
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/138942 holds various files of this Leiden University 
dissertation. 
 
Author: Winter, R.L. 
Title: Geometry and arithmetic of del Pezzo surfaces of degree 1 
Issue Date: 2021-01-05 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/138942
https://openaccess.leidenuniv.nl/handle/1887/1�


4

Concurrent exceptional
curves on del Pezzo surfaces
of degree 1

This chapter is an adaptation of the preprint [vLWb], which is at the
moment of this writing submitted for publication. Moreover, part of this
chapter is already in the master thesis [Win14] by the same author. We
decided to copy those parts here for completion. See Remark 4.1.3 for a
comparison with [Win14].

Recall that a del Pezzo surface of degree d over an algebraically closed field
contains a fixed number of exceptional curves, depending on d (Table 1.1).
The configuration of these curves can play a role in arithmetic questions;
we have seen this in Chapter 2. For example, one of the conditions on
the point Q that is used to show that the set of rational points on a del
Pezzo surface of degree 1 is dense in [SvL14], is for Q not to lie on 6
exceptional curves, if its order is 3 or 5. Another example is found in
[STVA14, Corollary 18], where Salgado, Testa and Várilly-Alvarado show
that a del Pezzo surface of degree 2 is unirational if and only if it contains
a point that is not contained in 4 exceptional curves, and lies outside the
ramification curve of the anticanonical map. In this chapter we study the
configuration of the exceptional curves on a del Pezzo surface of degree 1,

125



4. CONCURRENT EXCEPTIONAL CURVES

and determine the maximal number of these curves that can go through
one point.

4.1 Main results
We call a set of exceptional curves concurrent in a point on the surface if
that point is contained in all of them. It is well known that on del Pezzo
surfaces of degree 3, the number of exceptional curves that are concurrent
in a point is at most 3. This can be seen by looking at the graph on the
27 exceptional curves, where two vertices are connected by an edge if the
corresponding exceptional curves intersect. For all del Pezzo surfaces of
degree 3 this gives the same graph G. A set of concurrent exceptional
curves corresponds in this way to a complete subgraph of G, and the
maximal size of complete subgraphs in G is 3. On a del Pezzo surface
of degree 2, the number of concurrent exceptional curves in a point is at
most 4. As in the case for degree 3, this can be derived directly from the
intersection graph on the 56 exceptional curves. A geometric argument
why 4 is an upper bound is given in [TVAV09], in the proof of Lemma 4.1.
An example where this upper bound is reached is given in [STVA14],
Example 2.4. For del Pezzo surfaces of degree 1, the situation is more
complex. Contrary to the case of del Pezzo surfaces of degree ≥ 2, for
char k 6= 2, the maximal size of complete subgraphs of the intersection
graph on the 240 exceptional curves, which we will show is 16, is not
equal to the maximal number of exceptional curves that are concurrent in
a point.

Let X be a del Pezzo surface of degree 1 over an algebraically closed field
k, and let KX be the canonical divisor on X. The linear system | − 2KX |
gives X the structure of a double cover of a cone Q in P3, ramified over
a sextic curve that is cut out by a cubic surface (Section 1.4.1). Let ϕ be
the morphism associated to this linear system. In this chapter we prove
the following two theorems.

Theorem 4.1.1. Let P ∈ X(k) be a point on the ramification curve of ϕ.
The number of exceptional curves that go through P is at most ten if
char k 6= 2, and at most sixteen if char k = 2.

Theorem 4.1.2. Let Q ∈ X(k) be a point outside the ramification curve
of ϕ. The number of exceptional curves that go through Q is at most ten
if char k 6= 3, and at most twelve if char k = 3.
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4.1. MAIN RESULTS

Using the ramification divisor of ϕ, we obtain with a simple geometrical
argument an upper bound of 12 outside characteristic 2 for Theorem 4.1.1,
which was pointed out to us by Niels Lubbes. An anonymous referee even
suggested that with some more work, this same argument can be improved
to give the upper bound of 10 outside characteristic 2. See Remark 4.3.1.

In [SvL14, Example 4.1], for any field of characteristic unequal to 2, 3, or 5,
a del Pezzo surface of degree 1 is defined that contains a point outside the
ramification curve that is contained in 10 exceptional curves. This shows
that the upper bound for char k 6= 2, 3, 5 in Theorem 4.1.2 is sharp. In
Section 4.5 we show in all characteristics except for characteristic 5 in the
case of Theorem 4.1.2, that the upper bounds in Theorems 4.1.1 and 4.1.2
are sharp. Theorems 4.1.1 and 4.1.2 are proved by using results on the
automorphism group of the graph on the 240 exceptional curves, and by
Propositions 4.3.6 and 4.4.6, which are purely geometrical and show that
certain curves in P2 do not go through the same point.

Remark 4.1.3. Most of the results in Section 4.3 are proved by the same
author in the master thesis [Win14]; more specifically, Theorem 4.1.1 and
Proposition 4.3.6 are equal to Theorem 1 and Proposition 4.22 in [Win14],
and Lemma 4.3.4 is almost the same as Lemma 4.21 in [Win14]. We de-
cided to include these results here for completeness.
In [Win14], Theorem 4.1.2 is stated for char k = 0. In this chapter we
extend this to a result for all characteristics. Moreover, we added several
geometrical arguments (Lemmas 4.4.8 – 4.4.13, Proposition 4.4.15), that
heavily reduce the usage of magma in the proof of Proposition 4.4.6, which
is key to Theorem 4.1.2.
Examples 4.5.1 and 4.5.2 are the same as Exmples 4.24 and 4.23 in [Win14],
where it was shown that the upper bounds of Theorem 4.1.1 are sharp in
characteristic 0. In Section 4.5 we give extra examples, showing that the
upper bounds in Theorem 4.1.1 are sharp in all characteristics, and that
the upper bounds in Theorem 4.1.2 are sharp except possibly in charac-
teristic 5.

We use magma [BCP97] for our computations, which is the case only in
Propositions 4.3.6 and 4.4.6. The proofs of Propositions 4.2.2, 4.4.2, 4.4.3,
and 4.4.4 rely on results in Chapter 3 that also make use of magma.

We want to thank Niels Lubbes for useful discussions, and Igor Dolgachev
for useful comments. We also want to thank an anonymous referee for
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4. CONCURRENT EXCEPTIONAL CURVES

giving useful remarks that improved the quality of the paper, and a second
anonymous referee for suggesting a shorter proof of the upper bound of
10 outside characteristic 2 on the ramification curve.

4.2 The weighted graph on exceptional classes
We use the same notation as in Definition 1.4.12 and in Chapter 3: we
denote the set of exceptional classes in Pic X by I; by G we denote the
complete weighted graph whose vertex set is I, and where the weight
function is the intersection pairing in Pic X.

When two exceptional curves intersect in a point on X, their correspond-
ing classes in Pic X are connected by an edge of positive weight in G.
Therefore, an upper bound on the number of exceptional curves on X
that are concurrent in a point is given by the maximal size of cliques in
G that have only edges of positive weight. To study these cliques, we
use the correspondence between the set I and the root system E8 as in
Remark 1.4.9. In particular, if Γ is the weighted graph where the vertices
are the roots in E8 and the weights are induces by de dot product in E8,
there is an isomorphism of weighted graphs between G and Γ, that sends
a vertex c in G to the corresponding vertex c + KX in Γ, and an edge
d = {c1, c2} in G with weight w to the edge δ = {c1 + KX , c2 + KX} in
Γ with weight 1 − w (Remark 1.4.13). The different weights that occur
in G are 0, 1, 2, and 3, and they correspond to weights 1, 0,−1, and −2,
respectively, in Γ. From the bijection between Γ and G we immediately
obtain the following results.

Lemma 4.2.1. (i) Let e be an exceptional class. Then there is exactly
one exceptional class f with e · f = 3, there are 56 exceptional classes
f with e · f = 0, there are 126 exceptional classes f with e · f = 1, and
56 exceptional classes f with e · f = 2.

(ii) For two exceptional classes e1, e2 with e1 · e2 = 2, there is a unique
exceptional class f such that e1 · f = e2 · f = 2.

(iii) For every pair e1, e2 of exceptional classes such that e1 · e2 = 1,
there are exactly 60 exceptional classes f with e1 · f = e2 · f = 1, and
32 exceptional classes f with e1 · f = 1 and e2 · f = 0.

(iv) For e1, e2 two exceptional classes with e1 · e2 = 3, and f a third
exceptional class, we have e1 ·f = 1 if and only if e2 ·f = 1, and e1 ·f = 0
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4.2. THE WEIGHTED GRAPH ON EXCEPTIONAL CLASSES

if and only if e2 · f = 2.

Proof. Using the fact that two exceptional classes have intersection pair-
ing a if and only if their corresponding roots in E have inner product
1 − a, we see that (i) is Proposition 4.2.1, (ii) is Lemma 3.3.9, and (iii)
is Lemma 3.3.27 and Lemma 3.3.13. Finally, (iv) follows from the fact
that two classes e1, e2 with e1 · e2 = 3 correspond to two roots in E with
inner product −2, which implies they are each other’s inverse as vectors
(Proposition 3.2.2).

We also obtain a first upper bound for the number of exceptional curves
that are concurrent in a point on X.

Proposition 4.2.2. The number of exceptional curves that are concur-
rent in a point on X is at most 16.

Proof. Cliques with edges of positive weight in G correspond to cliques
with edges of weights −2,−1, 0 in Γ. The maximal size of such cliques
in Γ is 16 by Proposition 3.5.33 and Appendix A.

Definition 4.2.3. For an exceptional class e in Pic X, we call the unique
exceptional class e′ with e · e′ = 3 its partner.

The graph in Figure 4.1 is a translation of Figure 3.1, and summarizes
Lemma 4.2.1. Vertices are exceptional classes, and the number in a subset
is its cardinality. The number on an edge between two subsets is the inter-
section pairing of two classes, one from each subset. For i, j ∈ {1, 2, 3}, the
exceptional class e′i is the partner of the class ei, and for ei ·ej = 2, the class
ei,j is the unique one that intersects both ei and ej with multiplicity 2.
Let ϕ be the morphism associated to the linear system | − 2KX |, which
realizes X as a double cover of a cone Q in P3. We want to distinguish
cliques in G corresponding to exceptional curves that intersect in a point
on the ramification curve of ϕ from those intersecting in a point outside
the ramification curve of ϕ. To this end we use Proposition 4.2.4.
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4. CONCURRENT EXCEPTIONAL CURVES

e1

e′1

126
e2

e′2

60

32

32

1
3

0

0

2
2

1

56

e3 e1,3

2
56

e′3

3

2
1

0

Figure 4.1: Graph G

Proposition 4.2.4.
(i) If e is an exceptional curve on X, then ϕ(e) is a smooth conic, the
intersection of Q with a plane in P3 not containing the vertex of Q.
Moreover ϕ|e : e −→ ϕ(e) is one-to-one.

(ii) If H is a hyperplane section of Q not containing the vertex of Q,
then ϕ∗H has an exceptional curve as component if and only if it has
at least three (maybe infinitely near) singular points. If this is the case,
then ϕ∗H = e1 + e2 with e1, e2 exceptional curves, and e1 · e2 = 3.
Every exceptional curve arises this way.

Proof. [CO99, Proposition 2.6 and Key-lemma 2.7].

Remark 4.2.5. Let e be an exceptional curve on X, and let e′ be its
partner. Let H be a hyperplane section of Q with ϕ∗H = e + e′, which
exists by Proposition 4.2.4 (ii). Since ϕ|f is one-to-one for f = e, e′ by
part (i) of the same proposition, it follows that ϕ(e) = ϕ(e′) = H. So
every point on H has two preimages under ϕ, except for the points with
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4.3. PROOF OF THEOREM 4.1.1

a preimage in e ∩ e′. We conclude that the points where e intersects the
ramification curve of ϕ are exactly the points in e ∩ e′, hence are also
contained in e′. Conversely, if a set of exceptional curves is concurrent in
a point P , and this set contains an exceptional curve and its partner, then
P lies on the ramification curve of ϕ.

4.3 Proof of Theorem 4.1.1
In this section we prove Theorem 4.1.1. We first determine which cliques
in G may correspond to sets of exceptional curves intersecting on the
ramification curve of ϕ (Remark 4.3.2). We then show that the auto-
morphism group of G acts transitively on certain cliques of that form
(Proposition 4.3.3), which allows us to reduce to specific curves on X. In
Proposition 4.3.6, which is key to the proof of Theorem 4.1.1, we show
that seven curves in P2 in a specific configuration are not concurrent.

Remark 4.3.1. From Remark 4.2.5 it follows that there is a bijection
between planes in P3 that are tritangent to the branch curve of ϕ and do
not contain the vertex of Q, and pairs of exceptional curves e1, e2 with
e1 · e2 = 3. Using this, we can find an upper bound for the number of
exceptional curves that are concurrent in a point on the ramification curve.
Let P be a point on the branch curve of ϕ. From Lemma 4.5 in [TVAV09],
it follows that over a field of characteristic unequal to 2, there are at most
7 planes that are tangent to the branch curve at P and two other points.
Moreover, Niels Lubbes gave us the insight that exactly one of those planes
contains the vertex of Q, so we find an upper bound of 6 planes that are
tritangent to the branch curve, that contain P , and that do not contain
the vertex of Q. This gives an upper bound of 12 exceptional curves that
contain the point ϕ−1(P ) on the ramification curve of ϕ, if char k 6= 2.
Consider the map λ : R −→ P1, where R is the ramification curve of ϕ,
and P1 parametrizes the planes through the tangent line to R at ϕ−1(P ):
λ sends each point x in R\ϕ−1(P ) to the unique plane containing x. This
map has degree 4, and if char k 6= 2, then R is smooth, and λ extends to
a morphism. The upper bound of 7 planes that was found in Lemma 4.5
in [TVAV09] comes from the fact that the ramification divisor of λ has
degree 14. An anonymous referee gave us the hint that this idea could
even be used to give the upper bound of 10 in char k 6= 2 directly, by
showing that a morphism of degree 4 to P1 can not have 7 ramification
patterns all equal to (2, 2). Therefore there are at most 6 planes that are
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4. CONCURRENT EXCEPTIONAL CURVES

tangent to P and two other points on the branch curve of ϕ. Since one of
them is the plane through the vertex of Q, this gives the upper bound of
10 exceptional curves through ϕ−1(P ). We are currently working out the
details of this argument.

Remark 4.3.2. From Remark 4.2.5 it follows that a maximal set of ex-
ceptional curves that are concurrent in a point on the ramification curve
consists of exceptional curves and their partners, hence has even size.
Moreover, from Lemma 4.2.1 (iv) it follows that such a clique only has
edges of weights 1 and 3. We conclude that all cliques in G corresponding
to a maximal set of exceptional curves that are concurrent in a point on
the ramification curve are of the following form.

Kn =
{
{e1, . . . , en, e

′
1, . . . , e

′
n}

∣∣∣∣∣ ∀i : ei, e′i ∈ I; ei is the partner of e′i;
∀i 6= j : ei · ej = ei · e′j = e′i · e′j = 1

}

Let W be the group of permutations of I that preserve the intersection
pairing, and recall that W is isomorphic to the Weyl group of the E8 root
system (Corollary 1.4.10).

Proposition 4.3.3. For n ∈ {2, 3, 5, 6, 7, 8}, the group W acts transi-
tively on the set Kn.

Proof. This is Proposition 3.5.13.

We now set up notation for Lemma 4.3.4; this lemma will be used in
Propositions 4.3.6 and 4.4.6. Lemma 4.3.5 is used in Proposition 4.3.6.

Let P2 be the projective plane over k with coordinates x, y, z, and let
R1, . . . , R9 be nine points in P2, with Ri = (xi : yi : zi) for i ∈ {1, . . . , 9}.
For i ∈ {1, 2, 3, 4}, we define Moni to be the decreasing sequence of
ri =

(i+2
2
)

= 1
2(i + 1)(i + 2) monomials of degree i in x, y, z, ordered

lexicographically with x > y > z, and for j ∈ {1, . . . , ri}, let Moni[j] be
the jth entry of Moni. For δ ∈ {x, y, z}, let Monδi be the list of deriva-
tives of the entries in Moni with respect to δ. We will define matrices
M,N,L,H. Note that each row is well defined up to scaling. This means
that for all these matrices, the determinant is well defined up to scaling,
so asking for the determinant to vanish is well defined.
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4.3. PROOF OF THEOREM 4.1.1

M = (ai,j)i,j∈{1,2,3} with ai,j = Mon1[j](Ri);

N = (bi,j)i,j∈{1,...,6} with bi,j = Mon2[j](Ri);

L = (ci,j)i,j∈{1,...,10} with ci,j =


Mon3[j](Ri) for i ≤ 8
Monx3 [j](R8) for i = 9
Monz3[j](R8) for i = 10

.

For α7, α8, α9 ∈ {x, y, z}, we define the matrix

Hα7,α8,α9 = (di,j)i,j∈{1,...,15} ,

with di,j =



Mon4[j](Ri) for i ≤ 9
Monβ7

4 [j](R7) for i = 10
Monγ7

4 [j](R7) for i = 11
Monβ8

4 [j](R8) for i = 12
Monγ8

4 [j](R8) for i = 13
Monβ9

4 [j](R9) for i = 14
Monγ9

4 [j](R9) for i = 15

,

where for i ∈ {7, 8, 9}, we have {βi, γi} = {x, y, z} \ {αi}, with βi > γi
with respect to lexicographic ordering.

Lemma 4.3.4. The following hold.
(i) The points R1, R2, and R3 are collinear if and only if det(M) = 0.

(ii) The points R1, . . . , R6 are on a conic if and only if det(N) = 0.

(iii) If the points R1, . . . , R8 are on a cubic with a singular point at R8,
then det(L) = 0. If y8 6= 0, then the converse also holds.

(iv) For all α7, α8, α9, if the points R1, . . . , R9 are on a quartic that
is singular at R7, R8 and R9, then det(Hα7,α8,α9) = 0. If for all i in
{7, 8, 9}, the αi-coordinate of Ri is non-zero, then the converse also
holds.

Proof.

(i) The determinant ofM is zero if and only if there is a non-zero element
in the nullspace of M , that is, there is a non-zero vector (m1,m2,m3)
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4. CONCURRENT EXCEPTIONAL CURVES

such that for all i ∈ {1, 2, 3}, we have m1ai,1 + m2ai,2 + m3ai,3 = 0.
But this is the case if and only if the line defined by m1x+m2y +m3z
contains all three points.

(ii) This proof goes analogously to the proof of (i).

(iii) The determinant of L is zero if and only if there is a non-zero
vector (l1, . . . , l10) in k10 such that for all i ∈ {1, . . . , 10}, we have
l1ci,1 + · · · + l10ci,10 = 0. This is the case if and only if the cubic C
defined by λ =

∑10
i=1 liMon3[i] contains all eight points R1, . . . , R8, and

moreover, the derivatives λx, λz of λ with respect to x and z vanish in
R8. So if R1, . . . , R8 are on a cubic with a singular point at R8, the
determinant of L vanishes. Conversely, if det(L) = 0 and y8 6= 0, since
we have xλx + yλy + zλz = 3λ, this implies that also the derivative λy
of λ with respect to y vanishes in R8, hence C is singular in R8.

(iv) Take α7, α8, α9 ∈ {x, y, z}. The determinant of Hα7,α8,α9 is zero
if and only if there exists a non-zero vector given by (h1, . . . , h15) such
that for all i ∈ {1, . . . , 15}, we have h1di,1 + · · · + h15di,15 = 0. This
is the case if and only if the quartic K defined by λ =

∑15
i=1 hiMon4[i]

contains R1, . . . , R9, and moreover, for i ∈ {7, 8, 9}, the derivatives λδ
for δ ∈ {x, y, z} \ {αi} vanish in Ri. So if R1, . . . , R9 are on a quartic
that is singular at R7, R8 and R9, the determinant ofHα7,α8,α9 vanishes.
Conversely, if det(Hα7,α8,α9) = 0 and the αi-coordinate of Ri is non-zero
for i ∈ {7, 8, 9}, then, since we have xλx + yλy + zλz = 4λ, this implies
that also λαi vanishes in Ri for i ∈ {7, 8, 9}. So K is singular in R7, R8,
and R9.

We recall that k is an algebraically closed field, and P2 is the projective
plane over k.

Lemma 4.3.5. If R1, . . . , R7 are seven distinct points in P2 such that
R1, . . . , R6 are in general position, and the line L containing R1 and R7
contains none of the other points, then there is a unique cubic containing
all seven points that is singular in R1, which does not contain L.

Proof. The linear system of cubics containing R1, . . . , R7 is at least two-
dimensional. Requiring that a cubic in this linear system is singular in R1
gives two linear conditions, defining a linear subsystem C of dimension at
least 0, so there is at least one cubic containing R1, . . . , R7 that is singular
at R1.
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4.3. PROOF OF THEOREM 4.1.1

Let D be an element of C; we claim that D does not contain the line L
that contains R1 and R7. Indeed, if D were the union of L and a conic
C, then R1 would be contained in C since it is a singular point of D.
Since the points R2, . . . , R6 are not on L by assumption, they would also
be contained in C, contradicting the fact that R1, . . . , R6 are in general
position. So D does not contain L. Note that this implies that D is
smooth in R7, since if it were singular, then D would intersect L with
multiplicity at least 4, hence D would contain L.
Now assume that there is more than one element in C. Then there are two
cubics D1 and D2 that contain R1, . . . , R7 with a singularity at R1, and
whose defining polynomials are linearly independent. By what we just
showed, they are not singular in R7. For i = 1, 2, let li be the tangent
line to Di at R7. If the equations defining l1 and l2 are not linearly
independent, then there is an element F of C that is singular in R7, giving
a contradiction. We conclude that the equations defining l1 and l2 must
be linearly independent. Therefore, there is an element G in C such that
the line L through R1 and R7 is the tangent line to G at R7. But then
L intersects G in four points counted with multiplicity, so it is contained
in G. This contradicts the fact that G is in C. We conclude that there is
a unique cubic through R1, . . . , R7 that is singular in R1, and which does
not contain the line through R1 and R7.

Proposition 4.3.6. Assume that the characteristic of k is not 2. Let
Q1, . . . , Q8 be eight points in P2 in general position. For i ∈ {1, 2, 3, 4},
let Li be the line through Q2i and Q2i−1, and for i, j ∈ {1, . . . , 8}, with
i 6= j, let Ci,j be the unique cubic through Q1, . . . , Qi−1, Qi+1, . . . , Q8 that
is singular in Qj , which exists by Lemma 4.3.5. Assume that the four lines
L1, L2, L3 and L4 are concurrent in a point P . Then the three cubics
C7,8, C8,7, and C6,5 do not all contain P .

Proof. First note that if P were equal to one of the Qi, then three of
the eight Qi would be on a line, which would contradict the fact that
Q1, . . . , Q8 are in general position. We conclude that P is not equal to
one of the Qi. Moreover, if P were collinear with any two of the three
points Q1, Q3, Q5, say for example with Q1 and Q3, then, since P is also
contained in L1 and L2, it would follow that L1 and L2 are equal, giving
a contradiction. So Q1, Q3, Q5 and P are in general position.
Let (x : y : z) be the coordinates in P2. Without loss of generality, after
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4. CONCURRENT EXCEPTIONAL CURVES

applying an automorphism of P2 if necessary, we can define

Q1 = (0 : 1 : 1); Q3 = (1 : 0 : 1)
Q5 = (1 : 1 : 1); P = (0 : 0 : 1).

Then we have the following.

L1 is the line given by x = 0;
L2 is the line given by y = 0;
L3 is the line given by x = y.

Since L4 contains P , and is unequal to L1 and L2, there is an m ∈ k∗ such
that L4 is the line given by my = x. Since Q2, Q7 and Q8 are not in L2,
and Q4 is not in L1, there are a, b, c, u, v ∈ k such that

Q2 = (0 : 1 : a); Q7 = (m : 1 : v);
Q4 = (1 : 0 : b); Q8 = (m : 1 : c).
Q6 = (1 : 1 : u);

We define A6 to be the affine space with coordinate ring T6 given by
T6 = k[a, b, c,m, u, v]. Points in A6 correspond to configurations of the
points Q1, . . . , Q8.
Assume by contradiction that C7,8, C8,7, and C6,5 all contain P . This
assumption gives polynomial equations in the variables a, b, c,m, u, v, and
hence defines an algebraic set A0 in A6. We define S0 to be the algebraic
set of all points in A6 that correspond to the configurations where three of
the points Q1, . . . , Q8 lie on a line, or six of the points lie on a conic. We
want to show that A0 is contained in S0, which proves the proposition.
Note that the line containing P and Q5, which is L3, does not contain any
of the points Q1, Q2, Q3, Q4, Q8. From Lemma 4.3.5, after substituting
(R1, . . . , R7) = (Q5, Q1, Q2, Q3, Q4, Q8, P ), it follows that there is a unique
cubic D containing Q1, Q2, Q3, Q4, Q5, Q8 and P that is singular in Q5,
and that D does not contain L3. By uniqueness, D must be equal to C6,5,
and therefore also contains Q7. By Lemma 4.3.4, the equation expressing
that Q7 is contained in D (or equivalently, that P is contained in C6,5) is
given by det(L) = 0, where L is the matrix used in the lemma, associated
to the points (R1, . . . , R8) = (Q1, Q2, Q3, Q4, Q7, Q8, P,Q5). We have

det(L) = −m(m− 1)(c− v)(b− 1)(a− 1)f,

where f = αv + β, with

α = a− ac− bc+ bm, β = b(a− 1)m2 + b(c− 2a)m+ a(b+ c− 1).
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4.3. PROOF OF THEOREM 4.1.1

The first five factors of det(L) define subsets of S0, and do not corre-
spond to configurations where Q1, . . . , Q8 are in general position. There-
fore, C6,5 contains P if and only if f = 0. Define the algebraic set
V = Z(α), and let (a0, b0, c0,m0, u0, v0) be an element in V ∩ A0. Then
we have α(a0, b0, c0,m0, u0, v0) = f(a0, b0, c0,m0, u0, v0) = 0, so we find
β(a0, b0, c0,m0, u0, v0) = 0. But α and β do not depent on v, so this
implies that we have f(a0, b0, c0,m0, u0, v

′) = 0 for every v′. So every
element in V ∩A0 corresponds to a configuration of Q1, . . . , Q8 such that
every point (m : 1 : v′) on L4 is also contained in D. But if this is the
case, then D consists of L4 and a conic, which is singular, since Q5 is a
singular point of D that is not contained in L4. Since L4 contains none
of the points Q1, Q2, Q3, Q4, these four points are then on the singular
conic, which implies that Q5 is collinear with at least two other points.
We conclude that V ∩A0 is a subset of S0.
Analogously, the fact that C7,8 contains P is expressed by det(L′) = 0,
where L′ is the matrix denoted by L in Lemma 4.3.4 with

(R1, . . . , R8) = (Q1, Q2, Q3, Q4, Q5, Q6, P,Q8).

We have
det(L′) = −m(u− 1)(m− 1)(b− 1)(a− 1)g,

where g = γu+ δ with

γ = bm3 + (1− bc− c)m2 + (c2 − 2c+ 1)m+ a(1− c) + c2 − c,

and

δ = −abm3 + (abc+ ab+ ac− a+ b− 2bc)m2+
(ab− 2abc+ a+ 2bc2 − b− ac2 + 2c2 − 2c)m

+ a(bc− b+ 2c2 − 2c)− bc2 + bc− 2c3 + 2c2.

The first five factors of det(L′) correspond to configurations where the
eight points are not in general position, so C7,8 contains P if and only if
g = 0. Define U = Z(γ). By the same reasoning as for V ∩A0 (now using
the fact that D does not contain the line L3), we have U ∩A0 ⊆ S0. Set

v′ = −β
α

and u′ = −δ
γ
.

Define A4 to be the affine space with coordinate ring T4 = k[m, a, b, c], and
let K4 be its fraction field. Let Y ⊂ A4 be the set defined by α = γ = 0.
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Consider the ring homomorphism ψ : T6 −→ K4 defined by

(m, a, b, c, u, v) 7−→ (m, a, b, c, u′, v′).

This defines a morphism i : A4\Y −→ A6\(V ∪ U), which is a section of the
projection A6 −→ A4 to the first four coordinates. Set A′0 = A0 \ (V ∪ U).
Then we have A0 ⊂ S0 if and only if A′0 ⊆ S0. Moreover, A′0 is contained
in Z(f, g), and since f and g are linear in v and u respectively, we have
i−1(A′0) ∼= A′0. Set A1 = i−1(A′0) and S1 = i−1(S0), then A′0 ⊆ S0 is
equivalent to A1 ⊆ S1.
Let L′′ be the matrix denoted by L in Lemma 4.3.4 with

(R1, . . . , R8) = (Q1, Q2, Q3, Q4, Q5, Q6, P,Q7).

Similarly to C7,8, the fact that C8,7 contains P is expressed by the van-
ishing of the determinant of L′′. We compute this determinant and write
it in terms of the coordinates of A4 using ψ. We find the expression

− 2abm(m− 1)3(b− 1)(a− 1)(a+ b− 1)f1f2f3, (4.1)

with
f1 = ac− a+ bcm− bm2 − c2 + cm+ c−m,

f2 = abm2 − 2abm+ ab− ac2 + 2ac− a− bc2 + 2bcm− bm2,

and

f3 = abcm2 − 2abcm+ abc− abm3 + abm2 + abm− ab− ac2m+ 2ac2

+ acm2 − 3ac− am2 + am+ a+ 2bc2m− bc2 − 3bcm2 + bc+ bm3

+ bm2 − bm− 2c3 + 3c2m+ 3c2 − cm2 − 4cm− c+m2 +m.

Expression (4.1) defines the set A1 in A4. Since char k 6= 2, we have
(4.1) = 0 if and only if at least one of the non-constant factors of (4.1)
equals zero. We show that all non-constant factors of expression (4.1)
define components of S1. If a = 0, then Q2, Q3 and Q5 are contained in
the line given by x− z = 0. Similarly, b = 0 implies that Q1, Q4 and Q5
are on the line given by y− z = 0, and a+ b− 1 = 0 implies that Q2, Q4,
and Q5 are on the line given by bx+ ay − z = 0. If m = 0 then L4 = L2,
and m = 1 implies L4 = L3, so in both cases there are four points on a
line. If a = 1 or b = 1, then two of the eight points would be the same. Set
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(R1, . . . , R6) = (Q3, . . . , Q8), and let N be the corresponding matrix from
Lemma 4.3.4. We compute the determinant of N and find that f1f2f3
divides det(N). This means that f1, f2, as well as f3 define components
of S1, more specifically, they define configurations where Q3, . . . , Q8 are on
a conic. We conclude that all irreducible components of A1 are contained
in S1, which finishes the proof.

Remark 4.3.7. Note that, theoretically, we could have proved Proposi-
tion 4.3.6 with a computer, by checking that A0 is contained in S0 using
Groebner bases. However, in practice, this turned out to be too big for
magma to do.

We can now prove Theorem 4.1.1. We use the following notation.

Notation 4.3.8. Let P1, . . . , P8 be eight points in general position in P2

such that X is isomorphic to P2 blown up these points. For i ∈ {1, . . . , 8},
let Ei be the class in Pic X corresponding to the exceptional curve above
Pi, and let L be the class in Pic X corresponding to the pullback of a line
in P2 that does not contain any of the points P1, . . . , P8.

Recall that a maximal set of exceptional curves that are concurrent in
a point on the ramification curve consists of curves and their partners
(Remark 4.3.2).

Proof of Theorem 4.1.1. First note that by Proposition 4.2.2, the
number of exceptional curves through any point in X is at most sixteen
in all characteristics; this proves the case char k = 2.
Now assume char k 6= 2. Consider the clique K = {e1, . . . , e6, e

′
1, . . . , e

′
6}

in G, where

e1 = L− E1 − E2;
e2 = L− E3 − E4;
e3 = L− E5 − E6;
e4 = L− E7 − E8;
e5 = 3L− E1 − E2 − E3 − E4 − E5 − E6 − 2E8;
e6 = 3L− E1 − E2 − E3 − E4 − 2E5 − E7 − E8,

and e′i is the partner of ei, for all i ∈ {1, . . . , 6}. By Remark 1.2.7,
the classes e1, . . . , e4 correspond to the strict transforms of the four lines
through Pi and Pi+1 for i ∈ {1, 3, 5, 7}, and e5, e6, e

′
5 correspond to the
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strict transforms of the unique cubics through the points P1, . . . , P6, P8,
and the points P1, . . . , P5, P7, P8, and the points P1, . . . , P6, P7, respec-
tively, that are singular in P8, and P5, and P7, respectively.
Now let K ′ be a clique in G with only edges of weights 1 and 3, con-
sisting of at least six sets of an exceptional class with its partner. Let
{{f1, f

′
1}, . . . , {f6, f

′
6}} be a set of six such sets in K ′. Since W acts tran-

sitively on the set of cliques of six exceptional classes and their partners by
Proposition 4.3.3, after changing the indices and interchanging fi’s with
their partner if necessary, there is an element w ∈W such that fi = w(ei)
and f ′i = w(e′i) for i ∈ {1, . . . , 6}. For i ∈ {1, . . . , 8}, set E′i = w(Ei).
Since the E′i are pairwise disjoint, by Lemma 1.2.8 we can blow down
E′1, . . . , E

′
8 to points Q1, . . . , Q8 ∈ P2 that are in general position, such

that X is isomorphic to the blow-up of P2 at Q1, . . . , Q8, and E′i is the
class in Pic X corresponding to the exceptional curve above Qi for all i.
By Remark 1.2.9, the sequence (E′1, . . . , E′8) induces a bijection between
the exceptional curves on X and the 240 vectors in Proposition 1.2.6, such
that the element fi corresponds to the class of the strict transform of the
line through Q2i−1 and Qi for i ∈ {1, . . . , 4}, the elements f5 and f6 corre-
spond to the classes of the strict transforms of the unique cubics through
the points Q1, . . . , Q6, Q8 and Q1, . . . , Q5, Q7, Q8, respectively, that are
singular in Q8 and Q5 respectively, and f ′i is the unique class in I in-
tersecting fi with multiplicity three for all i. From Proposition 4.3.6 it
follows that the curves on X corresponding to f1, . . . , f6, f

′
5 and f ′6 are not

concurrent.
We conclude that a set of at least six exceptional curves and their part-
ners is never concurrent. Since any maximal set of exceptional curves
going through the same point on the ramification curve forms a clique
consisting of curves and their partners, hence of even size, we conclude
that this maximum is at most ten.

4.4 Proof of Theorem 4.1.2
In this section we prove Theorem 4.1.2. The structure of the proof is sim-
ilar to that of Theorem 4.1.1; we first determine the cliques in G that pos-
sibly come from a set of exceptional curves that are concurrent outside the
ramification curve of ϕ (Remark 4.4.1), and show that their maximal size
is 12 (Proposition 4.4.2). Then we show that the groupW acts transitively
on these cliques of size 12 (Proposition 4.4.3) and 11 (Proposition 4.4.4),
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and finally we show that ten curves in P2 in a specific configuration are
not concurrent in Proposition 4.4.6. This final proposition is again key to
the proof of Theorem 4.1.2.

Remark 4.4.1. From Remark 4.2.5 we know that cliques in G corre-
sponding to exceptional curves that intersect each other in a point outside
the ramification curve have no edges of weight 3. We conclude that these
cliques contain only edges of weights 1 and 2.

Proposition 4.4.2. The maximal size of cliques in G with only edges of
weights 1 and 2 is 12, and there are no maximal cliques with only edges
of weights 1 and 2 of size 11.

Proof. We use the correspondence with the graph Γ in Chapter 3, where
the corresponding cliques have only edges of colors−1 and 0; the statement
is Proposition 3.5.23.

Proposition 4.4.3. The group W acts transitively on the set of cliques
of size 12 in G with only edges of weights 1 and 2.

Proof. This is Proposition 3.5.24.

Proposition 4.4.4. The group W acts transitively on the set of cliques
of size 11 in G with only edges of weights 1 and 2.

Proof. By Proposition 4.4.2, any clique of size 11 with only edges of
weights 1 and 2 is contained in a clique of size 12 with only edges of
weights 1 and 2. By Corollary 3.5.25, for such a clique K of size 12, the
stabilizer WK acts transitively on K, which implies that WK also acts
transitively on the set of cliques of size 11 within K. Since W acts transi-
tively on the set of all cliques of size 12 with only edges of weights 1 and 2
by Proposition 4.4.3, the statement follows.

Now that we know which cliques in G to look at and what their maximal
size is, we show that ten curves in P2 in a specific configuration are not
concurrent in Proposition 4.4.6.

Remark 4.4.5. It is well known that two distinct points in P2 define a
unique line, and five points in P2 in general position define a unique conic.
Now let R1, . . . , R8 be eight distinct points in P2 in general position. The
linear system Q of quartics in P2 has dimension 14. For three distinct
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points Ri, Rj , Rl ∈ {R1, . . . , R8}, requiring a quartic to contain R1, . . . , R8
and be singular in in Ri, Rj , Rl gives 8+3·2 = 14 linear relations. Since the
eight points are in general position, the 14 linear conditions are linearly
independent, so this gives a zero-dimensional linear subsystem ofQ. Hence
there is a unique quartic containing all eight points that is singular in
Ri, Rj , Rl.

Let R1, . . . , R8 be eight points in P2 in general position. Remark 4.4.5
allows us to define the following curves.

L1 is the line through R1 and R2;
L2 is the line through R3 and R4;
C1 is the conic through R1, R3, R5, R6 and R7;
C2 is the conic through R1, R4, R5, R6 and R8;
C3 is the conic through R2, R3, R5, R7 and R8;
C4 is the conic through R2, R4, R6, R7 and R8;
D1 is the quartic through all eight points, singular in R1, R7 and R8;
D2 is the quartic through all eight points, singular in R2, R5 and R6;
D3 is the quartic through all eight points, singular in R3, R6 and R8;
D4 is the quartic through all eight points, singular in R4, R5 and R7.

Proposition 4.4.6. Assume that the characteristic of k is not 3. Then
the ten curves L1, L2, C1, . . . C4, D1, . . . , D4 are not concurrent.

Remark 4.4.7. As in the case of Proposition 4.3.6, in theory we could
prove Proposition 4.4.6 with a computer by using Groebner bases, but in
practice, this is undoable since the computations become too big (see also
Remark 4.3.7). In the case of Proposition 4.4.6 the computations become
even bigger, since we now have 10 curves to check, four of which are of de-
gree 4, in contrast to the 7 curves of degrees at most 3 in Proposition 4.3.6.

Before we write down the proof of Proposition 4.4.6, we make some re-
ductions. In P2, we can choose four points in general position. Fix these
and call them Q1, Q5, Q6, and R. We are interested in those configura-
tions of five points Q2, Q3, Q4, Q7 and Q8 in P2 such that the following 11
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conditions hold.

0) The points Q1, . . . , Q8 are in general position.
1) There is a line through R,Q1, Q2.

2) There is a line through R,Q3, Q4.

3) There is a conic through R,Q1, Q3, Q5, Q6, Q7.

4) There is a conic through R,Q1, Q4, Q5, Q6, Q8.

5) There is a conic through R,Q2, Q3, Q5, Q7, Q8.

6) There is a conic through R,Q2, Q4, Q6, Q7, Q8.

7) There is a quartic through all nine points, singular in Q1, Q7, Q8.

8) There is a quartic through all nine points, singular in Q2, Q5, Q6.

9) There is a quartic through all nine points, singular in Q3, Q6, Q8.

10) There is a quartic through all nine points, singular in Q4, Q5, Q7.

We will prove Proposition 4.4.6 by showing that there are no such config-
urations: all of the configurations satisfying 1–10 violate condition 0.

We consider the space (P2)5. Within this space, we define the following
two sets.

Y =
{

(Q2, Q3, Q4, Q7, Q8) ∈ (P2)5 | conditions 1–5 are satisfied
}
.

S =
{

(Q2, Q3, Q4, Q7, Q8) ∈ (P2)5 | three of Q1, . . . , Q8 are collinear
}
.

Note that for an element (Q2, Q3, Q4, Q7, Q8) in S, condition 0 is violated.
Let F1 be the linear system of conics through R,Q1, Q5, Q6. Note that
this is a one-dimensional linear system that is isomorphic to P1. Let F2 be
the linear system of lines through R, which is also isomorphic to P1. We
will show that there is a bijection between Y \ S and a subset of F 2

1 × F 3
2

in Proposition 4.4.15. We start with two lemmas.

Lemma 4.4.8. If (Q2, Q3, Q4, Q7, Q8) is a point in Y \ S, then we have
Qi 6= R for i = 2, 3, 4, 7, 8.

Proof. Take a point Q = (Q2, Q3, Q4, Q7, Q8) in Y \ S. Since Q is an
element of Y , by condition 1 the points R,Q1, Q2 are on a line. That
means that if R = Qi for i = 3, 4, 7, 8, the points Qi, Q1, Q2 would be on a
line, contradicting the fact that Q is not in S. Moreover, by condition 2,
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the points R,Q3, Q4 are on a line, so if R = Q2 then Q2, Q3, Q4 are on a
line, again contradicting the fact that Q is not in S.

The following result is well known, but we include a proof, as we could
not find a reference for this exact statement.

Lemma 4.4.9. If S1, . . . , S5 are five distinct points in P2, such that the
four points S1, . . . , S4 are in general position, then there is a unique conic
containing S1, . . . , S5, which is irreducible if all five points are in general
position.

Proof. The linear system of conics containing S1, . . . , S4 is one-dimensional
and has only these four points as base points. Requiring for a conic in
this linear system to contain the point S5 gives a linear condition, and
since S5 is different from S1, . . . , S4, this condition defines a linear sub-
space of dimension at least zero. If there were two distinct conics in this
subspace, they would intersect in 5 distinct points, so they would have a
common component, which is a line. Since no 4 of the points S1, . . . , S5
are collinear, there are at most 3 of the 5 points on this line. But then
the other two points uniquely determine the second component of both
conics, contradicting that they are distinct. We conclude that there is a
unique conic containing S1, . . . , S5. If, moreover, S5 is such that all five
points are in general position, then no three of them are collinear by def-
inition, so the unique conic containing them cannot contain a line, hence
it is irreducible.

Notation 4.4.10. Let (Q2, Q3, Q4, Q7, Q8) be a point in Y \S. Note that
by condition 3, there is a conic through the points R,Q1, Q3, Q5, Q6, and
Q7, and by Lemma 4.4.9 it is unique, since R,Q1, Q5, Q6 are in general
position. We call this conic A1. By the same reasoning and condition 4,
there is a unique conic containing the points R,Q1, Q4, Q5, Q6, Q8. We
call this conic A2. By Lemma 4.4.8, the points Q3, Q7, Q8 are all different
from R, so we can define the line M1 through X and Q3, the line M2
through R and Q7, and the line M3 through R and Q8.

Recall that F1 is the linear system of conics through R,Q1, Q5, Q6, and
F2 the linear system of lines through R. We define a map

ϕ : Y \ S −→ F 2
1 × F 3

2 ,

(Q2, Q3, Q4, Q7, Q8) 7−→ (A1, A2,M1,M2,M3).
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Note that ϕ is well defined by the definitions of A1, A2,M1,M2,M3 in
Notation 4.4.10. We want to describe its image. To this end, define the
set

U =


(B1, B2, N1, N2, N3) ∈ F 2

1 × F 3
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

B1, B2 irreducible
B1 6= B2

N1, N2 not tangent to B1
N1, N3 not tangent to B2

N1 6= N2, N3
Q1, Q5, Q6 6∈ N1, N2, N3


.

Lemma 4.4.11. The image of ϕ is contained in U .

Proof. Take a point Q = (Q2, Q3, Q4, Q7, Q8) ∈ Y \ S and consider its
image under ϕ given by ϕ(Q) = (A1, A2,M1,M2,M3). Since Q is not
in S, by Lemma 4.4.9, the conics A1 and A2 are unique and irreducible.
Moreover, if they were equal to each other, then they would both contain
the points R,Q3, Q4, which are collinear by condition 2, contradicting the
fact that they are irreducible.
The line M1 is tangent to A1 only if R is equal to Q3, the line M2 is
tangent to A1 only if R is equal to Q7, and the line M3 is tangent to A2
only if R is equal to Q8, all of which are impossible by Lemma 4.4.8. Note
that by condition 2, the line M1 contains Q4, so M1 is tangent to A2 only
if R = Q4, which is again impossible by Lemma 4.4.8. If M2 or M3 were
equal to M1, then either Q7 or Q8 is contained in M1, which also contains
the points R,Q3, Q4. But this can not be true since Q is not in S. If M1
or M2 contained any of the points Q1, Q5, Q6, then this line would have
three points in common with A1, which implies that A1 contains a line,
contradicting the fact that A1 is irreducible. Similarly, if M3 contained
Q1, Q5, or Q6, then A2 would contain M3, contradicting the irreducibility
of A2.

We want to define an inverse to ϕ. We set up the following notation for a
point in U .

Notation 4.4.12. Let u = (B1, B2, N1, N2, N3) be a point in U . Since
the conics B1 and B2 are irreducible, they do not contain any of the lines
N1, N2, N3, and moreover, since N1, N2 are not tangent to B1, and N1, N3
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are not tangent to B2, we can define the following five points in P2.

S3 = the point of intersection of B1 with N1 that is not X.
S4 = the point of intersection of B2 with N1 that is not X.
S7 = the point of intersection of B1 with N2 that is not X.
S8 = the point of intersection of B2 with N3 that is not X.

Lemma 4.4.13. Let u = (B1, B2, N1, N2, N3) be a point in U . Define the
points S3, S4, S7, S8 as in Notation 4.4.12. There is a unique conic through
R,S3, Q5, S7, and S8, which does not contain the line through R and Q1.

Proof. Note that S3 and S7 are different from R by definition, and they
are different from Q1, Q5, Q6 since Q1, Q5, Q6 are not contained in N1, nor
in N2, by definition of U . If S3 were equal to S7, then N1 and N2 would
both contain R and S3, hence they would be equal, contradicting the fact
that u is an element of U . So R,S3, Q5, S7 are all distinct, and since
they are all contained in B1, they are in general position because B1 is
irreducible. We will show that S8 is different from any of these four points.
By definition, S8 is different from R. If S8 were equal to S3, then B1 and
B2 would both contain R,Q1, Q5, Q6 and S3. But since S3 is different
from R,Q1, Q5, Q6, there is a unique conic through these five points by
Lemma 4.4.9. So this would imply B1 = B2, contradicting the fact that u
is in U . Hence S8 is different from S3, and similarly, S8 is different from
S7. Finally, S8 is different from Q5, since the line N3 does not contain Q5.
We conclude that by Lemma 4.4.9, there is a unique conic C through the
points R,S3, Q5, S7, and S8. Note that R,S3, Q5, S7 are all distinct from
Q1. If C contained the line L through R and Q1, then C would be the
union of two lines (one of them being L). This means that either L would
contain one of the points S3, Q5, S7, or the points S3, Q5, S7 are all on the
second line. But since R,Q1, S3, Q5, S7 are all in B1, which is irreducible,
both of these cases would be a contradiction. We conclude that C does
not contain L.

Notation 4.4.14. Let u = (B1, B2, N1, N2, N3) be a point in U , and
let S3, S4, S7, S8 be the corresponding points as in Notation 4.4.12. We
define a fifth point S2 to be the point of intersection of the conic through
R,S3, Q5, S7, S8 with the line through R and Q1, that is not R. Note that
S2 is well defined by Lemma 4.4.13.

Using Notations 4.4.12 and 4.4.14, for any point u in U we have now
defined an element (S2, S3, S4, S7, S8) of (P2)5, and it is easy to see that
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for such a point conditions 1–5 are satisfied, hence it is an element of Y .
This leads us to define the following map.

ψ : U −→ Y,

(B1, B2, N1, N2, N3) 7−→ (S2, S3, S4, S7, S8).

Let T be the set ψ−1(S).

Proposition 4.4.15. The map ψ|U\T : U \ T −→ Y \ S is a bijection,
with inverse given by ϕ.

Proof. Let u = (B1, B2, N1, N2, N3) be an element in U \T . Write ψ(u) =
(S2, S3, S4, S7, S8) and ϕ(ψ(u)) = (B′1, B′2, N ′1, N ′2, N ′3). Since ψ(u) is not
in S by definition of T , no three of the points Q1, Q5, Q6, S2, S3, S4, S7, S8
are collinear. Therefore, B′1 and B′2 are the unique and irreducible conics
through Q1, S3, Q5, Q6, S7 and through Q1, S4, Q5, Q6, S8, respectively, by
Lemma 4.4.9. Since B1 and B2 both contain Q1, Q5, Q6, and B1 contains
S3 and S7 and B2 contains S4 and S8 by definition of ψ(u), we conclude
that B′1 = B1 and B′2 = B2. The line N ′1 is defined as the line containing R
and S3, which are both contained in N1 as well by definition. We conclude
that N ′1 = N1, and similarly N ′2 = N2, and N ′3 = N3. We conclude that
ϕ(ψ(u)) = u. This proves injectivity of ψ|U\T . We now prove surjectivity.
TakeQ = (Q2, Q3, Q4, Q7, Q8) ∈ Y \S; write ϕ(Q) = (A1, A2,M1,M2,M3)
and ψ(A1, A2,M1,M2,M3) = (Q′2, Q′3, Q′4, Q′7, Q′8). The point Q′3 is de-
fined by taking the second point of intersection of A1 with the line M1
through R and Q3. Since A1 is irreducible (ϕ(Q) is in U by Lemma 4.4.11),
it does not contain M1, so Q′3 = Q3. Similarly, we have Q′7 = Q7,
Q′4 = Q4, and Q′8 = Q8. Therefore there is a unique conic C contain-
ing the points R,Q3, Q5, Q7, Q8 by Lemma 4.4.13. Since there is a conic
through R,Q3, Q5, Q7, Q8 and Q2 by condition 5, we conclude that C
contains Q2 by uniqueness. Since the line L through R and Q1 is not
contained in C by Lemma 4.4.13, and since L contains Q2 by condition 1,
it follows that Q2 is the second point of intersection of L and C. Hence
Q′2 = Q2. We conclude that ψ(ϕ(Q)) = Q, and hence ϕ(Q) is contained
in U \ T , and ψ|U\T is surjective.
Since ψU\T : U \ T −→ Y \ S is a bijection and we showed that for all ele-
ments u ∈ U \ T we have ϕ(ψ(u)) = u, we conclude that ϕ is the inverse
function.

We now prove Proposition 4.4.6. The computations are verified in magma;
see [Codc] for the code. Recall that we fixed eight points R1, . . . , R8 in
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general position P2 and ten curves L1, L2, C1, . . . , C4, D1, . . . , D4, above
Proposition 4.4.6.

Proof of Proposition 4.4.6. We assume that these ten curves con-
tain a common point P , and will show that this contradicts the fact that
R1, . . . , R8 are in general position. First note that if P were equal to
one of the eight points R1, . . . , R8, then one of the conics would contain
six of the eight points, which would contradict the fact that R1, . . . , R8
are in general position. Moreover, if P and any two of the three points
R1, R5, R6 lie on a line L, then the conic C1 would intersect L in P and
the two points. But this implies that C1 is not irreducible, and since C1
contains five of the points R1, . . . , R8, this implies that at least three of
them are collinear, contradicting the fact that R1, . . . , R8 are in general
position. We conclude that R1, R5, R6 and P are in general position.
Let (x : y : z) be the coordinates in P2. Without loss of generality, after
applying an automorphism of P2 if necessary, we can choose R1, R5, R6,
and P to be any four points in general position in P2. We now distinguish
between char k 6= 2 and char k = 2.
Assume char k 6= 2. Set

R1 = (1 : 0 : 1); R6 = (0 : −1 : 1);
R5 = (0 : 1 : 1); P = (−1 : 0 : 1).

It follows that the line L1, which contains R1 and P , is given by y = 0.
The linear system of quadrics through R1, R5, R6 and P is generated by
two linearly independent quadrics, and we take these to be x2 + y2 − z2

and xy. Let l,m ∈ k be such that

C1 is given by x2 + y2 − z2 = 2lxy;
C2 is given by x2 + y2 − z2 = 2mxy.

Since R3, R4, R7, and R8 are not contained in L1, there are s, t, u ∈ k such
that

the line L2 is given by sy = x+ z;
the line L3 through P and R7 is given by ty = x+ z;
the line L4 through P and R8 is given by uy = x+ z.

We want to show that all possible configurations of the five points R2, R3,
R4, R7, and R8 in P2 such that all ten curves contain P , are such that
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R1, . . . , R8 are not in general position. By Proposition 4.4.15, all con-
figurations of R2, R3, R4, R7, R8 such that L1, L2, C1, C2, C3 contain the
point P and no three of the points R1, . . . , R8 are collinear are given in
terms of the conics C1 and C2 and the lines L2, L3, L4. By computing the
appropriate intersections we find

R3 =
(
−s2 + 1 : 2l − 2s : 2ls− s2 − 1

)
;

R4 =
(
−s2 + 1 : 2m− 2s : 2ms− s2 − 1

)
;

R7 =
(
−t2 + 1 : 2l − 2t : 2lt− t2 − 1

)
;

R8 =
(
−u2 + 1 : 2m− 2u : 2mu− u2 − 1

)
.

By Lemma 4.4.13, there is a unique conic containing R3, R5, R7, R8, and P ,
and we compute a defining polynomial and find(

2l2u+ 2l2 − 2lmu− 2lm− lsu− ls− ltu− lt+ lu2 + 2lu+ l +mst

+ms+mt− 2mu−m+ st− su− tu+ u2
)
x2 +

(
2l2u2 + 2l2u

+2lmst− 2lmsu− 2lmtu− 2lmu− lstu+ lst− lsu+ ls− ltu+ lt

+2lu2 + lu+ l +mstu+mst−msu−ms−mtu−mt−mu−m
)
xy

+ 2(u+ 1)(l+ 1)(l−m)xz +
(
lstu+ lst+ lu2 + lu−mstu−msu−mtu

−mu+ st− su− tu+ u2
)
y2 + (u+ 1)(t+ 1)(s+ 1)(l −m)yz +

(
lsu

+ls+ ltu+ lt− lu2 + l −mst−ms−mt−m− st+ su+ tu− u2
)
z2.

Intersecting this conic with the line L1 gives besides P the point R2, and
we find

R2 = (−(lsu+ ls+ ltu+ lt− lu2 + l −mst−ms−mt−m
− st+ su+ tu− u2) : 0 : (2l2 − 2lm− ls− lt)(u+ 1) + lu2

+ 2lu+ l +mst+ms+mt− 2mu−m+ st− su− tu+ u2).

We define A5 to be the affine space with coordinate ring T5 = k[l,m, s, t, u].
Following all the above, points in A5 correspond to configurations of the
points R1, . . . , R8. The fact that the ten curves contain P gives polyno-
mial equations in these five variables, and hence defines an algebraic set
A0 in A5. We define S0 to be the algebraic set of all points in A5 that
correspond to the configurations where the points R1, . . . , R8 are not in
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general position. We want to show that A0 is contained in S0, which
would prove the proposition. In what follows we will show that indeed
every component of A0 is contained in S0.
Note that by construction of R1, . . . , R8, the curves L1, L2, C1, C2, C3 con-
tain P . We will add conditions for C4, D1, . . . , D4 to contain P , too. We
start with C4. The equation expressing that P is contained in C4, is given
by det(N) = 0, where N is the matrix in Lemma 4.3.4 corresponding to
(R2, R4, R6, R7, R8, P ). This determinant is given by

det(N) = 16(u+ 1)(t+ 1)(s+ 1)(s− u)(m− u)(m− s)(l− t)(l−m)f1f2,

where

f1 = l2u+ l2 − lmu− lm− lsu− ls− ltu− lt+ lu2 + lu+mst+ms

+mt−mu+ st− su− tu+ u2,

and
f2 = at2 + btu+ cu2 + dt+ eu+ f,

with

a = (s+ 1)(m− 1)(m+ 1), b = d = −e = 2s(m− 1)(l + 1),
c = (s− 1)(l − 1)(l + 1), f = (l −m)(ls− l −ms−m+ 2s).

Let F2 ⊂ A5 be the affine variety given by f2 = 0. Every component of
A0 is contained in one of the components of the algebraic set given by
det(N) = 0. With magma it is an easy check that apart from f2, all non-
constant factors of det(N) define configurations of R1, . . . , R8 where three
of the points are collinear (see [Codc]; f1 = 0 corresponds to R2, R3, R4
being collinear), and hence they define components of S0. Therefore, it
suffices to prove that A0 ∩ F2 is contained in S0.
Since f2 is quadratic in t and u, the projection π from F2 to the affine
space A3 with coordinates l,m, s has fibers that are (possibly non-integral)
affine conics. Let ∆ be the discriminant of the quadratic form that is the
homogenisation of f2 with respect to t and u, which is given by

∆ = 4acf − ae2 − b2f + bde− cd2;

the singular fibers of π lie exactly above the points (l,m, s) ∈ A3 for which
∆ = 0. We compute the factorization of ∆ in Z[l,m, s], and find

∆ = 4(s− 1)(s+ 1)(m− 1)(m+ 1)(l − 1)(l + 1)(l −m)g,
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with g = ls− l−ms−m+ 2s. All non-constant factors of ∆ except for g,
when viewed as elements of T5, define components of S0 in A5. Therefore,
the fibers under π above the zero sets of these factors in A3 are contained
in S0. We will show that the same holds for the inverse image under π of
the zero set Z(g) ⊂ A3 of g, which is given by the zero set Z(f2, g) in A5.
Note that we can write

f2 = (s− 1)(l + 1)(u− t)a1 + (t− 1)ga2,

with a1 = (l−1)(u+1)−(m+1)(t−1) and a2 = (l+1)(u+1)−(m+1)(t+1).
Therefore, the set Z(f2, g) is given by g = (s− 1)(l + 1)(u− t)a1 = 0, so
Z(f2, g) is the union of four algebraic sets:

Z(f2, g) = Z(g, s− 1) ∪ Z(g, l + 1) ∪ Z(g, u− t) ∪ Z(g, a1) ⊂ A5.

Note that s− 1, l+ 1, and u− t define components of S0, so the first three
terms in this union are contained in S0. With magma, we check that the
irreducible polynomial γ = (m−u)(l− 1)g+ (l− s)(m− 1)a1 corresponds
to a configuration where the six points R3, . . . , R8 are contained in a conic,
and hence it defines a component of S0. Since γ is contained in the ideal
in Z[l,m, s, t, u] generated by g and a1, it follows that Z(g, a1) is also con-
tained in S0. We conclude that all the singular fibers of π lie in S0.
The generic fiber F2,η of π is a conic in the affine plane A2 with coordi-
nates t and u over the function field k(l,m, s), where l,m, s are transcen-
dentals. This fiber contains the point (t, u) = (l,m). We can parametrize
F2,η with a parameter v by intersecting it with the line M given by
v(t − l) = (u − m), which intersects F2,η in the point (l,m) and a sec-
ond intersection point that we associate to v. Consider the open subset
F ′2 ⊂ F2 given by the complement in F2 of the singular fibers of π and
the hyperplane section defined by t− l = 0, so F2 \ F ′2 ⊂ S0. In what fol-
lows, we use the idea of this parametrization to construct an isomorphism
between F ′2 and an open subset of the affine space A4 with coordinates
l,m, s, v.
Consider the ring T v5 = k[l,m, s, t, v], and let ϕ be the map ϕ : T5 −→ T v5
that sends u to v(t − l) + m and l,m, s, t to themselves. Then we have
ϕ(f2) = (t− l)(αt+ β), where

α = l2sv2− l2v2−2lmsv+2lsv+m2s+m2−2msv−sv2 +2sv−s+v2−1,

and

β = l3sv2 − l3v2 − 2l2msv + 2l2mv + lm2s− lm2 − 2lmsv − lsv2

+ 2lsv − ls+ lv2 + l + 2m2s− 2mv + 2sv − 2s.
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The map ϕ induces a birational morphism ψ : A5
v −→ A5, where A5

v is the
affine space with coordinate ring T v5 . Moreover, ψ is an isomorphism on
the complements of the zero sets of t− l in its domain and codomain. Set

G = Z(αt+ β) \ Z(t− l) ⊂ A5
v,

then ψ induces an isomorphism G ∼= F2 \Z(t− l). In particular, ψ induces
an isomorphism from G \ Z(∆) to F ′2. We want to show that G \ Z(α∆)
equals G\Z(∆); to do this it suffices to show that ψ(G∩Z(α)) is contained
in a union of singular fibers of π. Note that we haveG∩Z(α) = G∩Z(α, β).
Let (l0,m0, s0, t0, v0) be a point in G ∩ Z(α, β), then, since α and β do
not depend on t, the point (l0,m0, s0, t, v0) is contained in Z(αt + β) for
all t. It follows that the fiber on F2 in A2(t, u) under π above the point
(l0,m0, s0) ∈ A3 contains the line u = v0(t − l0) + m0, hence is singular.
Moreover, this fiber contains the point ψ((l0,m0, s0, t0, v0)). We conclude
that ψ(G∩Z(α)) is contained in a union of singular fibers of F2. It follows
that

ψ(G \ Z(α∆)) = ψ(G \ Z(∆)) = F ′2.

Consider the ring T4 = k[l,m, s, v], and let K4 be its field of fractions.
Consider the ring homomorphism ρ : T v5 −→ K4 that sends t to −βα , and
l,m, s, v to themselves. This induces a birational map

i : A4 −→ Z(αt+ β) ⊂ A5
v,

where A4 is the affine space with coordinate ring T4. The map i induces an
isomorphism from A4 \Z(α) to Z(αt+ β) \Z(α); this isomorphism sends
the zero set of ∆ in A4 \ Z(α) to the zero set of ∆ in Z(αt + β) \ Z(α),
and the zero set of t− l in Z(αt+ β) \Z(α) corresponds to the zero set of
αl + β in A4 \ Z(α). Hence, we have an isomorphism

A4 \ Z(α∆(αl + β)) ∼= G \ Z(α∆).

We conclude that we have an isomorphism

ψ ◦ i : A4 \ Z(α∆(αl + β)) −→ F ′2.

Recall that our aim is to show that A0 ∩ F2 is contained in S0. Since
we showed that all components of F2 \ F ′2 are contained in S0, we have
A0 ∩ F2 ⊂ S0 if and only if A0 ∩ F ′2 ⊂ S0. Moreover, after setting

A1 = i−1(ψ−1(A0 ∩ F ′2)) and S1 = i−1(ψ−1(S0 ∩ F ′2)),
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showing A0 ⊆ S0 is equivalent to showing A1 ⊆ S1.
For i in {1, 2, 3, 4}, the expression stating that P is contained in Di is
given by det(Hi) = 0, where Hi is the matrix denoted by Hα7,α8,α9 in
Lemma 4.3.4 associated to

(R2, R3, R4, R5, R6, R1, R7, R8) for i = 1;
(R1, R3, R4, R7, R8, R2, R5, R6) for i = 2;
(R1, R2, R4, R5, R7, R3, R6, R8) for i = 3;
(R1, R2, R3, R6, R8, R4, R5, R7) for i = 4,

where we set α7 = x, α8 = α9 = y for i ∈ {1, 2}, and α7 = α8 = α9 = y
for i ∈ {3, 4}. For i ∈ {1, 2, 3, 4}, let Bi ⊂ F2 ⊂ A5 be the locus of points
corresponding to configurations of R1, . . . , R8 such that Di contains P .
Then we have A0 ∩ F2 =

⋂4
i=1Bi, so A0 ∩ F ′2 =

⋂4
i=1(Bi ∩ F ′2), and hence

A1 =
⋂4
i=1 i

−1(ψ−1(Bi∩F ′2)). Note that Bi is defined by f2 =det(Hi) = 0.
For i ∈ {1, 2, 3, 4}, we compute the determinant of Hi and its factorization
in Z[l,m, s, t, u] in magma. For all i, this factorization has a constant factor
that is a power of 2, and there is exactly one irreducible factor hi that
does not define a component of S0; it follows that Z(f2, hi) \S0 = Bi \S0.
Note that for i ∈ {1, 2, 3, 4}, the set i−1(ψ−1(Z(f2, hi) \ Z(α∆(t − l))) is
defined in A4 \Z(α∆(αl+ β)) by the numerator of ρ(ϕ(hi)); we compute
the factorization of this numerator in Z[l,m, s, v]. Again, for all i, this
factorization has as constant factor a power of 2, and contains exactly
one irreducible factor that does not define a component of S1; we call this
factor gi. It follows that for i ∈ {1, 2, 3, 4}, the set i−1(ψ−1(Bi \ S0)) is
contained in Z(gi), so A1 \ S1 is contained in Z(g1, g2, g3, g4). Computing
g1, g2, g3, g4 takes magma over an hour, and these polynomials are too big
to write down here; you can find them in [Codd]. Set

δ = (ls− l −ms−m+ 2s)2(l −m)(l − s)(l + 1)(m− 1)(s+ 1)·
(l − 1)(m+ 1)(s− 1)v2.

We check that all factors of δ ∈ Z[l,m, s, v] define components of S1 (the
first factor corresponds to both R2, R3, R5 and R2, R4, R6 being collinear).
We will show that δ is contained in the ideal I of T4 generated by g1, g2, g3,
and g4. We use a Gröbner basis for I to check this. In magma, we define the
ideal I in the ring T4 with k = Q with the ordering s > v > m > l. With
the function G,b:=GroebnerBasis(I:ReturnDenominators) we compute
the reduced Gröbner basis G for I; after using this function, magma uses
G as a generator set for I. We then use G to check that δ is contained in
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I, again over Q. This finishes the proof for char k = 0; We continue the
proof for char k = p > 0 with p 6= 2, 3.
The element δ can be written as a linear combination of the elements in G
with coefficients in T4. Let C be the set of these coefficients (obtained by
the function Coordinates(I,f)). In the proces of computing G, magma
makes divisions by integers, which are stored in the set b. Let P be the set
containing the prime divisors of all elements in b, and all prime divisors
of the denominators of the coefficients of the elements in G, and all prime
divisors of the denominators of the coefficients of the elements in C. Then
for a prime p 6∈ P, the reductions modulo p of the elements in G are well
defined. Moreover, since P contains all prime divisors of the elements in b,
the reductions modulo p of the elements in G still form a Gröbner basis for
the ideal J generated by the reductions modulo p of g1, g2, g3, g4. Finally,
the reduction modulo p of δ is contained in J , since the prime divisors of
the denominators of the coefficients of the elements in C are in P. This
finishes the proof for char k = p > 0 with p 6= 2, 3, p /∈ P.
For all finitely many p ∈ P \{2, 3}, let T4 be the ring Fp[l,m, s, v], let δ be
the reduction of δ modulo p, and for i ∈ {1, 2, 3, 4}, let gi be the reduction
of gi modulo p; then it is a quick check in magma that δ is contained in
the ideal (g1, g2, g3, g4) of T4. We conclude that for char k 6= 2, 3, the set
A1 \ S1 is contained in the union of the varieties defined by the factors of
δ, so A1 \ S1 is a subset of S1. We conclude that A1 is contained in S1.
This finishes the proof for char k 6= 2.
Assume char k = 2.
Since the points R1, R5, R6, P as defined in the previous case are not in
general position over a field of characteristic 2, we redefine these points
here. The proof then goes completely analogous to the previous case; see
[Codc] for the code in magma where we verify everything over the field
k = F2 of two elements. Set

R1 = (1 : 0 : 1); R6 = (0 : 1 : 1);
R5 = (0 : 1 : 0); P = (1 : 0 : 0).

These four points are in general position in P2. We take z2 + xz + yz
and xy for the two generators of the linear system of quadrics through
R1, R5, R6 and P .
We now do all the steps as in the previous case, and everything works
analogously. In fact, checking that all singular fibers of the analog of π
from the previous case are contained in the analog of S0 can be done
even more directly in magma than as described in the previous case. We
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obtain again an algebraic set A1 ⊂ A4, where A4 is the affine space over
F2 with coordinates l,m, s, v, and A1 is the algebraic set corresponding
to the configurations where the ten curves L1, L2, C1, . . . , C4, D1, . . . , D4
all contain the point P . Again, we want to show that A1 is contained in
S1, where S1 ⊂ A4 is the algebraic set defined by the polynomials that
correspond to the eight points R1, . . . , R8 not being in general position.
Completely analogously to the case char k 6= 2, from the conditions that P
is contained inD1, D2, D3, D4, we now obtain four polynomials g1, g2, g3, g4
in F2[l,m, s, v] (see [Codd]). Again, we have A1 \ S1 ⊂ Z(g1, g2, g3, g4).
Set

δ = (ls+ms+m+s)(lv+m+1)(l+m)(l+s)(m+s)(l+1)(m+1)m3(s+1)lvs.

It is a quick check with magma that δ is contained in I. Moreover, it is
again a quick check that all factors of δ correspond to three points being
collinear, and hence define a component of S1. We conclude again that A1
is contained in S1.

We can now prove Theorem 4.1.2. Recall Notation 4.3.8.

Proof of Theorem 4.1.2. Recall that every set of exceptional curves
without partners corresponds to a clique in G with only edges of weights 1
and 2, so by Lemma 4.4.2, the number of exceptional curves that are
concurrent in a point outside the ramification curve of ϕ is at most twelve.
This proves the case char k = 3.
Now assume that char k 6= 3. Consider the eleven classes in C given by

e1 = L− E1 − E2;
e2 = L− E3 − E4;
e3 = 2L− E1 − E3 − E5 − E6 − E7;
e4 = 2L− E1 − E4 − E5 − E6 − E8;
e5 = 2L− E2 − E3 − E5 − E7 − E8;
e6 = 2L− E2 − E4 − E6 − E7 − E8;
e7 = 4L− 2E1 − E2 − E3 − E4 − E5 − E6 − 2E7 − 2E8;
e8 = 4L− E1 − 2E2 − E3 − E4 − 2E5 − 2E6 − E7 − E8;
e9 = 4L− E1 − E2 − 2E3 − E4 − E5 − 2E6 − E7 − 2E8;
e10 = 4L− E1 − E2 − E3 − 2E4 − 2E5 − E6 − 2E7 − E8;
e11 = 5L− 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − E6 − E7 − 2E8;
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It is straightforward to check that they form a clique with only edges of
weights 1 and 2 in G. By Remark 1.2.7, we know that e1, . . . , e10 cor-
respond to the classes in Pic X of the strict transforms of the curves
L1, L2, C1, . . . , C4, D1, . . . , D4, defined as above Proposition 4.4.6 with re-
spect to Pi instead of Ri for i ∈ {1, . . . , 8}.
Let K = {c1, . . . , c11} be a clique of size eleven in G with only edges
of weights 1 and 2. By Proposition 4.4.4, after changing the indices if
necessary, there is an element w ∈ W such that ci = w(ei) for i in
{1, . . . , 11}. Set E′i = w(Ei). Then, since the E′i are pairwise disjoint,
by Lemma 1.2.8 we can blow down E′1, . . . , E′8 to points Q1, . . . , Q8 in P2

that are in general position, such that X is isomorphic to the blow-up of
P2 at Q1, . . . , Q8, and E′i is the class in Pic X that corresponds to the
exceptional curve above Qi for all i. By the bijection in Remark 1.2.7,
the elements c1, . . . , c10 are the classes that correspond to the strict trans-
forms of L1, L2, C1, . . . , C4, D1, . . . , D4 defined as above Proposition 4.4.6
with respect to Qi instead of Ri for i ∈ {1, . . . , 8}. Since char k 6= 3, it
follows from Proposition 4.4.6 that the curves corresponding to c1, . . . , c10
are not concurrent. We conclude that the number of concurrent excep-
tional curves in a point outside the ramification curve of ϕ is less than
eleven.

4.5 Examples

4.5.1 On the ramification curve

This section contains examples that show that the upper bounds in The-
orem 4.1.1 are sharp. Example 4.5.1 is a del Pezzo surface over a field of
characteristic 2 with 16 concurrent exceptional curves, Example 4.5.2 is a
del Pezzo surface over any field of characteristic unequal to 2, 3, 5, 7, 11, 13,
17, 19 with 10 concurrent exceptional curves, and Example 4.5.3 contains
examples of ten concurrent exceptional curves on del Pezzo surfaces in the
remaining 7 characteristics.

Example 4.5.1. Set f = x5 + x2 + 1 ∈ F2[x], and let F ∼= F2[x]/(f) be
the finite field of 32 elements defined by adjoining a root α of f to F2.
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Define the following eight points in P2
F .

Q1 = (0 : 1 : 1); Q5 = (1 : 1 : 1);
Q2 = (0 : 1 : α19); Q6 = (α20 : α20 : α16);
Q3 = (1 : 0 : 1); Q7 = (α24 : α25 : 1);
Q4 = (1 : 0 : α5); Q8 = (α30 : 1 : α5).

With magma we check that the determinants of the appropriate matrices in
Lemma 4.3.4 are all non-zero, so these eight points are in general position.
Therefore, the blow-up of P2 in {Q1, . . . , Q8} is a del Pezzo surface S. We
have the following four lines in P2.

The line L1 through Q1 and Q2, which is given by x = 0;
the line L2 through Q3 and Q4, which is given by y = 0;
the line L3 through Q5 and Q6, which is given by x = y;
the line L4 through Q7 and Q8, which is given by y = αx.

Let Ci,j be the unique cubic through Q1, . . . , Qi−1, Qi+1, . . . , Q8 that is
singular in Qj . Set (R1, . . . , R8) = (Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q2), and
let L be the corresponding matrix from Lemma 4.3.4. Then the equation
defining C1,2 is the determinant of L′, where L′ is equal to L after replacing
the first row by Mon3. Similarly, we compute the defining equations of
C3,4, C5,6, C7,8 and C8,7, and find the following.

C1,2 : x3+α24x2y+α28x2z+α30xy2+α9xyz+α26xz2+α13y3+α6yz2 = 0

C3,4 : x3+α12x2y+α4xy2+α11xyz+α21xz2+y3+α23y2z+α12yz2 = 0

C5,6 : x3 + α4x2y + α28x2z + α25xy2 + α20xyz + α26xz2 + α17y3

+ α9y2z + α29yz2 = 0

C7,8 : x3 + αx2y + α28x2z + α17xy2 + α10xyz + α26xz2 + α16y3

+ α8y2z + α28yz2 = 0

C8,7 : x3 + α26x2y + α28x2z + α19xy2 + α10xyz + α26xz2 + α16y3

+ α8y2z + α28yz2 = 0
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Let e1, . . . , e8 be the strict transforms of the eight curves

L1, . . . , L4, C1,2, C3,4, C5,6, C7,8,

and let c8 be the strict transform of C8,7. Since these nine curves all contain
the point (0 : 0 : 1), the exceptional curves e1, . . . , e8, c8 are concurrent in
a point P on S. Let ψ be the morphism associated to the linear system
| − 2KS |. Since e8 · c8 = 3, the point P lies on the ramification curve of ψ
by Remark 4.2.5. Therefore, by the same remark, for i ∈ {1, . . . , 7}, the
partners of e1, . . . , e7 contain P , too. We conclude that there are sixteen
exceptional curves on S that are concurrent in P .

Example 4.5.2. Let k be a field of characteristic unequal to 2, 3, 5, 7, 11,
13, 17, 19. Define the following eight points in P2

k.

Q1 = (0 : 1 : 1); Q5 = (1 : 1 : 1);
Q2 = (0 : 5 : 3); Q6 = (4 : 4 : 5);
Q3 = (1 : 0 : 1); Q7 = (−2 : 2 : 1);
Q4 = (−1 : 0 : 1); Q8 = (2 : −2 : 1).

With magma we compute the determinants of the matrices in Lemma 4.3.4
that determine whether three of the points are on a line, or six of the
points are on a conic, or seven of them are on a cubic that is singular at
one of them. These determinants are non-zero for char k 6= 2, 3, 5, 7, 11,
13, 17, 19, so the points are in general position. Therefore, the blow-up of
P2
k in {Q1, . . . , Q8} is a del Pezzo surface S. We define the lines L1, L2, L3

as in Example 4.5.1. We define L4 to be the line containing Q7 and Q8,
which is given by x = −y.
Let C7,8 be the unique cubic through Q1, . . . , Q6, Q8 that is singular in
Q8, and C8,7 the unique cubic through Q1, . . . , Q7 that is singular in Q7.
As in Example 4.5.1 we compute the defining equations for C7,8 and C8,7,
and we find

C7,8 : x3 − 3
4x

2y − 31
12xy

2 + 10
3 xyz − xz

2 − y3 + 8
3y

2z − 5
3yz

2 = 0,
C8,7 : x3 + 13

4 x
2y + 43

4 xy
2 − 14xyz − xz2 + 15y3 − 40y2z + 25yz2 = 0.

On S, we define the four exceptional curves e1, . . . , e4 to be the strict
transforms of L1, . . . , L4, and e5, e

′
5 the strict transforms of C7,8 and C8,7,

respectively. Since L1, . . . , L4, C7,8, C8,7 all contain the point (0 : 0 : 1),
the six exceptional curves e1, . . . , e5, e

′
5 are concurrent in a point P in S.
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Let ψ be the morphism associated to the linear system | − 2KS |. By
Remark 4.2.5, since e5 · e′5 = 3, the point P lies on the ramification curve
of ψ, and for i ∈ {1, . . . , 4}, the partners of e1, . . . , e4 contain P , too. We
conclude that there are ten exceptional curves on S that are concurrent
in P .

Example 4.5.3. For p ∈ {3, 5, 7, 11, 13, 17, 19}, we construct a del Pezzo
surface over a field of characteristic p with ten exceptional curves that are
concurrent in a completely analogous way to the one in Example 4.5.2.
Let p be a prime, and Fp be the finite field of p elements. Let fp ∈ Fp[x] be
an irreducible polynomial. Let α be a root of fp, and F ∼= Fp[x]/(fp) the
field extension of Fp obtained by adjoining α to Fp. For a, b, c,m, u, v ∈ F,
define the following eight points in P2

F.

Q1 = (0 : 1 : 1); Q5 = (1 : 1 : 1);
Q2 = (0 : 1 : a); Q6 = (1 : 1 : c);
Q3 = (1 : 0 : 1); Q7 = (m : 1 : u);
Q4 = (1 : 0 : b); Q8 = (m : 1 : v).

Let x, y, z be the coordinates of P2
F. We define again the lines L1, L2, L3

as in Example 4.5.1, and the line L4 by x = my. Note that L1, . . . , L4
all contain the point (0 : 0 : 1). Let C7,8 be the unique cubic through
Q1, . . . , Q6, Q8 that is singular in Q8, and C8,7 the unique cubic through
Q1, . . . , Q7 that is singular in Q7. For all fixed (p, fp, a, b, c,m, u, v) that we
describe below, we check as we did in Example 4.5.2 that the eight points
are in general position, and compute the defining equations for C7,8 and
C8,7. In all cases, the point (0 : 0 : 1) is also contained in C7,8 and C8,7,
and as in Example 4.5.2 this implies that there are 10 exceptional curves
on the del Pezzo surface obtained by blowing up P2

F in Q1, . . . , Q8, that
are concurrent in a point on the ramification curve.
• For p = 3 we take

fp = x3 + 2x+ 1, (a, b, c,m, u, v) = (α, α20, α15, α8, α2, α12).

• For p = 5 we take

fp = x2 + 4x+ 2, (a, b, c,m, u, v) = (α19, α11, α10, α21, α3, α14).

• For p = 7 we take

fp = x2 + 6x+ 3, (a, b, c,m, u, v) = (3, α45, α35, α4, α46, α9).
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• For p = 11 we take

fp = x2 + 7x+ 2, (a, b, c,m, u, v) = (α106, α94, 4, α62, α111, α6).

• For p = 13 we take

fp = x2 + 12x+ 2, (a, b, c,m, u, v) = (α161, α156, α83, α94, α132, α146).

• For p = 17 we take

fp = x2 + 16x+ 3, (a, b, c,m, u, v) = (α74, α166, α64, α24, α178, α250).

• For p = 19, we take F = F19, and (a, b, c,m, u, v) = (2, 2, 14, 8, 7, 12).
All these examples are generated in magma by generating random values
for the elements a, b, c,m, u, v in each case, until the points defined by the
values are in general position.

4.5.2 Outside the ramification curve

In this section we give examples that show that the upper bound in The-
orem 4.1.2 is sharp. Example 4.5.4 gives a del Pezzo surface of degree
one over a field of characteristic 3 with twelve exceptional curves that are
concurrent in a point outside the ramification curve. In Example 4.5.5 we
give a del Pezzo surface over a field of characteristic unequal to 5 that
contains ten exceptional curves that are concurrent in a point outside the
ramification curve. This surface is isomorphic to the one in Example 4.1
in [SvL14] if the characteristic of k is unequal to 2 and 3. We do not give
an example in characteristic 5, since we have not found one; it might very
well be that the maximum in this case is less than ten.

Example 4.5.4. Let f = x3 + 2x+ 1 be a polynomial in F3[x]. Let α be
a root of f , and let F ∼= F3[x]/f be the field of 27 elements obtained by
adjoining α to F3. Let P2

F be the projective plane over F, and define the
following eight points in this plane.

Q1 = (1 : 0 : 1); Q5 = (0 : 1 : 1);
Q2 = (α20 : 0 : α18); Q6 = (0 : 2 : 1);
Q3 = (α6 : α23 : α2); Q7 = (α9 : α23 : 2);
Q4 = (α15 : α19 : α18); Q8 = (α24 : α7 : α5).

With magma we check that no three of these points are on a line, no six of
them are on a conic, and no seven of them are on a cubic that is singular
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at one of them, by checking that the appropriate determinants of the
matrices in Lemma 4.3.4 are non-zero. Therefore, the blow-up of P2

F in
these eight points is a del Pezzo surface S of degree one.
Let L1 be the line containing Q1 and Q2, which is given by y = 0. Let L2
be the line containing Q3 and Q4, which is given by α23y = x + z. For
five points Qi1 , . . . , Qi5 we find the equation of the conic containing these
points by computing the determinant of the matrix N in Lemma 4.3.4,
with (R2, . . . , R6) = (Qi1 , . . . , Qi5), and where the first row is replaced by
the list Mon2. We obtain the following conics in P2

F.
C1 : x2 + α7xy + y2 + 2z2 = 0, containing Q1, Q3, Q5, Q6, Q7.
C2 : x2 + α16xy + y2 + 2z2 = 0, containing Q1, Q4, Q5, Q6, Q8.
C3 : x2+α25xz+α16y2+α11yz+α15z2 = 0, containing Q2, Q3, Q5, Q7, Q8.
C4 : x2+α9xy+α25xz+α20y2+α6yz+α15z2 = 0, cont. Q2, Q4, Q6, Q7, Q8.

Similarly, we compute defining equations for the quartics D1, D2, D3, D4
containing all the eight points with singularities in Q1, Q7, Q8, and Q2, Q5,
Q6, and Q3, Q6, Q8, and Q4, Q5, Q7, respectively. We find

D1 : α4x4 + α11x3y + α12x3z + α24x2y2 + α10x2yz + α16x2z2 + α16xy3

+ α21xy2z + α17xyz2 + α25xz3 + α6y4 + α12y3z + α25yz3 + α19z4 = 0,

D2 : α14x4 + x3y + α16x3z + α4x2y2 + α4x2yz + α21x2z2 + α25xy3

+ α16xy2z + α12xyz2 + α3xz3 + α5y4 + α5y2z2 + α5z4 = 0,

D3 : α21x4 + α4x3y + α20x3z + α9x2y2 + α19x2yz + α3x2z2 + α21xy3

+α11xy2z+α2xyz2+α7xz3+α2y4+α17y3z+αy2z2+α4yz3+α23z4 = 0,

D4 : α19x4 + α22x3y + α18x3z + α20x2y2 + α21x2yz + αx2z2 + α2xy3

+α20xy2z+α10xyz2+α5xz3+α23y4+α20y3z+α3y2z2+α7yz3+α21z4 = 0.

Finally, in a similar way we compute the defining equations of the quintics
G1 and G2, which contain all eight points and are singular in Q1, Q2, Q3,
Q4, Q5, Q8, and Q1, Q2, Q3, Q4, Q6, Q7, respectively. We obtain

G1 : αx5 + α8x4y + 2x4z + α21x3y2 + α20x3yz + α23x3z2 + α5x2y3

+ α25x2y2z + α22x2yz2 + α7x2z3 + α25xy4 + α12xy3z + 2xy2z2

+ α25xyz3 + α2xz4 + α21y5 + α6y4z + α8y3z2 + αy2z3 + α5z5 = 0,
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G2 : α4x5 + α11x4y + α16x4z + α7x3y2 + α16x3yz + x3z2 + αx2y3

+ α25x2y2z + α2x2yz2 + α10x2z3 + α17xy3z + α15xy2z2 + α8xyz3

+ α5xz4 + α14y5 + α16y4z + α11y3z2 + α10y2z3 + α25yz4 + α8z5 = 0.

Now consider the point P = (2 : 0 : 1) in P2
F. It is an easy check that

P is contained in all twelve curves L1, L2, C1, . . . , C4, D1, . . . , D4, G1, G2.
Therefore, the twelve exceptional curves on S that are the strict transforms
of these twelve curves in P2

F are concurrent in a point Q on S. Let ψ be
the morphism associated to the linear system | − 2KS |. Since none of
the twelve exceptional curves intersect each other with multiplicity 3, the
point Q is outside the ramification curve of ψ.

Example 4.5.5. Let k be a field of characteristic unequal to 5. For β an
element in k∗, let S be the del Pezzo surface of degree one in P(2, 3, 1, 1)
with coordinates x, y, z, w over k given by

y2 + (β + 1)xyw + βyw3 = x3 + βx2w2 − z5w.

For char k 6= 2, 3, this surface is isomorphic to the surface in [SvL14,
Example 4.1]. The blow-up of S in the point (1 : 1 : 0 : 0) has the structure
of an elliptic surface over P1 with coordinates z, w. The fiber above z = 0
contains a point of order 5, which is given by Q = (0 : 0 : 0 : 1); in
fact, the cubic curve E : y2 + (β + 1)xy + βy = x3 + βx2 is the universal
elliptic curve over the modular curve Y1(5) = Spec (k[β, 1/∆(E)]) with
∆(E) = −β5(β2+11β−1) that parametrizes elliptic curves over extensions
of k with a point of order 5 [CE11, Proposition 8.2.8].
Choose β such that S is smooth in all characteristics; for example, we
can set β = 2 in characteristic 11, and β = 1 in all other characteristics.
Let ρ, σ be elements of a field extension of k such that ρ2 = ρ + 1, and
(β + ρ5)σ5 = 1. Consider the curve Cρ,σ in P(2, 3, 1, 1) defined by

x = σ2z2w4 + ρσzw5,

y = −σ3z3w3 + (ρ+ 1)σ2z2w4.

Then Cρ,σ is an exceptional curve in S, defined over k(ρ, σ). It is easy to
see that Q is contained in Cρ,σ. There are ten pairs (ρ, σ), so we conclude
that there are ten exceptional curves through Q over a field extension of k.
Finally, let ϕ be the morphism associated to |−2KS |. Since the points on
the ramification curve of ϕ are exactly the points on S that are 2-torsion
on their fiber, we conclude that Q is outside the ramification curve.
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