that the
determinants of the matrices in Lemma 3.3.12 that determine whether
three of the points are on a line, or six of the points are on a conic, or
seven of them are on a cubic that is singular at one of them, are non-
zero. Let X be the blow-up of P2 in these points, which is a del Pezzo
surface of degree 1. Let L1 be the line through P1 and P2, which is given
by y = 0, and let L2 be the line through P3 and P4, which is given by
51y = x + z. Finally, let C1 be the conic through P1, P3, P5, P6, P7, let
C2 be the conic through P1, P4, P5, P6, P8, let C3 be the conic through
P2, P3, P5, P7, P8, and C4 the conic through P2, P4, P6, P7, and P8. Note
that L1, L2, C1, . . . , C4 are 6 of the 10 curves in Proposition 4.4.6; using the
proof of this proposition, we chose P1, . . . , P8 such that these 6 curves are
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5. EXCEPTIONAL CURVES AND TORSION POINTS

concurrent in a point. The conics C1, . . . , C4 are defined by the following
equations.

C1 : x2 + y2 − z2 = xy;
C2 : x2 + y2 − z2 = 6xy;
C3 : 823x2 − 1884xy − 66xz − 3739y2 + 4628yz − 889z2;
C4 : 823x2 − 4038xy − 66xz + 3139y2 + 2250yz − 889z2.

Indeed, the curves L1, L2, C1, . . . , C4 all contain the point (−1 : 0 : 1),
so the strict transforms of these six curves, which are exceptional curves
on X, are concurrent in a point P on X. Let C be the pencil of cubics
through P1, . . . , P8. This has a unique base point, which is

B = (3453493845425 : −16508630016087 : 20919196389638).

The fiber of PE on the elliptic surface E is given by the element of C that
contains P , and it is an elliptic curve with base point B. With magma it
is quick to check that the point PE is non-torsion on its fiber; see [Code]
for the code that we used.

Remark 5.1.6. The previous example also holds if the characteristic of k
is p for all but a finite number of primes p. In fact, the only characteristics
for which this does not hold are the ones for which P1, . . . , P8 are not
in general position, which form a set of 42 primes. Using the proof of
Proposition 4.4.6, it is not hard to generate similar examples that hold in
some of those 42 characteristics; for example, the eight points in P2 given
by

Q1 = (1 : 0 : 1); Q5 = (0 : 1 : 1);
Q2 = (−236857 : 0 : 402962); Q6 = (0 : −1 : 1);
Q3 = (666 : 5 : −301); Q7 = (−2337353334 : 1829935 : 2432407789);
Q4 = (222 : 5 : 143); Q8 = (−101872359 : 3659870 : 141722269);

are in general position in all but 55 characteristics, and this gives, to-
gether with Example 5.1.5, an example of six exceptional curves that are
concurrent in a point P such that PE is not torsion on its fiber for each
characteristic except for 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 71, 101,
and 113.

From Theorem 5.1.1 and Example 5.1.5 it is clear that there are still open
questions: if a point P on S is contained in 7 exceptional curves, is the
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point PE then torsion on its fiber? And what about points contained in 8
exceptional curves? We have not yet found a proof nor a counterexample
to these questions.

5.2 Proof of the main theorem
In this section we prove Theorem 5.1.1. We first describe a pairing on
the Mordell–Weil group of E , and use this pairing to state and prove two
lemmas.

Let L1, . . . , Ln be at least 9 exceptional curves on S that are concurrent in
a point P that lies outside the ramification curve of ϕ. Let L̃1, . . . , L̃n be
the corresponding sections on E . Let 〈·, ·〉h be the symmetric and bilinear
pairing on the Mordell–Weil group of E as defined in [Shi90, Theorem 8.4];
that is, for C1, C2 in E(k(t)), we have 〈C1, C2〉h = −(ϕh(C1) · ϕh(C2)),
where ϕh : E(k(t)) −→ Pic E is the map given in [Shi90, Lemmas 8.1
and 8.2], and · is the intersection pairing in the Picard group of E . We
call 〈·, ·〉h the height pairing on E(k(t)).

Lemma 5.2.1. For two exceptional curves in Pic S, the height pairing of
the corresponding sections in the Mordell–Weil group of E is the same as
the dot product of the roots in the root system E8 associated to these
exceptional curves under the bijection in Remark 1.4.9.

Proof. Let C1, C2 be two sections of E that are strict transforms of ex-
ceptional curves c1, c2 in S. Since E has no reducible fibers, by [Shi90,
Lemma 8.1] we have

ϕh(C1) · ϕh(C2) = ([C1]− [Õ]− F ) · ([C2]− [Õ]− F ),

where [C1], [C2], [Õ] are the classes of C1, C2, and the zero section, respec-
tively, and F is the class of a fiber. This gives

ϕh(C1) · ϕh(C2) = [C1] · [C2]− 1,

where we use that the zero section is an exceptional curve, and it is disjoint
from C1 and C2. We conclude that we have 〈C1, C2〉h = 1 − [C1] · [C2].
Since C1, C2 are disjoint from Õ, the intersection pairing of C1 and C2 in
Pic E is the same as the intersection pairing of c1 and c2 in Pic S. The
statement now follows from the bijection in Remark 1.4.9.
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5. EXCEPTIONAL CURVES AND TORSION POINTS

Let M be the height pairing matrix of L1, . . . , Ln, that is, M is the n× n
matrix with Mij = 〈L̃i, L̃j〉h for i, j ∈ {1, . . . , n}.

Lemma 5.2.2. The kernel of the matrix M contains a vector (a1, . . . , an)
in Zn with a1 + · · ·+ an 6= 0.

Proof. Recall the complete weighted graphs G and Γ as defined in Defini-
tion 1.4.12. Since P lies outside the ramification curve of ϕ, the exceptional
curves L1, . . . , Ln correspond to a clique of size n in G that is contained in
a maximal clique in G with only edges of weights 1 and 2 (Remark 4.2.5),
which corresponds to a maximal clique C in Γ{−1,0} by the bijection given
in Remark 1.4.13. Since n ≥ 9, the clique C has size at least 9. The
table in Appendix A contains all isomorphism types of maximal cliques in
Γ{−1,0} of size at least 9 (Proposition 3.5.28); there are 11 maximal cliques
of size 9, which we call α1, . . . , α11 in the order that they appear in the
table, there are 6 maximal cliques of size 10, which we call β1, . . . , β6 in
the order that they appear in the table, and there is 1 maximal clique
of size 12, which we call γ. For each of these 18 cliques, whose elements
correspond to roots in E8, we compute its Gram matrix, which is the ma-
trix where the entry (i, j) is the dot product of the roots corresponding
to the i-th and j-th vertex in the clique after choosing an ordering on
the vertices. With magma we find the generators for the kernels of these
matrices (see [Code]). The results are in Table 5.1. Let r be the number
of vertices of C, and let N be the Gram matrix of C; then the kernel of N
is equal to one of the 18 kernels in the table, after rearranging the order of
the vertices in C if necessary. Since n ≥ 9, we see from Table 5.1 that for
any subset of n vertices in C, there is a vector (a1, . . . , ar) in the kernel of
N which is 0 outside the entries corresponding to the n vertices, and such
that a1 + · · ·+ ar 6= 0. By Lemma 5.2.1, this gives a vector in the kernel
of M as claimed.

Proof of Theorem 5.1.1. Let P be a point on S. If P is contained
in the ramification curve of the morphism induced by the linear system
of the bi-anticanonical divisor, then PE is torsion (Remark 5.1.4), and we
are done. Now assume that P is not contained in this ramification curve,
and that there is a set of at least 9 exceptional curves that are concurrent
in P . Let K1, . . . ,Kn be the corresponding sections of E , and let N be
the height pairing matrix of these sections. Let (a1, . . . , an) ∈ Zn be a
vector in the kernel of N such that a1 + · · · + an 6= 0, which exists by
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5.2. PROOF OF THE MAIN THEOREM

Clique Basis for the kernel
α1 {(1, 1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1, 0, 2, 0)}
α2 {(1, 0, 1, 0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0, 1, 0, 0)}
α3 {(1, 1, 1, 0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0, 1, 1, 0)}
α4 {(1, 1, 0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 1, 0, 1, 0)}
α5 {(2, 1, 1, 0, 2, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1, 1, 0, 0)}
α6 {(1, 1, 1, 1, 1, 1, 1, 1, 1)}
α7 {(1, 1, 1, 0, 1, 1, 1, 1, 1)}
α8 {(0, 1, 1, 2, 2, 2, 1, 1, 0)}
α9 {(2, 1, 1, 1, 1, 2, 2, 2, 2))}
α10 {(2, 2, 0, 3, 1, 4, 2, 3, 1)}
α11 {(6, 3, 1, 4, 4, 2, 2, 5, 3)}
β1 {(1, 0, 1, 0, 0, 2, 1, 0, 0, 1), (0, 1, 0, 1, 2, 0, 0, 1, 1, 0)}
β2 {(1, 1, 0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1, 1, 1, 0, 0)}
β3 {(1, 1, 0, 1, 0, 0, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1, 1, 0, 1, 0)}
β4 {(1, 1, 0, 1, 0, 1, 0, 0, 1, 1), (0, 0, 0, 0, 1, 0, 1, 1, 0, 0)}
β5 {(1, 1, 0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 1, 2, 2, 0, 0)}
β6 {(2, 1, 3, 0, 2, 0, 2, 0, 1, 1), (0, 0, 0, 1, 0, 1, 0, 1, 0, 0)}
γ {(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0),

(0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0)}

Table 5.1: Bases

Lemma 5.2.2. Then we have for all i ∈ {1, . . . , n} we have that

a1〈Ki,K1〉h + · · ·+ an〈Ki,Kn〉h = 0,

and since the height pairing is bilinear this implies

〈Ki, a1K1 + a2K2 + · · ·+ anKn〉h = 0 for all i ∈ {1, . . . , n}, (5.2)

which implies

〈a1K1 + a2K2 + · · ·+ anKn, a1K1 + a2K2 + · · ·+ anKn〉h = 0.

From the latter we conclude that a1K1 + a2K2 + · · ·+ anKn is torsion in
the Mordell–Weil group of E [Shi90, Theorem 8.4], and since the torsion
subgroup is trivial [Shi90, Theorem 10.4], we conclude that

a1K1 + a2K2 + · · ·+ anKn = 0.
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5. EXCEPTIONAL CURVES AND TORSION POINTS

Since for all i in {1, . . . , n}, the section Ki contains the point PE , we have,
on the fiber of PE , the equality (a1+· · ·+an)PE = 0. Since a1+· · ·+an 6= 0,
this implies that PE is torsion on its fiber.
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