

Universiteit Leiden

The handle http://hdl.handle.net/1887/138942 holds various files of this Leiden University dissertation.

Author: Winter, R.L.
Title: Geometry and arithmetic of del Pezzo surfaces of degree 1
Issue Date: 2021-01-05

4

Concurrent exceptional curves on del Pezzo surfaces of degree 1

This chapter is an adaptation of the preprint vLWb, which is at the moment of this writing submitted for publication. Moreover, part of this chapter is already in the master thesis [Win14] by the same author. We decided to copy those parts here for completion. See Remark 4.1.3 for a comparison with Win14.

Recall that a del Pezzo surface of degree d over an algebraically closed field contains a fixed number of exceptional curves, depending on d (Table 1.1). The configuration of these curves can play a role in arithmetic questions; we have seen this in Chapter 2. For example, one of the conditions on the point Q that is used to show that the set of rational points on a del Pezzo surface of degree 1 is dense in [SvL14], is for Q not to lie on 6 exceptional curves, if its order is 3 or 5 . Another example is found in [STVA14, Corollary 18], where Salgado, Testa and Várilly-Alvarado show that a del Pezzo surface of degree 2 is unirational if and only if it contains a point that is not contained in 4 exceptional curves, and lies outside the ramification curve of the anticanonical map. In this chapter we study the configuration of the exceptional curves on a del Pezzo surface of degree 1,

4. CONCURRENT EXCEPTIONAL CURVES

and determine the maximal number of these curves that can go through one point.

4.1 Main results

We call a set of exceptional curves concurrent in a point on the surface if that point is contained in all of them. It is well known that on del Pezzo surfaces of degree 3, the number of exceptional curves that are concurrent in a point is at most 3 . This can be seen by looking at the graph on the 27 exceptional curves, where two vertices are connected by an edge if the corresponding exceptional curves intersect. For all del Pezzo surfaces of degree 3 this gives the same graph G. A set of concurrent exceptional curves corresponds in this way to a complete subgraph of G, and the maximal size of complete subgraphs in G is 3 . On a del Pezzo surface of degree 2, the number of concurrent exceptional curves in a point is at most 4 . As in the case for degree 3 , this can be derived directly from the intersection graph on the 56 exceptional curves. A geometric argument why 4 is an upper bound is given in [TVAV09], in the proof of Lemma 4.1. An example where this upper bound is reached is given in [STVA14, Example 2.4. For del Pezzo surfaces of degree 1, the situation is more complex. Contrary to the case of del Pezzo surfaces of degree ≥ 2, for char $k \neq 2$, the maximal size of complete subgraphs of the intersection graph on the 240 exceptional curves, which we will show is 16 , is not equal to the maximal number of exceptional curves that are concurrent in a point.

Let X be a del Pezzo surface of degree 1 over an algebraically closed field k, and let K_{X} be the canonical divisor on X. The linear system $\left|-2 K_{X}\right|$ gives X the structure of a double cover of a cone Q in \mathbb{P}^{3}, ramified over a sextic curve that is cut out by a cubic surface (Section 1.4.1). Let φ be the morphism associated to this linear system. In this chapter we prove the following two theorems.

Theorem 4.1.1. Let $P \in X(k)$ be a point on the ramification curve of φ. The number of exceptional curves that go through P is at most ten if char $k \neq 2$, and at most sixteen if char $k=2$.

Theorem 4.1.2. Let $Q \in X(k)$ be a point outside the ramification curve of φ. The number of exceptional curves that go through Q is at most ten if char $k \neq 3$, and at most twelve if char $k=3$.

Using the ramification divisor of φ, we obtain with a simple geometrical argument an upper bound of 12 outside characteristic 2 for Theorem4.1.1, which was pointed out to us by Niels Lubbes. An anonymous referee even suggested that with some more work, this same argument can be improved to give the upper bound of 10 outside characteristic 2. See Remark 4.3.1.

In SvL14, Example 4.1], for any field of characteristic unequal to 2,3 , or 5 , a del Pezzo surface of degree 1 is defined that contains a point outside the ramification curve that is contained in 10 exceptional curves. This shows that the upper bound for char $k \neq 2,3,5$ in Theorem 4.1.2 is sharp. In Section 4.5 we show in all characteristics except for characteristic 5 in the case of Theorem 4.1.2, that the upper bounds in Theorems 4.1.1 and 4.1.2 are sharp. Theorems 4.1.1 and 4.1 .2 are proved by using results on the automorphism group of the graph on the 240 exceptional curves, and by Propositions 4.3.6 and 4.4.6, which are purely geometrical and show that certain curves in \mathbb{P}^{2} do not go through the same point.

Remark 4.1.3. Most of the results in Section 4.3 are proved by the same author in the master thesis [Win14] more specifically, Theorem 4.1.1] and Proposition 4.3 .6 are equal to Theorem 1 and Proposition 4.22 in Win14, and Lemma 4.3 .4 is almost the same as Lemma 4.21 in Win14. We decided to include these results here for completeness.
In Win14, Theorem 4.1.2 is stated for char $k=0$. In this chapter we extend this to a result for all characteristics. Moreover, we added several geometrical arguments (Lemmas 4.4.8-4.4.13. Proposition 4.4.15), that heavily reduce the usage of magma in the proof of Proposition 4.4.6, which is key to Theorem 4.1.2.
Examples 4.5.1 and 4.5.2 are the same as Exmples 4.24 and 4.23 in Win14, where it was shown that the upper bounds of Theorem4.1.1 are sharp in characteristic 0. In Section 4.5 we give extra examples, showing that the upper bounds in Theorem 4.1.1 are sharp in all characteristics, and that the upper bounds in Theorem 4.1.2 are sharp except possibly in characteristic 5.

We use magma BCP97] for our computations, which is the case only in Propositions 4.3.6 and 4.4.6. The proofs of Propositions 4.2.2, 4.4.2, 4.4.3, and 4.4.4 rely on results in Chapter 3 that also make use of magma.

We want to thank Niels Lubbes for useful discussions, and Igor Dolgachev for useful comments. We also want to thank an anonymous referee for

4. CONCURRENT EXCEPTIONAL CURVES

giving useful remarks that improved the quality of the paper, and a second anonymous referee for suggesting a shorter proof of the upper bound of 10 outside characteristic 2 on the ramification curve.

4.2 The weighted graph on exceptional classes

We use the same notation as in Definition 1.4 .12 and in Chapter 3 we denote the set of exceptional classes in Pic X by I; by G we denote the complete weighted graph whose vertex set is I, and where the weight function is the intersection pairing in Pic X.

When two exceptional curves intersect in a point on X, their corresponding classes in Pic X are connected by an edge of positive weight in G. Therefore, an upper bound on the number of exceptional curves on X that are concurrent in a point is given by the maximal size of cliques in G that have only edges of positive weight. To study these cliques, we use the correspondence between the set I and the root system \mathbf{E}_{8} as in Remark 1.4.9. In particular, if Γ is the weighted graph where the vertices are the roots in \mathbf{E}_{8} and the weights are induces by de dot product in \mathbf{E}_{8}, there is an isomorphism of weighted graphs between G and Γ, that sends a vertex c in G to the corresponding vertex $c+K_{X}$ in Γ, and an edge $d=\left\{c_{1}, c_{2}\right\}$ in G with weight w to the edge $\delta=\left\{c_{1}+K_{X}, c_{2}+K_{X}\right\}$ in Γ with weight $1-w$ (Remark 1.4.13). The different weights that occur in G are $0,1,2$, and 3 , and they correspond to weights $1,0,-1$, and -2 , respectively, in Γ. From the bijection between Γ and G we immediately obtain the following results.

Lemma 4.2.1. (i) Let e be an exceptional class. Then there is exactly one exceptional class f with $e \cdot f=3$, there are 56 exceptional classes f with $e \cdot f=0$, there are 126 exceptional classes f with $e \cdot f=1$, and 56 exceptional classes f with $e \cdot f=2$.
(ii) For two exceptional classes e_{1}, e_{2} with $e_{1} \cdot e_{2}=2$, there is a unique exceptional class f such that $e_{1} \cdot f=e_{2} \cdot f=2$.
(iii) For every pair e_{1}, e_{2} of exceptional classes such that $e_{1} \cdot e_{2}=1$, there are exactly 60 exceptional classes f with $e_{1} \cdot f=e_{2} \cdot f=1$, and 32 exceptional classes f with $e_{1} \cdot f=1$ and $e_{2} \cdot f=0$.
(iv) For e_{1}, e_{2} two exceptional classes with $e_{1} \cdot e_{2}=3$, and f a third exceptional class, we have $e_{1} \cdot f=1$ if and only if $e_{2} \cdot f=1$, and $e_{1} \cdot f=0$

4.2. THE WEIGHTED GRAPH ON EXCEPTIONAL CLASSES

if and only if $e_{2} \cdot f=2$.
Proof. Using the fact that two exceptional classes have intersection pairing a if and only if their corresponding roots in E have inner product $1-a$, we see that (i) is Proposition 4.2.1, (ii) is Lemma 3.3.9, and (iii) is Lemma 3.3.27 and Lemma 3.3.13. Finally, (iv) follows from the fact that two classes e_{1}, e_{2} with $e_{1} \cdot e_{2}=3$ correspond to two roots in E with inner product -2 , which implies they are each other's inverse as vectors (Proposition 3.2.2).

We also obtain a first upper bound for the number of exceptional curves that are concurrent in a point on X.

Proposition 4.2.2. The number of exceptional curves that are concurrent in a point on X is at most 16 .

Proof. Cliques with edges of positive weight in G correspond to cliques with edges of weights $-2,-1,0$ in Γ. The maximal size of such cliques in Γ is 16 by Proposition 3.5 .33 and Appendix A.

Definition 4.2.3. For an exceptional class e in $\operatorname{Pic} X$, we call the unique exceptional class e^{\prime} with $e \cdot e^{\prime}=3$ its partner.

The graph in Figure 4.1 is a translation of Figure 3.1, and summarizes Lemma 4.2.1. Vertices are exceptional classes, and the number in a subset is its cardinality. The number on an edge between two subsets is the intersection pairing of two classes, one from each subset. For $i, j \in\{1,2,3\}$, the exceptional class e_{i}^{\prime} is the partner of the class e_{i}, and for $e_{i} \cdot e_{j}=2$, the class $e_{i, j}$ is the unique one that intersects both e_{i} and e_{j} with multiplicity 2. Let φ be the morphism associated to the linear system $\left|-2 K_{X}\right|$, which realizes X as a double cover of a cone Q in \mathbb{P}^{3}. We want to distinguish cliques in G corresponding to exceptional curves that intersect in a point on the ramification curve of φ from those intersecting in a point outside the ramification curve of φ. To this end we use Proposition 4.2.4.

4. CONCURRENT EXCEPTIONAL CURVES

Figure 4.1: Graph G

Proposition 4.2.4.

(i) If e is an exceptional curve on X, then $\varphi(e)$ is a smooth conic, the intersection of Q with a plane in \mathbb{P}^{3} not containing the vertex of Q. Moreover $\left.\varphi\right|_{e}: e \longrightarrow \varphi(e)$ is one-to-one.
(ii) If H is a hyperplane section of Q not containing the vertex of Q, then $\varphi^{*} H$ has an exceptional curve as component if and only if it has at least three (maybe infinitely near) singular points. If this is the case, then $\varphi^{*} H=e_{1}+e_{2}$ with e_{1}, e_{2} exceptional curves, and $e_{1} \cdot e_{2}=3$. Every exceptional curve arises this way.

Proof. CO99, Proposition 2.6 and Key-lemma 2.7].
REMARK 4.2.5. Let e be an exceptional curve on X, and let e^{\prime} be its partner. Let H be a hyperplane section of Q with $\varphi^{*} H=e+e^{\prime}$, which exists by Proposition 4.2.4 (ii). Since $\left.\varphi\right|_{f}$ is one-to-one for $f=e, e^{\prime}$ by part (i) of the same proposition, it follows that $\varphi(e)=\varphi\left(e^{\prime}\right)=H$. So every point on H has two preimages under φ, except for the points with
a preimage in $e \cap e^{\prime}$. We conclude that the points where e intersects the ramification curve of φ are exactly the points in $e \cap e^{\prime}$, hence are also contained in e^{\prime}. Conversely, if a set of exceptional curves is concurrent in a point P, and this set contains an exceptional curve and its partner, then P lies on the ramification curve of φ.

4.3 Proof of Theorem 4.1.1

In this section we prove Theorem 4.1.1. We first determine which cliques in G may correspond to sets of exceptional curves intersecting on the ramification curve of φ (Remark 4.3.2). We then show that the automorphism group of G acts transitively on certain cliques of that form (Proposition 4.3.3), which allows us to reduce to specific curves on X. In Proposition 4.3.6, which is key to the proof of Theorem 4.1.1, we show that seven curves in \mathbb{P}^{2} in a specific configuration are not concurrent.

Remark 4.3.1. From Remark 4.2 .5 it follows that there is a bijection between planes in \mathbb{P}^{3} that are tritangent to the branch curve of φ and do not contain the vertex of Q, and pairs of exceptional curves e_{1}, e_{2} with $e_{1} \cdot e_{2}=3$. Using this, we can find an upper bound for the number of exceptional curves that are concurrent in a point on the ramification curve. Let P be a point on the branch curve of φ. From Lemma 4.5 in [TVAV09], it follows that over a field of characteristic unequal to 2 , there are at most 7 planes that are tangent to the branch curve at P and two other points. Moreover, Niels Lubbes gave us the insight that exactly one of those planes contains the vertex of Q, so we find an upper bound of 6 planes that are tritangent to the branch curve, that contain P, and that do not contain the vertex of Q. This gives an upper bound of 12 exceptional curves that contain the point $\varphi^{-1}(P)$ on the ramification curve of φ, if char $k \neq 2$.
Consider the map $\lambda: R \longrightarrow \mathbb{P}^{1}$, where R is the ramification curve of φ, and \mathbb{P}^{1} parametrizes the planes through the tangent line to R at $\varphi^{-1}(P)$: λ sends each point x in $R \backslash \varphi^{-1}(P)$ to the unique plane containing x. This map has degree 4 , and if char $k \neq 2$, then R is smooth, and λ extends to a morphism. The upper bound of 7 planes that was found in Lemma 4.5 in TVAV09 comes from the fact that the ramification divisor of λ has degree 14. An anonymous referee gave us the hint that this idea could even be used to give the upper bound of 10 in char $k \neq 2$ directly, by showing that a morphism of degree 4 to \mathbb{P}^{1} can not have 7 ramification patterns all equal to $(2,2)$. Therefore there are at most 6 planes that are

4. CONCURRENT EXCEPTIONAL CURVES

tangent to P and two other points on the branch curve of φ. Since one of them is the plane through the vertex of Q, this gives the upper bound of 10 exceptional curves through $\varphi^{-1}(P)$. We are currently working out the details of this argument.

Remark 4.3.2. From Remark 4.2.5 it follows that a maximal set of exceptional curves that are concurrent in a point on the ramification curve consists of exceptional curves and their partners, hence has even size. Moreover, from Lemma 4.2.1 (iv) it follows that such a clique only has edges of weights 1 and 3 . We conclude that all cliques in G corresponding to a maximal set of exceptional curves that are concurrent in a point on the ramification curve are of the following form.

$$
K_{n}=\left\{\begin{array}{l|l}
\left\{e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\} & \begin{array}{c}
\forall i: e_{i}, e_{i}^{\prime} \in I ; e_{i} \text { is the partner of } e_{i}^{\prime} ; \\
\forall i \neq j: e_{i} \cdot e_{j}=e_{i} \cdot e_{j}^{\prime}=e_{i}^{\prime} \cdot e_{j}^{\prime}=1
\end{array}
\end{array}\right\}
$$

Let W be the group of permutations of I that preserve the intersection pairing, and recall that W is isomorphic to the Weyl group of the \mathbf{E}_{8} root system (Corollary 1.4.10).

Proposition 4.3.3. For $n \in\{2,3,5,6,7,8\}$, the group W acts transitively on the set K_{n}.

Proof. This is Proposition 3.5.13.
We now set up notation for Lemma 4.3.4 this lemma will be used in Propositions 4.3.6 and 4.4.6. Lemma 4.3.5 is used in Proposition 4.3.6.

Let \mathbb{P}^{2} be the projective plane over k with coordinates x, y, z, and let R_{1}, \ldots, R_{9} be nine points in \mathbb{P}^{2}, with $R_{i}=\left(x_{i}: y_{i}: z_{i}\right)$ for $i \in\{1, \ldots, 9\}$. For $i \in\{1,2,3,4\}$, we define Mon_{i} to be the decreasing sequence of $r_{i}=\binom{i+2}{2}=\frac{1}{2}(i+1)(i+2)$ monomials of degree i in x, y, z, ordered lexicographically with $x>y>z$, and for $j \in\left\{1, \ldots, r_{i}\right\}$, let $\operatorname{Mon}_{i}[j]$ be the $j^{\text {th }}$ entry of Mon_{i}. For $\delta \in\{x, y, z\}$, let $\operatorname{Mon}_{i}^{\delta}$ be the list of derivatives of the entries in Mon_{i} with respect to δ. We will define matrices M, N, L, H. Note that each row is well defined up to scaling. This means that for all these matrices, the determinant is well defined up to scaling, so asking for the determinant to vanish is well defined.

$$
\begin{array}{ll}
M=\left(a_{i, j}\right)_{i, j \in\{1,2,3\}} & \text { with } a_{i, j}=\operatorname{Mon}_{1}[j]\left(R_{i}\right) ; \\
N=\left(b_{i, j}\right)_{i, j \in\{1, \ldots, 6\}} & \text { with } b_{i, j}=\operatorname{Mon}_{2}[j]\left(R_{i}\right) ; \\
L=\left(c_{i, j}\right)_{i, j \in\{1, \ldots, 10\}} & \text { with } c_{i, j}= \begin{cases}\operatorname{Mon}_{3}[j]\left(R_{i}\right) & \text { for } i \leq 8 \\
\operatorname{Mon}_{3}^{x}[j]\left(R_{8}\right) & \text { for } i=9 \\
\operatorname{Mon}_{3}^{z}[j]\left(R_{8}\right) & \text { for } i=10\end{cases}
\end{array} .
$$

For $\alpha_{7}, \alpha_{8}, \alpha_{9} \in\{x, y, z\}$, we define the matrix

$$
\begin{aligned}
H_{\alpha_{7}, \alpha_{8}, \alpha_{9}} & =\left(d_{i, j}\right)_{i, j \in\{1, \ldots, 15\}}, \\
\text { with } d_{i, j}= & \begin{cases}\operatorname{Mon}_{4}[j]\left(R_{i}\right) & \text { for } i \leq 9 \\
\operatorname{Mon}_{4}^{\beta_{7}}[j]\left(R_{7}\right) & \text { for } i=10 \\
\operatorname{Mon}_{4}^{\gamma_{7}}[j]\left(R_{7}\right) & \text { for } i=11 \\
\operatorname{Mon}_{4}^{\beta_{8}}[j]\left(R_{8}\right) & \text { for } i=12 \\
\operatorname{Mon}_{4}^{\gamma_{8}}[j]\left(R_{8}\right) & \text { for } i=13 \\
\operatorname{Mon}_{4}^{\beta_{9}}[j]\left(R_{9}\right) & \text { for } i=14 \\
\operatorname{Mon}_{4}^{\gamma_{9}}[j]\left(R_{9}\right) & \text { for } i=15\end{cases}
\end{aligned}
$$

where for $i \in\{7,8,9\}$, we have $\left\{\beta_{i}, \gamma_{i}\right\}=\{x, y, z\} \backslash\left\{\alpha_{i}\right\}$, with $\beta_{i}>\gamma_{i}$ with respect to lexicographic ordering.

Lemma 4.3.4. The following hold.
(i) The points R_{1}, R_{2}, and R_{3} are collinear if and only if $\operatorname{det}(M)=0$.
(ii) The points R_{1}, \ldots, R_{6} are on a conic if and only if $\operatorname{det}(N)=0$.
(iii) If the points R_{1}, \ldots, R_{8} are on a cubic with a singular point at R_{8}, then $\operatorname{det}(L)=0$. If $y_{8} \neq 0$, then the converse also holds.
(iv) For all $\alpha_{7}, \alpha_{8}, \alpha_{9}$, if the points R_{1}, \ldots, R_{9} are on a quartic that is singular at R_{7}, R_{8} and R_{9}, then $\operatorname{det}\left(H_{\alpha_{7}, \alpha_{8}, \alpha_{9}}\right)=0$. If for all i in $\{7,8,9\}$, the α_{i}-coordinate of R_{i} is non-zero, then the converse also holds.

Proof.
(i) The determinant of M is zero if and only if there is a non-zero element in the nullspace of M, that is, there is a non-zero vector $\left(m_{1}, m_{2}, m_{3}\right)$

4. CONCURRENT EXCEPTIONAL CURVES

such that for all $i \in\{1,2,3\}$, we have $m_{1} a_{i, 1}+m_{2} a_{i, 2}+m_{3} a_{i, 3}=0$. But this is the case if and only if the line defined by $m_{1} x+m_{2} y+m_{3} z$ contains all three points.
(ii) This proof goes analogously to the proof of (i).
(iii) The determinant of L is zero if and only if there is a non-zero vector $\left(l_{1}, \ldots, l_{10}\right)$ in k^{10} such that for all $i \in\{1, \ldots, 10\}$, we have $l_{1} c_{i, 1}+\cdots+l_{10} c_{i, 10}=0$. This is the case if and only if the cubic C defined by $\lambda=\sum_{i=1}^{10} l_{i} \mathrm{Mon}_{3}[i]$ contains all eight points R_{1}, \ldots, R_{8}, and moreover, the derivatives λ_{x}, λ_{z} of λ with respect to x and z vanish in R_{8}. So if R_{1}, \ldots, R_{8} are on a cubic with a singular point at R_{8}, the determinant of L vanishes. Conversely, if $\operatorname{det}(L)=0$ and $y_{8} \neq 0$, since we have $x \lambda_{x}+y \lambda_{y}+z \lambda_{z}=3 \lambda$, this implies that also the derivative λ_{y} of λ with respect to y vanishes in R_{8}, hence C is singular in R_{8}.
(iv) Take $\alpha_{7}, \alpha_{8}, \alpha_{9} \in\{x, y, z\}$. The determinant of $H_{\alpha_{7}, \alpha_{8}, \alpha_{9}}$ is zero if and only if there exists a non-zero vector given by $\left(h_{1}, \ldots, h_{15}\right)$ such that for all $i \in\{1, \ldots, 15\}$, we have $h_{1} d_{i, 1}+\cdots+h_{15} d_{i, 15}=0$. This is the case if and only if the quartic K defined by $\lambda=\sum_{i=1}^{15} h_{i} \operatorname{Mon}_{4}[i]$ contains R_{1}, \ldots, R_{9}, and moreover, for $i \in\{7,8,9\}$, the derivatives λ_{δ} for $\delta \in\{x, y, z\} \backslash\left\{\alpha_{i}\right\}$ vanish in R_{i}. So if R_{1}, \ldots, R_{9} are on a quartic that is singular at R_{7}, R_{8} and R_{9}, the determinant of $H_{\alpha_{7}, \alpha_{8}, \alpha_{9}}$ vanishes. Conversely, if $\operatorname{det}\left(H_{\alpha_{7}, \alpha_{8}, \alpha_{9}}\right)=0$ and the α_{i}-coordinate of R_{i} is non-zero for $i \in\{7,8,9\}$, then, since we have $x \lambda_{x}+y \lambda_{y}+z \lambda_{z}=4 \lambda$, this implies that also $\lambda_{\alpha_{i}}$ vanishes in R_{i} for $i \in\{7,8,9\}$. So K is singular in R_{7}, R_{8}, and R_{9}.

We recall that k is an algebraically closed field, and \mathbb{P}^{2} is the projective plane over k.

Lemma 4.3.5. If R_{1}, \ldots, R_{7} are seven distinct points in \mathbb{P}^{2} such that R_{1}, \ldots, R_{6} are in general position, and the line L containing R_{1} and R_{7} contains none of the other points, then there is a unique cubic containing all seven points that is singular in R_{1}, which does not contain L.

Proof. The linear system of cubics containing R_{1}, \ldots, R_{7} is at least twodimensional. Requiring that a cubic in this linear system is singular in R_{1} gives two linear conditions, defining a linear subsystem \mathcal{C} of dimension at least 0 , so there is at least one cubic containing R_{1}, \ldots, R_{7} that is singular at R_{1}.

Let D be an element of \mathcal{C}; we claim that D does not contain the line L that contains R_{1} and R_{7}. Indeed, if D were the union of L and a conic C, then R_{1} would be contained in C since it is a singular point of D. Since the points R_{2}, \ldots, R_{6} are not on L by assumption, they would also be contained in C, contradicting the fact that R_{1}, \ldots, R_{6} are in general position. So D does not contain L. Note that this implies that D is smooth in R_{7}, since if it were singular, then D would intersect L with multiplicity at least 4 , hence D would contain L.
Now assume that there is more than one element in \mathcal{C}. Then there are two cubics D_{1} and D_{2} that contain R_{1}, \ldots, R_{7} with a singularity at R_{1}, and whose defining polynomials are linearly independent. By what we just showed, they are not singular in R_{7}. For $i=1,2$, let l_{i} be the tangent line to D_{i} at R_{7}. If the equations defining l_{1} and l_{2} are not linearly independent, then there is an element F of \mathcal{C} that is singular in R_{7}, giving a contradiction. We conclude that the equations defining l_{1} and l_{2} must be linearly independent. Therefore, there is an element G in \mathcal{C} such that the line L through R_{1} and R_{7} is the tangent line to G at R_{7}. But then L intersects G in four points counted with multiplicity, so it is contained in G. This contradicts the fact that G is in \mathcal{C}. We conclude that there is a unique cubic through R_{1}, \ldots, R_{7} that is singular in R_{1}, and which does not contain the line through R_{1} and R_{7}.

Proposition 4.3.6. Assume that the characteristic of k is not 2. Let Q_{1}, \ldots, Q_{8} be eight points in \mathbb{P}^{2} in general position. For $i \in\{1,2,3,4\}$, let L_{i} be the line through $Q_{2 i}$ and $Q_{2 i-1}$, and for $i, j \in\{1, \ldots, 8\}$, with $i \neq j$, let $C_{i, j}$ be the unique cubic through $Q_{1}, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_{8}$ that is singular in Q_{j}, which exists by Lemma 4.3.5. Assume that the four lines L_{1}, L_{2}, L_{3} and L_{4} are concurrent in a point P. Then the three cubics $C_{7,8}, C_{8,7}$, and $C_{6,5}$ do not all contain P.

Proof. First note that if P were equal to one of the Q_{i}, then three of the eight Q_{i} would be on a line, which would contradict the fact that Q_{1}, \ldots, Q_{8} are in general position. We conclude that P is not equal to one of the Q_{i}. Moreover, if P were collinear with any two of the three points Q_{1}, Q_{3}, Q_{5}, say for example with Q_{1} and Q_{3}, then, since P is also contained in L_{1} and L_{2}, it would follow that L_{1} and L_{2} are equal, giving a contradiction. So Q_{1}, Q_{3}, Q_{5} and P are in general position.
Let $(x: y: z)$ be the coordinates in \mathbb{P}^{2}. Without loss of generality, after

4. CONCURRENT EXCEPTIONAL CURVES

applying an automorphism of \mathbb{P}^{2} if necessary, we can define

$$
\begin{aligned}
& Q_{1}=(0: 1: 1) ; \quad Q_{3}=(1: 0: 1) \\
& Q_{5}=(1: 1: 1) ; \quad P=(0: 0: 1) .
\end{aligned}
$$

Then we have the following.
L_{1} is the line given by $x=0 ;$
L_{2} is the line given by $y=0$;
L_{3} is the line given by $x=y$.
Since L_{4} contains P, and is unequal to L_{1} and L_{2}, there is an $m \in k^{*}$ such that L_{4} is the line given by $m y=x$. Since Q_{2}, Q_{7} and Q_{8} are not in L_{2}, and Q_{4} is not in L_{1}, there are $a, b, c, u, v \in k$ such that

$$
\begin{array}{ll}
Q_{2}=(0: 1: a) ; & Q_{7}=(m: 1: v) ; \\
Q_{4}=(1: 0: b) ; & Q_{8}=(m: 1: c) . \\
Q_{6}=(1: 1: u) ; &
\end{array}
$$

We define \mathbb{A}^{6} to be the affine space with coordinate ring T_{6} given by $T_{6}=k[a, b, c, m, u, v]$. Points in \mathbb{A}^{6} correspond to configurations of the points Q_{1}, \ldots, Q_{8}.
Assume by contradiction that $C_{7,8}, C_{8,7}$, and $C_{6,5}$ all contain P. This assumption gives polynomial equations in the variables a, b, c, m, u, v, and hence defines an algebraic set A_{0} in \mathbb{A}^{6}. We define S_{0} to be the algebraic set of all points in \mathbb{A}^{6} that correspond to the configurations where three of the points Q_{1}, \ldots, Q_{8} lie on a line, or six of the points lie on a conic. We want to show that A_{0} is contained in S_{0}, which proves the proposition.
Note that the line containing P and Q_{5}, which is L_{3}, does not contain any of the points $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{8}$. From Lemma 4.3.5, after substituting $\left(R_{1}, \ldots, R_{7}\right)=\left(Q_{5}, Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{8}, P\right)$, it follows that there is a unique cubic D containing $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{8}$ and P that is singular in Q_{5}, and that D does not contain L_{3}. By uniqueness, D must be equal to $C_{6,5}$, and therefore also contains Q_{7}. By Lemma 4.3.4, the equation expressing that Q_{7} is contained in D (or equivalently, that P is contained in $C_{6,5}$) is given by $\operatorname{det}(L)=0$, where L is the matrix used in the lemma, associated to the points $\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}, P, Q_{5}\right)$. We have

$$
\operatorname{det}(L)=-m(m-1)(c-v)(b-1)(a-1) f
$$

where $f=\alpha v+\beta$, with

$$
\alpha=a-a c-b c+b m, \quad \beta=b(a-1) m^{2}+b(c-2 a) m+a(b+c-1) .
$$

The first five factors of $\operatorname{det}(L)$ define subsets of S_{0}, and do not correspond to configurations where Q_{1}, \ldots, Q_{8} are in general position. Therefore, $C_{6,5}$ contains P if and only if $f=0$. Define the algebraic set $V=Z(\alpha)$, and let $\left(a_{0}, b_{0}, c_{0}, m_{0}, u_{0}, v_{0}\right)$ be an element in $V \cap A_{0}$. Then we have $\alpha\left(a_{0}, b_{0}, c_{0}, m_{0}, u_{0}, v_{0}\right)=f\left(a_{0}, b_{0}, c_{0}, m_{0}, u_{0}, v_{0}\right)=0$, so we find $\beta\left(a_{0}, b_{0}, c_{0}, m_{0}, u_{0}, v_{0}\right)=0$. But α and β do not depent on v, so this implies that we have $f\left(a_{0}, b_{0}, c_{0}, m_{0}, u_{0}, v^{\prime}\right)=0$ for every v^{\prime}. So every element in $V \cap A_{0}$ corresponds to a configuration of Q_{1}, \ldots, Q_{8} such that every point $\left(m: 1: v^{\prime}\right)$ on L_{4} is also contained in D. But if this is the case, then D consists of L_{4} and a conic, which is singular, since Q_{5} is a singular point of D that is not contained in L_{4}. Since L_{4} contains none of the points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, these four points are then on the singular conic, which implies that Q_{5} is collinear with at least two other points. We conclude that $V \cap A_{0}$ is a subset of S_{0}.
Analogously, the fact that $C_{7,8}$ contains P is expressed by $\operatorname{det}\left(L^{\prime}\right)=0$, where L^{\prime} is the matrix denoted by L in Lemma 4.3.4 with

$$
\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, P, Q_{8}\right) .
$$

We have

$$
\operatorname{det}\left(L^{\prime}\right)=-m(u-1)(m-1)(b-1)(a-1) g
$$

where $g=\gamma u+\delta$ with

$$
\gamma=b m^{3}+(1-b c-c) m^{2}+\left(c^{2}-2 c+1\right) m+a(1-c)+c^{2}-c,
$$

and

$$
\begin{aligned}
\delta=-a b m^{3}+(a b c+a b & +a c-a+b-2 b c) m^{2}+ \\
& \left(a b-2 a b c+a+2 b c^{2}-b-a c^{2}+2 c^{2}-2 c\right) m \\
& +a\left(b c-b+2 c^{2}-2 c\right)-b c^{2}+b c-2 c^{3}+2 c^{2} .
\end{aligned}
$$

The first five factors of $\operatorname{det}\left(L^{\prime}\right)$ correspond to configurations where the eight points are not in general position, so $C_{7,8}$ contains P if and only if $g=0$. Define $U=Z(\gamma)$. By the same reasoning as for $V \cap A_{0}$ (now using the fact that D does not contain the line L_{3}), we have $U \cap A_{0} \subseteq S_{0}$. Set

$$
v^{\prime}=\frac{-\beta}{\alpha} \quad \text { and } \quad u^{\prime}=\frac{-\delta}{\gamma}
$$

Define \mathbb{A}^{4} to be the affine space with coordinate ring $T_{4}=k[m, a, b, c]$, and let K_{4} be its fraction field. Let $Y \subset \mathbb{A}^{4}$ be the set defined by $\alpha=\gamma=0$.

4. CONCURRENT EXCEPTIONAL CURVES

Consider the ring homomorphism $\psi: T_{6} \longrightarrow K_{4}$ defined by

$$
(m, a, b, c, u, v) \longmapsto\left(m, a, b, c, u^{\prime}, v^{\prime}\right)
$$

This defines a morphism $i: \mathbb{A}^{4} \backslash Y \longrightarrow \mathbb{A}^{6} \backslash(V \cup U)$, which is a section of the projection $\mathbb{A}^{6} \longrightarrow \mathbb{A}^{4}$ to the first four coordinates. Set $A_{0}^{\prime}=A_{0} \backslash(V \cup U)$. Then we have $A_{0} \subset S_{0}$ if and only if $A_{0}^{\prime} \subseteq S_{0}$. Moreover, A_{0}^{\prime} is contained in $Z(f, g)$, and since f and g are linear in v and u respectively, we have $i^{-1}\left(A_{0}^{\prime}\right) \cong A_{0}^{\prime}$. Set $A_{1}=i^{-1}\left(A_{0}^{\prime}\right)$ and $S_{1}=i^{-1}\left(S_{0}\right)$, then $A_{0}^{\prime} \subseteq S_{0}$ is equivalent to $A_{1} \subseteq S_{1}$.
Let $L^{\prime \prime}$ be the matrix denoted by L in Lemma 4.3.4 with

$$
\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, P, Q_{7}\right)
$$

Similarly to $C_{7,8}$, the fact that $C_{8,7}$ contains P is expressed by the vanishing of the determinant of $L^{\prime \prime}$. We compute this determinant and write it in terms of the coordinates of \mathbb{A}^{4} using ψ. We find the expression

$$
\begin{equation*}
-2 a b m(m-1)^{3}(b-1)(a-1)(a+b-1) f_{1} f_{2} f_{3}, \tag{4.1}
\end{equation*}
$$

with

$$
\begin{gathered}
f_{1}=a c-a+b c m-b m^{2}-c^{2}+c m+c-m \\
f_{2}=a b m^{2}-2 a b m+a b-a c^{2}+2 a c-a-b c^{2}+2 b c m-b m^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
f_{3}=a b c m^{2}-2 a b c m+a b c-a b m^{3}+a b m^{2}+a b m-a b-a c^{2} m+2 a c^{2} \\
+a c m^{2}-3 a c-a m^{2}+a m+a+2 b c^{2} m-b c^{2}-3 b c m^{2}+b c+b m^{3} \\
\quad+b m^{2}-b m-2 c^{3}+3 c^{2} m+3 c^{2}-c m^{2}-4 c m-c+m^{2}+m .
\end{gathered}
$$

Expression (4.1) defines the set A_{1} in \mathbb{A}^{4}. Since char $k \neq 2$, we have (4.1) $=0$ if and only if at least one of the non-constant factors of 4.1) equals zero. We show that all non-constant factors of expression 4.1) define components of S_{1}. If $a=0$, then Q_{2}, Q_{3} and Q_{5} are contained in the line given by $x-z=0$. Similarly, $b=0$ implies that Q_{1}, Q_{4} and Q_{5} are on the line given by $y-z=0$, and $a+b-1=0$ implies that Q_{2}, Q_{4}, and Q_{5} are on the line given by $b x+a y-z=0$. If $m=0$ then $L_{4}=L_{2}$, and $m=1$ implies $L_{4}=L_{3}$, so in both cases there are four points on a line. If $a=1$ or $b=1$, then two of the eight points would be the same. Set
$\left(R_{1}, \ldots, R_{6}\right)=\left(Q_{3}, \ldots, Q_{8}\right)$, and let N be the corresponding matrix from Lemma 4.3.4. We compute the determinant of N and find that $f_{1} f_{2} f_{3}$ divides $\operatorname{det}(N)$. This means that f_{1}, f_{2}, as well as f_{3} define components of S_{1}, more specifically, they define configurations where Q_{3}, \ldots, Q_{8} are on a conic. We conclude that all irreducible components of A_{1} are contained in S_{1}, which finishes the proof.

Remark 4.3.7. Note that, theoretically, we could have proved Proposition 4.3.6 with a computer, by checking that A_{0} is contained in S_{0} using Groebner bases. However, in practice, this turned out to be too big for magma to do.

We can now prove Theorem 4.1.1. We use the following notation.
Notation 4.3.8. Let P_{1}, \ldots, P_{8} be eight points in general position in \mathbb{P}^{2} such that X is isomorphic to \mathbb{P}^{2} blown up these points. For $i \in\{1, \ldots, 8\}$, let E_{i} be the class in Pic X corresponding to the exceptional curve above P_{i}, and let L be the class in Pic X corresponding to the pullback of a line in \mathbb{P}^{2} that does not contain any of the points P_{1}, \ldots, P_{8}.

Recall that a maximal set of exceptional curves that are concurrent in a point on the ramification curve consists of curves and their partners (Remark 4.3.2).

Proof of Theorem 4.1.1. First note that by Proposition 4.2.2, the number of exceptional curves through any point in X is at most sixteen in all characteristics; this proves the case char $k=2$.
Now assume char $k \neq 2$. Consider the clique $K=\left\{e_{1}, \ldots, e_{6}, e_{1}^{\prime}, \ldots, e_{6}^{\prime}\right\}$ in G, where

$$
\begin{aligned}
& e_{1}=L-E_{1}-E_{2} \\
& e_{2}=L-E_{3}-E_{4} \\
& e_{3}=L-E_{5}-E_{6} \\
& e_{4}=L-E_{7}-E_{8} \\
& e_{5}=3 L-E_{1}-E_{2}-E_{3}-E_{4}-E_{5}-E_{6}-2 E_{8} \\
& e_{6}=3 L-E_{1}-E_{2}-E_{3}-E_{4}-2 E_{5}-E_{7}-E_{8},
\end{aligned}
$$

and e_{i}^{\prime} is the partner of e_{i}, for all $i \in\{1, \ldots, 6\}$. By Remark 1.2.7. the classes e_{1}, \ldots, e_{4} correspond to the strict transforms of the four lines through P_{i} and P_{i+1} for $i \in\{1,3,5,7\}$, and $e_{5}, e_{6}, e_{5}^{\prime}$ correspond to the

4. CONCURRENT EXCEPTIONAL CURVES

strict transforms of the unique cubics through the points $P_{1}, \ldots, P_{6}, P_{8}$, and the points $P_{1}, \ldots, P_{5}, P_{7}, P_{8}$, and the points $P_{1}, \ldots, P_{6}, P_{7}$, respectively, that are singular in P_{8}, and P_{5}, and P_{7}, respectively.
Now let K^{\prime} be a clique in G with only edges of weights 1 and 3, consisting of at least six sets of an exceptional class with its partner. Let $\left\{\left\{f_{1}, f_{1}^{\prime}\right\}, \ldots,\left\{f_{6}, f_{6}^{\prime}\right\}\right\}$ be a set of six such sets in K^{\prime}. Since W acts transitively on the set of cliques of six exceptional classes and their partners by Proposition 4.3.3, after changing the indices and interchanging f_{i} 's with their partner if necessary, there is an element $w \in W$ such that $f_{i}=w\left(e_{i}\right)$ and $f_{i}^{\prime}=w\left(e_{i}^{\prime}\right)$ for $i \in\{1, \ldots, 6\}$. For $i \in\{1, \ldots, 8\}$, set $E_{i}^{\prime}=w\left(E_{i}\right)$. Since the E_{i}^{\prime} are pairwise disjoint, by Lemma 1.2 .8 we can blow down $E_{1}^{\prime}, \ldots, E_{8}^{\prime}$ to points $Q_{1}, \ldots, Q_{8} \in \mathbb{P}^{2}$ that are in general position, such that X is isomorphic to the blow-up of \mathbb{P}^{2} at Q_{1}, \ldots, Q_{8}, and E_{i}^{\prime} is the class in Pic X corresponding to the exceptional curve above Q_{i} for all i. By Remark 1.2 .9 , the sequence $\left(E_{1}^{\prime}, \ldots, E_{8}^{\prime}\right)$ induces a bijection between the exceptional curves on X and the 240 vectors in Proposition 1.2.6, such that the element f_{i} corresponds to the class of the strict transform of the line through $Q_{2 i-1}$ and Q_{i} for $i \in\{1, \ldots, 4\}$, the elements f_{5} and f_{6} correspond to the classes of the strict transforms of the unique cubics through the points $Q_{1}, \ldots, Q_{6}, Q_{8}$ and $Q_{1}, \ldots, Q_{5}, Q_{7}, Q_{8}$, respectively, that are singular in Q_{8} and Q_{5} respectively, and f_{i}^{\prime} is the unique class in I intersecting f_{i} with multiplicity three for all i. From Proposition 4.3.6 it follows that the curves on X corresponding to $f_{1}, \ldots, f_{6}, f_{5}^{\prime}$ and f_{6}^{\prime} are not concurrent.
We conclude that a set of at least six exceptional curves and their partners is never concurrent. Since any maximal set of exceptional curves going through the same point on the ramification curve forms a clique consisting of curves and their partners, hence of even size, we conclude that this maximum is at most ten.

4.4 Proof of Theorem 4.1.2

In this section we prove Theorem 4.1.2. The structure of the proof is similar to that of Theorem4.1.1. we first determine the cliques in G that possibly come from a set of exceptional curves that are concurrent outside the ramification curve of φ (Remark 4.4.1), and show that their maximal size is 12 (Proposition 4.4.2). Then we show that the group W acts transitively on these cliques of size 12 (Proposition 4.4.3) and 11 (Proposition 4.4.4),
and finally we show that ten curves in \mathbb{P}^{2} in a specific configuration are not concurrent in Proposition 4.4.6. This final proposition is again key to the proof of Theorem 4.1.2.

Remark 4.4.1. From Remark 4.2 .5 we know that cliques in G corresponding to exceptional curves that intersect each other in a point outside the ramification curve have no edges of weight 3 . We conclude that these cliques contain only edges of weights 1 and 2 .

Proposition 4.4.2. The maximal size of cliques in G with only edges of weights 1 and 2 is 12, and there are no maximal cliques with only edges of weights 1 and 2 of size 11 .

Proof. We use the correspondence with the graph Γ in Chapter 3, where the corresponding cliques have only edges of colors -1 and 0 ; the statement is Proposition 3.5.23.

Proposition 4.4.3. The group W acts transitively on the set of cliques of size 12 in G with only edges of weights 1 and 2.

Proof. This is Proposition 3.5 .24 .
Proposition 4.4.4. The group W acts transitively on the set of cliques of size 11 in G with only edges of weights 1 and 2.

Proof. By Proposition 4.4.2, any clique of size 11 with only edges of weights 1 and 2 is contained in a clique of size 12 with only edges of weights 1 and 2. By Corollary 3.5.25, for such a clique K of size 12 , the stabilizer W_{K} acts transitively on K, which implies that W_{K} also acts transitively on the set of cliques of size 11 within K. Since W acts transitively on the set of all cliques of size 12 with only edges of weights 1 and 2 by Proposition 4.4.3, the statement follows.

Now that we know which cliques in G to look at and what their maximal size is, we show that ten curves in \mathbb{P}^{2} in a specific configuration are not concurrent in Proposition 4.4.6.

Remark 4.4.5. It is well known that two distinct points in \mathbb{P}^{2} define a unique line, and five points in \mathbb{P}^{2} in general position define a unique conic. Now let R_{1}, \ldots, R_{8} be eight distinct points in \mathbb{P}^{2} in general position. The linear system \mathcal{Q} of quartics in \mathbb{P}^{2} has dimension 14. For three distinct

4. CONCURRENT EXCEPTIONAL CURVES

points $R_{i}, R_{j}, R_{l} \in\left\{R_{1}, \ldots, R_{8}\right\}$, requiring a quartic to contain R_{1}, \ldots, R_{8} and be singular in in R_{i}, R_{j}, R_{l} gives $8+3 \cdot 2=14$ linear relations. Since the eight points are in general position, the 14 linear conditions are linearly independent, so this gives a zero-dimensional linear subsystem of \mathcal{Q}. Hence there is a unique quartic containing all eight points that is singular in R_{i}, R_{j}, R_{l}.

Let R_{1}, \ldots, R_{8} be eight points in \mathbb{P}^{2} in general position. Remark 4.4.5 allows us to define the following curves.
L_{1} is the line through R_{1} and R_{2};
L_{2} is the line through R_{3} and R_{4};
C_{1} is the conic through $R_{1}, R_{3}, R_{5}, R_{6}$ and R_{7};
C_{2} is the conic through $R_{1}, R_{4}, R_{5}, R_{6}$ and R_{8};
C_{3} is the conic through $R_{2}, R_{3}, R_{5}, R_{7}$ and R_{8};
C_{4} is the conic through $R_{2}, R_{4}, R_{6}, R_{7}$ and R_{8};
D_{1} is the quartic through all eight points, singular in R_{1}, R_{7} and R_{8};
D_{2} is the quartic through all eight points, singular in R_{2}, R_{5} and R_{6};
D_{3} is the quartic through all eight points, singular in R_{3}, R_{6} and R_{8};
D_{4} is the quartic through all eight points, singular in R_{4}, R_{5} and R_{7}.
Proposition 4.4.6. Assume that the characteristic of k is not 3. Then the ten curves $L_{1}, L_{2}, C_{1}, \ldots C_{4}, D_{1}, \ldots, D_{4}$ are not concurrent.

Remark 4.4.7. As in the case of Proposition 4.3.6, in theory we could prove Proposition 4.4.6 with a computer by using Groebner bases, but in practice, this is undoable since the computations become too big (see also Remark 4.3.7). In the case of Proposition 4.4.6 the computations become even bigger, since we now have 10 curves to check, four of which are of degree 4 , in contrast to the 7 curves of degrees at most 3 in Proposition 4.3.6.

Before we write down the proof of Proposition 4.4.6, we make some reductions. In \mathbb{P}^{2}, we can choose four points in general position. Fix these and call them Q_{1}, Q_{5}, Q_{6}, and R. We are interested in those configurations of five points $Q_{2}, Q_{3}, Q_{4}, Q_{7}$ and Q_{8} in \mathbb{P}^{2} such that the following 11
conditions hold.
$0)$ The points Q_{1}, \ldots, Q_{8} are in general position.

1) There is a line through R, Q_{1}, Q_{2}.
2) There is a line through R, Q_{3}, Q_{4}.
3) There is a conic through $R, Q_{1}, Q_{3}, Q_{5}, Q_{6}, Q_{7}$.
4) There is a conic through $R, Q_{1}, Q_{4}, Q_{5}, Q_{6}, Q_{8}$.
5) There is a conic through $R, Q_{2}, Q_{3}, Q_{5}, Q_{7}, Q_{8}$.
6) There is a conic through $R, Q_{2}, Q_{4}, Q_{6}, Q_{7}, Q_{8}$.
7) There is a quartic through all nine points, singular in Q_{1}, Q_{7}, Q_{8}.
8) There is a quartic through all nine points, singular in Q_{2}, Q_{5}, Q_{6}.
9) There is a quartic through all nine points, singular in Q_{3}, Q_{6}, Q_{8}.
10) There is a quartic through all nine points, singular in Q_{4}, Q_{5}, Q_{7}.

We will prove Proposition 4.4.6 by showing that there are no such configurations: all of the configurations satisfying $1-10$ violate condition 0 .

We consider the space $\left(\mathbb{P}^{2}\right)^{5}$. Within this space, we define the following two sets.

$$
\begin{gathered}
Y=\left\{\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right) \in\left(\mathbb{P}^{2}\right)^{5} \mid \text { conditions } 1-5 \text { are satisfied }\right\} . \\
S=\left\{\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right) \in\left(\mathbb{P}^{2}\right)^{5} \mid \text { three of } Q_{1}, \ldots, Q_{8} \text { are collinear }\right\} .
\end{gathered}
$$

Note that for an element $\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right)$ in S, condition 0 is violated. Let F_{1} be the linear system of conics through R, Q_{1}, Q_{5}, Q_{6}. Note that this is a one-dimensional linear system that is isomorphic to \mathbb{P}^{1}. Let F_{2} be the linear system of lines through R, which is also isomorphic to \mathbb{P}^{1}. We will show that there is a bijection between $Y \backslash S$ and a subset of $F_{1}^{2} \times F_{2}^{3}$ in Proposition 4.4.15. We start with two lemmas.

Lemma 4.4.8. If $\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right)$ is a point in $Y \backslash S$, then we have $Q_{i} \neq R$ for $i=2,3,4,7,8$.

Proof. Take a point $Q=\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right)$ in $Y \backslash S$. Since Q is an element of Y, by condition 1 the points R, Q_{1}, Q_{2} are on a line. That means that if $R=Q_{i}$ for $i=3,4,7,8$, the points Q_{i}, Q_{1}, Q_{2} would be on a line, contradicting the fact that Q is not in S. Moreover, by condition 2,

4. CONCURRENT EXCEPTIONAL CURVES

the points R, Q_{3}, Q_{4} are on a line, so if $R=Q_{2}$ then Q_{2}, Q_{3}, Q_{4} are on a line, again contradicting the fact that Q is not in S.

The following result is well known, but we include a proof, as we could not find a reference for this exact statement.

Lemma 4.4.9. If S_{1}, \ldots, S_{5} are five distinct points in \mathbb{P}^{2}, such that the four points S_{1}, \ldots, S_{4} are in general position, then there is a unique conic containing S_{1}, \ldots, S_{5}, which is irreducible if all five points are in general position.

Proof. The linear system of conics containing S_{1}, \ldots, S_{4} is one-dimensional and has only these four points as base points. Requiring for a conic in this linear system to contain the point S_{5} gives a linear condition, and since S_{5} is different from S_{1}, \ldots, S_{4}, this condition defines a linear subspace of dimension at least zero. If there were two distinct conics in this subspace, they would intersect in 5 distinct points, so they would have a common component, which is a line. Since no 4 of the points S_{1}, \ldots, S_{5} are collinear, there are at most 3 of the 5 points on this line. But then the other two points uniquely determine the second component of both conics, contradicting that they are distinct. We conclude that there is a unique conic containing S_{1}, \ldots, S_{5}. If, moreover, S_{5} is such that all five points are in general position, then no three of them are collinear by definition, so the unique conic containing them cannot contain a line, hence it is irreducible.

Notation 4.4.10. Let $\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right)$ be a point in $Y \backslash S$. Note that by condition 3 , there is a conic through the points $R, Q_{1}, Q_{3}, Q_{5}, Q_{6}$, and Q_{7}, and by Lemma 4.4.9 it is unique, since R, Q_{1}, Q_{5}, Q_{6} are in general position. We call this conic A_{1}. By the same reasoning and condition 4, there is a unique conic containing the points $R, Q_{1}, Q_{4}, Q_{5}, Q_{6}, Q_{8}$. We call this conic A_{2}. By Lemma 4.4.8, the points Q_{3}, Q_{7}, Q_{8} are all different from R, so we can define the line M_{1} through X and Q_{3}, the line M_{2} through R and Q_{7}, and the line M_{3} through R and Q_{8}.

Recall that F_{1} is the linear system of conics through R, Q_{1}, Q_{5}, Q_{6}, and F_{2} the linear system of lines through R. We define a map

$$
\begin{aligned}
\varphi: Y \backslash S & \longrightarrow F_{1}^{2} \times F_{2}^{3} \\
\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right) & \longmapsto\left(A_{1}, A_{2}, M_{1}, M_{2}, M_{3}\right) .
\end{aligned}
$$

Note that φ is well defined by the definitions of $A_{1}, A_{2}, M_{1}, M_{2}, M_{3}$ in Notation 4.4.10. We want to describe its image. To this end, define the set

$$
U=\left\{\begin{array}{l|c}
\left(B_{1}, B_{2}, N_{1}, N_{2}, N_{3}\right) \in F_{1}^{2} \times F_{2}^{3} & B_{1}, B_{2} \text { irreducible } \\
B_{1} \neq B_{2} \\
N_{1}, N_{2} \text { not tangent to } B_{1} \\
N_{1}, N_{3} \text { not tangent to } B_{2} \\
N_{1} \neq N_{2}, N_{3} \\
Q_{1}, Q_{5}, Q_{6} \notin N_{1}, N_{2}, N_{3}
\end{array}\right\} .
$$

Lemma 4.4.11. The image of φ is contained in U.
Proof. Take a point $Q=\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right) \in Y \backslash S$ and consider its image under φ given by $\varphi(Q)=\left(A_{1}, A_{2}, M_{1}, M_{2}, M_{3}\right)$. Since Q is not in S, by Lemma 4.4.9, the conics A_{1} and A_{2} are unique and irreducible. Moreover, if they were equal to each other, then they would both contain the points R, Q_{3}, Q_{4}, which are collinear by condition 2 , contradicting the fact that they are irreducible.
The line M_{1} is tangent to A_{1} only if R is equal to Q_{3}, the line M_{2} is tangent to A_{1} only if R is equal to Q_{7}, and the line M_{3} is tangent to A_{2} only if R is equal to Q_{8}, all of which are impossible by Lemma 4.4.8. Note that by condition 2 , the line M_{1} contains Q_{4}, so M_{1} is tangent to A_{2} only if $R=Q_{4}$, which is again impossible by Lemma 4.4.8. If M_{2} or M_{3} were equal to M_{1}, then either Q_{7} or Q_{8} is contained in M_{1}, which also contains the points R, Q_{3}, Q_{4}. But this can not be true since Q is not in S. If M_{1} or M_{2} contained any of the points Q_{1}, Q_{5}, Q_{6}, then this line would have three points in common with A_{1}, which implies that A_{1} contains a line, contradicting the fact that A_{1} is irreducible. Similarly, if M_{3} contained Q_{1}, Q_{5}, or Q_{6}, then A_{2} would contain M_{3}, contradicting the irreducibility of A_{2}.

We want to define an inverse to φ. We set up the following notation for a point in U.

Notation 4.4.12. Let $u=\left(B_{1}, B_{2}, N_{1}, N_{2}, N_{3}\right)$ be a point in U. Since the conics B_{1} and B_{2} are irreducible, they do not contain any of the lines N_{1}, N_{2}, N_{3}, and moreover, since N_{1}, N_{2} are not tangent to B_{1}, and N_{1}, N_{3}

4. CONCURRENT EXCEPTIONAL CURVES

are not tangent to B_{2}, we can define the following five points in \mathbb{P}^{2}.
$S_{3}=$ the point of intersection of B_{1} with N_{1} that is not X.
$S_{4}=$ the point of intersection of B_{2} with N_{1} that is not X.
$S_{7}=$ the point of intersection of B_{1} with N_{2} that is not X.
$S_{8}=$ the point of intersection of B_{2} with N_{3} that is not X.
Lemma 4.4.13. Let $u=\left(B_{1}, B_{2}, N_{1}, N_{2}, N_{3}\right)$ be a point in U. Define the points $S_{3}, S_{4}, S_{7}, S_{8}$ as in Notation 4.4.12. There is a unique conic through R, S_{3}, Q_{5}, S_{7}, and S_{8}, which does not contain the line through R and Q_{1}.

Proof. Note that S_{3} and S_{7} are different from R by definition, and they are different from Q_{1}, Q_{5}, Q_{6} since Q_{1}, Q_{5}, Q_{6} are not contained in N_{1}, nor in N_{2}, by definition of U. If S_{3} were equal to S_{7}, then N_{1} and N_{2} would both contain R and S_{3}, hence they would be equal, contradicting the fact that u is an element of U. So R, S_{3}, Q_{5}, S_{7} are all distinct, and since they are all contained in B_{1}, they are in general position because B_{1} is irreducible. We will show that S_{8} is different from any of these four points. By definition, S_{8} is different from R. If S_{8} were equal to S_{3}, then B_{1} and B_{2} would both contain R, Q_{1}, Q_{5}, Q_{6} and S_{3}. But since S_{3} is different from R, Q_{1}, Q_{5}, Q_{6}, there is a unique conic through these five points by Lemma 4.4.9. So this would imply $B_{1}=B_{2}$, contradicting the fact that u is in U. Hence S_{8} is different from S_{3}, and similarly, S_{8} is different from S_{7}. Finally, S_{8} is different from Q_{5}, since the line N_{3} does not contain Q_{5}. We conclude that by Lemma 4.4.9, there is a unique conic C through the points R, S_{3}, Q_{5}, S_{7}, and S_{8}. Note that R, S_{3}, Q_{5}, S_{7} are all distinct from Q_{1}. If C contained the line L through R and Q_{1}, then C would be the union of two lines (one of them being L). This means that either L would contain one of the points S_{3}, Q_{5}, S_{7}, or the points S_{3}, Q_{5}, S_{7} are all on the second line. But since $R, Q_{1}, S_{3}, Q_{5}, S_{7}$ are all in B_{1}, which is irreducible, both of these cases would be a contradiction. We conclude that C does not contain L.

Notation 4.4.14. Let $u=\left(B_{1}, B_{2}, N_{1}, N_{2}, N_{3}\right)$ be a point in U, and let $S_{3}, S_{4}, S_{7}, S_{8}$ be the corresponding points as in Notation 4.4.12, We define a fifth point S_{2} to be the point of intersection of the conic through $R, S_{3}, Q_{5}, S_{7}, S_{8}$ with the line through R and Q_{1}, that is not R. Note that S_{2} is well defined by Lemma 4.4.13.

Using Notations 4.4.12 and 4.4.14, for any point u in U we have now defined an element $\left(S_{2}, S_{3}, S_{4}, S_{7}, S_{8}\right)$ of $\left(\mathbb{P}^{2}\right)^{5}$, and it is easy to see that
for such a point conditions $1-5$ are satisfied, hence it is an element of Y. This leads us to define the following map.

$$
\begin{aligned}
\psi: U & \longrightarrow Y \\
\left(B_{1}, B_{2}, N_{1}, N_{2}, N_{3}\right) & \longmapsto\left(S_{2}, S_{3}, S_{4}, S_{7}, S_{8}\right) .
\end{aligned}
$$

Let T be the set $\psi^{-1}(S)$.
Proposition 4.4.15. The map $\left.\psi\right|_{U \backslash T}: U \backslash T \longrightarrow Y \backslash S$ is a bijection, with inverse given by φ.

Proof. Let $u=\left(B_{1}, B_{2}, N_{1}, N_{2}, N_{3}\right)$ be an element in $U \backslash T$. Write $\psi(u)=$ $\left(S_{2}, S_{3}, S_{4}, S_{7}, S_{8}\right)$ and $\varphi(\psi(u))=\left(B_{1}^{\prime}, B_{2}^{\prime}, N_{1}^{\prime}, N_{2}^{\prime}, N_{3}^{\prime}\right)$. Since $\psi(u)$ is not in S by definition of T, no three of the points $Q_{1}, Q_{5}, Q_{6}, S_{2}, S_{3}, S_{4}, S_{7}, S_{8}$ are collinear. Therefore, B_{1}^{\prime} and B_{2}^{\prime} are the unique and irreducible conics through $Q_{1}, S_{3}, Q_{5}, Q_{6}, S_{7}$ and through $Q_{1}, S_{4}, Q_{5}, Q_{6}, S_{8}$, respectively, by Lemma 4.4.9. Since B_{1} and B_{2} both contain Q_{1}, Q_{5}, Q_{6}, and B_{1} contains S_{3} and S_{7} and B_{2} contains S_{4} and S_{8} by definition of $\psi(u)$, we conclude that $B_{1}^{\prime}=B_{1}$ and $B_{2}^{\prime}=B_{2}$. The line N_{1}^{\prime} is defined as the line containing R and S_{3}, which are both contained in N_{1} as well by definition. We conclude that $N_{1}^{\prime}=N_{1}$, and similarly $N_{2}^{\prime}=N_{2}$, and $N_{3}^{\prime}=N_{3}$. We conclude that $\varphi(\psi(u))=u$. This proves injectivity of $\left.\psi\right|_{U \backslash T}$. We now prove surjectivity. Take $Q=\left(Q_{2}, Q_{3}, Q_{4}, Q_{7}, Q_{8}\right) \in Y \backslash S$; write $\varphi(Q)=\left(A_{1}, A_{2}, M_{1}, M_{2}, M_{3}\right)$ and $\psi\left(A_{1}, A_{2}, M_{1}, M_{2}, M_{3}\right)=\left(Q_{2}^{\prime}, Q_{3}^{\prime}, Q_{4}^{\prime}, Q_{7}^{\prime}, Q_{8}^{\prime}\right)$. The point Q_{3}^{\prime} is defined by taking the second point of intersection of A_{1} with the line M_{1} through R and Q_{3}. Since A_{1} is irreducible $(\varphi(Q)$ is in U by Lemma 4.4.11), it does not contain M_{1}, so $Q_{3}^{\prime}=Q_{3}$. Similarly, we have $Q_{7}^{\prime}=Q_{7}$, $Q_{4}^{\prime}=Q_{4}$, and $Q_{8}^{\prime}=Q_{8}$. Therefore there is a unique conic C containing the points $R, Q_{3}, Q_{5}, Q_{7}, Q_{8}$ by Lemma 4.4.13. Since there is a conic through $R, Q_{3}, Q_{5}, Q_{7}, Q_{8}$ and Q_{2} by condition 5 , we conclude that C contains Q_{2} by uniqueness. Since the line L through R and Q_{1} is not contained in C by Lemma 4.4.13, and since L contains Q_{2} by condition 1, it follows that Q_{2} is the second point of intersection of L and C. Hence $Q_{2}^{\prime}=Q_{2}$. We conclude that $\psi(\varphi(Q))=Q$, and hence $\varphi(Q)$ is contained in $U \backslash T$, and $\left.\psi\right|_{U \backslash T}$ is surjective.
Since $\psi_{U \backslash T}: U \backslash T \longrightarrow Y \backslash S$ is a bijection and we showed that for all elements $u \in U \backslash T$ we have $\varphi(\psi(u))=u$, we conclude that φ is the inverse function.

We now prove Proposition 4.4.6. The computations are verified in magma; see [Codc] for the code. Recall that we fixed eight points R_{1}, \ldots, R_{8} in

4. CONCURRENT EXCEPTIONAL CURVES

general position \mathbb{P}^{2} and ten curves $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}$, above Proposition 4.4.6.

Proof of Proposition 4.4.6. We assume that these ten curves contain a common point P, and will show that this contradicts the fact that R_{1}, \ldots, R_{8} are in general position. First note that if P were equal to one of the eight points R_{1}, \ldots, R_{8}, then one of the conics would contain six of the eight points, which would contradict the fact that R_{1}, \ldots, R_{8} are in general position. Moreover, if P and any two of the three points R_{1}, R_{5}, R_{6} lie on a line L, then the conic C_{1} would intersect L in P and the two points. But this implies that C_{1} is not irreducible, and since C_{1} contains five of the points R_{1}, \ldots, R_{8}, this implies that at least three of them are collinear, contradicting the fact that R_{1}, \ldots, R_{8} are in general position. We conclude that R_{1}, R_{5}, R_{6} and P are in general position.
Let $(x: y: z)$ be the coordinates in \mathbb{P}^{2}. Without loss of generality, after applying an automorphism of \mathbb{P}^{2} if necessary, we can choose R_{1}, R_{5}, R_{6}, and P to be any four points in general position in \mathbb{P}^{2}. We now distinguish between char $k \neq 2$ and char $k=2$.
Assume char $k \neq 2$. Set

$$
\begin{aligned}
& R_{1}=(1: 0: 1) ; \quad R_{6}=(0:-1: 1) ; \\
& R_{5}=(0: 1: 1) ; \quad P=(-1: 0: 1) .
\end{aligned}
$$

It follows that the line L_{1}, which contains R_{1} and P, is given by $y=0$. The linear system of quadrics through R_{1}, R_{5}, R_{6} and P is generated by two linearly independent quadrics, and we take these to be $x^{2}+y^{2}-z^{2}$ and $x y$. Let $l, m \in k$ be such that
C_{1} is given by $x^{2}+y^{2}-z^{2}=2 l x y ;$
C_{2} is given by $x^{2}+y^{2}-z^{2}=2 m x y$.
Since R_{3}, R_{4}, R_{7}, and R_{8} are not contained in L_{1}, there are $s, t, u \in k$ such that
the line L_{2} is given by $s y=x+z$;
the line L_{3} through P and R_{7} is given by $t y=x+z$;
the line L_{4} through P and R_{8} is given by $u y=x+z$.
We want to show that all possible configurations of the five points R_{2}, R_{3}, R_{4}, R_{7}, and R_{8} in \mathbb{P}^{2} such that all ten curves contain P, are such that
R_{1}, \ldots, R_{8} are not in general position. By Proposition 4.4.15, all configurations of $R_{2}, R_{3}, R_{4}, R_{7}, R_{8}$ such that $L_{1}, L_{2}, C_{1}, C_{2}, C_{3}$ contain the point P and no three of the points R_{1}, \ldots, R_{8} are collinear are given in terms of the conics C_{1} and C_{2} and the lines L_{2}, L_{3}, L_{4}. By computing the appropriate intersections we find

$$
\begin{aligned}
& R_{3}=\left(-s^{2}+1: 2 l-2 s: 2 l s-s^{2}-1\right) \\
& R_{4}=\left(-s^{2}+1: 2 m-2 s: 2 m s-s^{2}-1\right) \\
& R_{7}=\left(-t^{2}+1: 2 l-2 t: 2 l t-t^{2}-1\right) \\
& R_{8}=\left(-u^{2}+1: 2 m-2 u: 2 m u-u^{2}-1\right) .
\end{aligned}
$$

By Lemma 4.4.13, there is a unique conic containing $R_{3}, R_{5}, R_{7}, R_{8}$, and P, and we compute a defining polynomial and find

$$
\begin{gathered}
\left(2 l^{2} u+2 l^{2}-2 l m u-2 l m-l s u-l s-l t u-l t+l u^{2}+2 l u+l+m s t\right. \\
\left.+m s+m t-2 m u-m+s t-s u-t u+u^{2}\right) x^{2}+\left(2 l^{2} u^{2}+2 l^{2} u\right. \\
+2 l m s t-2 l m s u-2 l m t u-2 l m u-l s t u+l s t-l s u+l s-l t u+l t \\
\left.+2 l u^{2}+l u+l+m s t u+m s t-m s u-m s-m t u-m t-m u-m\right) x y \\
+2(u+1)(l+1)(l-m) x z+\left(l s t u+l s t+l u^{2}+l u-m s t u-m s u-m t u\right. \\
\left.-m u+s t-s u-t u+u^{2}\right) y^{2}+(u+1)(t+1)(s+1)(l-m) y z+(l s u \\
\left.+l s+l t u+l t-l u^{2}+l-m s t-m s-m t-m-s t+s u+t u-u^{2}\right) z^{2} .
\end{gathered}
$$

Intersecting this conic with the line L_{1} gives besides P the point R_{2}, and we find

$$
\begin{aligned}
R_{2}= & \left(-\left(l s u+l s+l t u+l t-l u^{2}+l-m s t-m s-m t-m\right.\right. \\
& \left.-s t+s u+t u-u^{2}\right): 0:\left(2 l^{2}-2 l m-l s-l t\right)(u+1)+l u^{2} \\
& \left.+2 l u+l+m s t+m s+m t-2 m u-m+s t-s u-t u+u^{2}\right) .
\end{aligned}
$$

We define \mathbb{A}^{5} to be the affine space with coordinate ring $T_{5}=k[l, m, s, t, u]$. Following all the above, points in \mathbb{A}^{5} correspond to configurations of the points R_{1}, \ldots, R_{8}. The fact that the ten curves contain P gives polynomial equations in these five variables, and hence defines an algebraic set A_{0} in \mathbb{A}^{5}. We define S_{0} to be the algebraic set of all points in \mathbb{A}^{5} that correspond to the configurations where the points R_{1}, \ldots, R_{8} are not in

4. CONCURRENT EXCEPTIONAL CURVES

general position. We want to show that A_{0} is contained in S_{0}, which would prove the proposition. In what follows we will show that indeed every component of A_{0} is contained in S_{0}.
Note that by construction of R_{1}, \ldots, R_{8}, the curves $L_{1}, L_{2}, C_{1}, C_{2}, C_{3}$ contain P. We will add conditions for $C_{4}, D_{1}, \ldots, D_{4}$ to contain P, too. We start with C_{4}. The equation expressing that P is contained in C_{4}, is given by $\operatorname{det}(N)=0$, where N is the matrix in Lemma 4.3.4 corresponding to ($\left.R_{2}, R_{4}, R_{6}, R_{7}, R_{8}, P\right)$. This determinant is given by
$\operatorname{det}(N)=16(u+1)(t+1)(s+1)(s-u)(m-u)(m-s)(l-t)(l-m) f_{1} f_{2}$,
where

$$
\begin{array}{r}
f_{1}=l^{2} u+l^{2}-l m u-l m-l s u-l s-l t u-l t+l u^{2}+l u+m s t+m s \\
+m t-m u+s t-s u-t u+u^{2}
\end{array}
$$

and

$$
f_{2}=a t^{2}+b t u+c u^{2}+d t+e u+f
$$

with

$$
\begin{array}{lr}
a=(s+1)(m-1)(m+1), & b=d=-e=2 s(m-1)(l+1), \\
c=(s-1)(l-1)(l+1), & f=(l-m)(l s-l-m s-m+2 s) .
\end{array}
$$

Let $F_{2} \subset \mathbb{A}^{5}$ be the affine variety given by $f_{2}=0$. Every component of A_{0} is contained in one of the components of the algebraic set given by $\operatorname{det}(N)=0$. With magma it is an easy check that apart from f_{2}, all nonconstant factors of $\operatorname{det}(N)$ define configurations of R_{1}, \ldots, R_{8} where three of the points are collinear (see [Codc] ; $f_{1}=0$ corresponds to R_{2}, R_{3}, R_{4} being collinear), and hence they define components of S_{0}. Therefore, it suffices to prove that $A_{0} \cap F_{2}$ is contained in S_{0}.
Since f_{2} is quadratic in t and u, the projection π from F_{2} to the affine space \mathbb{A}^{3} with coordinates l, m, s has fibers that are (possibly non-integral) affine conics. Let Δ be the discriminant of the quadratic form that is the homogenisation of f_{2} with respect to t and u, which is given by

$$
\Delta=4 a c f-a e^{2}-b^{2} f+b d e-c d^{2}
$$

the singular fibers of π lie exactly above the points $(l, m, s) \in \mathbb{A}^{3}$ for which $\Delta=0$. We compute the factorization of Δ in $\mathbb{Z}[l, m, s]$, and find

$$
\Delta=4(s-1)(s+1)(m-1)(m+1)(l-1)(l+1)(l-m) g
$$

with $g=l s-l-m s-m+2 s$. All non-constant factors of Δ except for g, when viewed as elements of T_{5}, define components of S_{0} in \mathbb{A}^{5}. Therefore, the fibers under π above the zero sets of these factors in \mathbb{A}^{3} are contained in S_{0}. We will show that the same holds for the inverse image under π of the zero set $Z(g) \subset \mathbb{A}^{3}$ of g, which is given by the zero set $Z\left(f_{2}, g\right)$ in \mathbb{A}^{5}. Note that we can write

$$
f_{2}=(s-1)(l+1)(u-t) a_{1}+(t-1) g a_{2}
$$

with $a_{1}=(l-1)(u+1)-(m+1)(t-1)$ and $a_{2}=(l+1)(u+1)-(m+1)(t+1)$. Therefore, the set $Z\left(f_{2}, g\right)$ is given by $g=(s-1)(l+1)(u-t) a_{1}=0$, so $Z\left(f_{2}, g\right)$ is the union of four algebraic sets:

$$
Z\left(f_{2}, g\right)=Z(g, s-1) \cup Z(g, l+1) \cup Z(g, u-t) \cup Z\left(g, a_{1}\right) \subset \mathbb{A}^{5}
$$

Note that $s-1, l+1$, and $u-t$ define components of S_{0}, so the first three terms in this union are contained in S_{0}. With magma, we check that the irreducible polynomial $\gamma=(m-u)(l-1) g+(l-s)(m-1) a_{1}$ corresponds to a configuration where the six points R_{3}, \ldots, R_{8} are contained in a conic, and hence it defines a component of S_{0}. Since γ is contained in the ideal in $\mathbb{Z}[l, m, s, t, u]$ generated by g and a_{1}, it follows that $Z\left(g, a_{1}\right)$ is also contained in S_{0}. We conclude that all the singular fibers of π lie in S_{0}.
The generic fiber $F_{2, \eta}$ of π is a conic in the affine plane \mathbb{A}^{2} with coordinates t and u over the function field $k(l, m, s)$, where l, m, s are transcendentals. This fiber contains the point $(t, u)=(l, m)$. We can parametrize $F_{2, \eta}$ with a parameter v by intersecting it with the line M given by $v(t-l)=(u-m)$, which intersects $F_{2, \eta}$ in the point (l, m) and a second intersection point that we associate to v. Consider the open subset $F_{2}^{\prime} \subset F_{2}$ given by the complement in F_{2} of the singular fibers of π and the hyperplane section defined by $t-l=0$, so $F_{2} \backslash F_{2}^{\prime} \subset S_{0}$. In what follows, we use the idea of this parametrization to construct an isomorphism between F_{2}^{\prime} and an open subset of the affine space \mathbb{A}^{4} with coordinates l, m, s, v.
Consider the ring $T_{5}^{v}=k[l, m, s, t, v]$, and let φ be the map $\varphi: T_{5} \longrightarrow T_{5}^{v}$ that sends u to $v(t-l)+m$ and l, m, s, t to themselves. Then we have $\varphi\left(f_{2}\right)=(t-l)(\alpha t+\beta)$, where
$\alpha=l^{2} s v^{2}-l^{2} v^{2}-2 l m s v+2 l s v+m^{2} s+m^{2}-2 m s v-s v^{2}+2 s v-s+v^{2}-1$, and

$$
\begin{aligned}
& \beta=l^{3} s v^{2}-l^{3} v^{2}-2 l^{2} m s v+2 l^{2} m v+l m^{2} s-l m^{2}-2 l m s v-l s v^{2} \\
&+2 l s v-l s+l v^{2}+l+2 m^{2} s-2 m v+2 s v-2 s .
\end{aligned}
$$

4. CONCURRENT EXCEPTIONAL CURVES

The map φ induces a birational morphism $\psi: \mathbb{A}_{v}^{5} \longrightarrow \mathbb{A}^{5}$, where \mathbb{A}_{v}^{5} is the affine space with coordinate ring T_{5}^{v}. Moreover, ψ is an isomorphism on the complements of the zero sets of $t-l$ in its domain and codomain. Set

$$
G=Z(\alpha t+\beta) \backslash Z(t-l) \subset \mathbb{A}_{v}^{5}
$$

then ψ induces an isomorphism $G \cong F_{2} \backslash Z(t-l)$. In particular, ψ induces an isomorphism from $G \backslash Z(\Delta)$ to F_{2}^{\prime}. We want to show that $G \backslash Z(\alpha \Delta)$ equals $G \backslash Z(\Delta)$; to do this it suffices to show that $\psi(G \cap Z(\alpha))$ is contained in a union of singular fibers of π. Note that we have $G \cap Z(\alpha)=G \cap Z(\alpha, \beta)$. Let $\left(l_{0}, m_{0}, s_{0}, t_{0}, v_{0}\right)$ be a point in $G \cap Z(\alpha, \beta)$, then, since α and β do not depend on t, the point $\left(l_{0}, m_{0}, s_{0}, t, v_{0}\right)$ is contained in $Z(\alpha t+\beta)$ for all t. It follows that the fiber on F_{2} in $\mathbb{A}^{2}(t, u)$ under π above the point $\left(l_{0}, m_{0}, s_{0}\right) \in \mathbb{A}^{3}$ contains the line $u=v_{0}\left(t-l_{0}\right)+m_{0}$, hence is singular. Moreover, this fiber contains the point $\psi\left(\left(l_{0}, m_{0}, s_{0}, t_{0}, v_{0}\right)\right)$. We conclude that $\psi(G \cap Z(\alpha))$ is contained in a union of singular fibers of F_{2}. It follows that

$$
\psi(G \backslash Z(\alpha \Delta))=\psi(G \backslash Z(\Delta))=F_{2}^{\prime}
$$

Consider the ring $T_{4}=k[l, m, s, v]$, and let K_{4} be its field of fractions. Consider the ring homomorphism $\rho: T_{5}^{v} \longrightarrow K_{4}$ that sends t to $\frac{-\beta}{\alpha}$, and l, m, s, v to themselves. This induces a birational map

$$
i: \mathbb{A}^{4} \longrightarrow Z(\alpha t+\beta) \subset \mathbb{A}_{v}^{5}
$$

where \mathbb{A}^{4} is the affine space with coordinate ring T_{4}. The map i induces an isomorphism from $\mathbb{A}^{4} \backslash Z(\alpha)$ to $Z(\alpha t+\beta) \backslash Z(\alpha)$; this isomorphism sends the zero set of Δ in $\mathbb{A}^{4} \backslash Z(\alpha)$ to the zero set of Δ in $Z(\alpha t+\beta) \backslash Z(\alpha)$, and the zero set of $t-l$ in $Z(\alpha t+\beta) \backslash Z(\alpha)$ corresponds to the zero set of $\alpha l+\beta$ in $\mathbb{A}^{4} \backslash Z(\alpha)$. Hence, we have an isomorphism

$$
\mathbb{A}^{4} \backslash Z(\alpha \Delta(\alpha l+\beta)) \cong G \backslash Z(\alpha \Delta)
$$

We conclude that we have an isomorphism

$$
\psi \circ i: \mathbb{A}^{4} \backslash Z(\alpha \Delta(\alpha l+\beta)) \longrightarrow F_{2}^{\prime}
$$

Recall that our aim is to show that $A_{0} \cap F_{2}$ is contained in S_{0}. Since we showed that all components of $F_{2} \backslash F_{2}^{\prime}$ are contained in S_{0}, we have $A_{0} \cap F_{2} \subset S_{0}$ if and only if $A_{0} \cap F_{2}^{\prime} \subset S_{0}$. Moreover, after setting

$$
A_{1}=i^{-1}\left(\psi^{-1}\left(A_{0} \cap F_{2}^{\prime}\right)\right) \text { and } S_{1}=i^{-1}\left(\psi^{-1}\left(S_{0} \cap F_{2}^{\prime}\right)\right)
$$

showing $A_{0} \subseteq S_{0}$ is equivalent to showing $A_{1} \subseteq S_{1}$.
For i in $\{1,2,3,4\}$, the expression stating that P is contained in D_{i} is given by $\operatorname{det}\left(H_{i}\right)=0$, where H_{i} is the matrix denoted by $H_{\alpha_{7}, \alpha_{8}, \alpha_{9}}$ in Lemma 4.3.4 associated to

$$
\begin{aligned}
& \left(R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R_{1}, R_{7}, R_{8}\right) \text { for } i=1 ; \\
& \left(R_{1}, R_{3}, R_{4}, R_{7}, R_{8}, R_{2}, R_{5}, R_{6}\right) \text { for } i=2 ; \\
& \left(R_{1}, R_{2}, R_{4}, R_{5}, R_{7}, R_{3}, R_{6}, R_{8}\right) \text { for } i=3 ; \\
& \left(R_{1}, R_{2}, R_{3}, R_{6}, R_{8}, R_{4}, R_{5}, R_{7}\right) \text { for } i=4,
\end{aligned}
$$

where we set $\alpha_{7}=x, \alpha_{8}=\alpha_{9}=y$ for $i \in\{1,2\}$, and $\alpha_{7}=\alpha_{8}=\alpha_{9}=y$ for $i \in\{3,4\}$. For $i \in\{1,2,3,4\}$, let $B_{i} \subset F_{2} \subset \mathbb{A}^{5}$ be the locus of points corresponding to configurations of R_{1}, \ldots, R_{8} such that D_{i} contains P. Then we have $A_{0} \cap F_{2}=\bigcap_{i=1}^{4} B_{i}$, so $A_{0} \cap F_{2}^{\prime}=\bigcap_{i=1}^{4}\left(B_{i} \cap F_{2}^{\prime}\right)$, and hence $A_{1}=\bigcap_{i=1}^{4} i^{-1}\left(\psi^{-1}\left(B_{i} \cap F_{2}^{\prime}\right)\right)$. Note that B_{i} is defined by $f_{2}=\operatorname{det}\left(H_{i}\right)=0$. For $i \in\{1,2,3,4\}$, we compute the determinant of H_{i} and its factorization in $\mathbb{Z}[l, m, s, t, u]$ in magma. For all i, this factorization has a constant factor that is a power of 2 , and there is exactly one irreducible factor h_{i} that does not define a component of S_{0}; it follows that $Z\left(f_{2}, h_{i}\right) \backslash S_{0}=B_{i} \backslash S_{0}$. Note that for $i \in\{1,2,3,4\}$, the set $i^{-1}\left(\psi^{-1}\left(Z\left(f_{2}, h_{i}\right) \backslash Z(\alpha \Delta(t-l))\right)\right.$ is defined in $\mathbb{A}^{4} \backslash Z(\alpha \Delta(\alpha l+\beta))$ by the numerator of $\rho\left(\varphi\left(h_{i}\right)\right)$; we compute the factorization of this numerator in $\mathbb{Z}[l, m, s, v]$. Again, for all i, this factorization has as constant factor a power of 2 , and contains exactly one irreducible factor that does not define a component of S_{1}; we call this factor g_{i}. It follows that for $i \in\{1,2,3,4\}$, the set $i^{-1}\left(\psi^{-1}\left(B_{i} \backslash S_{0}\right)\right)$ is contained in $Z\left(g_{i}\right)$, so $A_{1} \backslash S_{1}$ is contained in $Z\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$. Computing $g_{1}, g_{2}, g_{3}, g_{4}$ takes magma over an hour, and these polynomials are too big to write down here; you can find them in Codd. Set

$$
\begin{aligned}
& \delta=(l s-l-m s-m+2 s)^{2}(l-m)(l-s)(l+1)(m-1)(s+1) \\
&(l-1)(m+1)(s-1) v^{2}
\end{aligned}
$$

We check that all factors of $\delta \in \mathbb{Z}[l, m, s, v]$ define components of S_{1} (the first factor corresponds to both R_{2}, R_{3}, R_{5} and R_{2}, R_{4}, R_{6} being collinear). We will show that δ is contained in the ideal \mathcal{I} of T_{4} generated by g_{1}, g_{2}, g_{3}, and g_{4}. We use a Gröbner basis for \mathcal{I} to check this. In magma, we define the ideal \mathcal{I} in the ring T_{4} with $k=\mathbb{Q}$ with the ordering $s>v>m>l$. With the function G, b:=GroebnerBasis(I:ReturnDenominators) we compute the reduced Gröbner basis G for \mathcal{I}; after using this function, magma uses G as a generator set for \mathcal{I}. We then use G to check that δ is contained in

4. CONCURRENT EXCEPTIONAL CURVES

\mathcal{I}, again over \mathbb{Q}. This finishes the proof for char $k=0$; We continue the proof for char $k=p>0$ with $p \neq 2,3$.
The element δ can be written as a linear combination of the elements in G with coefficients in T_{4}. Let C be the set of these coefficients (obtained by the function Coordinates (I,f)). In the proces of computing G, magma makes divisions by integers, which are stored in the set b. Let \mathcal{P} be the set containing the prime divisors of all elements in b, and all prime divisors of the denominators of the coefficients of the elements in G, and all prime divisors of the denominators of the coefficients of the elements in C. Then for a prime $p \notin \mathcal{P}$, the reductions modulo p of the elements in G are well defined. Moreover, since \mathcal{P} contains all prime divisors of the elements in b, the reductions modulo p of the elements in G still form a Gröbner basis for the ideal \mathcal{J} generated by the reductions modulo p of $g_{1}, g_{2}, g_{3}, g_{4}$. Finally, the reduction modulo p of δ is contained in \mathcal{J}, since the prime divisors of the denominators of the coefficients of the elements in C are in \mathcal{P}. This finishes the proof for char $k=p>0$ with $p \neq 2,3, p \notin \mathcal{P}$.
For all finitely many $p \in \mathcal{P} \backslash\{2,3\}$, let $\overline{T_{4}}$ be the ring $\mathbb{F}_{p}[l, m, s, v]$, let $\bar{\delta}$ be the reduction of δ modulo p, and for $i \in\{1,2,3,4\}$, let $\overline{g_{i}}$ be the reduction of g_{i} modulo p; then it is a quick check in magma that $\bar{\delta}$ is contained in the ideal $\left(\overline{g_{1}}, \overline{g_{2}}, \overline{g_{3}}, \overline{g_{4}}\right)$ of $\overline{T_{4}}$. We conclude that for char $k \neq 2,3$, the set $A_{1} \backslash S_{1}$ is contained in the union of the varieties defined by the factors of δ, so $A_{1} \backslash S_{1}$ is a subset of S_{1}. We conclude that A_{1} is contained in S_{1}. This finishes the proof for char $k \neq 2$.
Assume char $k=2$.
Since the points R_{1}, R_{5}, R_{6}, P as defined in the previous case are not in general position over a field of characteristic 2 , we redefine these points here. The proof then goes completely analogous to the previous case; see Codc for the code in magma where we verify everything over the field $k=\mathbb{F}_{2}$ of two elements. Set

$$
\begin{array}{lr}
R_{1}=(1: 0: 1) ; & R_{6}=(0: 1: 1) \\
R_{5}=(0: 1: 0) ; & P=(1: 0: 0)
\end{array}
$$

These four points are in general position in \mathbb{P}^{2}. We take $z^{2}+x z+y z$ and $x y$ for the two generators of the linear system of quadrics through R_{1}, R_{5}, R_{6} and P.
We now do all the steps as in the previous case, and everything works analogously. In fact, checking that all singular fibers of the analog of π from the previous case are contained in the analog of S_{0} can be done even more directly in magma than as described in the previous case. We
obtain again an algebraic set $A_{1} \subset \mathbb{A}^{4}$, where \mathbb{A}^{4} is the affine space over \mathbb{F}_{2} with coordinates l, m, s, v, and A_{1} is the algebraic set corresponding to the configurations where the ten curves $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}$ all contain the point P. Again, we want to show that A_{1} is contained in S_{1}, where $S_{1} \subset \mathbb{A}^{4}$ is the algebraic set defined by the polynomials that correspond to the eight points R_{1}, \ldots, R_{8} not being in general position. Completely analogously to the case char $k \neq 2$, from the conditions that P is contained in $D_{1}, D_{2}, D_{3}, D_{4}$, we now obtain four polynomials $g_{1}, g_{2}, g_{3}, g_{4}$ in $\mathbb{F}_{2}[l, m, s, v]$ (see [Codd]). Again, we have $A_{1} \backslash S_{1} \subset Z\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$. Set
$\delta=(l s+m s+m+s)(l v+m+1)(l+m)(l+s)(m+s)(l+1)(m+1) m^{3}(s+1) l v s$.
It is a quick check with magma that δ is contained in \mathcal{I}. Moreover, it is again a quick check that all factors of δ correspond to three points being collinear, and hence define a component of S_{1}. We conclude again that A_{1} is contained in S_{1}.

We can now prove Theorem 4.1.2. Recall Notation 4.3.8.
Proof of Theorem 4.1.2. Recall that every set of exceptional curves without partners corresponds to a clique in G with only edges of weights 1 and 2, so by Lemma 4.4.2, the number of exceptional curves that are concurrent in a point outside the ramification curve of φ is at most twelve. This proves the case char $k=3$.
Now assume that char $k \neq 3$. Consider the eleven classes in C given by

$$
\begin{aligned}
& e_{1}=L-E_{1}-E_{2} \\
& e_{2}=L-E_{3}-E_{4} ; \\
& e_{3}=2 L-E_{1}-E_{3}-E_{5}-E_{6}-E_{7} \\
& e_{4}=2 L-E_{1}-E_{4}-E_{5}-E_{6}-E_{8} \\
& e_{5}=2 L-E_{2}-E_{3}-E_{5}-E_{7}-E_{8} \\
& e_{6}=2 L-E_{2}-E_{4}-E_{6}-E_{7}-E_{8} \\
& e_{7}=4 L-2 E_{1}-E_{2}-E_{3}-E_{4}-E_{5}-E_{6}-2 E_{7}-2 E_{8} \\
& e_{8}=4 L-E_{1}-2 E_{2}-E_{3}-E_{4}-2 E_{5}-2 E_{6}-E_{7}-E_{8} \\
& e_{9}=4 L-E_{1}-E_{2}-2 E_{3}-E_{4}-E_{5}-2 E_{6}-E_{7}-2 E_{8} \\
& e_{10}=4 L-E_{1}-E_{2}-E_{3}-2 E_{4}-2 E_{5}-E_{6}-2 E_{7}-E_{8} \\
& e_{11}=5 L-2 E_{1}-2 E_{2}-2 E_{3}-2 E_{4}-2 E_{5}-E_{6}-E_{7}-2 E_{8}
\end{aligned}
$$

4. CONCURRENT EXCEPTIONAL CURVES

It is straightforward to check that they form a clique with only edges of weights 1 and 2 in G. By Remark 1.2 .7 , we know that e_{1}, \ldots, e_{10} correspond to the classes in Pic X of the strict transforms of the curves $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}$, defined as above Proposition 4.4.6 with respect to P_{i} instead of R_{i} for $i \in\{1, \ldots, 8\}$.
Let $K=\left\{c_{1}, \ldots, c_{11}\right\}$ be a clique of size eleven in G with only edges of weights 1 and 2. By Proposition 4.4.4, after changing the indices if necessary, there is an element $w \in W$ such that $c_{i}=w\left(e_{i}\right)$ for i in $\{1, \ldots, 11\}$. Set $E_{i}^{\prime}=w\left(E_{i}\right)$. Then, since the E_{i}^{\prime} are pairwise disjoint, by Lemma 1.2 .8 we can blow down $E_{1}^{\prime}, \ldots, E_{8}^{\prime}$ to points Q_{1}, \ldots, Q_{8} in \mathbb{P}^{2} that are in general position, such that X is isomorphic to the blow-up of \mathbb{P}^{2} at Q_{1}, \ldots, Q_{8}, and E_{i}^{\prime} is the class in Pic X that corresponds to the exceptional curve above Q_{i} for all i. By the bijection in Remark 1.2.7. the elements c_{1}, \ldots, c_{10} are the classes that correspond to the strict transforms of $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}$ defined as above Proposition 4.4.6 with respect to Q_{i} instead of R_{i} for $i \in\{1, \ldots, 8\}$. Since char $k \neq 3$, it follows from Proposition 4.4.6 that the curves corresponding to c_{1}, \ldots, c_{10} are not concurrent. We conclude that the number of concurrent exceptional curves in a point outside the ramification curve of φ is less than eleven.

4.5 Examples

4.5.1 On the ramification curve

This section contains examples that show that the upper bounds in Theorem 4.1.1 are sharp. Example 4.5.1 is a del Pezzo surface over a field of characteristic 2 with 16 concurrent exceptional curves, Example 4.5 .2 is a del Pezzo surface over any field of characteristic unequal to $2,3,5,7,11,13$, 17, 19 with 10 concurrent exceptional curves, and Example 4.5 .3 contains examples of ten concurrent exceptional curves on del Pezzo surfaces in the remaining 7 characteristics.

Example 4.5.1. Set $f=x^{5}+x^{2}+1 \in \mathbb{F}_{2}[x]$, and let $F \cong \mathbb{F}_{2}[x] /(f)$ be the finite field of 32 elements defined by adjoining a root α of f to \mathbb{F}_{2}.

Define the following eight points in \mathbb{P}_{F}^{2}.

$$
\begin{array}{ll}
Q_{1}=(0: 1: 1) ; & Q_{5}=(1: 1: 1) ; \\
Q_{2}=\left(0: 1: \alpha^{19}\right) ; & Q_{6}=\left(\alpha^{20}: \alpha^{20}: \alpha^{16}\right) ; \\
Q_{3}=(1: 0: 1) ; & Q_{7}=\left(\alpha^{24}: \alpha^{25}: 1\right) ; \\
Q_{4}=\left(1: 0: \alpha^{5}\right) ; & Q_{8}=\left(\alpha^{30}: 1: \alpha^{5}\right)
\end{array}
$$

With magma we check that the determinants of the appropriate matrices in Lemma 4.3.4 are all non-zero, so these eight points are in general position. Therefore, the blow-up of \mathbb{P}^{2} in $\left\{Q_{1}, \ldots, Q_{8}\right\}$ is a del Pezzo surface S. We have the following four lines in \mathbb{P}^{2}.

The line L_{1} through Q_{1} and Q_{2}, which is given by $x=0$; the line L_{2} through Q_{3} and Q_{4}, which is given by $y=0$; the line L_{3} through Q_{5} and Q_{6}, which is given by $x=y$; the line L_{4} through Q_{7} and Q_{8}, which is given by $y=\alpha x$.

Let $C_{i, j}$ be the unique cubic through $Q_{1}, \ldots, Q_{i-1}, Q_{i+1}, \ldots, Q_{8}$ that is singular in Q_{j}. Set $\left(R_{1}, \ldots, R_{8}\right)=\left(Q_{1}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, Q_{7}, Q_{8}, Q_{2}\right)$, and let L be the corresponding matrix from Lemma 4.3.4. Then the equation defining $C_{1,2}$ is the determinant of L^{\prime}, where L^{\prime} is equal to L after replacing the first row by Mon_{3}. Similarly, we compute the defining equations of $C_{3,4}, C_{5,6}, C_{7,8}$ and $C_{8,7}$, and find the following.

$$
\left.\begin{array}{l}
C_{1,2}: x^{3}+\alpha^{24} x^{2} y+\alpha^{28} x^{2} z+\alpha^{30} x y^{2}+\alpha^{9} x y z+\alpha^{26} x z^{2}+\alpha^{13} y^{3}+\alpha^{6} y z^{2}=0 \\
C_{3,4}: x^{3}+\alpha^{12} x^{2} y+\alpha^{4} x y^{2}+\alpha^{11} x y z+\alpha^{21} x z^{2}+y^{3}+\alpha^{23} y^{2} z+\alpha^{12} y z^{2}=0
\end{array} \begin{array}{r}
C_{5,6}: x^{3}+\alpha^{4} x^{2} y+\alpha^{28} x^{2} z+\alpha^{25} x y^{2}+\alpha^{20} x y z+\alpha^{26} x z^{2}+\alpha^{17} y^{3} \\
+\alpha^{9} y^{2} z+\alpha^{29} y z^{2}=0
\end{array} \quad \begin{array}{rl}
C_{7,8}: x^{3}+\alpha x^{2} y+\alpha^{28} x^{2} z+\alpha^{17} x y^{2}+\alpha^{10} x y z+\alpha^{26} x z^{2}+\alpha^{16} y^{3} \\
& +\alpha^{8} y^{2} z+\alpha^{28} y z^{2}=0
\end{array}\right\} \begin{aligned}
C_{8,7}: x^{3}+\alpha^{26} x^{2} y+\alpha^{28} x^{2} z+\alpha^{19} x y^{2}+\alpha^{10} x y z & +\alpha^{26} x z^{2}+\alpha^{16} y^{3} \\
& +\alpha^{8} y^{2} z+\alpha^{28} y z^{2}=0
\end{aligned}
$$

4. CONCURRENT EXCEPTIONAL CURVES

Let e_{1}, \ldots, e_{8} be the strict transforms of the eight curves

$$
L_{1}, \ldots, L_{4}, C_{1,2}, C_{3,4}, C_{5,6}, C_{7,8}
$$

and let c_{8} be the strict transform of $C_{8,7}$. Since these nine curves all contain the point $(0: 0: 1)$, the exceptional curves $e_{1}, \ldots, e_{8}, c_{8}$ are concurrent in a point P on S. Let ψ be the morphism associated to the linear system $\left|-2 K_{S}\right|$. Since $e_{8} \cdot c_{8}=3$, the point P lies on the ramification curve of ψ by Remark 4.2.5. Therefore, by the same remark, for $i \in\{1, \ldots, 7\}$, the partners of e_{1}, \ldots, e_{7} contain P, too. We conclude that there are sixteen exceptional curves on S that are concurrent in P.

Example 4.5.2. Let k be a field of characteristic unequal to $2,3,5,7,11$, $13,17,19$. Define the following eight points in \mathbb{P}_{k}^{2}.

$$
\begin{array}{ll}
Q_{1}=(0: 1: 1) ; & Q_{5}=(1: 1: 1) \\
Q_{2}=(0: 5: 3) ; & Q_{6}=(4: 4: 5) \\
Q_{3}=(1: 0: 1) ; & Q_{7}=(-2: 2: 1) \\
Q_{4}=(-1: 0: 1) ; & Q_{8}=(2:-2: 1)
\end{array}
$$

With magma we compute the determinants of the matrices in Lemma 4.3.4 that determine whether three of the points are on a line, or six of the points are on a conic, or seven of them are on a cubic that is singular at one of them. These determinants are non-zero for char $k \neq 2,3,5,7,11$, $13,17,19$, so the points are in general position. Therefore, the blow-up of \mathbb{P}_{k}^{2} in $\left\{Q_{1}, \ldots, Q_{8}\right\}$ is a del Pezzo surface S. We define the lines L_{1}, L_{2}, L_{3} as in Example 4.5.1. We define L_{4} to be the line containing Q_{7} and Q_{8}, which is given by $x=-y$.
Let $C_{7,8}$ be the unique cubic through $Q_{1}, \ldots, Q_{6}, Q_{8}$ that is singular in Q_{8}, and $C_{8,7}$ the unique cubic through Q_{1}, \ldots, Q_{7} that is singular in Q_{7}. As in Example 4.5.1 we compute the defining equations for $C_{7,8}$ and $C_{8,7}$, and we find

$$
\begin{aligned}
& C_{7,8}: x^{3}-\frac{3}{4} x^{2} y-\frac{31}{12} x y^{2}+\frac{10}{3} x y z-x z^{2}-y^{3}+\frac{8}{3} y^{2} z-\frac{5}{3} y z^{2}=0 \\
& C_{8,7}: x^{3}+\frac{13}{4} x^{2} y+\frac{43}{4} x y^{2}-14 x y z-x z^{2}+15 y^{3}-40 y^{2} z+25 y z^{2}=0 .
\end{aligned}
$$

On S, we define the four exceptional curves e_{1}, \ldots, e_{4} to be the strict transforms of L_{1}, \ldots, L_{4}, and e_{5}, e_{5}^{\prime} the strict transforms of $C_{7,8}$ and $C_{8,7}$, respectively. Since $L_{1}, \ldots, L_{4}, C_{7,8}, C_{8,7}$ all contain the point ($0: 0: 1$), the six exceptional curves $e_{1}, \ldots, e_{5}, e_{5}^{\prime}$ are concurrent in a point P in S.

Let ψ be the morphism associated to the linear system $\left|-2 K_{S}\right|$. By Remark 4.2.5. since $e_{5} \cdot e_{5}^{\prime}=3$, the point P lies on the ramification curve of ψ, and for $i \in\{1, \ldots, 4\}$, the partners of e_{1}, \ldots, e_{4} contain P, too. We conclude that there are ten exceptional curves on S that are concurrent in P.

Example 4.5.3. For $p \in\{3,5,7,11,13,17,19\}$, we construct a del Pezzo surface over a field of characteristic p with ten exceptional curves that are concurrent in a completely analogous way to the one in Example 4.5.2.
Let p be a prime, and \mathbb{F}_{p} be the finite field of p elements. Let $f_{p} \in \mathbb{F}_{p}[x]$ be an irreducible polynomial. Let α be a root of f_{p}, and $\mathbb{F} \cong \mathbb{F}_{p}[x] /\left(f_{p}\right)$ the field extension of \mathbb{F}_{p} obtained by adjoining α to \mathbb{F}_{p}. For $a, b, c, m, u, v \in \mathbb{F}$, define the following eight points in $\mathbb{P}_{\mathbb{F}}^{2}$.

$$
\begin{array}{ll}
Q_{1}=(0: 1: 1) ; & Q_{5}=(1: 1: 1) \\
Q_{2}=(0: 1: a) ; & Q_{6}=(1: 1: c) ; \\
Q_{3}=(1: 0: 1) ; & Q_{7}=(m: 1: u) ; \\
Q_{4}=(1: 0: b) ; & Q_{8}=(m: 1: v)
\end{array}
$$

Let x, y, z be the coordinates of $\mathbb{P}_{\mathbb{F}}^{2}$. We define again the lines L_{1}, L_{2}, L_{3} as in Example 4.5.1, and the line L_{4} by $x=m y$. Note that L_{1}, \ldots, L_{4} all contain the point $(0: 0: 1)$. Let $C_{7,8}$ be the unique cubic through $Q_{1}, \ldots, Q_{6}, Q_{8}$ that is singular in Q_{8}, and $C_{8,7}$ the unique cubic through Q_{1}, \ldots, Q_{7} that is singular in Q_{7}. For all fixed ($p, f_{p}, a, b, c, m, u, v$) that we describe below, we check as we did in Example 4.5.2 that the eight points are in general position, and compute the defining equations for $C_{7,8}$ and $C_{8,7}$. In all cases, the point ($0: 0: 1$) is also contained in $C_{7,8}$ and $C_{8,7}$, and as in Example 4.5.2 this implies that there are 10 exceptional curves on the del Pezzo surface obtained by blowing up $\mathbb{P}_{\mathbb{F}}^{2}$ in Q_{1}, \ldots, Q_{8}, that are concurrent in a point on the ramification curve.

- For $p=3$ we take

$$
f_{p}=x^{3}+2 x+1, \quad(a, b, c, m, u, v)=\left(\alpha, \alpha^{20}, \alpha^{15}, \alpha^{8}, \alpha^{2}, \alpha^{12}\right)
$$

- For $p=5$ we take

$$
f_{p}=x^{2}+4 x+2, \quad(a, b, c, m, u, v)=\left(\alpha^{19}, \alpha^{11}, \alpha^{10}, \alpha^{21}, \alpha^{3}, \alpha^{14}\right)
$$

- For $p=7$ we take

$$
f_{p}=x^{2}+6 x+3, \quad(a, b, c, m, u, v)=\left(3, \alpha^{45}, \alpha^{35}, \alpha^{4}, \alpha^{46}, \alpha^{9}\right)
$$

4. CONCURRENT EXCEPTIONAL CURVES

- For $p=11$ we take

$$
f_{p}=x^{2}+7 x+2, \quad(a, b, c, m, u, v)=\left(\alpha^{106}, \alpha^{94}, 4, \alpha^{62}, \alpha^{111}, \alpha^{6}\right)
$$

- For $p=13$ we take

$$
f_{p}=x^{2}+12 x+2, \quad(a, b, c, m, u, v)=\left(\alpha^{161}, \alpha^{156}, \alpha^{83}, \alpha^{94}, \alpha^{132}, \alpha^{146}\right) .
$$

- For $p=17$ we take

$$
f_{p}=x^{2}+16 x+3, \quad(a, b, c, m, u, v)=\left(\alpha^{74}, \alpha^{166}, \alpha^{64}, \alpha^{24}, \alpha^{178}, \alpha^{250}\right)
$$

- For $p=19$, we take $\mathbb{F}=\mathbb{F}_{19}$, and $(a, b, c, m, u, v)=(2,2,14,8,7,12)$.

All these examples are generated in magma by generating random values for the elements a, b, c, m, u, v in each case, until the points defined by the values are in general position.

4.5.2 Outside the ramification curve

In this section we give examples that show that the upper bound in Theorem 4.1.2 is sharp. Example 4.5.4 gives a del Pezzo surface of degree one over a field of characteristic 3 with twelve exceptional curves that are concurrent in a point outside the ramification curve. In Example 4.5.5 we give a del Pezzo surface over a field of characteristic unequal to 5 that contains ten exceptional curves that are concurrent in a point outside the ramification curve. This surface is isomorphic to the one in Example 4.1 in [SvL14] if the characteristic of k is unequal to 2 and 3 . We do not give an example in characteristic 5 , since we have not found one; it might very well be that the maximum in this case is less than ten.

ExAmple 4.5.4. Let $f=x^{3}+2 x+1$ be a polynomial in $\mathbb{F}_{3}[x]$. Let α be a root of f, and let $\mathbb{F} \cong \mathbb{F}_{3}[x] / f$ be the field of 27 elements obtained by adjoining α to \mathbb{F}_{3}. Let $\mathbb{P}_{\mathbb{F}}^{2}$ be the projective plane over \mathbb{F}, and define the following eight points in this plane.

$$
\begin{array}{ll}
Q_{1}=(1: 0: 1) ; & Q_{5}=(0: 1: 1) \\
Q_{2}=\left(\alpha^{20}: 0: \alpha^{18}\right) ; & Q_{6}=(0: 2: 1) ; \\
Q_{3}=\left(\alpha^{6}: \alpha^{23}: \alpha^{2}\right) ; & Q_{7}=\left(\alpha^{9}: \alpha^{23}: 2\right) \\
Q_{4}=\left(\alpha^{15}: \alpha^{19}: \alpha^{18}\right) ; & Q_{8}=\left(\alpha^{24}: \alpha^{7}: \alpha^{5}\right)
\end{array}
$$

With magma we check that no three of these points are on a line, no six of them are on a conic, and no seven of them are on a cubic that is singular
at one of them, by checking that the appropriate determinants of the matrices in Lemma 4.3.4 are non-zero. Therefore, the blow-up of $\mathbb{P}_{\mathbb{F}}^{2}$ in these eight points is a del Pezzo surface S of degree one.
Let L_{1} be the line containing Q_{1} and Q_{2}, which is given by $y=0$. Let L_{2} be the line containing Q_{3} and Q_{4}, which is given by $\alpha^{23} y=x+z$. For five points $Q_{i_{1}}, \ldots, Q_{i_{5}}$ we find the equation of the conic containing these points by computing the determinant of the matrix N in Lemma 4.3.4, with $\left(R_{2}, \ldots, R_{6}\right)=\left(Q_{i_{1}}, \ldots, Q_{i_{5}}\right)$, and where the first row is replaced by the list Mon_{2}. We obtain the following conics in $\mathbb{P}_{\mathbb{F}}^{2}$.
$C_{1}: x^{2}+\alpha^{7} x y+y^{2}+2 z^{2}=0$, containing $Q_{1}, Q_{3}, Q_{5}, Q_{6}, Q_{7}$.
$C_{2}: x^{2}+\alpha^{16} x y+y^{2}+2 z^{2}=0$, containing $Q_{1}, Q_{4}, Q_{5}, Q_{6}, Q_{8}$.
$C_{3}: x^{2}+\alpha^{25} x z+\alpha^{16} y^{2}+\alpha^{11} y z+\alpha^{15} z^{2}=0$, containing $Q_{2}, Q_{3}, Q_{5}, Q_{7}, Q_{8}$.
$C_{4}: x^{2}+\alpha^{9} x y+\alpha^{25} x z+\alpha^{20} y^{2}+\alpha^{6} y z+\alpha^{15} z^{2}=0$, cont. $Q_{2}, Q_{4}, Q_{6}, Q_{7}, Q_{8}$.
Similarly, we compute defining equations for the quartics $D_{1}, D_{2}, D_{3}, D_{4}$ containing all the eight points with singularities in Q_{1}, Q_{7}, Q_{8}, and Q_{2}, Q_{5}, Q_{6}, and Q_{3}, Q_{6}, Q_{8}, and Q_{4}, Q_{5}, Q_{7}, respectively. We find

$$
\begin{gathered}
D_{1}: \alpha^{4} x^{4}+\alpha^{11} x^{3} y+\alpha^{12} x^{3} z+\alpha^{24} x^{2} y^{2}+\alpha^{10} x^{2} y z+\alpha^{16} x^{2} z^{2}+\alpha^{16} x y^{3} \\
+\alpha^{21} x y^{2} z+\alpha^{17} x y z^{2}+\alpha^{25} x z^{3}+\alpha^{6} y^{4}+\alpha^{12} y^{3} z+\alpha^{25} y z^{3}+\alpha^{19} z^{4}=0 \\
D_{2}: \alpha^{14} x^{4}+x^{3} y+\alpha^{16} x^{3} z+\alpha^{4} x^{2} y^{2}+\alpha^{4} x^{2} y z+\alpha^{21} x^{2} z^{2}+\alpha^{25} x y^{3} \\
+\alpha^{16} x y^{2} z+\alpha^{12} x y z^{2}+\alpha^{3} x z^{3}+\alpha^{5} y^{4}+\alpha^{5} y^{2} z^{2}+\alpha^{5} z^{4}=0, \\
\\
D_{3}: \alpha^{21} x^{4}+\alpha^{4} x^{3} y+\alpha^{20} x^{3} z+\alpha^{9} x^{2} y^{2}+\alpha^{19} x^{2} y z+\alpha^{3} x^{2} z^{2}+\alpha^{21} x y^{3} \\
+\alpha^{11} x y^{2} z+\alpha^{2} x y z^{2}+\alpha^{7} x z^{3}+\alpha^{2} y^{4}+\alpha^{17} y^{3} z+\alpha y^{2} z^{2}+\alpha^{4} y z^{3}+\alpha^{23} z^{4}=0 \\
D_{4}: \alpha^{19} x^{4}+\alpha^{22} x^{3} y+\alpha^{18} x^{3} z+\alpha^{20} x^{2} y^{2}+\alpha^{21} x^{2} y z+\alpha x^{2} z^{2}+\alpha^{2} x y^{3} \\
+\alpha^{20} x y^{2} z+\alpha^{10} x y z^{2}+\alpha^{5} x z^{3}+\alpha^{23} y^{4}+\alpha^{20} y^{3} z+\alpha^{3} y^{2} z^{2}+\alpha^{7} y z^{3}+\alpha^{21} z^{4}=0 .
\end{gathered}
$$

Finally, in a similar way we compute the defining equations of the quintics G_{1} and G_{2}, which contain all eight points and are singular in Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{8}, and $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{6}, Q_{7}$, respectively. We obtain

$$
\begin{aligned}
& G_{1}: \alpha x^{5}+\alpha^{8} x^{4} y+2 x^{4} z+\alpha^{21} x^{3} y^{2}+\alpha^{20} x^{3} y z+\alpha^{23} x^{3} z^{2}+\alpha^{5} x^{2} y^{3} \\
& \quad+\alpha^{25} x^{2} y^{2} z+\alpha^{22} x^{2} y z^{2}+\alpha^{7} x^{2} z^{3}+\alpha^{25} x y^{4}+\alpha^{12} x y^{3} z+2 x y^{2} z^{2} \\
& \quad+\alpha^{25} x y z^{3}+\alpha^{2} x z^{4}+\alpha^{21} y^{5}+\alpha^{6} y^{4} z+\alpha^{8} y^{3} z^{2}+\alpha y^{2} z^{3}+\alpha^{5} z^{5}=0
\end{aligned}
$$

4. CONCURRENT EXCEPTIONAL CURVES

$$
\begin{aligned}
& G_{2}: \alpha^{4} x^{5}+\alpha^{11} x^{4} y+\alpha^{16} x^{4} z+\alpha^{7} x^{3} y^{2}+\alpha^{16} x^{3} y z+x^{3} z^{2}+\alpha x^{2} y^{3} \\
& \quad+\alpha^{25} x^{2} y^{2} z+\alpha^{2} x^{2} y z^{2}+\alpha^{10} x^{2} z^{3}+\alpha^{17} x y^{3} z+\alpha^{15} x y^{2} z^{2}+\alpha^{8} x y z^{3} \\
& +\alpha^{5} x z^{4}+\alpha^{14} y^{5}+\alpha^{16} y^{4} z+\alpha^{11} y^{3} z^{2}+\alpha^{10} y^{2} z^{3}+\alpha^{25} y z^{4}+\alpha^{8} z^{5}=0 .
\end{aligned}
$$

Now consider the point $P=(2: 0: 1)$ in $\mathbb{P}_{\mathbb{F}}^{2}$. It is an easy check that P is contained in all twelve curves $L_{1}, L_{2}, C_{1}, \ldots, C_{4}, D_{1}, \ldots, D_{4}, G_{1}, G_{2}$. Therefore, the twelve exceptional curves on S that are the strict transforms of these twelve curves in $\mathbb{P}_{\mathbb{F}}^{2}$ are concurrent in a point Q on S. Let ψ be the morphism associated to the linear system $\left|-2 K_{S}\right|$. Since none of the twelve exceptional curves intersect each other with multiplicity 3 , the point Q is outside the ramification curve of ψ.

Example 4.5.5. Let k be a field of characteristic unequal to 5 . For β an element in k^{*}, let S be the del Pezzo surface of degree one in $\mathbb{P}(2,3,1,1)$ with coordinates x, y, z, w over k given by

$$
y^{2}+(\beta+1) x y w+\beta y w^{3}=x^{3}+\beta x^{2} w^{2}-z^{5} w
$$

For char $k \neq 2,3$, this surface is isomorphic to the surface in SvL14, Example 4.1]. The blow-up of S in the point ($1: 1: 0: 0$) has the structure of an elliptic surface over \mathbb{P}^{1} with coordinates z, w. The fiber above $z=0$ contains a point of order 5 , which is given by $Q=(0: 0: 0: 1)$; in fact, the cubic curve $E: y^{2}+(\beta+1) x y+\beta y=x^{3}+\beta x^{2}$ is the universal elliptic curve over the modular curve $Y_{1}(5)=\operatorname{Spec}(k[\beta, 1 / \Delta(E)])$ with $\Delta(E)=-\beta^{5}\left(\beta^{2}+11 \beta-1\right)$ that parametrizes elliptic curves over extensions of k with a point of order 5 [CE11, Proposition 8.2.8].
Choose β such that S is smooth in all characteristics; for example, we can set $\beta=2$ in characteristic 11 , and $\beta=1$ in all other characteristics. Let ρ, σ be elements of a field extension of k such that $\rho^{2}=\rho+1$, and $\left(\beta+\rho^{5}\right) \sigma^{5}=1$. Consider the curve $C_{\rho, \sigma}$ in $\mathbb{P}(2,3,1,1)$ defined by

$$
\begin{aligned}
& x=\sigma^{2} z^{2} w^{4}+\rho \sigma z w^{5} \\
& y=-\sigma^{3} z^{3} w^{3}+(\rho+1) \sigma^{2} z^{2} w^{4}
\end{aligned}
$$

Then $C_{\rho, \sigma}$ is an exceptional curve in S, defined over $k(\rho, \sigma)$. It is easy to see that Q is contained in $C_{\rho, \sigma}$. There are ten pairs (ρ, σ), so we conclude that there are ten exceptional curves through Q over a field extension of k. Finally, let φ be the morphism associated to $\left|-2 K_{S}\right|$. Since the points on the ramification curve of φ are exactly the points on S that are 2-torsion on their fiber, we conclude that Q is outside the ramification curve.

