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3

The action of the Weyl
group on the E8 root system

This chapter is an adaptation of the preprint [vLWa], which is at the time
of writing submitted for publication. Some of the results here were already
proved by the same author in the master thesis [Win14]; we state which
results coincide in the relevant places (at Proposition 3.2.2 and Lemma
3.2.14, and in Remarks 3.3.20 and 3.5.1).

Let X be a del Pezzo surface of degree 1 over an algebraically closed
field k. Recall that the 240 exceptional curves on X are in one-to-one
correspondence with the exceptional classes in Pic X, and as we have seen
in Section 1.4.2, these are in one-to-one correspondence with the 240 roots
in the E8 root system. In this chapter we study this root system and, more
specifically, the action of its automorphism group on the roots. The reason
we originally did this is because we wanted to study configurations of
intersecting exceptional curves on X; the results on this are in Chapter 4.
However, since E8 arises in many more areas of mathematics, we thought
it useful to do a more thorough study of this root system. Therefore,
while this chapter contains results that are used in Chapters 4 and 5, it is
also self-contained, and the reader does not need to have any knowledge
of or interest in del Pezzo surfaces or algebraic geometry to be able to
appreciate it. In Remarks 3.2.8, 3.3.6, 3.3.23, 3.4.11, and 3.5.4, we explain
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3. THE ACTION OF THE WEYL GROUP

how some of the results in this chapter translate to the 240 exceptional
classes in Pic X. Everything in these remarks is over the algebraically
closed field k.

3.1 Main results
Notation 3.1.1. Recall the definitions graph, weighted graph, weighted
subgraph, clique, and isomorsphism between two weighted graphs in Defi-
nition 1.4.11. In this chapter we use the same definition for graph, and we
use the term colored graph for weighted graph; we will talk about colors
instead of weights, and define colored subgraph, clique, and isomorphism
between colored graphs analogously. The reason for this terminology is
that it allows us to talk about a monochromatic graph, i.e., a colored
graph where all edges have the same color. Whenever we talk about an
isomorphism of two cliques, we mean an isomorphism of colored graphs.

Let E be the set of roots in E8. The following definition is analogous to
Definition 1.4.12.

Definition 3.1.2. Let Γ be the complete colored graph whose vertex set
is E, of which the color function on the edge set is induced by the dot
product in E8. The different colors of the edges in Γ are −2,−1, 0, 1. For
a subset c ⊆ {−2,−1, 0, 1}, we denote by Γc the colored subgraph of Γ
with vertex set E and including all edges whose color is an element in c.

Let W be the automorphism group of Γ as colored graph; recall that W is
isomorphic to the Weyl groupW8 (Corollary 1.4.14). It is clear that if two
cliques in Γ are conjugate under the action ofW , they must be isomorphic
as colored graphs. The converse is not always true, and in general it can be
hard to determine whether two cliques in Γ are conjugate under the action
of W . Dynkin and Minchenko studied in [DM10] the bases of subsystems
of E8, and classified for which isomorphism classes of these bases being
isomorphic implies being conjugate. They call these bases normal. In this
chapter, we extend this classification to a large set of cliques in Γ (more
specifically, cliques of type I, II, III, or IV, as defined below). In Theorem
3.1.3 we show that with two exceptions, two such cliques are isomorphic
if and only if they are conjugate. One of the exceptions, which is the
clique described in Theorem 3.1.3 (i), is one of the bases (of the system
4A1) that was also found as not being normal in [DM10, Theorem 4.7].
Additionally, in [DM10] the authors determine when a homomorphism of
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3.1. MAIN RESULTS

two bases of subsytems extends to a homomorphism of the whole root
system. We answer the same question for cliques of type I, II, III, or IV
in Theorem 3.1.4.
Although the classification of different types of cliques and their orbits is
a finite problem, because of the size of Γ it is practically impossible to
naively let a computer find and classify the cliques according to their W -
orbit. In fact, we avoid using a computer for our computations as much
as possible.

The E8 root polytope is the convex polytope in R8 whose vertices are
the roots in E. By a face of the root polytope we mean a non-empty
intersection of a hyperplane in R8 and the root polytope, such that the
root polytope lies entirely on one side of the hyperplane. If the dimension
of this intersection is n then we call this an n-face, and a 7-face is called
a facet. We study the following cliques in Γ, and their orbits under the
action of W .

(I) Monochromatic cliques

(II) Cliques whose vertices are the vertices of a face of the E8 root
polytope

(III) Cliques of size at most three

(IV) For all c 6= {−1, 0, 1}, the maximal cliques in Γc
More specifically, we prove the following theorem.

Theorem 3.1.3. Let K1, K2 be two cliques in Γ, each of type I, II, III,
or IV. Then the following hold.

(i) If both K1 and K2 are of type I with color 0 and of size 4, then K1
and K2 are conjugate under the action of W if and only if the vertices
sum to an element in 2Λ for both K1 and K2, or for neither.

(ii) If both K1 and K2 are of type I with color 1 and of size 7, then K1
and K2 are conjugate under the action of W if and only if the vertices
sum to an element in 2Λ for both K1 and K2, or for neither; this is
equivalent to K1 and K2 both being maximal cliques or both being
non-maximal cliques, respectively, under inclusion in Γ{1}.

(iii) In all other cases, K1 and K2 are conjugate under the action of W
if and only if they are isomorphic as colored graphs.
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3. THE ACTION OF THE WEYL GROUP

Furthermore, we give conditions for an isomorphism of two cliques of types
I, II, III or IV to extend to an automorphism of the E8 lattice Λ (defined
in Section 1.4.2). To this end we introduce the following complete colored
graphs.

e1

e2

e3

e4

e5

e6 e7

A B

α α
e1

e2

e3

e4 e5

Cα D F

Here α is either −1 or 1, two disjoint vertices have an edge of color 0
between them, and all other edges have color 1.

Theorem 3.1.4. Let K1, K2 be two cliques in Γ of types I, II, III, or IV,
and let f : K1 −→ K2 be an isomorphism between them. The following
hold.

(i) The map f extends to an automorphism of Λ if and only if for every
ordered sequence S = (e1, . . . , er) of distinct roots in K1 such that the
colored graph on them induced by Γ is isomorphic to A, B, Cα, D, or F,
its image f(S) = (f(e1), . . . , f(er)) is conjugate to S under the action
of W .

(ii) If S = (e1, . . . , er) is a sequence of distinct roots in K1 such that
the colored graph on them induced by Γ is isomorphic to either A or B,
then S and f(S) are conjugate under the action of W if and only if the
sets {e1, . . . , er} and {f(e1), . . . , f(er)} are.

(iii) If K1 and K2 are maximal cliques, both in Γ{−1,0} or both in
Γ{−2,−1,0}, and S = (e1, . . . , e5) is a sequence of roots in K1 such that
the colored graph on them induced by Γ is isomorphic to C−1 with
e1 · e4 = e2 · e5 = −1, then S and f(S) are conjugate under the action
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3.1. MAIN RESULTS

of W if and only if both e = e1 + e2 + e3 − e4 − e5 and f(e) are in the
set {2f1 + f2 | f1, f2 ∈ E}, or neither are.

(iv) If K1 and K2 are maximal cliques in Γ{−2,0,1}, and S = (e1, . . . , er)
is a sequence of distinct roots in K1 such that the colored graph G on
them induced by Γ is isomorphic to C1, D, or F , then S and f(S) are
conjugate under the action of W if and only if the sets {e1, . . . , er} and
{f(e1), . . . , f(er)} are, or equivalently, if and only if the following hold.
• If G ∼= C1, both

∑5
i=1 ei and

∑5
i=1 f(ei) are in {2f1 + f2 | f1, f2 ∈ E},

or neither are.
• If G ∼= D, both

∑5
i=1 ei and

∑5
i=1 f(ei) are in {2f1 + 2f2 | f1, f2 ∈ E},

or neither are.
• If G ∼= F , then both

∑6
i=1 ei and

∑6
i=1 f(ei) are in 2Λ, or neither are.

Remark 3.1.5. Note that to apply Theorem 3.1.4 (i) to an isomorphism
f , we have to know whether certain ordered sequences of roots are conju-
gate. Theorem 3.1.4 (ii), in combination with Theorem 3.1.3 (i) and (ii),
tells us how to verify this when the colored graph on the roots in an or-
dered sequence is isomorphic to A or B. Theorem 3.1.4 (iii) and (iv) tells
us how to verify this when the colored graph on the roots in an ordered
sequence is isomorphic to Cα, D, or F .

Remark 3.1.6. In the proof of Theorem 3.1.4, we specify for each type
of K1 and K2 which of the graphs A, B, Cα, D, and F are needed to
check whether an isomorphism f extends. Of course one can see this
partially from the size and the colors, but it turns out that we can make
stronger statements. For example, surprisingly, an isomorphism between
two maximal graphs in Γ{0,1} always extends, and even uniquely (Corollary
3.5.37). In the table in Remark 3.6.1 we show the requirements for each
type of K1 and K2.

As we mentioned before, because of the size of Γ it is practically impossible
to naively let a computer find and classify all cliques of the above types
according to theirW -orbit. This holds mainly for the results in Section 3.5,
where we study cliques of type IV. This is the only section where we use
a computer program, but without using results from the previous sections
to minimize the computations it would have been practically undoable.
Checking that two cliques are isomorphic is easily done by hand for types
I, II, and III, since with one exception of size fourteen, they are all of size
at most eight (see Sections 3.3 and 3.4). For type IV we give necessary
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3. THE ACTION OF THE WEYL GROUP

and sufficient invariants to check if two large cliques are isomorphic in
Section 3.5.

Remark 3.1.7. Apart from the work in [DM10] on bases of subsystems
of E8, some partial results of Theorems 3.1.3 and 3.1.4 were known before.
We list them here and compare them to our results.
The orbits of the faces of the E8 root polytope under the action of W
are described in [Cox30, Section 7.5]. These include all monochromatic
cliques of color 1 (see Proposition 3.2.4). For one of the types of facets, we
give a different, more group-theoretical proof of the fact that they form
one orbit under the action of W , see Corollary 3.3.17.
The orbits of ordered sequences of the vertices in the faces (except for
one type of facets) have been described in [Man86, Corollary 26.8]. We
summarize his results in Proposition 3.2.12.
Monochromatic cliques of color 0 are orthogonal sets, and their orbits un-
der the action of W are described in [DM10, Corollary 3.3]. We describe
the action of W on the ordered sequences of orthogonal roots in Proposi-
tion 3.4.4.
Finally, in [CRS04] the authors give a classification of isomorphism types
of all maximal exceptional graphs (i.e., connected graphs with least eigen-
value greater or equal to −2 that are not generalized line graphs [CRS04,
Section 1.1]). From [CRS04, Corollary 3.6.4] it follows that these graphs
correspond exactly to the maximal cliques in Γ{0,1}. Therefore our clas-
sification of isomorphism types of cliques of Type IV for c = {0, 1} (see
Appendices A and B) coincides with the classification of isomorphism
types of maximal exceptional graphs in [CRS04, Appendix A6]; see Re-
mark 3.5.32 for a comparison between our method and the one in [CRS04].
However, the classification of the isomorphism types is only part of our
results on the maximal cliques in Γ{0,1}. We also give invariants for such
a clique that determine its isomorphism type, and we show that each iso-
morphism class is a full orbit under the action of W (Propositions 3.5.35
and 3.5.36). Moreover, in Corollary 3.5.37 we show that every isomor-
phism between two representations of exceptional graphs in E8 extends to
an automorphism of E8.

We split the chapter into sections that deal with one or more of the types
I, II, III, or IV. Note that these four types do not exclude each other, and
some results in one section may be part of a result in another section. We
ordered the sections such that each section builds as much on the previous
ones as possible.
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3.2. THE WEYL GROUP AND THE E8 ROOT POLYTOPE

Section 3.2 states all the needed definitions as well as many known results
about E8 and the action of the Weyl group. We also set up the notation for
the rest of this chapter. The reader who is familiar with root systems, and
with E8 in particular, can skip this section. Section 3.3 contains all results
on the facets of the E8 root polytope, and cliques of type III. Section 3.4
deals with cliques of type I. Section 3.5 classifies all cliques of type IV.
This is the biggest section, and the only section where we use a computer
for some of the results (from Section 3.5.3 onwards). The results from this
section are summarized in the tables in the appendices. Finally, we prove
Theorems 3.1.3 and 3.1.4 in Section 3.6.

All computations are done in magma [BCP97]. The code that we used can
be found in [Codb]. We want to thank David Madore, who gave us useful
references for results on E8 and the action ofW . Moreover, there is a great
interactive view of E8 on his website http://www.madore.org/~david/
math/e8w.html, which has been very insightful.

3.2 The Weyl group and the E8 root polytope
Let Λ be the E8 lattice as defined in Section 1.4.2, let Γ be the graph
defined in Definition 3.1.2, with automorphism group W , and let E be
the set of roots in E8. In this section we recall some well-known results
about these objects and the E8 root polytope. We also make a first step
in proving Theorems 3.1.3 and 3.1.4, by showing that for two cliques of
type I, II, III, or IV in Γ that are isomorphic as colored graphs, there is a
type that they both belong to (Lemma 3.2.13).

Useful references for root systems and the Weyl group are [Bou68, Chap-
ter 6], and [Hum72, Chapter III].

The subgroup of the isometry group of R8 that is generated by the reflec-
tions in the hyperplanes orthogonal to the roots in E is called the Weyl
group, and denoted by W8. This group permutes the elements in E, and
since these roots span R8, the action of W8 on E is faithful. The Weyl
group is therefore finite: it has order 696729600 = 214 · 35 · 52 · 7. It is
equal to the automorphism group of the E8 root system [Hum72, Section
12.2], hence also to the automorphism group of the root lattice Λ, and to
the group W .

Lemma 3.2.1. The Weyl group acts transitively on the E8 root system.

53



3. THE ACTION OF THE WEYL GROUP

Proof. [Hum72, Section 10.4, Lemma C].

From the description of Λ and E8 we see that the roots in E are of two
types. Either they are of the form

(
±1

2 , . . . ,±
1
2

)
, where an even number

of entries is negative (giving 27 = 128 roots), or exactly two entries are
non-zero, and they can independently be chosen to be −1 or 1 (giving
4 ·
(8
2
)

= 112 roots).

The following proposition contains Proposition 3.17 in [Win14], where the
results are written in terms of exceptional curves on a del Pezzo surface
of degree 1.

Proposition 3.2.2. The absolute value of the dot product of any two
elements in E is at most 2. Let e ∈ E be a root. Then e has dot product
2 only with itself, and dot product −2 only with its inverse −e. There are
exactly 56 roots f ∈ E with e · f = 1, there are exactly 56 roots g ∈ E
with e · g = −1, and there are exactly 126 roots in E that are orthogonal
to e.

Proof. From Cauchy–Schwarz it follows that for e, e′ ∈ E we have

|e · e′| ≤ ‖e‖ · ‖e′‖ = 2,

and equality holds if and only if e, e′ are scalar multiples of each other.
Since all roots are primitive, it follows that e · e′ = 2 if and only if e = e′,
and e · e′ = −2 if and only if e = −e′. Since W acts transitively on E
(Lemma 3.2.1), to count the other cases it suffices to prove this for one
element in E. Take e = (1, 1, 0, 0, 0, 0, 0, 0) ∈ E.
The roots f ∈ E with e · f = 1 are of the form f = (a1, . . . , a8) with
a1 + a2 = 1. So for these roots we either have a1 = a2 = 1

2 , which gives 32
different roots, or {a1, a2} = {0, 1}, which gives 24 different roots. This
gives a total of 56 roots.
For f ∈ E, we have e · f = 1 if and only if e · −f = −1, so this gives also
56 roots g ∈ E with e · g = −1.
The roots in E that are orthogonal to e are of the form f = (a1, . . . , a8)
with a1 + a2 = 0. So for these roots we have a1 = a2 = 0, which gives 60
roots, or {a1, a2} = {−1, 1}, which gives 2 roots, or {a1, a2} =

{
−1

2 ,
1
2

}
,

which gives 64 roots. This gives a total of 126 roots.

We continue with results on the E8 root polytope. Coxeter described
all faces of the E8 root polytope, which he called the 421 polytope, in
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3.2. THE WEYL GROUP AND THE E8 ROOT POLYTOPE

[Cox30]. The faces come in two types: n-simplices (for n ≤ 7), given by
n + 1 vertices with angle π

3 and distance
√

2 between any two of them,
and n-crosspolytopes (for n = 7), given by 2n vertices where every vertex
is orthogonal to exactly one other vertex, and has angle π

3 and distance√
2 with all the other vertices. We summarize his results in Proposi-

tions 3.2.4 and 3.2.5.

Lemma 3.2.3. Two vertices in the E8 root polytope have distance
√

2
between them if and only if their dot product is one.

Proof. For e, f ∈ E we have ‖e− f‖2 = e2− 2 · e · f + f2 = 4− 2 · e · f.

Proposition 3.2.4. For n ≤ 7, the set of n-simplices in the E8 root
polytope is given by

{{e1, . . . , en+1} | ∀i : ei ∈ E; ∀j 6= i : ei · ej = 1},

where an n-simplex is identified with the set of its vertices. For n ≤ 6, the
n-simplices in the E8 root polytope are exactly its n-faces.

Proof. The vertices in an n-simplex have dot product 1 by the previous
lemma. The fact that the n-faces are exactly the n-simplices for n ≤ 6 is
in [Cox30, Section 7.5], or the table on page 414.

Proposition 3.2.5. The facets of the E8 root polytope are exactly the
7-simplices and the 7-crosspolytopes contained in it. The set of 7-crosspo-
lytopes is given by{
{{e1, f1}, . . . , {e7, f7}}

∣∣∣∣∣ ∀i ∈ {1, . . . , 7} : ei, fi ∈ E; ei · fi = 0;
∀j 6= i : ei · ej = ei · fj = fi · fj = 1.

}
,

where a 7-crosspolytope is identified by the set of its 7 pairs of orthogonal
roots.

Proof. The facets are the 7-simplices and the 7-crosspolytopes by [Cox30,
Section 7.5], or see the table on page 414. The dot products follow from
Lemma 3.2.3.

Remark 3.2.6. We also show that the 7-simplices and the 7-crosspoly-
topes in the E8 root polytope are facets in Remarks 3.3.7 and 3.3.19.
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3. THE ACTION OF THE WEYL GROUP

Corollary 3.2.7. The E8 root polytope has 6720 1-faces, 60480 2-faces,
241920 3-faces, 483840 4-faces, 483840 5-faces, 207360 6-faces, 17280 7-
simplices, and 2160 7-crosspolytopes.

Proof. See [Cox30, p.414].

Remark – analogy with geometry 3.2.8. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field k, with canonical divi-
sor KX . Recall from Remark 1.4.9 that there is a bijection ϕ between the
set I of exceptional curves on X and the set E, such that for c1, c2 ∈ I, we
have ϕ(c1) · ϕ(c2) = 1− c1 · c2 (where the dot on the left-hand side is the
dot product in E8, and the dot on the right-hand side is the intersection
pairing in Pic X). As a consequence, the group of permutations of I that
preserve the intersection multiplicity in Pic X is isomorphic to the Weyl
group W8 (Corollary 1.4.10). Moreover, ϕ gives an isomorphism of the
weighted graph G on I as defined in Definition 1.4.12 with Γ.
It follows that the vertices of a n-simplex in the E8 root polytope corre-
spond to a sequence of n + 1 exceptional classes in I that have pairwise
intersection pairing 0. Moreover, for r pairwise disjoint exceptional curves
e1, . . . , er, where 1 ≤ r ≤ 7, the exceptional curves that are disjoint from
e1, . . . , er correspond to the exceptional curves of the del Pezzo surface of
degree r + 1 that is obtained by blowing down e1, . . . , er. We know the
number of exceptional curves on del Pezzo surfaces (1.1), and we can use
this to compute the number of n-faces of the E8 root polytope for n ≤ 5.

Remark 3.2.9. For n ≤ 5, the statement in Corollary 3.2.7 also follows
from the last part of Remark 3.2.8 and Table 1.1: we have

240 · 56
2 = 6720, 240 · 56 · 27

3! = 60480, 240 · 56 · 27 · 16
4! = 241920,

and so on. For n equal to 6 and for the 7-simplices, the statement is in
Proposition 3.4.7. For the 7-crosspolytopes it follows from Lemma 3.3.15,
see Remark 3.3.16.

The following propositions state results about the action of the Weyl group
on the faces of the E8 root polytope.

Proposition 3.2.10. For n ≤ 5, the group W acts transitively on the
set of n-faces. There are two orbits of facets.

Proof. In [Cox30, Section 7.5] it is shown that all n-simplices are conjugate
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3.2. THE WEYL GROUP AND THE E8 ROOT POLYTOPE

for n ≤ 5, and that any two facets of the same type are conjugate as well.
We know that there are two types of facets from Proposition 3.2.5.

Remark 3.2.11. There are two orbits of 6-faces. We describe them in
Proposition 3.4.7; see also Remark 3.4.10.

We know something even stronger, namely, the action ofW on the ordered
sequences of roots in faces of the E8 root polytope.

Proposition 3.2.12. For all r ≤ 8 such that r 6= 7, the group W acts
transitively on the set

Rr = {(e1, . . . , er) ∈ Es | ∀i 6= j : ei · ej = 1}.

For r = 7, there are two orbits under the action of W .

Proof. In Remark 3.2.8 we describe a bijection between E and the set I
of 240 exceptional classes on a del Pezzo surface of degree 1, where two
elements in E have dot product a if and only if the two corresponding
elements in I have intersection product 1− a. This bijection respects the
action of W , and under this bijection the set Rr corresponds to the set of
sequences of length r of disjoint exceptional classes. The statement now
follows from [Man86, Corollary 26.8].

The following lemma is the first step in proving Theorems 3.1.3 and 3.1.4.

Lemma 3.2.13. Let K1,K2 be two cliques in Γ of type I, II, III, or IV
that are isomorphic. Then there is a type I, II, III, or IV that they both
belong to.

Proof. If a clique is of type I or III, then any clique that is isomorphic
to it is of the same type. If K1 is of type II, then its vertices form a
n-simplex (for n ≤ 7) or an n-crosspolytope (for n = 7) by Proposition
3.2.4 and Proposition 3.2.5. In both cases, K2 is of the same type, again
by Proposition 3.2.4 and Proposition 3.2.5. Analogously, if K2 is of type
II then so is K1. Finally, if K1 and K2 are both not of types I, II, or III,
then they are automatically both of type IV.

We conclude this section by stating a lemma that will be used throughout
this chapter. Parts (i)–(iii) are Lemma 20 in [Win14].

Lemma 3.2.14. Let H be a group, let A,B be H-sets, and f : A −→ B a
morphism of H-sets. Then the following hold.
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3. THE ACTION OF THE WEYL GROUP

(i) If H acts transitively on A, then H acts transitively on f(A).

(ii) If H acts transitively on B, then all fibers of f have the same
cardinality.

(iii) If H acts transitively on A and A is finite, then all non-empty fibers
of f have the same cardinality, say n, and |f(A)| = |A|

n .

(iv) If H acts transitively on f(A), and there is an element b ∈ f(A)
such that its stabilizer Hb in H acts transitively on f−1(b), then f acts
transitively on A.

Proof.

(i) Take f(a), f(a′) ∈ f(A) with a, a′ ∈ A. Assume that H acts tran-
sitively on A, then there is an h ∈ H such that ha = a′. Since f
is a morphism of H-sets, we have hf(a) = f(ha) = f(a′), so H acts
transitively on f(A).

(ii) Take b, b′ ∈ B. Since H acts transitively on B, there is an h ∈ H
such that hb = b′, so |f−1(b′)| = |f−1(hb)| = |hf−1(b)| = |f−1(b)|.

(iii) Take b, b′ ∈ B such that f−1(b) and f−1(b′) are non-empty. Then
we have b, b′ ∈ f(A). Since H acts transitively on f(A) by (i), it follows
from (ii) that f−1(b) and f−1(b′) have the same cardinality, say n. It is
now immediate that |A| = |f−1(B)| =

∑
b∈f(A) n = n|f(A)|, so we find

|f(A)| = |A|
n .

(iv) Take b ∈ f(A) such that Hb acts transitively on f−1(b). Take
a, a′ ∈ A. Since H acts transitively on f(A), there are h, h′ ∈ H such
that hf(a) = b and h′f(a′) = b. Then ha and h′a′ are contained in
f−1(b). Since Hb acts transitively on f−1(b), there is an element g ∈ Hb

with gha = h′a′. So we have h′−1gha = a′ and H acts transitively
on A.

3.3 Facets and cliques of size at most three
In this section we study the cliques in Γ of type III, and the facets of the E8
root polytope. We give an alternative proof for the fact that W acts tran-
sitively on the set of facets that are 7-crosspolytopes (Corollary 3.3.17),
and we prove the following propositions.
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Proposition 3.3.1. For a ∈ {±1,−2, 0}, the group W acts transitively
on the set

{(e1, e2) ∈ E2 | e1 · e2 = a}.

Proposition 3.3.2. For a, b, c ∈ {−2,−1, 0, 1}, the group W acts tran-
sitively on the set

{(e1, e2, e3) ∈ E3 | e1 · e2 = a, e2 · e3 = b, e1 · e3 = c},

in all cases where it is not empty.

Remark 3.3.3. Proposition 3.3.1, as well as the cases {a, b, c} = {0, 0, 0},
{a, b, c} = {0, 0, 1} of Proposition 3.3.2, were proved by the same author in
[Win14]. In particular, the results 3.3.11 – 3.3.14 are the same as [Win14,
results 3.18, 3.19, 3.21, 3.22], and the results 3.3.24 – 3.3.28 and the first
statement in Proposition 3.3.29 are the same as [Win14, results 3.23 –
3.28]. We decided to restate the results here for completeness, as well as
for the fact that everything in [Win14] is stated in terms of exceptional
curves on del Pezzo surfaces of degree 1, and this chapter is also meant
for the reader that wants to use the results in terms of the roots of E8.

Note that these two propositions describe the orbits under the action
of W of sequences of the vertices of cliques in Γ, hence they also prove
Theorem 3.1.4 for cliques of type III; see Corollary 3.3.34. The proof of
Proposition 3.3.1 can be found below Proposition 3.3.14, and the proof of
Proposition 3.3.2 below Lemma 3.3.33. Throughout this section we do not
use any computer programs. More background on the E8 root polytope
can be found in [Cox30] and [Cox49].

We start with some results on the facets of the E8 root polytope that
are 7-simplices. The results on the facets that are 7-crosspolytopes are in
Lemmas 3.3.17 and 3.3.18. Consider the set

U = {(e1, e2, e3, e4, e5, e6, e7, e8) ∈ E8 | ∀i 6= j : ei · ej = 1}.

Note that an element in U is a sequence of eight roots that form a 7-
simplex. Define the following roots, and note that (u1, . . . , u8) is an ele-
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ment in U .

u1 = (1, 1, 0, 0, 0, 0, 0, 0); u5 = (1, 0, 0, 0, 0, 1, 0, 0);
u2 = (1, 0, 1, 0, 0, 0, 0, 0); u6 = (1, 0, 0, 0, 0, 0, 1, 0);
u3 = (1, 0, 0, 1, 0, 0, 0, 0); u7 = (1, 0, 0, 0, 0, 0, 0, 1);

u4 = (1, 0, 0, 0, 1, 0, 0, 0); u8 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

Lemma 3.3.4. Every element in U generates a sublattice of index 3 of the
root lattice Λ, and the group W acts freely on U .

Proof. By Proposition 3.2.12, it is enough to check the first statement for
one element in U . The matrix whose i-th row is ui for i ∈ {1, . . . , 8}
has determinant 3, so u1, . . . , u8 are linearly independent and generate a
sublattice of rank 8 and index 3 in Λ. Take w ∈ W such that there is an
element u ∈ U with w(u) = u. Then w fixes the sublattice generated by
u, so for all x ∈ Λ we have 3w(x) = w(3x) = 3x. Since Λ is torsion free,
this implies that w fixes all of Λ. It follows that w is the identity. We
conclude that the action of W on U is free.

Corollary 3.3.5. Let u = (e1, . . . , e8) be an element in U . Then
1
3
∑8
i=1 ei is contained in Λ.

Proof. By Lemma 3.3.4, we know that the roots e1, . . . , e8 generate a
lattice M of index 3 in Λ. Set v = 1

3
∑8
i=1 ei. Since v · ei = 3 for i ∈

{1, . . . , 8}, we have 1
3v ∈M

∨, where M∨ is the dual lattice of M . But the
dual lattice Λ∨ has index 3 inM∨, so it follows that 3 · 13v = v is contained
in Λ∨. Since Λ is unimodular, it is self dual, so v is contained in Λ.

Remark – analogy with geometry 3.3.6. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field and KX its canonical
divisor. Lemma 3.3.4 can be stated in terms of X as follows. For every
set of eight exceptional classes c1, . . . , c8 that have pairwise intersection
pairing 0 there exists a unique class l such that we haveKX = −3l+

∑8
i=1 ci

and (l, c1, . . . , c8) is a basis for Pic X; one can blow down the exceptional
curves corresponding to c1, . . . , c8 to eight points in P2, such that l is the
class of the pullback of a line in P2 that does not contain any of these
eight points.

Remark 3.3.7. Let u = (e1, . . . , e8) be an element in U . We know that
e1, . . . , e8 define a facet of the E8 root polytope. This also follows from
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from Corollary 3.3.5. Indeed, for v = 1
3
∑8
i=1 ei we have v · ei = 3 for

i ∈ {1, . . . , 8}, and we have

v · e = 1
3

8∑
i=1

ei · e ≤
1
3

8∑
i=1

1 = 8
3 < 3

for e ∈ E \ {e1, . . . , e8}. This implies that the whole E8 root polytope lies
on one side of the hyperplane given by v · x = 3, and the intersection of
the polytope with this hyperplane, which is exactly given by the convex
combinations of e1, . . . , e8, lies in the boundary of the polytope. Hence
e1, . . . , e8 generate a facet of the E8 root polytope, and v is the normal
vector to this facet.

We now prove part of Proposition 3.3.1.

Lemma 3.3.8. For any a ∈ {−2,±1}, the group W acts transitively on
the set

Aa = {(e1, e2) ∈ E2 | e1 · e2 = a}.

Proof. The group W acts transitively on A1 by Proposition 3.2.12. There
is a bijection between the W -sets A1 and A−1 given by

f : A1 −→ A−1, (e1, e2) 7−→ (e1,−e2).

It follows from Lemma 3.2.14 that W acts transitively on A−1, too. Fi-
nally, we have a bijection

E −→ A−2, e 7−→ (e,−e),

soW acts transitively on A−2 by Proposition 3.2.12 and by Lemma 3.2.14.

Before we prove the rest of Proposition 3.3.1, we prove Proposition 3.3.2 for
the cases (a, b, c) = (−1,−1,−1) (Corollary 3.3.10) and (a, b, c) = (0, 0, 1)
(Lemma 3.3.12), which we will use later.

Lemma 3.3.9. For e1, e2 ∈ E with e1 · e2 = −1 there is a unique element
e ∈ E with e · e1 = e · e2 = −1, which is given by e = −e1 − e2.

Proof. Take e1, e2, e ∈ E with e1 · e2 = −1 and e · e1 = e · e2 = −1. Set
f = e1 + e2 + e. Then we have ‖f‖ = 0, hence f = 0, so e = −e1 − e2.
Therefore e is unique if it exists. Moreover, we have ‖ − e1 − e2‖ =

√
2,

so −e1 − e2 is an element in E that satisfies the conditions.
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Corollary 3.3.10. The group W acts transitively on the W -set

{(e1, e2, e3) ∈ E3 | e1 · e2 = e2 · e3 = e1 · e3 = −1}.

Proof. By Lemma 3.3.9 there is a bijection between the sets

{(e1, e2) ∈ E2 | e1 · e2 = −1}

and
{(e1, e2, e3) ∈ E3 | e1 · e2 = e2 · e3 = e1 · e3 = −1},

given by (e1, e2) 7−→ (e1, e2,−e1 − e2). The statement now follows from
Lemma 3.3.8 and Lemma 3.2.14.

Lemma 3.3.11. Take e1, e2 ∈ E such that e1 · e2 = 1. Then there are
exactly 72 elements of E orthogonal to e1 and e2.

Proof. By Lemma 3.3.8 it is enough to check this for fixed e1, e2 ∈ E with
e1 · e2 = 1. Set e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (1, 0, 1, 0, 0, 0, 0, 0). Then
e1 · e2 = 1. An element f ∈ E with f · e1 = f · e2 = 0 is of the form
f = (a1, . . . , a8) with a1 + a2 = 0 and a1 + a3 = 0, hence a1 = −a2

and a2 = a3. If f is of the form
(
±1

2 , . . . ,±
1
2

)
, then there are 32 such

possibilities. If f has two non-zero entries, given by ±1, then a1, a2, a3
should all be zero, which gives 40 possibilities. We find a total of 72
possibilities for f .

Lemma 3.3.12. Consider the set

B = {(e1, e2, e3) ∈ E3 | e1 · e2 = e2 · e3 = 0; e1 · e3 = 1}.

We have |B| = 967680, and the following hold.
(i) The group W acts transitively on B.

(ii) For every element b = (e1, e2, e3) ∈ B, there are exactly 6 roots that
have dot product 1 with e1, e2 and e3. These 6 roots, together with e1
and e3, form a facet in the set U .

Proof. We have |B| = 240 · 56 · 72 = 967680 by Proposition 3.2.2 and
Lemma 3.3.11. Set e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1, 1, 0, 0, 0, 0), and
e3 = (1, 0, 0, 0, 1, 0, 0, 0). Then b = (e1, e2, e3) is an element in B. Let Wb

be its stabilizer in W and Wb its orbit in B. Let Ub be the set

Ub = {e ∈ E | e · e1 = e · e2 = e · e3 = 1}.
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For e = (a1, . . . , a8) ∈ Ub, we have a1 + a2 = a3 + a4 = a1 + a5 = 1. From
this we find

Ub =



(1, 0, 0, 1, 0, 0, 0, 0)
(1, 0, 1, 0, 0, 0, 0, 0)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
2

)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2

)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2

1
2 ,−

1
2

)(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)


.

We conclude that there are 6 roots that have dot product 1 with e1, e2,
and e3. It is obvious that these 6 elements, together with e1 and e3, form
an element of the set U that is defined above Lemma 3.3.4.
We have |W |

|Wb| = |Wb| ≤ |B|. We want to show that the latter is an
equality. The group Wb acts on Ub. Let w be an element of Wb that fixes
all the roots in Ub. Since the roots in {e1, e3} ∪ Ub form an element in U ,
by Lemma 3.3.4 this implies that w is the identity. Therefore the action of
Wb on Ub is faithful. This implies that Wb injects into S6, so |Wb| ≤ 720.
We now have

967680 = |W |720 ≤
|W |
|Wb|

= |Wb| ≤ |B| = 967680,

so we have equality everywhere and therefore we have Wb = B. We
conclude thatW acts transitively on B, proving (i). Part (ii) clearly holds
for the element b, and from part (i) it follows that it holds for all elements
in B.

We proceed to prove the rest of Proposition 3.3.1.

Lemma 3.3.13. For e1 = (1, 1, 0, 0, 0, 0, 0, 0) , e2 = (0, 0, 1, 1, 0, 0, 0, 0) ∈ E,
there are 32 elements e in E such that e · e1 = 0 and e · e2 = 1.

Proof. Take e ∈ E with e · e1 = 0 and e · e2 = 1. Then e is of the form
e = (a1, a2, a3, a4, . . . , a8) with a1 + a2 = 0 and a3 + a4 = 1. If e is of
the form

(
±1

2 , . . . ,±
1
2

)
, then a1 = −a2 and a3 = a4 = 1

2 . There are 16
such possibilities. If e has two non-zero entries given by ±1, then either
a3 = 1, a1 = a2 = a4 = 0, or a4 = 1, a1 = a2 = a3 = 0. This gives 16
possibilities. We find a total of 32 possibilities for e.

Proposition 3.3.14. The group W acts transitively on the set

A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}.
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Proof. Consider the set

B′ = {(e1, e2, e3) ∈ E3 | e1 · e2 = e1 · e3 = 0; e2 · e3 = 1}.

Note that there is a bijection between the W -set B′ and the W -set B
in Lemma 3.3.12, given by (e, f, g) 7−→ (f, e, g). Therefore, the group
W acts transitively on B′ and we have |B′| = 967680 by Lemma 3.3.12.
We have a projection λ : B′ −→ A0 to the first two coordinates. We
show that λ is surjective. Fix the two roots e1 = (1, 1, 0, 0, 0, 0, 0, 0) and
e2 = (0, 0, 1, 1, 0, 0, 0, 0) in E. Then (e1, e2) is an element of A0. Take
e ∈ E, then (e1, e2, e) is in B′ if and only if e · e1 = 0 and e · e2 = 1.
By Lemma 3.3.13 this gives 32 possibilities for e, so |λ−1((e1, e2))| = 32.
Since W acts transitively on B′, it follows from Lemma 3.2.14 that all
non-empty fibers of λ have cardinality 32, and |λ(B′)| = |B′|

32 = 30240.
By Proposition 3.2.2 we have |A0| = 240 · 126 = 30240. We conclude
that λ(B′) = A0. Hence λ is surjective. Therefore, the group W acts
transitively on A0 by Lemma 3.2.14.

Proof of Proposition 3.3.1. This follows from the previous propo-
sition together with Lemma 3.3.8.

Before we continue proving Proposition 3.3.2, we complete our study of
the facets of the E8 root polytope. Define the set

C =
{
{{e1, f1}, . . . , {e7, f7}}

∣∣∣∣∣ ∀i ∈ {1, . . . , 7} : ei, fi ∈ E; ei · fi = 0
∀j 6= i : ei · ej = ei · fj = fi · fj = 1

}
.

Elements in C are facets that are 7-crosspolytopes by Proposition 3.2.4.
We define elements c1, . . . , c7, d1, . . . , d7; note that {{c1, d1}, . . . , {c7, d7}}
is an element in C.
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c1 = (1, 1, 0, 0, 0, 0, 0, 0) , d1 = (0, 0, 1, 1, 0, 0, 0, 0),
c2 = (1, 0, 1, 0, 0, 0, 0, 0) , d2 = (0, 1, 0, 1, 0, 0, 0, 0),
c3 = (1, 0, 0, 1, 0, 0, 0, 0), d3 = (0, 1, 1, 0, 0, 0, 0, 0),

c4 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
, d4 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
,

c5 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2

)
, d5 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
,

c6 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2

)
, d6 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2

)
,

c7 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2

)
, d7 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2

)
.

Lemma 3.3.15. For e1, e2 ∈ E with e1 · e2 = 0, there are exactly 12
elements e ∈ E with e · e1 = e · e2 = 1. These 12 elements, together with
e1 and e2, form an element in C, and this is the unique element in C
containing e1, e2.

Proof. By Proposition 3.3.14, it is enough to check this for fixed e1, e2 with
e1 ·e2 = 0. Take e1 = c1, and e2 = d1. For a root e = (a1, . . . , a8) in E with
e · c1 = e · d1 = 1, we have either a1 = a2 = a3 = a4 = 1

2 , in which case e
is contained in {c4, . . . , c7, d4, . . . , d7}, or {a1, a2} = {a3, a4} = {0, 1},
which implies e ∈ {c2, c3, d2, d3}. Therefore there are 12 possibilities
{c2, . . . , c7, d2, . . . , d7} for e, and we conclude that {{c1, d1}, . . . , {c7, d7}}
is the unique element in C containing c1, d1.

Remark 3.3.16. Since elements in C correspond to 7-crosspolytopes, we
know that |C| = 2160 from Corollary 3.2.7. This also follows from the
previous lemma. Recall the set A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}. By
Lemma 3.3.15, for every element (e1, e2) in A0 there is a unique element
in C containing e1, e2. But every element in C contains seven pairs f1, f2
such that (f1, f2) and (f2, f1) are in A0, so the map A0 −→ C is fourteen
to one. Hence we have |C| = |A0|

14 = 240·126
14 = 2160.

Corollary 3.3.17. The group W acts transitively on C.

Proof. Consider the set A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}. The group W
acts transitively on A0 by Proposition 3.3.14. By Lemma 3.3.15 there is a
map A0 −→ C, sending (e1, e2) to the unique element in C that contains
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e1 and e2. This map is clearly surjective. It follows from Lemma 3.2.14
that W acts transitively on C.

Lemma 3.3.18. Every element in C generates a sublattice of finite index
in Λ.

Proof. By Corollary 3.3.17, it is enough to check this for one element in
C. Take the element {{c1, d1}, . . . , {c7, d7}} in C, where the ci, di are
defined above Lemma 3.3.15. The matrix whose rows are the vectors
c1, . . . , c7, d1, . . . , d7 has rank 8, so these 14 elements generate a sublattice
L of finite index in Λ.

Remark 3.3.19. Let {{e1, f1}, . . . , {e7, f7}} be an element in C, and let
c be the set c = {e1, . . . , e7, f1, . . . , f7}. We know that the elements in
c are the vertices of a facet of the E8 root polytope. We show how this
also follows from the previous lemma. Take i ∈ {1, . . . , 7}, then we have
(ei + fi) · e = 2 for all e ∈ c. Since the elements in c generate a full rank
sublattice, this implies that ei+fi = ej +fj for all i, j ∈ {1, . . . , 7}. So the
vector n = 1

7
∑7
i=1(ei + fi) = e1 + f1 is an element in Λ with n · e = 2 for

e ∈ s. Take e ∈ E\s, and note that e cannot have dot product 1 with both
e1 and f1 by Lemma 3.3.15. It follows that we have n · e < 2, so the entire
E8 root polytope lies on one side of the affine hyperplane given by n·x = 2.
Moreover, this hyperplane intersects the E8 root polytope in its boundary,
and exactly in the convex combinations of the roots e1, . . . , e7, f1, . . . , f7.
Therefore these roots are the vertices of a facet of the E8 root polytope
with normal vector n.

We continue with Proposition 3.3.2, and prove it for (a, b, c) = (0, 0, 0).
Consider the sets

V3 = {(e1, e2, e3) ∈ E3 | ∀i 6= j : ei · ej = 0}

and
V4 = {(e1, e2, e3, e4) ∈ E4 | ∀i 6= j : ei · ej = 0}.

We begin by studying V4. To this end, recall the set U defined above
Lemma 3.3.4, and define the set

Z = {({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) | ∀i : ei ∈ E; ∀j 6= i : ei·ej = 1}.

Remark 3.3.20. We have a surjective map U −→ Z by simply forgetting
the order of ei and ei+1 for i ∈ {1, 3, 5, 7}. Since W acts transitively on U
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(Proposition 3.2.12), it follows from Lemma 3.2.14 thatW acts transitively
on Z. By Lemma 3.3.4, the action ofW on U is free, so we have |U | = |W |,
and |Z| = |U |

24 = |W |
24 = 210 · 35 · 52 · 7.

We want to define a map α : Z −→ V4. To do this we use the following
lemma.

Lemma 3.3.21. For an element z = ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8})
in Z, there are unique roots f1, f2, f3, f4 ∈ E with

f1 · ei = 0, f1 · ej = 1 for i ∈ {1, 2}, j /∈ {1, 2};
f2 · ei = 0, f2 · ej = 1 for i ∈ {3, 4}, j /∈ {3, 4};
f3 · ei = 0, f3 · ej = 1 for i ∈ {5, 6}, j /∈ {5, 6};
f4 · ei = 0, f4 · ej = 1 for i ∈ {7, 8}, j /∈ {7, 8}.

For these f1, f2, f3, f4 we have fi ·fj = 0 for i 6= j, and 3
∑4
i=1 fi =

∑8
i=1 ei.

Proof. By Lemma 3.3.4, the elements e1, . . . , e8 generate a full rank sub-
lattice of Λ, so an element f ∈ E is uniquely determined by the intersection
numbers f ·ei for i ∈ {1, . . . , 8}. We will show existence. Set v = 1

3
∑8
i=1 ei.

By Corollary 3.3.5, the vector v is an element in Λ. We have ‖v‖ =
√

8,
and v · ei = 3 for i ∈ {1, . . . , 8}. For i ∈ {1, 2, 3, 4}, set fi = v− e2i−1− e2i.
Then ‖fi‖ =

√
2, so fi ∈ E. Moreover, f1, f2, f3, f4 satisfy the conditions

in the lemma.

We now define a map

α : Z −→ V4, ({e1, e2}, . . . , {e7, e8}) 7−→ (f1, f2, f3, f4),

where f1, f2, f3, f4 are the unique elements found in Lemma 3.3.21.

Corollary 3.3.22. If (f1, f2, f3, f4) is an element in the image of α, then
x =

∑4
i=1 fi is a primitive element of Λ with norm

√
8.

Proof. Take (f1, f2, f3, f4) in the image of α, and let ({e1, e2}, . . . , {e7, e8})
be an element Z such that (f1, f2, f3, f4) = α(({e1, e2}, . . . , {e7, e8})). Set
x =

∑4
i=1 fi. Then we have 3x =

∑8
i=1 ei by Lemma 3.3.21. It follows

that ‖3x‖2 = 72, hence ‖x‖2 = 8. Moreover, for any i ∈ {1, . . . , 8} we
have 3x ·ei = 9, hence x ·ei = 3. This implies that if we have x = m ·x′ for
some m ∈ Z, x′ ∈ Λ, then m|2 and m|3, so m = 1 and x is primitive.
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Remark – analogy with geometry 3.3.23. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field, and I the set of excep-
tional classes in Pic X. The map α has a nice description in the geometric
setting, through the bijection I −→ E, c 7−→ c + KX . Take an element
z = ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) in Z. The roots e1, . . . , e8 corre-
spond to classes c1, . . . , c8 in I with ci · cj = 0 for all i 6= j ∈ {1, . . . , 8}.
These classes correspond to pairwise disjoint curves on X that can be
blown down to points P1, . . . , P8 in P2 such that ci is the class of the ex-
ceptional curve above Pi for i ∈ {1, . . . , 8} (Lemma 1.2.8). The conditions
for fi in Lemma 3.3.21 are equivalent to fi being the strict transform on X
of the line in P2 through P2i−1 and P2i for i ∈ {1, 2, 3, 4}. This geometrical
argument immediately proves the uniqueness of fi.

Let π : V4 −→ V3 be the projection to the first three coordinates. From the
maps π and α, transitivity on V3 will follow (Proposition 3.3.28). Let Y be
the image of α. We will show that V4 has two orbits under the action ofW ,
given by Y and V4 \ Y (Proposition 3.3.29). The following commutative
diagram shows the maps and sets that are defined.

U

Z V4 V3

Y

α π

Lemma 3.3.24. The map α is injective.

Proof. Consider the roots in E given by

f1 = (1, 1, 0, 0, 0, 0, 0, 0) , f3 = (0, 0, 0, 0, 1, 1, 0, 0) ,
f2 = (0, 0, 1, 1, 0, 0, 0, 0) , f4 = (1,−1, 0, 0, 0, 0, 0, 0) .

Note that v = (f1, f2, f3, f4) is an element in V4. Now take an element
({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) in the fiber of α above v, then we have

e1 · f1 = e2 · f1 = 0 and e1 · fi = e2 · fi = 1 for all i 6= 1; (3.1)
e3 · f2 = e4 · f2 = 0 and e3 · fi = e4 · fi = 1 for all i 6= 2;
e5 · f3 = e6 · f3 = 0 and e5 · fi = e6 · fi = 1 for all i 6= 3;
e7 · f4 = e8 · f4 = 0 and e7 · fi = e8 · fi = 1 for all i 6= 4.
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Write e1 = (a1, . . . , a8). From (3.1) it follows that we have a1 + a2 = 0
and a1 − a2 = a3 + a4 = a5 + a6 = 1. So e1 is

(
1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2

)
or(

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2

)
, and e2 is the other. Analogously we find:

{e3, e4} = {(1, 0, 0, 0, 0, 1, 0, 0) , (1, 0, 0, 0, 1, 0, 0, 0)} ,
{e5, e6} = {(1, 0, 0, 1, 0, 0, 0, 0) , (1, 0, 1, 0, 0, 0, 0, 0)} ,

{e7, e8} =
{(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
,
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)}
.

Hence the fiber above v has cardinality one. Since W acts transitively
on Z, we conclude from Lemma 3.2.14 that all non-empty fibers of α have
cardinality one, so α is injective.

Remark 3.3.25. By the previous lemma, there is a bijection between the
sets Z and α(Z) = Y . Since α is a W -map, it follows that Y is a W -set,
and that W acts transitively on Y by Lemma 3.2.14.

We state two more lemmas before we prove thatW acts transitively on V3.

Lemma 3.3.26. Consider the elements in E given by

e1 = (1, 1, 0, 0, 0, 0, 0, 0); f1 = (0, 0, 0, 0, 0, 0, 1, 1)
e2 = (0, 0, 1, 1, 0, 0, 0, 0); f2 = (0, 0, 0, 0, 0, 0,−1,−1).
e3 = (0, 0, 0, 0, 1, 1, 0, 0);

Then v = (e1, e2, e3, f1) and v′ = (e1, e2, e3, f2) are elements in V4 that are
not in Y .

Proof. It is easy to check that v and v′ are in V4. We have

e1 + e2 + e3 + f1 = 2 ·
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
and

e1 + e2 + e3 + f2 = 2 ·
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
,

hence both e1 +e2 +e3 +f1 and e1 +e2 +e3 +f2 are not primitive elements
in Λ and therefore not contained in Y by Corollary 3.3.22.

Lemma 3.3.27. For two elements e1, e2 ∈ E with e1 · e2 = 0, there are
exactly 60 roots e ∈ E such that e1 · e = e2 · e = 0.
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Proof. By Proposition 3.3.14, it is enough to check this for two orthogonal
roots e1, e2 in E. Set e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1, 1, 0, 0, 0, 0). An
element f ∈ E with f ·e1 = f ·e2 = 0 is of the form f = (a1, a2, a3, . . . , a8)
with a1 = −a2 and a3 = −a4. If f is of the form

(
±1

2 , . . . ,±
1
2

)
, then there

are 32 such possibilities. If f has two non-zero entries, given by ±1, then
there are 28 possibilities. We find a total of 60 possibilities for f .

Figure 3.1 summarizes the results in Proposition 3.2.2 and Lemmas 3.3.9,
3.3.13 and 3.3.27. Vertices are roots, and the number in a subset is its
cardinality. The number on an edge between two subsets is the dot product
of two roots, one from each subset.

e1

−e1

126
e2

−e2

60

32

32

0

-2

1

1

-1

-1

0

56

−e3 −e1 − e3

-1

56

e3

2
-2

-1
0

1

Figure 3.1: Graph Γ

Proposition 3.3.28. Let v = (f1, f2, f3) be an element of V3. The fol-
lowing hold.

(i) We have |V3| = 1814400, and the group W acts transitively on V3.

(ii) We have |π−1(v)| = 26, and |π−1(v) ∩ Y | = 24.

(iii) For {(f1, f2, f3, u), (f1, f2, f3, u
′)} = π−1(v) \ Y , we have u = −u′,

and for (f1, f2, f3, e) ∈ π−1(v) ∩ Y , we have e · u = e · u′ = 0.
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Proof. From Proposition 3.2.2 and Lemma 3.3.27 it follows that

|V3| = 240 · 126 · 60 = 1814400.

Consider the map λ = π ◦α : Z → V3. Note that λ is aW -map, since both
π and α are. We want to show that λ is surjective. Set

f1 = (1, 1, 0, 0, 0, 0, 0, 0), f2 = (0, 0, 1, 1, 0, 0, 0, 0), f3 = (0, 0, 0, 0, 1, 1, 0, 0).

Then we have v = (f1, f2, f3) ∈ V3. Define the roots

e1 =
(

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2

)
, e5 = (1, 0, 0, 1, 0, 0, 0, 0) ,

e2 =
(

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2

)
, e6 = (1, 0, 1, 0, 0, 0, 0, 0) ,

e3 = (1, 0, 0, 0, 0, 1, 0, 0) , e7 =
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
e4 = (1, 0, 0, 0, 1, 0, 0, 0) , e8 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

Note that ei · ej = 1 for i 6= j, so ({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}) is an
element in Z. We have

f1 · e1 = f1 · e2 = 0 and f1 · ei = 1 for all i 6∈ {1, 2};
f2 · e3 = f2 · e4 = 0 and f2 · ei = 1 for all i 6∈ {3, 4};
f3 · e5 = f3 · e6 = 0 and f3 · ei = 1 for all i 6∈ {5, 6},

so λ (({e1, e2}, {e3, e4}, {e5, e6}, {e7, e8})) = v. Hence the fiber of λ above
v is not empty; we compute its cardinality. We first compute the cardi-
nality of the fiber of π above v. For an element f = (a1, . . . , a8) ∈ E, we
have (f1, f2, f3, f) ∈ V4 if and only if a1 + a2 = a3 + a4 = a5 + a6 = 0.
This gives 16 possibilities for f with ai ∈

{
±1

2

}
for i ∈ {1, . . . , 8}, and

10 possibilities for f where the two non-zero entries are ±1. We conclude
|π−1(v)| = 26. Set g1 = (0, 0, 0, 0, 0, 0, 1, 1), g2 = (0, 0, 0, 0, 0, 0,−1,−1),
then u = (f1, f2, f3, g1) and u′ = (f1, f2, f3, g2) are both elements in
π−1(v). By Lemma 3.3.26, we know that the fibers of α above u and
u′ are empty. Since α is injective, this implies |λ−1(v)| ≤ 24. Since λ−1(v)
is not empty, by Lemma 3.2.14, we have |λ(Z)| = |Z|

|λ−1(v)| . Combining
this, we find

|Z|
24 ≤

|Z|
|λ−1(v)| = |λ(Z)| ≤ |V3| = 1814400 = |Z|24 .

So we have equality everywhere, hence |λ−1(v)| = 24, and |λ(Z)| = |V3|,
so λ is surjective. Since W acts transitively on Z, we conclude from
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Lemma 3.2.14 that W acts transitively on V3, too. This proves (i). To
prove (ii), note that we showed that |π−1(v)| = 26 and |λ−1(v)| = 24, and
since α is injective, we have the equality |π−1(v) ∩ Y | = |λ−1(v)| = 24.
Since π is a W -map, and W acts transitively on V3, the result holds for
all elements in V3. Finally, (iii) is an easy check for the element v, after
writing down the 26 elements in π−1(v). Since W acts transitively on V3,
this holds for all elements in V3.

Proposition 3.3.29. The set V4 has two orbits under the action of W ,
which are Y and V4 \Y . We have |Y | = 43545600 and |V4 \Y | = 3628800.
An element (e1, . . . , e4) is in V4 \ Y if and only if

∑4
i=1 ei ∈ 2Λ.

Proof. From Remark 3.3.25 it follows that Y is an orbit under the ac-
tion of W on V4. Therefore O = V4 \ Y is also a W -set. Consider the
restriction π|O of π to O. Let e1, e2, e3, f1, f2 be as in Lemma 3.3.26,
and set v = (e1, e2, e3), u = (e1, e2, e3, f1), and u′ = (e1, e2, e3, f2). Then
we have v ∈ V3, and u, u′ ∈ π|−1

O (v) by Lemma 3.3.26. From Propo-
sition 3.3.28 we know that |π−1(v) ∩ Y | = 24, so

∣∣∣π|−1
O (v)

∣∣∣ = 2. This
implies π|−1

O (v) = {u, u′}. Consider the element r in W given by the
reflection in the hyperplane that is orthogonal to f1. Since e1, e1, e3 are
contained in this hyperplane, the reflection r is contained in the stabi-
lizer Wv in W of v. Moreover, since f2 = −f1 , the reflection r inter-
changes f1 and f2, hence Wv acts transitively on π|−1

O (v). Since W acts
transitively on V3 by Proposition 3.3.28, we conclude that W acts transi-
tively on O from Lemma 3.2.14. From Proposition 3.3.28 it follows that
|Y | = |V3| · 24 = 43545600, and |O| = |V3| · 2 = 3628800. It follows from
Corollary 3.3.22 that for every element (g1, g2, g3, g4) ∈ Y the sum

∑4
i=1 gi

is primitive. On the other hand, u = (e1, e2, e3, f1) is an element in O,
and we have e1 + e2 + e3 + f1 = 2 ·

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
∈ 2Λ. Since W

acts transitively on O, this finishes the proof.

Now that we proved that W acts transitively on V3, there is one last case
of Proposition 3.3.2 that we prove separately (Lemma 3.3.33). We state
two auxiliary lemmas first.

Lemma 3.3.30. Let r be a positive integer, and let G be a graph with
vertex set {v1, . . . , vr, w1 . . . , wr}, and edge set {{vi, wi} | i ∈ {1, . . . , r}}.
Let A be the automorphism group of G. For an element a ∈ A and for
i ∈ {1, . . . , r}, define an integer ai by ai = 1 if a(vi) ∈ {v1, . . . , vr}, and
ai = −1 otherwise. There exists an isomorphism ϕ : A ∼−→ µr2 o Sr, where
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µ2 is the multiplicative group with two elements and Sr the symmetric
group on r elements, acting on µr2 by permuting the coordinates, given by

ϕ(a) = ((a1, . . . , ar) , (i 7→ j for a(vi) ∈ {vj , wj})).

Proof. Let a be an element in A. Note that for all i, the image a(vi) of vi is
only connected to a(wi), so there is a j such that {a(vi), a(wi)} = {vj , wj}.
Therefore we have a group homomorphism γ : A −→ Sr, given by

a 7−→ (i 7→ j for a(vi) ∈ {vj , wj}) .

Note that γ is surjective, and its kernel consists of all elements a ∈ A such
that, for all i ∈ {1, . . . , r}, either a(vi) = vi, or a(vi) = wi. We conclude
that the kernel of γ is isomorphic to the group µr2. So we have a short
exact sequence

1 −→ µr2 −→ A
γ−→ Sr −→ 1.

Moreover, we have a section Sr −→ A, g 7−→ {vi 7→ vg(i), wi 7→ wg(i)}, so
the statement follows.

Lemma 3.3.31. Let c = {{e1, f1, }, . . . , {e7, f7}} be an element in the
set C that is defined above Lemma 3.3.15, and denote by s the set of
roots {e1, . . . , e7, f1, . . . , f7}. Let A the automophism group of the colored
graph associated to s, and let ϕ : A ∼−→ µ7

2 o S7 be the isomorphism given
in Lemma 3.3.30. Let Ws be the stabilizer in W of s. Then there is an
injective map Ws −→ A, whose image has index 2 in A, and its image
after composing with ϕ is given by{

((m1, . . . ,m7), g) ∈ µ7
2 o S7 |

7∏
i=1

mi = 1
}
.

Proof. Elements in Ws respect the dot product between roots, so we have
a map β : Ws −→ A. If an element w ∈ Ws fixes every element in s,
then it fixes a sublattice of Λ of finite index by Lemma 3.3.18, and since
Λ is torsion free this implies that w is the identity. So the action of
Ws on s is faithful, hence β is injective, and |β(Ws)| = |Ws|. Since W
acts transitively on C by Corollary 3.3.17, and |C| = 2160 by Remark
3.3.16, we have |Ws| = |Wc| = |W |

|C| = |W |
2160 = 322560. Moreover, we have

|A| = 27 ·7! = 645120, so |β(Ws)| = |Ws| = 322560 = 1
2 · |A|. Hence β(Ws)

is a subgroup of index two in A. We will now determine which subgroup.
Note that ‖e1−e2‖ =

√
2, so e1−e2 is an element e ∈ E, and the reflection
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in the hyperplane orthogonal to e gives an element in W , say r12. Note
that e1 + f1 = e2 + f2 by Remark 3.3.19, so e1 − e2 = f2 − f1. Therefore
r12 interchanges e1 with e2 and f1 with f2. Moreover, since all roots in
{e3, . . . , e7, f3, . . . , f7} are orthogonal to e, the element r12 acts trivially
on them. Analogously, for i, j ∈ {1, . . . , 7}, i 6= j, the reflection rij is an
element inWs that interchanges ei and ej , and fi with fj . Let γ : A −→ S7
be the projection of ϕ(A) to S7, then it follows that γ(β(Ws)) = S7. Now
consider for i, j ∈ {1, . . . , 7}, i 6= j, the element ei − fj . Again, this is an
element in E, and the reflection tij in the hyperplane orthogonal to it is an
element inWs interchanging ei with fj , and ej with fi, and leaving all other
roots in s fixed. It follows that the composition tij ◦rij is an element inWs

with ϕ(β(tij ◦ rij)) = ((−1,−1, 1, 1, 1, 1, 1), id) ∈ µ7
2 o S7. By composing

the automorphisms tij ◦rij for different i, j, we see that ϕ(β(Wc)) contains
all elements ((m1, . . . ,m7), g) ∈ µ7

2 oS7 with
∏7
i=1mi = 1. Therefore, the

reflections rij , tij generate a subgroup of A of order 7! · 26 = 1
2A, and we

conclude that this is all of Ws.

Corollary 3.3.32. Let K1 and K2 be cliques in Γ whose vertices corre-
spond to a 7-crosspolytope in the E8 root polytope, and let f : K1 −→ K2
be an isomorphism between them. Then f extends to an automorphism
of Λ if and only if for every subclique S = {e1, . . . , e7} of K1 of 7 vertices
that are pairwise connected with edges of color 1, the vectors

∑7
i=1 ei and∑7

i=1 f(ei) are either both in 2Λ, or neither are.

Proof. Consider the set H = {c1 . . . , c7, d1, . . . , d7}, where the elements
are defined above Lemma 3.3.15. Note that the vertices in H correspond
to a 7-crosspolytope, and since W acts transitively on the set of cliques
corresponding to 7-crosspolytopes (Corollary 3.3.17), there are elements
α, β in W such that α(K1) = β(K2) = H. So β ◦ f ◦ α−1 is an element
in the automorphism group Aut(H) of H. Of course, f extends to an
element in W if and only if β ◦ f ◦α−1 does. Moreover, since α and β are
automorphisms of Λ, the two sums

∑7
i=1 f(ei) and

∑7
i=1(β ◦ f ◦ α−1)(ei)

are either both in or both not in 2Λ. We conclude that we can reduce to
the case where K1 = K2 = H, and f is an element in Aut(H).
LetWH be the stabilizer ofH inW . By Lemma 3.3.31, there is an injective
map ψ : WH −→ Aut(H), whose image has index 2 in Aut(H). Of course,
for all elements w in the image of ψ, and for all cliques S = {s1, . . . , s7} as
in the statement, the sums

∑7
i=1 si and

∑7
i=1w(si) are either both in, or

both not in 2Λ. We will show that this completely determines the image
of ψ, that is, we will show that every element in Aut(H) \ ψ(WH) does
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not have this property for all cliques S as in the statement. To this end,
consider the element h in Aut(H) that exchanges c1 and d1, and fixes all
other vertices. Since h exchanges an odd number of ci with di, it is not in
the image of ψ. Note that S = {c1, . . . , c7} is a clique as in the statement.
The sum

∑7
i=1 ci = (5, 3, 3, 3,−1, 1, 1, 1) is an element in 2Λ, and its image

under h, which is
∑7
i=1 h(ci) = d1 +

∑7
i=2 ci = (4, 2, 4, 4,−1, 1, 1, 1), is not.

Since all elements in Aut(H)\ψ(WH) are compositions of h with elements
in WH , we conclude that for all elements a in Aut(H) \ ψ(WH), the sum∑7
i=1 a(ci) is not an element in 2Λ. Since the image of ψ consists exactly

of those elements in Aut(H) extending to an element in W , this finishes
the proof.

Lemma 3.3.33. The group W acts transitively on the set

B = {(e1, e2, e3) ∈ E3 | e1 · e2 = 0, e2 · e3 = e1 · e3 = 1}.

Proof. By Proposition 3.2.2 and Lemma 3.3.15, we have

|B| = 240 · 126 · 12 = 362880.

Let c, s, A be as defined in Lemma 3.3.31, and note that b = (e1, f1, e2) is
an element in B. Let Wb be the stabilizer in W of b. Then we have

|Wb| =
|W |
|Wb|

≥ |W |
|B|

= 1920.

We want to show that this is an equality.
Since c is the unique element in C containing e1, f1 by Lemma 3.3.15, the
stabilizer Wb of b acts on the set s. If an element w ∈ Wb fixes all the
roots in s, then it fixes a full rank sublattice of finite index in Λ, and
since Λ is torsion free this implies that w is the identity. Therefore the
action of Wb on s is faithful, so there is an injective map Wb −→ Ws.
Note that f2 is uniquely determined in s as the root that is orthogonal
to e2, so every element in Wb fixes e1, e2, f1, f2, hence Wb acts faithfully
on s′ = {e3, . . . , e7, f3, . . . , f7}. Let A′ be the automorphism group of
the colored graph associated to s′. We know there is an isomorphism
ϕ′ : A′ −→ µ5

2 o S5 by Lemma 3.3.30. Since elements in Wb respect the
dot product, we have an injective map β′ : Wb −→ A′. Let β : Ws −→ A
be the injective map from Lemma 3.3.31. together with the injective maps
Wb −→Ws and A′ −→ A, we have the following commutative diagram.
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Wb A′ µ5
2 o S5

Ws A µ7
2 o S7

β′ ϕ′

∼

β ϕ
∼

By Lemma 3.3.31, the image ϕ(β(Ws)) is a subset of index 2 in µ7
2 o S7,

given by subset
{

((m1, . . . ,m7), g) ∈ µ7
2 o S7 |

∏7
i=1mi = 1

}
. Intersecting

this subset with µ5
2 o S5 gives a subset of index 2 in µ5

2 o S5, so by the
diagram above, the image ϕ′(β′(Wb)) has index at least 2 in µ5

2 o S5. We
find |Wb| ≤ 1

2 · 2
5 · 5! = 1920, so together with the inequality above we

conclude that |Wb| = 1920. We find |Wb| = |W |
|Wb| = 362880 = |B|, and W

acts transitively on B.

We can now prove Proposition 3.3.2.

Proof of Proposition 3.3.2. Note that for a, b, c fixed and σ any
permutation of them, there is a bijection between the sets Va,b,c and
Vσ(a),σ(b),σ(c), so if we prove that W acts transitively on one of them,
then W also acts transitively on the other by Lemma 3.2.14. Therefore,
we only consider the sets Va,b,c where a ≤ b ≤ c.
There are 4 different sets with a = b = c. There are 12 different sets
where two of a, b, c are equal to each other and unequal to the third, and
4 different sets with a, b, c all distinct. So there are 20 different sets Va,b,c
with a ≤ b ≤ c.
• If Va,b,c is a non-empty set with a = −2, then every element (e1, e2, e3)
in Va,b,c has e1 = −e2, so b = −c. Therefore the set Va,b,c is empty for
(a, b, c) in

{(−2,−2,−2),(−2,−2,−1), (−2,−2, 0), (−2,−2, 1),
(−2,−1,−1), (−2,−1, 0), (−2, 0, 1), (−2, 1, 1)}.

• We have proved thatW acts transitively on the sets V−1,−1,−1 (Corollary
3.3.10), V0,0,0 (Proposition 3.3.28), V0,0,1 (Lemma 3.3.12), V0,1,1 (Lemma
3.3.33), and V1,1,1 (Proposition 3.2.12).
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• We have the following bijections.

{(e1, e2) ∈ E2 | e1 · e2 = −1} −→ V−2,−1,1, (e1, e2) 7−→ (−e1, e1, e2);
{(e1, e2) ∈ E2 | e1 · e2 = 0} −→ V−2,0,0, (e1, e2) 7−→ (−e1, e1, e2);
V0,1,1 −→ V−1,−1,0, (e1, e2, e3) 7−→ (e1,−e3, e2);
V1,1,1 −→ V−1,−1,1, (e1, e2, e3) 7−→ (e1,−e2, e3);
V0,0,1 −→ V−1,0,0, (e1, e2, e3) 7−→ (−e1, e3, e2);
V0,1,1 −→ V−1,0,1, (e1, e2, e3) 7−→ (−e3, e2,−e1);
V−1,−1,−1 −→ V−1,1,1, (e1, e2, e3) 7−→ (e1, e2,−e3).

We proved that W acts transitively on the six different sets on the left-
hand sides. From Lemma 3.2.14 it follows that W acts transitively on
V−2,−1,1, V−2,0,0, V−1,−1,0, V−1,−1,1, V−1,0,0, V−1,0,1, and V−1,1,1, too.

Since we proved that Va,b,c is either empty or W acts transitively on it for
20 different sets, we conclude that we proved the proposition.

The following corollary proves Theorem 3.1.4 for cliques of Type III.

Corollary 3.3.34. Let K1 and K2 be two cliques of type III, and let
f : K1 −→ K2 be an isomorphism between them. Then f extends to an
automorphism of Λ.

Proof. Since W acts transitively on the set of ordered sequences of n
roots for 1 ≤ n ≤ 3 by Propositions 3.3.1 and 3.3.2, there exists an
automorphism w ∈W of Λ such that w restricted to K1 equals f .

3.4 Monochromatic cliques
In this section we study the cliques of type I, that is, cliques in Γ{−2},
Γ{−1}, Γ{0}, and Γ{1}. We describe the orbits under the action of W of
sequences of roots that form a clique, thus obtaining the results in The-
orem 3.1.4 for cliques of type I (see Corollaries 3.4.5 and 3.4.9). We also
describe all maximal cliques per color. For Γ{−2} and Γ{−1}, everything
follows from the previous sections. For Γ{1} we have Proposition 3.2.12
already; we show moreover that there are no cliques of size bigger than
eight, and describe the maximal cliques in Proposition 3.4.7. Finally, in
this section we prove that W acts transitively on ordered sequences of
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length r of orthogonal roots for r ≥ 5. The result is in Proposition 3.4.4.
Throughout this section we do not use any computer.

Cliques in Γ{−2}
The maximal size of a clique in Γ{−2} is two, since such a maximal clique
consists of an element in E and its inverse (see Proposition 3.2.2). There
are therefore 120 such cliques. In Lemma 3.3.8 we showed that W acts
transitively on the set of ordered pairs {(e1, e2) ∈ E2 | e1 = −e2}, so W
acts transitively on the set of maximal cliques in Γ{−2}.

Cliques in Γ{−1}
In Γ{−1}, the maximal size of a clique is three, and there are no maxi-
mal cliques of smaller size, by Lemma 3.3.9. From Proposition 3.2.2 and
Lemma 3.3.9 it follows that there are 240·56

3! = 2240 maximal cliques. By
Corollary 3.3.10, the group W acts transitively on the set of sequences
{(e1, e2, e3) ∈ E3 | e1 · e2 = e2 · e3 = e1 · e3 = −1}, so W acts transitively
on the set of maximal cliques in Γ{−1}. By Lemma 3.3.8, the group W
acts transitively on the set {(e1, e2) ∈ E2 | e1 · e2 = −1}, so W acts also
transitively on the set of cliques of size two in Γ{−1}, of which there are
240·56

2 = 6720 (Proposition 3.2.2).

Cliques in Γ{0}
Cliques in Γ{0} are studied in [DM10], where they are called orthogonal
subsets. In their paper, the authors show that the maximal size of cliques
in Γ{0} is eight [DM10, Table 1], that two cliques of the same size r are
conjugate if r 6= 4, and that there are two orbits of cliques of size 4 [DM10,
Corollary 2.3]. In the previous section we showed that W acts transitively
on the set of ordered sequences of length at most 3 of orthogonal roots, and
that there are two orbits of sequences of length 4. In this section we use this
to conclude the same results as in [DM10] for cliques of size r ≤ 4, and we
compute the number of these cliques. Moreover, we study the action ofW
on ordered sequences of length ≥ 5 of orthogonal roots (Proposition 3.4.4),
and compute the number of cliques of size ≥ 5 (Proposition 3.4.6).

The following proposition deals with the cliques of size at most 4.

Proposition 3.4.1.

(i) There are 15120 cliques of size two in Γ{0}, and the group W acts
transitively on the set of all of them.
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(ii) There are 302400 cliques of size three in Γ{0}, and the group W acts
transitively on the set of all of them.

(iii) There are 1965600 cliques of size four in Γ{0}, and they form two
orbits under the action of W : one of size 151200, in which all cliques
have vertices whose roots sum up to a vector in 2Λ, and one of size
1814400, in which all cliques have vertices whose roots sum op to a
vector that is not in 2Λ.

Proof.

(i) We have shown that the group W acts transitively on the set

A0 = {(e1, e2) ∈ E2 | e1 · e2 = 0}

(Proposition 3.3.14), and |A0| = 240 · 126 = 30240 (Proposition 3.2.2).
It follows that there are 30240

2 = 15120 cliques of size two in Γ{0}, and
the group W acts transitively on the set of all of them.

(ii) The group W acts transitively on the set

V3 = {(e1, e2, e3) ∈ E3 | ∀i 6= j : ei · ej = 0},

and we have |V3| = 1814400 (Proposition 3.3.28 (i)). It follows that
there are 1814400

6 = 302400 cliques of size three in Γ{0}, and the group
W acts transitively on the set of all of them.

(iii) By Proposition 3.3.29 there are two orbits under the action of W
on the set

V4 = {(e1, e2, e3, e4) ∈ E4 | ∀i 6= j : ei · ej = 0};

one of size 3628800 where all elements have coordinates that sum up to
a vector that is in 2Λ, and one orbit of size 43545600 where all elements
have coordinates that sum up to a vector that is not in 2Λ. Since the
orbit in which an element is contained does not depend on the order of
its coordinates, we conclude that this also gives two orbits with the same
properties under the action of W on the set of all cliques of size four in
Γ{0}, of sizes 3628800

4! = 151200 and 43545600
4! = 1814400, respectively.

We continue by studying the sequences of orthogonal roots of length
greater than four. Recall the set V4 and its orbits under the action of W ,
given by Y of size 43545600 and O = V4 \ Y of size 3628800 (shown in
Proposition 3.3.29).
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Lemma 3.4.2. For an element y = (e1, . . . , e4) ∈ Y , define the set

Cy = {e ∈ E | e · ei = 0 for i ∈ {1, 2, 3, 4}}.

The following hold.
(i) The set Cy is the union of four sets {f1,−f1}, {f2,−f2}, {f3,−f3},
and {f4,−f4}, with fi · fj = 0 for i 6= j. For such a set {fi,−fi}, there
is exactly one triple {ei1 , ei2 , ei3} of elements in y such that the per-
mutations of (ei1 , ei2 , ei3 , fi) (or equivalently of (ei1 , ei2 , ei3 ,−fi)) form
elements in O. Moreover, for j 6= i, and j1, j2, j3 such that the permu-
tations of (ej1 , ej2 , ej3 , fj) form elements in O, the sets {ei1 , ei2 , ei3} and
{ej1 , ej2 , ej3} are different.

(ii) The stabilizer of y is generated by the reflections in the hyperplanes
orthogonal to fi for i ∈ {1, 2, 3, 4}.

Proof. Since W acts transtively on Y , it suffices to show this for a fixed
element y ∈ Y . Set

e1 = (1, 1, 0, 0, 0, 0, 0, 0) , e3 = (0, 0, 0, 0, 1, 1, 0, 0) ,
e2 = (0, 0, 1, 1, 0, 0, 0, 0) , e4 = (1,−1, 0, 0, 0, 0, 0, 0) .

Then (e1, e2, e3, e4) is an element in V4 and since
∑4
i=1 ei /∈ 2Λ, it is an

element in Y as well by Proposition 3.3.29. Take e = (a1, . . . , a8) ∈ E
such that e · ei = 0 for i ∈ {1, 2, 3, 4}. Then we have a1 + a2 = a1 − a2 =
a3 + a4 = a5 + a6 = 0. We find the following possibilities.

± f1 = ± (0, 0, 0, 0, 0, 0, 1,−1) , ± f3 = ± (0, 0, 1,−1, 0, 0, 0, 0) ,
± f2 = ± (0, 0, 0, 0, 1,−1, 0, 0) , ± f4 = ± (0, 0, 0, 0, 0, 0, 1, 1) .

It is an easy check that fi · fj = 0 for i 6= j, and for i, k ∈ 1, 2, 3, 4, the
sum

(∑
j 6=i ej

)
±fk is contained in 2Λ if and only if i = k. This proves (i).

We continue with (ii). Take i ∈ {1, 2, 3, 4}. Since fi is orthogonal to the
elements in y the reflection ri in the hyperplane orthogonal to fi is an
element of Wy. For i 6= j, the reflections ri and rj commute, since fi and
fj are orthogonal. Therefore the elements r1, r2, r3, r4 generate a subgroup
of Wy of order 16. Since we have

|Wy| =
|W |
|Y |

= 696729600
43545600 = 16,

they generate the whole group Wy.
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Corollary 3.4.3. Set n5 = 1, n6 = 3, n7 = 7, and n8 = 14. Let K be
a clique of size r ∈ {5, 6, 7, 8} in Γ{0}. Then the number of sets of four
vertices e1, e2, e3, e4 in K such that the permutations of (e1, e2, e3, e4) are
elements in O is equal to nr.

Proof. First let K be a clique of size 5 in Γ{0}. Assume in contradiction
that there are two distinct subsets, say y1, y2, of four vertices in K that
form an element in O. Then there are three vertices of K, say e1, e2, e3,
that are contained both in y1 and y2. Write y1 = {e1, e2, e3, f1} and
y2 = {e1, e2, e3, f2}. By applying Proposition 3.3.28 (iii) to the triple
(e1, e2, e3), it follows that f1 = −f2, so f1 · f2 = −2. But this gives a
contradiction, since f1, f2 are both in K. So the number of sets of four
vertices in K that form an element in O is at most 1, which means that
there is at least one subset {g1, g2, g3, g4} of K of four roots such that
(g1, g2, g3, g4) is an element in Y . For the fifth element in K, say g5, it
follows from the previous lemma that there is exactly one triple {gα, gβ, gγ}
of elements in {g1, . . . , g4} that it forms an element in O with. We conclude
that there is exactly 1 set of four vertices in K that form an element in O;
this proves the statement for r = 5.
We proceed by induction. Take s ∈ {6, 7, 8}. Assume that the statement
holds for 5 ≤ r < s, and let K = {e1, . . . , es} be a clique of size s in Γ{0}.
By induction we know that {e1, . . . , es−1} contains ns−1 subsets of size four
that form an element in O. That means that there are

(s−1
4
)
−ns−1 subsets

of size four in {e1, . . . , es−1} that form an element in Y . By Lemma 3.4.2,
each of these

(s−1
4
)
− ns−1 subsets contains exacty three elements that,

together with es, form an element in O. Let d1, d2, d3 be three elements in
{e1, . . . , es−1} such that (d1, d2, d3, es) is an element in O. Then for every
element d ∈ {e1, . . . , es−1} \ {d1, d2, d3}, the set {d1, d2, d3, es, d} forms a
clique of size 5 in Γ{0}, and since n5 = 1, it follows that (d1, d2, d3, d) is an
element in Y . This means that every set of three roots in {e1, . . . , es−1}
that forms an element in O with es forms an element in Y with all other
roots in {e1, . . . , es−1}. Since every set of three roots in {e1, . . . , es−1} is
contained in (s − 1) − 3 subsets of size four of {e1, . . . , es−1}, this gives
(s−1

4 )−ns−1
s−4 distinct sets of three that form an element in O with es. In

total this gives ns−1 + (s−1
4 )−ns−1
s−4 sets of four vertices in K that form an

element in O. This is exactly equal to ns for s = 6, 7, 8.

For 1 ≤ r ≤ 8, let Vr be the set

Vr = {(e1, . . . , er) ∈ Er | ∀i 6= j : ei · ej = 0}.
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Proposition 3.4.4. For 5 ≤ r ≤ 8, two elements (e1, . . . , er), (f1, . . . , fr)
in Vr are in the same orbit under the action of W if and only if for all
1 ≤ i < j < k < l ≤ r, the elements (ei, ej , ek, el) and (fi, fj , fk, fl) are
conjugate in V4 under the action of W .

Proof. For 5 ≤ r ≤ 8, define the relation ∼ on Vr by (e1, . . . , er) ∼
(f1, . . . , fr) if and only if for all 1 ≤ i < j < k < l ≤ r, the elements
(ei, ej , ek, el) and (fi, fj , fk, fl) are conjugate in V4. Note that ∼ is an
equivalence relation on Vr, and the group W acts on the equivalence
classes. Our goal is to show that each equivalence class is an orbit in
Vr under the action of W . We do this by induction on r.
For r = 5, let X5 ⊂ V5 be an equivalence class with respect to ∼. We
distinguish two cases. If for every element in X5 the first four coordi-
nates form an element in Y , we let p : X5 −→ Y be the projection to the
first four coordinates. Note that this is surjective by Lemma 3.4.2. Set
y = (y1, . . . , y4) ∈ Y . Since the elements in the fiber p−1(y) are equivalent
under ∼, there are exactly two elements (y1, . . . , y4, f), (y1, . . . , y4,−f) in
p−1(y) by Lemma 3.4.2 (i). Moreover, the stabilizer Wy acts transitively
on these two elements by Lemma 3.4.2 (ii). From Lemma 3.2.14 it follows
that W acts transitively on X5. If, on the other hand, for every element
in X5 the first four coordinates form an element in O, then it follows from
Corollary 3.4.3 that the last four coordinates of every element in X5 form
an element in Y . We now let p : X5 −→ Y be the projection to the last
four coordinates, and the proof is the same.
Now assume that r > 5, and that each equivalence class in Vr−1 is an
orbit under the action of W . Let Xr be an equivalence class in Vr, and
pr : Xr −→ Vr−1 the projection to the first r − 1 coordinates. Then W
acts on pr(Xr), and pr(Xr) is contained in an equivalence class Xr−1 with
respect to ∼ in Vr−1. Since W acts transitively on Xr−1 by hypothesis,
it follows that pr(Xr) = Xr−1, and W acts transitively on pr(Xr). Since
r > 5, by Corollary 3.4.3 there exist i, j, k, l ∈ {1, . . . , r − 1} such that for
all elements (e1, . . . , er) ∈ Xr we have (ei, ej , ek, el) ∈ Y . Fix such i, j, k, l,
and let v = (v1, . . . , vr−1) be an element in pr(Xr). Then (vi, vj , vk, vl)
is an element in Y . Let (v1, . . . , vr−1, f), (v1, . . . , vr−1, g) be elements in
the fiber p−1

r (v). Since (v1, . . . , vr−1, f) is equivalent to (v1, . . . , vr−1, g)
with respect to ∼, by applying Lemma 3.4.2 to (vi, vj , vk, vl) we see that
f = −g, and the fiber p−1

r (v) consists of the two elements (v1, . . . , vr−1, f)
and (v1, . . . , vr−1,−f). Moreover, the reflection in the hyperplane orthog-
onal to f fixes v1, . . . , vr−1, hence is an element in the stabilizer of v that
switches f and −f . So the stabilizer of v acts transitively on p−1

r (v), and
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again from Lemma 3.2.14 we conclude thatW acts transitively on Xr.

Corollary 3.4.5. Let K1 and K2 be cliques in Γ{0}, and f : K1 −→ K2
an isomorphism between them. Then f extends to an automorphism of Λ
if and only if for every subclique S of size 4 in K1, the image f(S) in K2
is conjugate to S under the action of W .

Proof. If K1 and K2 have size ≤ 3, then it follows from Corollary 3.3.34
that f always extends. From Proposition 3.4.4 it follows that if K1 and
K2 have size at least four, the isomorphism f extends to an element in W
exactly when f sends every sequence of four roots that form an element
in V4 to a conjugate element in V4. By Proposition 3.3.29, there are two
orbits of ordered sequences of four pairwise orthogonal roots, that do not
depend on the order of the roots. We conclude that if S and f(S) are
conjugate under the action of W for every set S of four vertices in K1,
there exists an automorphism w ∈ W of Λ such that w restricted to K1
equals f .

Theorem 3.4.6. In Γ{0}, the following hold.
(i) There are no maximal cliques of size smaller than eight.

(ii) There are 3628800 cliques of size five, 3628800 cliques of size six,
2073600 cliques of size seven, and 518400 cliques of size eight.

(iii) The group W acts transitively on the cliques of size 5.

Proof.

(i) We know that every root in E is orthogonal to 126 other roots
(Proposition 3.2.2). Moreover, we know that in Γ{0} every clique of
size 2 extends to a clique of size 3 (Lemma 3.3.27), and every clique
of size 3 extends to a clique of size 4 (Proposition 3.3.28 (ii)). Since
n5 = 1 <

(5
4
)
by Corollary 3.4.3, every clique of size 5 in Γ{0} contains

both a subclique whose vertices form an element in O, and a subclique
whose vertices form an element in Y . Since W acts transitively on O
and on Y , and V4 = O ∪ Y , this means that every clique of size 4 in
Γ{0} extends to a clique of size 5. Moreover, by Lemma 3.4.2 (i), every
extension of a clique of size 4 whose vertices form an element in Y is
contained in a clique of size 8. Since every clique of size at least 5
contains a clique of size 4 whose vertices form an element in Y , there
are no maximal cliques of size smaller than 8.
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(ii) By Lemma 3.4.2, if we fix an element y = (e1, e2, e3, e4) ∈ Y , there
are exactly 8 elements in V5, and 8 ·6 elements in V6, and 8 ·6 ·4 elements
in V7, and 8 · 6 · 4 · 2 elements in V8, that have ei as the ith coordinate
for i ∈ {1, 2, 3, 4}. We call this number mr for r = 5, 6, 7, 8. For all
5 ≤ r ≤ 8, for S a clique of size r, it follows from Corollary 3.4.3 that
S contains

(r
4
)
− nr cliques of size 4 that, together, form 4! · (

(r
4
)
− nr)

different elements in Y ; for such a subclique of size 4 in S, the other
r − 4 elements can be permuted in (r − 4)! ways. For all 5 ≤ r ≤ 8, let
Dr be the set of cliques of size r in Γ{0}. It follows that we have

|Dr| =
|Y | ·mr

4! · (
(r
4
)
− nr) · (r − 4)! .

We find the following results.

|D5| =
|Y | · 8
4! · 4 = 3628800, |D6| =

|Y | · 8 · 6
4! · 12 · 2 = 3628800,

|D7| =
|Y | · 8 · 6 · 4
4! · 28 · 3! = 2073600, |D8| =

|Y | · 8 · 6 · 4 · 2
4! · 56 · 4! = 518400.

(iii) Let K1 = {e1, . . . , e5}, K2 = {f1, . . . , f5} be two cliques in Γ{0}.
We have n5 = 1 by Corollary 3.4.3, so without loss of generality we
can assume that e1, e2, e3, e4 and f1, f2, f3, f4 are the unique four ele-
ments in K1 and K2, respectively, that form an element in O. Then
(e1, e2, e3, e4, e5) and (f1, f2, f3, f4, f5) are conjugate under the action of
W by Proposition 3.4.4, hence so are K1 and K2.

Cliques in Γ{1}
We know that cliques in Γ{1} form k-simplices that are k-faces of the E8
root polytope (Proposition 3.2.4), hence Corollary 3.2.7 states how many
cliques of size n there are in Γ{1} for n ≤ 8. Moreover, we know that W
acts transitively on these cliques for n ≤ 8, n 6= 7 (Proposition 3.2.12).
Proposition 3.4.7 shows that there are no cliques of size bigger than eight
in Γ{1}, and that there are two orbits of cliques of size seven (which was
already known, for example by [Cox30] and [Man86]); it shows that all
maximal cliques are of size 7 or 8.

Proposition 3.4.7. In Γ{1}, the following hold.
(i) There are only maximal cliques of size 7 and 8.
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(ii) There are two orbits of cliques of size 7 in Γ{1}; one of size 138240,
which is given by non-maximal cliques, and one of size 69120, which is
given by maximal cliques. A clique of size seven in Γ{1} is maximal if
and only if the sum of its vertices is an element in 2Λ.

(iii) There are 17280 cliques of size 8.

Proof. Consider the clique of size six in Γ{1} given by {e1, . . . , e6}, where
we define

e1 = (1, 1, 0, 0, 0, 0, 0, 0) , e4 = (1, 0, 0, 0, 1, 0, 0, 0)
e2 = (1, 0, 1, 0, 0, 0, 0, 0) , e5 = (1, 0, 0, 0, 0, 1, 0, 0)
e3 = (1, 0, 0, 1, 0, 0, 0, 0) , e6 = (1, 0, 0, 0, 0, 0, 1, 0) .

SinceW acts transitively on the set of cliques of size smaller than 6 in Γ{1}
by Proposition 3.2.12, it follows that every clique of size smaller than 6 in
Γ{1} is contained in a clique of size 6 in Γ{1}. The elements in E that have
dot product one with all e1, . . . , e6 are given by c1 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
,

c2 = (1, 0, 0, 0, 0, 0, 0, 1), and c3 = (1, 0, 0, 0, 0, 0, 0,−1).Note that c1·c2 = 1
and c3 · c1 = c3 · c2 = 0, so {e1, . . . , e6, c1, c2} is a maximal clique of size 8
in Γ{1}, and {e1, . . . , e6, c3} is a maximal clique of size 7 in Γ{1}. Since W
acts transitively on the cliques of size 6 in Γ{1} by Proposition 3.2.12, all
maximal cliques in Γ{1} are of size 7 or 8. This proves part (i). Moreover,
it follows that every non-maximal clique of size 7 is contained in a unique
clique of size 8, so there are 138240

8 = 17280 cliques of size 8. This proves
part (iii). We will now prove (ii). From part (i) it follows that there
exist maximal and non-maximal cliques of size 7 in Γ{1}. It is obvious
that they can not be in the same orbit under the action of W . Moreover,
there are two orbits of ordered sequences of length 7, hence at most two
orbits of cliques of size 7 by Proposition 3.2.12. We conclude that the
orbits are given exactly by the maximal cliques and the non-maximal
cliques. Since there are 483840 cliques of size 6 (Corollary 3.2.7), from
the above it follows that there are 483840·2

7 = 138240 non-maximal cliques,
and 483840·1

7 = 69120 maximal cliques. Now consider the set {e1, . . . , e7},
where the elements are defined above Lemma 3.3.15. This is a clique of
size 7 in Γ{1}, and it is not hard to check that it is maximal. Moreover,
we have

7∑
i=1

ei = (5, 3, 3, 3, 1, 1, 1, 1) ∈ 2Λ.
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Since W acts transitively on all maximal cliques of size 7 in Γ{1}, for all
such cliques the sum of the vertices is an element in 2Λ. On the other
hand, consider the set d = {d1, . . . , d7} as defined above Lemma 3.3.15.
This is a non-maximal clique of size 7 in Γ{1}, since the union of d with the
root

(
−1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
is a clique of size 8 in Γ{1}. Moreover,

we have
7∑
i=1

di = (2, 4, 4, 4, 1,−1,−1,−1) 6∈ 2Λ.

Since W acts transitively on all non-maximal cliques of size 7 in Γ{1}, for
all such cliques the sum of the vertices is not an element in 2Λ.

Remark 3.4.8. Note that 138240 + 69120 = 207360, which is the total
number of cliques of size 7 by Corollary 3.2.7.

Corollary 3.4.9. Let K1 and K2 be cliques in Γ{1}, and f : K1 −→ K2
an isomorphism between them. If K1 and K2 have size unequal to 7, then
f extends to an automorphism of Λ. If K1 and K2 have size 7, then f
extends if and only if the sum of the vertices of K1 and the sum of the
vertices of K2 are either both in 2Λ, or both not.

Proof. Another way of saying that the morphism f extends is that if
{e1, . . . , er} is the set of vertices in K1, then the sequences (e1, . . . , er) and
(f(e1), . . . , f(er)) are conjugate. By Proposition 3.2.12, for r ≤ 8, r 6= 7,
there is only one orbit of ordered sequences of length r of roots that have
pairwise dot product 1. This implies that f extends to an element in W
if K1, K2 have size unequal to 7. Furthermore, by the same proposition,
there are two orbits of ordered sequences of roots of length 7. By Propo-
sition 3.4.7, there two orbits of cliques of size 7, that are distinguished by
whether the sum of the 7 roots is an element in 2Λ or not. We conclude
that the two orbits of ordered sequences are distinguished in the same
way. This implies that f extends if and only if the sum of the vertices in
K1 and the sum of the vertices in f(K1) = K2 are both in 2Λ or both
not.

Remark 3.4.10. We know that the cliques of size 7 in Γ{1} are 6-faces
of the E8 root polytope. We can describe the two orbits of these cliques
in this framework as well. A 6-face of the polytope is an intersection
of two facets. There are two types of facets of the E8 root polytope:
7-crosspolytopes and 7-simplices (Proposition 3.2.5). Since the maximal
cliques of size 7 in Γ{1} are not contained in a 7-simplex, these are exactly
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the intersections of two 7-crosspolytopes.
Consider the set c = {c1, . . . , c7, d1, . . . , d7}, defined above Lemma 3.3.15.
Note that d = {d1, . . . , d7} is a non-maximal clique of size 7 in Γ{1} that
is contained in the 7-crosspolytope with vertices in c, but also in the
7-simplex with vertices d ∪

{(
−1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)}
. It follows

that every non-maximal clique of size 7 in Γ{1} is the intersection of a
7-crosspolytope with a 7-simplex.
From this it also follows that two 7-simplices in the E8 root polytope never
intersect.

Remark – analogy with geometry 3.4.11. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field, and I the set of
exceptional classes in Pic X. Through the bijection between I and E,
cliques in Γ{1} are related to sets of exceptional classes that are pairwise
disjoint. These are called exceptional sets, and can be blown down so that
we obtain a del Pezzo surface of higher degree (Lemma 1.2.8). Since a del
Pezzo surface has degree at most 9 (in which case it is isomorphic to P2),
it is clear that the maximal size of a clique in Γ{1} is eight. We can also
describe the two orbits of size 7 in this setting; cliques that are maximal
correspond to exceptional sets that blow down to a del Pezzo surface of
degree 8 that is isomorphic to P1 × P1, and cliques that are not maximal
correspond to exceptional sets that blow down to a del Pezzo surface of
degree 8 that is isomorphic to P1 blown up in one point [Man86, remark
below Corollary 26.8].

3.5 Maximal cliques
In this section we describe all maximal cliques in Γc for c 6= {−1, 0, 1}
(cliques of type IV), and their orbits under the action of W . Note that
Γ−1,0,1 is the graph Γ after removing all edges between roots and their
inverses. This means that the maximal cliques in Γ−1,0,1 are all of size
120: for each root you can either choose the root or its inverse. Therefore
there are 2120 maximal cliques in Γ−1,0,1, which gives at least

⌈
2120

|W |

⌉
=

1907810427151244719477695595 orbits in the set of maximal cliques under
the action of W . Because of the size of these cliques and their orbits, we
did not compute the orbits.

In the first two subsections of this section we describe all maximal cliques
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in Γ{−2}, Γ{−1}, Γ{0}, Γ{1}, Γ{−2,−1}, Γ{−2,1}, Γ{−2,0}, and Γ{−2,−1,0,1} = Γ.
Cliques in Γ{−2,−1} and Γ{−2,1} are monochromatic (Lemma 3.5.5), and
maximal cliques in Γ{−2,0} are in bijection with maximal cliques in Γ{0}
(Lemma 3.5.7). Therefore, everything before Section 3.5.3 follows from
results in Section 3.4 and is done without a computer. From Section 3.5.3
onwards, we used magma for some computations. The code that we used
can be found in [Codb].

Remark 3.5.1. Because of the relation to del Pezzo surfaces, the max-
imal cliques in Γ{−2,0} and Γ{−1,0} are of special interest to us, which is
explained in Remark 3.5.4. For these two graphs we have extra results in
Sections 3.5.2 and 3.5.3: we compute the structure of the largest cliques
in the graphs in Propositions 3.5.9 and 3.5.23, and we show that for these
largest cliques, their stabilizer in W acts transitively on the clique itself
(Corollaries 3.5.12 and 3.5.25).
Most of the results in Section 3.5.2 were already proven in terms of del
Pezzo surfaces by the same author in [Win14]; results 3.5.7 – 3.5.14 cor-
respond to results 4.8, 4.10, 4.11, and 4.16–4.20 in [Win14]. Moreover,
Proposition 3.5.24 and Corollary 3.5.25 are the same as Proposition 4.27
and Corollary 4.28 in [Win14]. We decided to repeat these results here
for completeness, and to rephrase the results in terms of the roots in E8.
Besides this, the techniques in Sections 3.5.2 and 3.5.3 show how one could
prove similar results for graphs with other colors.

The main results of this section are summarized in the tables in Ap-
pendix A and Remark 3.6.1.

Notation 3.5.2. To denote cliques of Γ in a compact way, we order the
root system E as follows. Roots of the form

(
±1

2 , . . . ,±
1
2

)
are ordered lex-

icographically and denoted by numbers 1−128; for example,
(
−1

2 , . . . ,−
1
2

)
is number 1, and

(
1
2 , . . . ,

1
2

)
number 128. Roots that are permutations of

(±1,±1, 0, 0, 0, 0, 0, 0) are ordered lexicographically and denoted by the
numbers 129 − 240; for example, (−1,−1, 0, 0, 0, 0, 0, 0) is number 129,
and (1, 1, 0, 0, 0, 0, 0, 0) is number 240.

The table in Appendix A contains the following information.

Notation 3.5.3.
Graph: a graph Γc where c is a set of colors in {−2,−1, 0, 1}.
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K: a clique in Γc; we denote vertices by their index as in Notation 3.5.2.
|K|: the size of K.
|WK |: the size of the stabilizer of clique K in the group W .
|Aut(K)|: the size of the automorphism group of K as a colored graph.
#O: the number of orbits of the set of all maximal cliques of size |K| in
Γc under the action of W .

For each graph Γc, the list of cliques in Γc in the table in Appendix A gives
exactly one representative for each orbit of the set of maximal cliques in Γc
under the action ofW . The proofs of these results are in Proposition 3.5.6,
Corollary 3.5.16, Proposition 3.5.28, Lemma 3.5.30, Proposition 3.5.33,
and Proposition 3.5.35.

The following remark shows the connection between del Pezzo surfaces
and cliques in Γ{−2,0} and Γ{−1,0}.

Remark – analogy with geometry 3.5.4. Let X be a del Pezzo
surface of degree 1 over an algebraically closed field, and let I be the set
of exceptional classes in Pic X. The question that led us to study the
E8 root system was how many exceptional curves on X go through the
same point (see Chapter 4; the following is also stated in Proposition 4.2.4
and Remark 4.2.5). Recall that the linear system | − 2KX | realizes X as
a double cover of a cone in P3, ramified over a sextic curve B that does
not contain the vertex of the cone (see Section 1.4.1). There are 120
hyperplanes that are tritangent to B, and such a hyperplane pulls back to
the sum of two elements in I that intersect with multiplicity 3. It follows
that two elements in I intersecting with multiplicity 3 correspond to curves
on X intersecting in 3 points on the ramification curve. Conversely, if an
element c in I corresponds to a curve on X that goes through a point P
on the ramification curve, then the unique element c′ ∈ I with c · c′ = 3
corresponds to a curve on X going through P as well.
Through the bijection I −→ E, c 7−→ c+KX , cliques in Γ that correspond
to sets of pairwise intersecting lines on X have edges of colors −2,−1, 0.
Since elements in I with intersection multiplicity 3 correspond to two roots
in E with dot product −2, it follows that a set of lines on X that all go
through one point on the ramification curve forms a clique in Γ{−2,0}, and
a set of lines on X that all go through one point outside the ramification
curve forms a clique in Γ{−1,0}. This motivates why we have studied these
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two graphs extensively, and especially the biggest cliques in them (with
respect to number of vertices).

3.5.1 Maximal cliques in Γ{−2}, Γ{−1}, Γ{1}, Γ{−2,−1}, Γ{−2,1},
and Γ{−2,−1,0,1}

Lemma 3.5.5. Cliques in Γ{−2,−1} and in Γ{−2,1} are monochromatic.

Proof. For an element e ∈ E, its inverse −e is the unique element inter-
secting it with multiplicity −2 (Proposition 3.2.2). Take e, f ∈ E with
e ·f = −1, then −e ·f = 1, hence e, f,−e do not form a clique in Γ{−2,−1}.
Therefore all cliques in Γ{−2,−1} are monochromatic. Analogously, the
cliques in Γ{−2,1} are monochromatic.

Proposition 3.5.6. For

c ∈ {{−2}, {−1}, {1}, {−2,−1}, {−2, 1}, {−2,−1, 0, 1}},

the table in Appendix A gives the complete list of orbits of the maximal
cliques in Γc, as well as a correct representative for each orbit, the size of
its stabilizer in W , and the size of its automorphism group.

Proof. We showed in Section 3.4 that all maximal cliques in Γ{−2} have
size 2, and that they form one orbit of size 120. We also showed that all
maximal cliques in Γ{−1} have size 3, and they form one orbit of size 2240.
In Proposition 3.4.7 we showed that there are two orbits of maximal cliques
in Γ{1}; one of size 69120, which consists of cliques of size 7, and one of
size 17280, which consists of cliques of size 8. For Γ{−2,−1} and Γ{−2,1} we
proved that all cliques are monochromatic in Lemma 3.5.5, so the maxi-
mal cliques and their orbits are found by looking at the monochromatic
subgraphs Γ{−2}, Γ{−1}, and Γ{1}.
It is an easy check that for these five graphs, the cliques in the table are
correct representatives of the orbits. The sizes of their stabilizers are found
by dividing the order of W by the size of their orbit. Since all the cliques
in these five graphs are monochromatic, their automorphism group is the
permutation group on their vertices.
Finally, note that Γ{−2,−1,0,1} = Γ. The only maximal clique in Γ{−2,−1,0,1}
is therefore the whole graph, which forms an orbit of size 1 under the ac-
tion of W .
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3.5.2 Maximal cliques in Γ{0} and Γ{−2,0}

The following lemma describes the maximal cliques in Γ{−2,0}.

Lemma 3.5.7. In Γ{−2,0}, the following hold.
(i) The maximal size of a clique in Γ{−2,0} is 16, and there are no
maximal cliques of smaller size.

(ii) The set of maximal cliques in Γ{−2,0} is given by

{{e1, . . . , e8,−e1, . . . ,−e8} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

Proof. By Theorem 3.4.6, all maximal cliques in Γ{0} are of size 8. Let
{e1, . . . , e8} be a maximal clique in Γ{0}. Then {e1, . . . , e8,−e1, . . . ,−e8}
is a clique in Γ{−2,0} of size 16. Now assume that {c1, . . . , cr} is a clique
in Γ{−2,0} of size bigger than 16. Since edges of color −2 connect a root
and its inverse, the clique {c1, . . . , cr} contains a subclique of size at least⌈
r
2
⌉
with only edges of color 0. But this would give a clique in Γ{0} of

size at least
⌈

17
2

⌉
= 9, contradicting Theorem 3.4.6. We conclude that the

maximal size of a clique in Γ{−2,0} is 16. Now assume that S is a maximal
clique in Γ{−2,0} of size smaller than 16. Let K be the biggest (with
respect to number of vertices) subclique of S with only edges of color 0.
Let K ′ be a maximal clique in Γ{0} containing K, so K ′ has size 8. Then
the clique consisting of all vertices of K ′ and their inverses is a clique in
Γ{−2,0} of size 16 that strictly contains S, contradicting the maximality
of S. We conclude that there are no maximal cliques of size smaller than
16 in Γ{−2,0}, concluding the proof of (i). Part (ii) is now obvious.

To show that the group W acts transitively on the maximal cliques in
Γ{−2,0}, we use the following lemma, which builds on results in previous
sections. Recall the set Y as defined above Lemma 3.3.21.

Lemma 3.5.8. The following hold.
(i) For every element y = (e1, . . . , e4) ∈ Y , there is a unique maximal
clique in Γ{−2,0} containing e1, . . . , e4.

(ii) Every maximal clique in Γ{−2,0} contains exactly 896 distinct subsets
of four roots e1, . . . , e4 such that (e1, . . . , e4) is an element in Y .

91



3. THE ACTION OF THE WEYL GROUP

Proof.

(i) From Lemma 3.4.2 it follows that an element in Y is contained in a
unique clique of size 8 in Γ{0}. But such a clique extends uniquely to a
maximal clique in Γ{−2,0} by adding all inverses of the roots.

(ii) By Lemma 3.5.7, a maximal clique in Γ{−2,0} consists of eight pair-
wise orthogonal roots and their inverses. Let K be such a clique. Eight
pairwise orthogonal roots in K contain

(8
4
)
− 14 = 56 distinct sub-

sets of four roots that form an element in Y by Corollary 3.4.3. Let
D = {e1, e2, e3, e4} be such a subset. If we replace a root in D by its
inverse, then the roots in D still form an element in Y . This gives
56 · 24 = 896 distinct subsets of K of that form an element in Y . Since
a set of four roots that contains both a root and its inverse never forms
an element in Y , these are all of them.

Let S be the set of all cliques of size 16 in Γ{−2,0}. By Lemma 3.5.7, this
is exactly the set of maximal cliques in Γ{−2,0}. By Lemma 3.5.8 we have
a surjective map

s : Y −→ S.

Corollary 3.5.9. The group W acts transitively on S, and we have
|S| = 2025.

Proof. Since the map s is surjective and W acts transitively on Y (Propo-
sition 3.3.29), it follows from Lemma 3.2.14 thatW acts transitively on S.
From Lemma 3.5.8 it follows that |S| = |Y |

|896·4!| = 2025.

Let K be an element of S, and WK its stabilizer in W . Now that we fully
described all maximal cliques in Γ{−2,0} and the action of W on the set
of these maximal cliques, we finish the study of Γ{−2,0} by studying the
action of WK on K, and concluding that W acts transitively on cliques of
sizes 6, 7, 8 in Γ{0} in Proposition 3.5.15. Consider the sets

J1 = {(e1, e2, e3) ∈ K3 | e1 · e2 = e1 · e3 = e2 · e3 = 0},

and
J2 = {(e1, e2) ∈ K2 | e1 · e2 = 0}.

Proposition 3.5.10. The group WK acts transitively on J1.
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Proof. From Lemma 3.5.7 we know that K consists of eight pairwise or-
thogonal roots and their inverses, so we have |J1| = 16 · 14 · 12 = 2688.
Fix an element ι = (e1, e2, e3) in J1. We want to show that its orbit WKι
has size 2688, hence is equal to J1. Let WK,ι be the stabilizer in WK of ι.
We have |WKι| = |WK |

|WK,ι| , and

|W |
|WK,ι|

= |W |
|WK |

· |WK |
|WK,ι|

.

By Corollary 3.5.9 we have |W |
|WK | = |WK| = 2025. Moreover, we have

|W |
|WK,ι|

= |W |
|Wι|

· |Wι|
|Wι,K |

.

By Proposition 3.3.28 we have |W ||Wι| = |Wι| = 240 · 126 · 60 = 1814400.
We now compute |Wι|

|Wι,K | = |WιK|. From Proposition 3.3.28 we know
that there are 24 roots e ∈ E such that (e1, e2, e3, e) is an element in Y .
Since Wι acts transitively on those 24 roots by Proposition 3.3.29, the
orbit WιK contains the cliques s((e1, e2, e3, e)) for all 24 roots e. Now
fix e and set y = (e1, e2, e3, e), and L = s(y). From Lemma (i) we know
that L contains exactly eight roots f such that (e1, e2, e3, f) is an element
in Y . Therefore, they determine the same unique clique of size sixteen
as e. We conclude that there are 24

8 = 3 different cliques containing ι.
So we have |WιK| ≥ 3, and we find |W |

|WK,ι| ≥ 1814400 · 3 = 5443200.
It follows that |WK |

|WK,ι| ≥
5443200

2025 = 2688. Since on the other hand we
have |WK |

|WK,ι| = |WKι| ≤ |J1| = 2688, we have equality everywhere and we
conclude that WKι = J1. This finishes the proof.

Corollary 3.5.11. The group WK acts transitively on J2.

Proof. We have a projection map λ : J1 −→ J2 to the first two coordinates.
Since K consists of eight pairwise orthogonal roots and their inverses, if
we fix two elements e1, e2 such that (e1, e2) ∈ J2, there are 16 − 4 = 12
elements e ∈ K such that (e1, e2, e) is contained in J1. Therefore, λ is
surjective. From Proposition 3.5.10 and Lemma 3.2.14, it follows that
WK acts transitively on J2.

Corollary 3.5.12. The group WK acts transitively on K.
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Proof. We have a projection map λ : J2 −→ K to the first coordinate. For
every element e in K there are 14 elements c such that (e, c) ∈ J2, so λ is
surjective. From Corollary 3.5.11 and Lemma 3.2.14 it follows that WK

acts transitively on K.

Proposition 3.5.13. For n ∈ {2, 3, 5, 6, 7, 8}, the group W acts transi-
tively on the set

Dn = {{e1, . . . , en,−e1, . . . ,−en} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

Proof. For n = 2, 3, 5, this follows from the fact that W acts transitively
on the cliques of size n in Γ{0} (Propositions 3.4.1 and 3.4.6), and the
fact that there is a surjective map from the set of cliques in Γ{0} of size
n to Dn. The case n = 8 is Corollary 3.5.9. From Proposition 3.5.11, it
follows that the stabilizer WK in W of K acts transitively on the set

{(e1, e2,−e1,−e2) ∈ K4 | e1 · e2 = 0}

Since K consists of eight pairwise orthogonal roots and their inverses,
the cliques of six pairwise orthogonal roots and their inverses in K are
the complements of the cliques of two orthogonal roots and their inverses
in K, so this implies that WK acts transitively on the set of cliques of six
pairwise orthogonal roots and their inverses in K, too. The statement now
follows for n = 6 by Corollary 3.5.9. The case n = 7 is proved analogously
since we showed that WK acts transitively on K.

Remark 3.5.14. There are two orbits under the action of W on the set

{{e1, . . . , e4,−e1, . . . ,−e4} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

Indeed, this follows from Proposition 3.4.1 and the fact that there is a
surjective map from the set of cliques of size 4 in Γ{0} to this set.

As we mentioned before, the fact that W acts transitively on the set
of cliques of size r for 1 ≤ r ≤ 8 in Γ{0} is in [DM10]. The following
proposition shows how it follows from our results about Γ{−2,0} as well.

Proposition 3.5.15. for n = 6, 7, 8, the group W acts transitively on
the cliques of size n in Γ{0}.

Proof. We know that W acts transitively on the set

Dn = {{e1, . . . , en,−e1, . . . ,−en} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0}
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from Proposition 3.5.13. Let Fn be the set of cliques of size n in Γ{0}. We
have an obvious map f : Fn −→ Dn which adds adds the inverses to all
roots in an element in Fn. LetD = {e1, . . . en,−e1, . . . ,−en} be an element
in Dn and consider its fiber f−1(D) in Fn. This consists of all cliques
{±e1, . . . ,±en}, where for each root either itself or its inverse is chosen.
The stabilizer WD of D acts on f−1(D). Note that for i ∈ {1, . . . , n},
the reflection in the hyperplane orthogonal to ei switches ei and −ei and
fixes all other roots in D, hence it is an element in WD. Therefore, WD

acts transitively on f−1(D), and by Lemma 3.2.14, W acts transitively
on Fn.

Corollary 3.5.16. The table in Appendix A gives the complete list of
orbits of the maximal cliques in Γ{0} and Γ{−2,0}, as well as a correct
representative for each orbit, the size of its stabilizer in W , and the size
of its automorphism group.

Proof. Al maximal cliques in Γ{−2,0} are of size 16 (Lemma 3.5.7) and
there is only one orbit of them, of size 2025 (Corollary 3.5.9). It is an
easy check that the clique in the table is a representative of this orbit. Its
stabilizer size is |W |

|2025| = 344064. Its automorphism group is isomorphic
to µ8

2 o S8 by Lemma 3.3.30, hence has size 28 · 8!. In Theorem 3.4.6 we
showed that all maximal cliques in Γ{0} have size 8, and that there are
518400 of them. In Proposition 3.5.15 we showed that W acts transitively
on the set of these cliques. Therefore the stabilizer of the clique in the
table has size |W |

518400 = 1344. Its automorphism group is the symmetric
group on the 8 vertices.

We finish this subsection by proving Theorem 3.1.4 for maximal cliques
in Γ{−2,0}.

Lemma 3.5.17. Let K1 and K2 be two maximal cliques in Γ{−2,0}, and
let f : K1 −→ K2 be an isomorphism between them. Then f extends to
an automorphism of Λ if and only if for every subclique S of four pairwise
orthogonal roots in K1, the image f(S) in K2 is conjugate to S under the
action of W .

Proof. By Corollary 3.5.9, the group W acts transitively on the set of
maximal cliques in Γ{−2,0}. Therefore there is an element α inW such that
α(K1) = K2. So α−1◦f is an element in the automorphism group Aut(K1)
of K1. Of course, f extends to an element in W if and only if α−1 ◦ f
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does. Moreover, for every set S of four pairwise orthogonal roots, f(S) and
(α−1 ◦ f)(S) are conjugate. We conclude that we can reduce to the case
where K1 = K2, and f is an element in Aut(K1). By Lemma 3.5.7, we can
choose a subclique H = {e1, . . . , e8} of K1 of eight pairwise orthogonal
roots, such that we have K1 = {e1, . . . , e8,−e1, . . . ,−e8}. Let Aut(H)
be the automorphism group of H as colored graph, and let (Aut(K1))H
be the stabilizer of H in Aut(K1). Since for every element e ∈ K1 we
have e ∈ H or −e ∈ H, an element in Aut(H) determines a unique
element in (Aut(K1))H , and conversely, every element in (Aut(K1))H ,
when restricted to H, determines a unique element in Aut(H). So we
have an isomorphism ϕ : Aut(H) ∼−→ (Aut(K1))H . Let f be an element in
Aut(K1). Using Lemma 3.3.30, write f = a ◦ r|K1 , where a is an element
in ϕ(Aut(H)), and r is a composition of reflections ri in the hyperplanes
orthogonal to ei for certain i ∈ {1, . . . , 8}. By definition, r|K1 extends to
the element r in W , and r(S) and S are conjugate for all cliques S of four
orthogonal roots, so the statement in the lemma is true for f if and only
if it is true for a. Of course, if a extends to an automorphism of Λ, then a
and a(S) are conjugate for all subcliques S of K1 of four orthogonal roots.
Conversely, assume that a(S) and S are conjugate for all such S. Then
in particular, for every subclique S′ of size 4 in H, the sets a|H(S′) and
S′ are conjugate. From Corollary 3.4.5 it follows that a|H extends to an
element in W . Write w for an element in W with w|H = a|H . Then w|K1

and a are both elements in (Aut(K1))H , that are identical on H, hence
also on K1. We conclude that w|K1 and a are the same, so a extends to
w ∈W . This finishes the proof.

3.5.3 Maximal cliques in Γ{−1,0}

Consider the following twelve elements in E.

t1 = (1, 1, 0, 0, 0, 0, 0, 0); t7 =
(
−1

2 ,
1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
t2 = (0, 0, 1, 1, 0, 0, 0, 0); t8 =

(
−1

2 ,
1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2

)
t3 = (0, 0, 0, 0, 1, 1, 0, 0); t9 =

(
−1

2 ,−
1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2

)
t4 = (0, 0, 0, 0, 0, 0,−1, 1); t10 =

(
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
t5 =

(
−1

2 ,−
1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
; t11 =

(
1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2

)
t6 =

(
−1

2 ,
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2

)
; t12 =

(
1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2

)
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One can easily check that these twelve elements form a clique in Γ{−1,0},
depicted below (where edges of color 0 are not drawn). We call this
clique T .

t1 t5

t9

t3 t7

t11

t4 t8

t12

t2 t6

t10

-1

-1-1

-1

-1-1

-1

-1-1

-1

-1-1

The existence of this clique implies that the maximal size of cliques in
Γ{−1,0} is at least twelve. We will show that this is in fact the maxi-
mum. Moreover, we will show that all cliques of size twelve in Γ{−1,0}
are isomorphic, and that W acts transitively on the set of cliques of size
twelve (Propositions 3.5.23 and 3.5.24). To describe all maximal cliques
of smaller size in Γ{−1,0} and their orbits under the action of W , we use
magma for part of the computations.

Lemma 3.5.18. Take e1, e2, e3 ∈ E with e1 · e2 = e2 · e3 = e1 · e3 = −1.
For e ∈ E with e 6= e1, e2, e3, we have e · ei 6= 1 for all i = 1, 2, 3 if and
only if e · e1 = e · e2 = e · e3 = 0.

Proof. Take e1, e2, e3 ∈ E with e1 · e2 = e2 · e3 = e1 · e3 = −1. Then we
have ‖e1 + e2 + e3‖ = 0, so e1 + e2 + e3 = 0. For an element e ∈ E with
e 6= e1, e2, e3 we have e · ei ∈ {−2,−1, 0, 1} for i = 1, 2, 3, so e · ei 6= 1 for
i = 1, 2, 3 implies e · ei ≤ 0 for i = 1, 2, 3. But e · (e1 + e2 + e3) = e · 0 = 0,
so we have e · ei 6= 1 for i = 1, 2, 3 if and only if e · ei = 0 for i = 1, 2, 3.

Lemma 3.5.19. The maximum size of a clique in Γ{−1,0} that contains
e1, e2, e3 ∈ E with e1 · e2 = 0 and e1 · e3 = e2 · e3 = −1, is ten.

Proof. Define elements e1 = (1, 1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1, 1, 0, 0, 0, 0),
and e3 = (−1, 0,−1, 0, 0, 0, 0, 0). By Lemma 3.3.33, it is enough to prove
that the maximal size of all cliques in Γ{−1,0} containing e1, e2, e3 is ten.
Let A be the set

{e ∈ E | for i ∈ {1, 2, 3} : e · ei ∈ {−1, 0}}.

For an element e = (a1 . . . , a8) in A, we have a1 + a2 in {−1, 0}, a3 + a4
in {−1, 0}, and −a1 − a3 in {−1, 0}. This gives the following possibilities
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for (a1, a2, a3, a4):

(a1, a2, a3, a4) =
(
−1

2 ,±
1
2 ,

1
2 ,−

1
2

)
(16 roots)(

1
2 ,−

1
2 ,±

1
2 ,−

1
2

)
(16 roots)(

1
2 ,−

1
2 ,−

1
2 ,

1
2

)
(8 roots)

(0,−1, 0,−1) (1 roots)
(0, 0, 1,−1) (1 root)
(1,−1, 0, 0) (1 root)
(0,−1, 0, 0) (8 roots)
(0, 0, 0,−1) (8 roots)
(0, 0, 0, 0) (24 roots)

We conclude that the cardinality of A is 83. As it is too tedious to compute
the maximal size of the cliques in Γ{−1,0} with only vertices in A by hand,
we compute this with magma. This number is seven, which implies that
the maximal size of a clique in Γ{−1,0} containing e1, e2 and e3 is ten.

Lemma 3.5.20. The maximum size of a clique in Γ{−1,0} that contains a
clique of five pairwise orthogonal vertices is ten.

Proof. Consider the set

V5 = {{e1, . . . , e5} | ∀i : ei ∈ E; ∀i 6= j : ei · ej = 0} .

The group W acts transitively on V5 by Theorem 3.4.6, so it suffices to
take

e1 = (1, 1, 0, 0, 0, 0, 0, 0); e4 = (0, 0, 0, 0, 0, 0, 1, 1);
e2 = (0, 0, 1, 1, 0, 0, 0, 0); e5 = (0, 0, 0, 0, 0, 0, 1,−1),
e3 = (0, 0, 0, 0, 1, 1, 0, 0);

and show that a clique in Γ{−1,0} containing e1, . . . , e5 has size at most
ten. Let A be the set

{e ∈ E | for i ∈ {1, . . . , 5} : e · ei ∈ {−1, 0}}.

For an element e = (a1, . . . , a8) ∈ A, we have ai + ai+1 ∈ {−1, 0} for
i ∈ {1, 3, 5, 7}, and a7 − a8 ∈ {−1, 0}. If e is of the form

(
±1

2 , . . . ,±
1
2

)
,
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then a7 + a8, a7 − a8 ∈ {−1, 0} implies that a7 = −1
2 . Moreover, for

i ∈ {1, 3, 5}, we have either ai = ai+1 = −1
2 or ai = −ai+1. This gives

three possibilities for each tuple (ai, ai+1) for i ∈ {1, 3, 5}, and a8 is then
determined since an even number of the entries of e should be negative.
We find 33 = 27 possibilities.
If e has two non-zero entries that are ±1, then a7 + a8, a7 − a8 ∈ {−1, 0}
implies that either (a7, a8) = (−1, 0), or (a7, a8) = (0, 0). Moreover, for
i ∈ {1, 3, 5} we have {ai, ai+1} = {−1, 0} or {ai, ai+1} = {−1, 1}. It is
easy to check that this gives 24 possibilities.
We find that the cardinality of A is 51. As it is too tedious to compute the
maximal size of the cliques in Γ{−1,0} with all vertices in A by hand, we
compute this with magma. The maximal size of a clique in Γ{−1,0} with all
vertices in A is five, so the maximal size of a clique in Γ{−1,0} containing
e1, . . . , e5 is ten.

We recall some known Ramsey numbers.

Theorem 3.5.21. (Ramsey Numbers). For two integers l, k, let R(l, k)
be the least positive integer n such that every undirected graph with n
vertices contains either a clique of size four or an independent set of size
five. Then we have R(3, 3) = 6, R(3, 4) = 9, and R(4, 5) = 25.

Proof. See [GRS90, Table 4.1] for R(3, 3) and R(3, 4), and [MR95] for
R(4, 5).

Proposition 3.5.22. Every clique in Γ{−1,0} of size bigger than ten con-
tains a subclique of size four with only edges of color 0.

Proof. Let K be a clique in Γ{−1,0} of size bigger than ten. Consider the
subgraph K ′ of K whose vertex set consists of all vertices of K, and whose
edge set is obtained by taking only the edges in K of color −1. We con-
sider different cases depending on the number of connected components
of K ′.
If K ′ has at least four connected components, then we can take four ver-
tices, each from a different connected component, and these vertices form
a clique of size four with only edges of color 0 in K.
Now assume that K ′ has at most three connected components. We first
show that every connected component of K ′ that contains a clique of size
three is a clique of size three in itself. To this end, assume that K ′ con-
tains a clique of size three, given by {e1, e2, e3}. By Lemma 3.3.9, we have
e1 + e2 + e3 = 0. If e is another vertex of K ′, then e · ei ∈ {−1, 0} for
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i ∈ {1, 2, 3}, and e · (e1 + e2 + e3) = 0, from which it follows that e · ei = 0
for i ∈ {1, 2, 3}. We conclude that the vertices e1, e2, e3 form a connected
component of K ′. Since there are at most three connected components by
assumption, and K ′ has more than ten vertices, we conclude that not all
components contain a clique of size three. Now remove a vertex from every
connected component in K ′ that is a clique of size three (of which there
are at most two), then we are left with a subgraph of K ′ with at least 9
vertices, and no cliques of size three left. Hence by Theorem 3.5.21, there
must be a set of four vertices that are pairwise disjoint in K ′, meaning
that they form a clique with edges of color 0 in K.

Let V3, V4, Z, α, π and Y be as in the diagram above Lemma 3.3.24.

Proposition 3.5.23. The following hold.
(i) Let v = (e1, e2, e3, e4) be an element in V4. Then e1, e2, e3 and e4 are
contained in a clique of size bigger than ten in Γ{−1,0} if and only if v
is an element of Y .

(ii) Every maximal clique of size at least eleven in Γ{−1,0} is of the form


e1, . . . , e4,
f1, . . . , f4,

−e1 − f1, . . . ,−e4 − f4


∣∣∣∣∣∣∣
∀i 6= j : ei · ej = fi · fj = 0;

∀i : ei · fi = −1;
∀i 6= j : ei · fj = 0.

 .
(iii) The maximal size of a clique in Γ{−1,0} is twelve, and there are no
maximal cliques of size eleven in Γ{−1,0}.

(iv) For an element v ∈ Y , there are eight cliques of size twelve in Γ{−1,0}
containing the elements of v.

(v) For K a clique of size twelve in Γ{−1,0}, we have

|K4 ∩ V4| = |K4 ∩ Y | = 1944.

Proof. Let K be a clique of size bigger than ten in Γ{−1,0}. We know
that K contains a subclique of size four with only edges of color 0 from
Proposition 3.5.22. Let {e1, e2, e3, e4} be such a subclique in K. Let e be
another element in K. By Lemmas 3.5.19 and 3.5.20, there is exactly one
i in {1, 2, 3, 4} such that e · ei = −1, and e · ej = 0 for i 6= j ∈ {1, 2, 3, 4}.
It follows that e · (e1 + e2 + e3 + e4) = −1, hence

∑4
i=1 ei /∈ 2Λ. It follows

from Proposition 3.3.29 that (e1, e2, e3, e4) is an element in Y . Conversely,
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the tuple (t1, t2, t3, t4) is an element in Y and it is contained in the clique
T (page 96), so by Proposition 3.3.29, every element in Y is contained in
a clique of size twelve in Γ{−1,0}. This proves (i).
Recall the clique T defined above Lemma 3.5.18. We define the following
sets for i ∈ {1, 2, 3, 4}.

Fi =
{
e ∈ E

∣∣∣∣∣ e · ti = −1,
e · tj = 0 for j ∈ {1, 2, 3, 4}, j 6= i

}
.

Let K be a clique in Γ{−1,0} of size at least eleven. Such a K exists,
since the clique T is an example. By Proposition 3.5.22, the clique K
contains four vertices that form an element of V4, and by part (i) this is
an element of Y . By Proposition 3.3.29 we can without loss of generality
assume that K contains the four vertices t1, t2, t3, t4. By Lemma 3.5.19
and Lemma 3.5.20, for every element t in K \ {t1, t2, t3, t4} there is an
i ∈ {1, 2, 3, 4} such that t · ti = −1 and t · tj = 0 for i 6= j ∈ {1, 2, 3, 4}.
Therefore we have

K \ {t1, t2, t3, t4} =
⋃

i∈{1,2,3,4}
K ∩ Fi.

Fix i ∈ {1, 2, 3, 4}. For an element f ∈ Fi we have f · ti = −1, so by
Lemma 3.3.9 there is a unique element g ∈ E with f ·g = ti ·g = −1, given
by g = −ti−f . Note that this element is also in Fi, since (−ti−f) · tj = 0
for j ∈ {1, 2, 3, 4} with j 6= i. So for i ∈ {1, 2, 3, 4}, the set Fi is the
union of different sets {f,−ti− f}, and we claim that K ∩Fi is contained
in one of these sets. To prove this, fix i and f ∈ K ∩ Fi. Assume by
contradiction that there is an element h ∈ (K ∩ Fi)\{f,−ti− f}. Then h
is in Fi, so h · f 6= −1 by uniqueness of g. But h, f are both elements in
K, so this implies h · f = 0. But then we have h · ti = f · ti = −1 and
h · f = 0, so by Lemma 3.5.19, the clique K has size at most ten, which
gives a contradiction. So for i ∈ {1, 2, 3, 4}, there are fi ∈ Fi such that
K ∩ Fi ⊆ {fi,−ti − fi}, and we have

K ⊆
⋃

i∈{1,2,3,4}
{ti, fi,−ti − fi}.

Fix such fi ∈ Fi for i ∈ {1, 2, 3, 4}. Note that for i 6= j ∈ {1, 2, 3, 4}
we have fi · fj = 0, because if this were not the case then K would
contain a triple ti, fi, fj with ti · fi = fi · fj = −1, fj · ti = 0, which
contradicts the fact that K has size bigger than ten by Lemma 3.5.19.
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Hence
⋃
i∈{1,2,3,4}{ti, fi,−ti − fi} forms a clique in Γ{−1,0} of the required

form, and if K is maximal, it is equal to this clique. This proves part (ii),
and part (iii) follows directly.
We proceed by proving (iv). Note that (t1, t2, t3, t4) is an element in Y . We
count the number of cliques of size twelve in Γ{−1,0} containing t1, . . . , t4.
By (ii), we know that such a clique is of the form

⋃
i∈{1,2,3,4}{ti, fi,−ti−fi},

where fi and −ti − fi are elements in Fi for i ∈ {1, 2, 3, 4}. By simply
considering all elements in E we find

F1 =


(
−1

2 ,−
1
2 , a3, a4, a5, a6, a7, a8

) ∣∣∣∣∣∣∣∣
{a3, a4} =

{
−1

2 ,
1
2

}
,

{a5, a6} =
{
−1

2 ,
1
2

}
,

a7 = a8

 .
Since |F1| = 8, there are four choices for the set {f1,−t1 − f1}. Fix f1,
and write f1 =

(
−1

2 ,−
1
2 , a3, . . . , a8

)
. Then f2, −t2 − f2 are elements in

F2 that are orthogonal to f1 by (ii). Again, by considering all elements in
E we find

F2 =


(
b1, b2,−1

2 ,−
1
2 , b5, b6, b7, b8

) ∣∣∣∣∣∣∣∣
{b1, b2} =

{
−1

2 ,
1
2

}
,

{b5, b6} =
{
−1

2 ,
1
2

}
,

b7 = b8

 .
Let f = (b1, . . . , b8) be an element in F2. Then f is orthogonal to f1 if and
only if 0 =

∑8
i=5 aibi = 2(a5b5 +a7b7), which holds if and only if b5

b7
= −a7

a5
.

This gives two choices for the tuple (b5, b7), and together with the two
choices for (b1, b2) we find four elements in F2 that are orthogonal to f1.
This gives two choices for the set {f2,−t2−f2}. Fix one. Then f3,−t3−f3,
and f4,−t4−f4, are elements in F3 and F4 respectively, that are orthogonal
to f1 and f2. It is an easy check that this determines the sets {f3,−t3−f3}
and {f4,−t4 − f4} uniquely. So for f1 we had four choices, for f2 we had
two, and the set {f3,−t3 − f3, f4,−t4 − f4} is determined after choosing
f1, f2. We conclude that there are 4 ·2 = 8 cliques of size twelve in Γ{−1,0}
containing t1, . . . , t4. By Proposition 3.3.29, this holds for every element
in Y . This proves (iv).
Let K be a clique of size twelve in Γ{−1,0}. Using the notation in (ii),
write

K = {e1, . . . , e4, f1, . . . , f4,−e1 − f1, . . . ,−e4 − f4} .
It follows from (ii) that the sets of four pairwise orthogonal roots in K are
given by

{{a1, a2, a3, a4} | ai ∈ {ei, fi,−ei − fi} for i ∈ {1, 2, 3, 4}}.
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This gives 34 = 81 such sets, and these give rise to 81 · 4! = 1944 elements
in K4∩V4. From (i) it follows that K4∩V4 = K4∩Y . This proves (v).

Proposition 3.5.24. Let T be the set of all cliques of size twelve in
Γ{−1,0}, and R an element in T . The following hold.

(i) We have |T | = 179200, and the group W acts transitively on T .

(ii) The stabilizer WR in W of R acts transitively on R4 ∩ Y .

Proof. Let T be the clique {t1, . . . , t12}, as defined above Lemma 3.5.18.
Define the set

S = {((e1, e2, e3, e4),K) ∈ Y × T | e1, . . . , e4 ∈ K}.

We have projections λ : S −→ Y and µ : S −→ T .
From the previous proposition we know that the fibers of λ have cardi-
nality 8, and the fibers of µ have cardinality 1944. Therefore we have
|S| = |Y | · 8 = 348364800 (Proposition 3.3.29), and |T | = |S|

1944 = 179200.
We will show that W acts transitively on S, which implies that it acts
transitively on T by the projection µ. Consider the clique T ∈ T , and
set y = (t1, t2, t3, t4) ∈ T 4 ∩ Y . Then (y, T ) is in the fiber of λ above y.
The stabilizer Wy in W of y acts on this fiber. We show that this action
is transitive, that is, that the orbit WyT is equal to the whole fiber. We
have |WyT | = |Wy |

|Wy,T | , and |Wy| = |W |
|Wy| = |W |

|Y | = 16. Note that t1, t2, t3, t4
are all orthogonal to the four roots

e1 = (1,−1, 0, 0, 0, 0, 0, 0), e2 = (0, 0, 1,−1, 0, 0, 0, 0),
e3 = (0, 0, 0, 0, 1,−1, 0, 0), e4 = (0, 0, 0, 0, 0, 0, 1, 1).

Therefore, for i ∈ {1, 2, 3, 4}, the reflection ri in the hyperplane orthogonal
to ei is contained in the stabilizer Wy. Since the subgroup generated by
these four reflections has cardinality 16, we conclude that this is the whole
group Wy. We can now compute that for every element r in Wy we have
rT 6= T , except for the identity and the composition of all four reflections
r1, r2, r3, r4. So |Wy,T | = 2, and we have |WyT | = |Wy |

|Wy,T | = 16
2 = 8.

Since the fiber of λ above y has cardinality 8, we conclude that Wy acts
transitively on this fiber. SinceW acts transitively on Y , we conclude from
Lemma 3.2.14 that W acts transitively on S. Finally, from the surjective
projection µ and Lemma 3.2.14, it follows that W acts transitively on T .
This proves (i). Since W acts transitively on S, the stabilizer WR in W
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of the clique R acts transitively on the fiber µ−1(R). Since there is a
bijection µ−1(R) −→ R4 ∩ Y given by the projection λ, the group W acts
transitively on R4 ∩ Y by Lemma 3.2.14. This proves (ii).

Corollary 3.5.25. Let R be a clique of size twelve in Γ{−1,0}. Let WR

be its stabilizer in W . Then WR acts transitively on R.

Proof. We have a surjective map R4 ∩ Y −→ R projecting on the first
coordinate, so this follows from Lemma 3.2.14 and the previous proposi-
tion.

Now that we described all the largest cliques (with respect to number of
vertices) in Γ{−1,0}, we continue to describe all other maximal cliques.
Since the size of the stabilizer of a clique is the same for every two cliques
that are in the same orbit, we make the following definition.

Definition 3.5.26. The stabilizer size of an orbit is the size of the sta-
bilizer of any of the elements in the orbit.

As one can see in the table in Appendix A, for a set c that contains 0
in combination with either −1 or 1, there are many maximal cliques in
Γc with small stabilizer sizes, which means large orbits. This means that,
even though we use magma to find all cliques and orbits, computations can
become very large and time consuming. Therefore we use the following
lemma throughout.

Lemma 3.5.27. Let H be a finite group acting on a finite set X and
consider its induced action on the power set of X. Let A and S be subsets
of X and letm denote the number of H-conjugates of A that are contained
in S. Then the number of H-conjugates of S that contain A equals

m · |HA|
|HS |

,

whereHA andHS denote the stabilizer subgroups of A and S, respectively.

Proof. Let Z denote the H-subset of the product HA×HS consisting of
all pairs (B, T ) with B ∈ HA and T ∈ HS satisfying B ⊂ T . The group
H acts transitively on the codomains of the projection maps π : Z → HA
and ρ : Z → HS. This implies that all fibers of π have the same size, say
r, as the fiber above A, which is the number of H-conjugates of S that
contain A, that is, the number that we are looking for. All fibers of ρ have
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the same size as the fiber above S, which equals m. Hence, we can express
the size of Z as both |HA| · r and |HS| ·m. Since the orbits HA and HS
have size |H|/|HA| and |H|/|HS |, respectively, we find

r = m · |HS|
|HA|

= m · |HA|
|HS |

.

Note that for A = ∅, we recover the well-known fact that the length of the
orbit of S equals the index [H : HS ].

The following proposition describes all maximal cliques and their orbits
in Γ{−1,0}.

Proposition 3.5.28. For two maximal cliques K1 and K2 of the same
size in Γ{−1,0}, the following are equivalent.

(i) K1 and K2 are conjugate under the action of W .

(ii) K1 and K2 are isomorphic.

(iii) K1 and K2 have the same stabilizer size.

(iv) The automorphism groups of K1 and K2 have the same cardinality,
and, if this cardinality is 16 and K1 and K2 have size 9, then K1 and
K2 both contain a monochromatic clique of size 7 and color 0, or they
both do not.

Moreover, the table in Appendix A gives a complete list of representa-
tives of the orbits of the maximal cliques in Γ{−1,0}, as well as for each
representative its stabilizer size and the size of its automorphism group.

Proof. The implications (i)⇒(ii), (i)⇒(iii), (i) ⇒(iv), and (ii)⇒(iv) are
immediate. We will show (iii)⇒(i) and (iv)⇒(i), which together with the
immediate implications prove all equivalences. To this end, we first show
that the table is complete and correct as stated. From Propositions 3.5.23
and 3.5.24 we know that the maximal size of all cliques in Γ{−1,0} is twelve,
that there are 179200 cliques of size twelve, and that these cliques form
one orbit under the action of W , proving the equivalences for K1, K2 of
size at least 12. The clique of size 12 in the table is the clique T that is de-
fined above Lemma 3.5.18. The size of its stabilizer inW is |W |

179200 = 3888.
From the description of T we see that its automorphism group is isomor-
phic to the semidirect product S4

3 oS4, where S4 acts on S4
3 by permuting

the four coordinates. This group has order 64 · 24 = 31104.
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To find maximal cliques in Γ{−1,0} of size smaller than 12, note that
there are no maximal cliques in Γ{−1,0} of size 11 by Proposition 3.5.23,
so we only have to look at the cliques of size at most ten. To make
computations easier, we first show that every maximal clique in Γ{−1,0}
contains at least one edge of color 0. We know that the only max-
imal cliques in Γ{−1} are the cliques of size three. Define the three
elements e1 = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0), e2 = (−1, 0, 1, 0, 0, 0, 0, 0), and
e3 = (0,−1,−1, 0, 0, 0, 0, 0), then {e1, e2, e3} is a maximal clique in Γ{−1}.
Note that for e4 = (0, 0, 0, 0, 0, 0, 1, 1), the set {e1, e2, e3, e4} forms a clique
in Γ{−1,0}, hence {e1, e2, e3} is not a maximal clique in Γ{−1,0}. Since
the group W acts transitively on the set of maximal cliques in Γ{−1}
(Corollary 3.3.10), it follows that all maximal cliques in Γ{−1} are not
maximal in Γ{−1,0}. Thus we can assume that the maximal cliques in
Γ{−1,0} contain at least one pair of orthogonal roots. Fix the two roots
c1 = (1, 1, 0, 0, 0, 0, 0, 0), c2 = (0, 0, 1, 1, 0, 0, 0, 0). Since W acts transi-
tively on the pairs of orthogonal roots, every maximal clique in Γ{−1,0} is
conjugate to a clique containing c1, c2, so by considering only the maxi-
mal cliques in Γ{−1,0} that contain c1 and c2, we find representatives for
all orbits of the maximal cliques in Γ{−1,0} under the action of W . This
reduces computations, since there are only 136 roots that have dot prod-
uct −1 or 0 with both c1 and c2, which is quickly computed with magma,
as well as the number of maximal cliques containing c1, c2. We find the
following.

r Number of maximal cliques of size r
in Γ{−1,0} containing c1 and c2

≤ 7 0
8 261600
9 2779392
10 228408

We now turn to the table in the appendix. One can easily check with
magma that the sets in the table for Γ{−1,0} are indeed maximal cliques
in Γ{−1,0}; in Remark 3.5.29. For each of these cliques we compute the
automorphism groups with magma. We see that apart from the cliques

L1 = {19, 41, 48, 50, 65, 150, 172, 214, 240}

and
L2 = {41, 48, 50, 55, 65, 78, 178, 214, 240}
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of size 9, which both have an automorphism group of size 16, every two
cliques of the same size in the table have a different automorphism group.
One can check that L2 contains a subclique with only edges of color zero
of size 7, and L1 does not, so L1 and L2 are not isomorphic. This shows
that any two cliques of the same size in the table are not isomorphic, and
therefore not conjugate.
We claim that every maximal clique in Γ{−1,0} is conjugate to one of
these cliques in the table. To this end, set A = {c1, c2}, and let WA

be the stabilizer of A in W . From Proposition 3.4.1 it follows that
|WA| = |W |

|WA| = |W |
15120 = 46080. We now show how to proceed for the

cliques of size 8, the proof for sizes 9 and 10 goes completely analogously.
For each of the five cliques of size 8 in the table we compute the size of its
stabilizer (144,128,16,14, and 8) and the number of conjugates of A con-
tained in it (21,20,20,21, and 21, respectively), with magma. Lemma 3.5.27
now gives us the number of conjugates of each clique that contain A. This
sums up to the number 261600 we find in the table above, proving our
claim.
We have showed that the table in the appendix gives exactly one repre-
sentative for each orbit of the maximal cliques in Γ{−1,0}, so K1 and K2
are both conjugate to an element in the table. If either (iii) or (iv) holds,
then by looking at the table we see that this implies that K1 and K2
are conjugate to the same clique in the table, and in particular, they are
conjugate to each other, implying (i). This finishes the proof.

Remark 3.5.29. In the proof of Proposition 3.5.28 we found 261600
cliques of size 8 in Γ{−1,0} containig both c1 = (1, 1, 0, 0, 0, 0, 0, 0) and
c2 = (0, 0, 1, 1, 0, 0, 0, 0). One can check for any two of them whether they
are conjugate with magma, but this takes a very long time. To reduce
computations, we first sort the cliques by size of their stabilizer. We then
go through each set of cliques with the same stabilizer size by taking one
clique, and removing all cliques that are conjugate to it from the set.

3.5.4 Maximal cliques of other colors

In this subsection we prove Theorem 3.1.3 and 3.1.4 for all maximal cliques
in Γc with c ∈ {{−1, 1}, {−2,−1, 1}, {0, 1}, {−2,−1, 0}, {−2, 0, 1}}. We
make use of magma in all cases. The following lemma deals with the cases
for which this is straightforward.

Lemma 3.5.30. For c ∈ {{−1, 1}, {−2,−1, 1}}, and for two maximal
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cliques K1 and K2 of the same size in Γc, the following are equivalent.
(i) K1 and K2 are conjugate under the action of W .

(ii) K1 and K2 are isomorphic.

(iii) K1 and K2 have the same stabilizer size.

(iv) The automorphism groups of K1 and K2 have the same cardinality.
Moreover, for c ∈ {{−1, 1}, {−2,−1, 1}}, the table in Appendix A gives
a complete list of representatives of the orbits of maximal cliques in Γc,
as well as for each representative its stabilizer size and the size of its
automorphism group.

Proof. In these two graphs there are not so many maximal cliques, and we
can ask magma to compute them, compute the orbits under the action ofW ,
and a representative of each orbit directly. The results are in the table.
The size of the stabilizers is found by dividing the order of W by the size
of the orbit. The automorphism group of the cliques is also easily found
with magma. Since cliques of the same size in the table have automorphism
groups of different size, they are not isomorphic. The equivalence of the
statements (i), (ii), (iii), and (iv) now follows from the table.

Corollary 3.5.31. For c ∈ {{−1, 1}, {−2,−1, 1}}, let K1 and K2 be
two maximal cliques in Γc, and f : K1 −→ K2 an isomorphism between
them. Then f extends to an automorphism of Λ.

Proof. SinceK1 andK2 are isomorphic, from Lemma 3.5.30 it follows that
they are both conjugate to the same clique in the table in de appendix;
call this clique H. Then there are elements α, β in W such that we have
α(K1) = β(K2) = H. So β ◦ f ◦ α−1 is an element in the automorphism
group Aut(H) of H. Of course, f extends to an element in W if and only
if β ◦ f ◦ α−1 does. We conclude that we can reduce to the case where
K1 = K2 = H, and f is an element in Aut(H).
For each cliqueH in the table, we construct the mapWH −→ Aut(H) from
the stabilizerWH to the automorphism group Aut(H) given by restriction
in magma. For all these cliques, this is a surjective map. It follows that
every element in Aut(H) extends to an element in W .

The final three cases are much more work, because of the large numbers of
maximal cliques and their sizes. The most extreme case is that of maximal
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cliques of size 29 in Γ{0,1} and Γ{−2,0,1}; we will treat this separately in
Section 3.5.4.

Remark 3.5.32. Recall that the classification of isomorphism classes of
maximal cliques in Γ{0,1} has already been done in [CRS04], where the
authors classify all maximal exceptional graphs (Remark 3.1.7). We com-
pare their methods to ours. For maximal cliques in Γ{0,1} of size unequal
to 29, we find the different isomorphism types by showing that each such
clique contains a pair of orthogonal roots, fixing a pair (e1, e2) of orthog-
onal roots, and using magma to compute the set of all maximal cliques in
Γ{0,1} of size unequal to 29 that contain e1 and e2. We cut this set op into
smaller sets based on the stabilizer size of the cliques, and in each smaller
set we compute with magma the different orbits under the action of W . It
turns out that each orbit is also a full isomorphism class, and that for each
clique K, both the combination of the stabilizer size with the number of
pairs or inverse roots contained in K, as well as the combination of the
cardinality of the automorphism group with the number of pairs or inverse
roots contained in K, are invariants that determine the isomorphism type
of K (Proposition 3.5.35). For the maximal cliques of size 29 we do a sim-
ilar computation: we show that each maximal clique of size 29 contains a
monochromatic 5-clique of color 0, or a monochromatic 4-clique of color 1
for which the sum of the corresponding root is a double root in Λ, or a
monochromatic 4-clique of color 1 for which this sum is not a double root
in Λ. We fix one clique for each of these three types, and use magma to
compute the set of all maximal cliques in Γ{0,1} of size 29 that contain
at least one of these fixed cliques. We then cut this big set up in smaller
sets using for each clique K the stabilizer size and the number of maximal
monochromatic subcliques of color 1 of size r, for all r ∈ {1, . . . , 8}, that
are contained in K. Each smaller set turns out to be an orbit under the
action of W , as well as a full isomorphism class (Proposition 3.5.36).
In [CRS04], the authors use a different way to search for all maximal ex-
ceptional graphs. They prove that every exceptional graph arises as an
extension of an exceptional star-complement, and construct a list of 443
graphs that arise as the exceptional star complements for maximal ex-
ceptional graphs. In [CRS04, Chapter 6], the authors find all maximal
exceptional graphs with a computer search, by extending each of the 443
exceptional star complements. Since an exceptional graph can arise as ex-
tensions of different star complements, or as different extensions from the
same star complement, being an extension of a certain star complement is
not an invariant that differentiates between isomorphism types of graphs.
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Therefore the authors of [CRS04] do an isomorphism check in all 443 sets
of extensions from the 443 start complements (as an example they state
that for one star complement there were 1048580 extensions, giving 457
isomorphism types).
Since we use different methods, it is nice to see that our results coincide,
and an alternative approach for finding all orbits of maximal cliques in
Γ{0,1} could be to use the isomorphism types of these graphs that were
already known in [CRS04], and compute the orbits per isomorphism type.
It is not obvious that this would have been faster, however, since we would
still have to check if two cliques are conjugate for every two cliques of a
certain isomorphism type, which can be many.

Proposition 3.5.33. For two maximal cliques K1 and K2 of the same
size in Γ{−2,−1,0}, the following are equivalent.

(i) K1 and K2 are conjugate under the action of W .

(ii) K1 and K2 are isomorphic.

(iii) K1 and K2 have the same stabilizer size, and, if the stabilizer size
is 32 and K1 and K2 have size 10, then K1 and K2 both contain a pair
of inverse roots, or they both do not.

(iv) The automorphism groups of K1 and K2 have the same cardinality,
and, if this cardinality is 80 and K1 and K2 have size 9, or this cardi-
nality is 64 and K1 and K2 have size 10, then K1 and K2 both contain
a pair of inverse roots, or they both do not.

(v) K1 and K2 have the same stabilizer size and their automorphism
groups have the same cardinality.

Moreover, the table in Appendix A gives a complete list of representa-
tives of the orbits of maximal cliques in Γ{−2,−1,0}, as well as for each
representative its stabilizer size and the size of its automorphism group.

Proof. This proof follows the same steps as the proof of Proposition 3.5.28.
See also Remark 3.5.29 on how we found the representatives of each orbit
that are written in the table.
Cliques in Γ{−2,−1,0} without an edge of color 0 are monochromatic and not
maximal in Γ{−2,−1,0} (this follows from the results on Γ{−2,−1}, Γ{−2,0},
and Γ{−1,0}). Therefore, to find the maximal cliques in Γ{−2,−1,0}, we only
consider cliques that contain two orthogonal roots, and we can choose
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these arbitrarily sinceW acts transitively on the set of pairs of orthogonal
roots. Define the roots

e1 =
(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
and

e2 =
(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

We find the following.

r Number of maximal cliques of size r
in Γ{−2,−1,0} containing e1 and e2

≤ 7 0
8 192480
9 1961088
10 743536
11 111680
12 8290
13 2100

14–15 0
16 15
≥ 17 0

We turn to the table in the appendix. One can check that all the sets in
the table for Γ{−2,−1,0} are indeed maximal cliques in Γ{−2,−1,0}. For each
of these cliques we compute the automorphism group with magma. As one
can see in the table, except from two cliques

L1 = {1, 8, 26, 47, 51, 86, 121, 128, 228},

L2 = {1, 8, 26, 47, 51, 86, 124, 125, 228}

of size 9 that both have an automorphism group of size 80, and two cliques

M1 = {1, 8, 26, 31, 43, 46, 84, 98, 103, 125},

M2 = {1, 8, 26, 31, 43, 46, 84, 101, 226, 238}

of size 10 that both have an automorphism group of size 64, any two cliques
of the same size have different automorphism groups and are therefore not
isomorphic. Moreover, L1 contains the roots 1 and 128, which are each
other’s inverse, whereas L2 contains no pairs of inverse roots. And M1
contains the roots 26 and 103, which are each other’s inverse, and M2
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contains no pairs of inverse roots. So also L1, L2,M1 and M2 are pairwise
not isomorphic. We conclude that any two of the cliques in the table are
not isomorphic, hence not conjugate.
As in the proof of Proposition 3.5.28, we prove for each size r in the table
above, using Lemma 3.5.27 and magma, the number of maximal cliques of
size r containing e1 and e2 that are conjugate to one of the cliques in the
table in the appendix. This gives exactly the number of maximal cliques
of size r containing e1 and e2 in the table above. So every maximal clique
in Γ{−2,0,1} containing e1 and e2 is conjugate to a clique in the table in the
appendix, hence the same holds for every maximal clique in Γ{−2,0,1}. We
conclude that the table in the appendix gives a unique representative for
each orbit of the set of maximal cliques under the action of W . Finally,
for each clique in the table, we compute the size of its stabilizer in W .
We see that except for N1 = {1, 8, 26, 31, 43, 86, 106, 115, 224, 234} and
N2 = {1, 8, 26, 31, 43, 46, 84, 101, 226, 238}, two cliques of the same size in
the table have different stabilizer sizes. In N1, we have roots 43 and 86,
and these are each other’s inverse; in N2, there are no two roots that
are each other’s inverse. Finally, N1 and N2 have different automorphism
groups.
The equivalence of statements (i) – (v) follows in a similar way as in the
proof of Proposition 3.5.28. The implications (i)⇒(ii), (i)⇒(iii), (i)⇒(iv),
(i)⇒(v) and (ii)⇒(iv) are immediate. Since bothK1 andK2 are conjugate
to one of the cliques in the table, if any of (iii) – (v) are true, by looking
at the table we see that this implies that K1 and K2 are conjugate to
the same clique in the table, and in particular, they are conjugate to each
other, implying (i). This proves that all 5 statements are equivalent.

We can now prove Theorem 3.1.4 for maximal cliques in Γ{−1,0} and
Γ{−2,−1,0}; the statement is the same for these two graphs. Recall the
following graphs that are defined in the introduction, where any two dis-
joint vertices have an edge of color 0 between them.

−1 −1

A C−1

Lemma 3.5.34. Let K1 and K2 be two maximal cliques, both in Γ{−1,0}
or both in Γ{−2,−1,0}, and let f : K1 −→ K2 be an isomorphism between
them. The following hold.
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(i) The map f extends to an automorphism of Λ if and only if for every
ordered sequence S = (e1, . . . , er) of distinct roots in K1 such that the
colored graph on them induced by Γ is isomorphic to A or C−1, its image
f(S) = (f(e1), . . . , f(er)) is conjugate to S under the action of W .

(ii) If S = (e1, . . . , e5) is a sequence of distinct roots in K1 such that
the colored graph on them induced by Γ is isomorphic to C−1 with
e1 · e4 = e2 · e5 = −1, then S and f(S) are conjugate under the action
of W if and only if both e = e1 + e2 + e3 − e4 − e5 and f(e) are in the
set {2f1 + f2 | f1, f2 ∈ E}, or neither are.

Proof. SinceK1 andK2 are isomorphic, it follows from Propositions 3.5.28
and 3.5.33 that they are both conjugate to the same clique in the table
in the appendix; call this clique H. Then there are elements α, β in W
such that α(K1) = β(K2) = H, so β ◦ f ◦ α−1 is an element in the auto-
morphism group Aut(H) of H. Of course, f extends to an element in W
if and only if β ◦ f ◦ α−1 does. Moreover, for every sequence S as in the
statement, f(S) and (β ◦ f ◦ α−1)(S) are conjugate. We conclude that
we can reduce to the case where K1 = K2 = H, and f is an element in
Aut(H). Let g : WH −→ Aut(H) be the map from the stabilizer of H
to the automorphism group that restricts elements in WH to H, and TH
a set of representatives of the classes in the cokernel of g. Since f is a
composition of (restrictions of) elements in WH with an element in TH ,
we can reduce further to the case where f is an element in TH .
For each of the 56 cliques H in the table at Γ{−1,0} and Γ{−2,−1,0}, we
compute the map g : WH −→ Aut(H) with magma. In all cases, this map
is injective. This means that for all cliques with |WH | = |Aut(H)|, every
element in the automorphism group of H extends to a unique automor-
phism of Λ. We see in the list that this holds for the first five cliques
and the 11th, 12th, 15th, and 16th clique in Γ{−1,0}, and the first five
cliques and the 8th, 10th, 11th, 13th, 17th, 20th, 23rd, and 24th clique
in Γ{−2,−1,0}.
For each clique H of the remaining 34 cliques, we compute the following
with the function CokernelClassesTypeCminus1 [Codb]. First, we create
a set TH of representatives of the classes of the cokernel of the map from
WH to Aut(H). We then check for each t in TH , and for all sequences
S = (e1, e2, e3, e4, e5) of distinct roots in H such that the colored graph
on S is isomorphic to C−1 with e1 · e4 = e2 · e5 = −1, whether S and t(S)
are conjugate. For all t and S for which this is the case, we verify that
either e = e1 + e2 + e3 − e4 − e5 is in the set F = {2f1 + f2 | f1, f2 ∈ E}
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and t(e) is not, or vice versa. This proves part (ii).
ForH equal to the 7th−10th , 13th , 14th, and 18th−23rd clique in Γ{−1,0}

and the 7th, 9th, 12th, 14th, 16th , 18th , 19th , 21st , 22nd , 25th−29th,
and 31st clique in Γ{−2,−1,0}, the check we just described gives us for
all t in TH a sequence S with distinct roots in H and graph isomorphic
to C−1, such that S and t(S) are not conjugate. For the remaining 7
cliques in the table, we do an almost analogous check with the function
CokernelClassesTypeA in magma [Codb], where S is now a clique whose
graph is isomorphic to A. For all 7 cliques H, for all elements in TH , there
exists such an S with S not conjugate to t(S). This finishes the proof
of (i).

Proposition 3.5.35. For c ∈ {{0, 1}, {−2, 0, 1}}, and K1, K2 two max-
imal cliques of the same size r 6= 29 in Γc, the following are equivalent.

(i) K1 and K2 are conjugate under the action of W .

(ii) K1 and K2 are isomorphic.

(iii) K1 and K2 have the same stabilizer size, and they contain the same
number of pairs of orthogonal roots.

(iv) The automorphism groups of K1 and K2 have the same cardinality,
and K1 and K2 contain the same number of pairs of orthogonal roots.

Moreover, the table in Appendix A gives a complete list of representatives
of the orbits of maximal cliques in Γc, as well as for each representative
its stabilizer size and the size of its automorphism group.

Proof. We show that the table is correct and complete for each c. The
steps in the proof are the same as those in the proofs of Propositions 3.5.28
and 3.5.33, and the equivalence of statements (i) – (iv) follows in the same
way as in these propositions. See also Remark 3.5.29 on how we found the
representatives of each orbit that are written in the table.
• c = {0, 1}
We know that the maximal cliques in Γ{1} form two orbits; one with
cliques of size 7 and one with the cliques of size 8 (Proposition 3.4.7).
Note that the clique of size 7 in Γ{1} in the table is contained in the
clique of size 22 in Γ{0,1}, and the clique of size 8 in Γ{1} is contained
in the clique of size 33 in Γ{0,1}. This means that there are no maximal
cliques with only edges of color 1 in Γ{0,1}. We fix two orthogonal roots
e1 =

(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2

)
, e2 = (−1, 0, 0, 0,−1, 0, 0, 0). With
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magma we compute that there are only 136 roots that have dot product 0
or 1 with e1 and e2, and we find the following.

r Number of maximal cliques of size r
in Γ{0,1} containing e1 and e2

≤ 21 0
22 3120

23–27 0
28 21120
30 16263276
31 2792800
32 655680
33 105120
34 18800
35 0
36 304
≥ 37 0

For each set K in the table in Appendix A, one can check that it is in-
deed a maximal clique in Γ{0,1}. We compute the automorphism groups
of all cliques. As we see in the table, for all sizes except 30, two cliques
of the same size have a different automorphism group, so they are not
isomorphic, hence not conjugate. For size 30, all cliques whose automor-
phism groups have the same cardinality have a different number of pairs
of orthogonal roots that they contain; for example, the cliques of size
30 with stabilizer size 48 contain (in order of appearence in the table)
171, 179, 180, 183, 198 subsets of two orthogonal roots. This shows that
no two cliques in the table are isomorphic, hence not conjugate. Moreover,
using the stabilizer size and the number of subsets of orthogonal roots of
each clique K in the list, we can find the number of conjugates of K that
contain {e1, e2} with Lemma 3.5.27. Adding all these numbers up we re-
cover the numbers in the table above, which shows that every maximal
clique in Γ{−1,0} of size unequal to 29 is conjugate to one of the cliques in
the list. We conclude that the table in Appendix A is complete. Finally,
we see that for each clique in the table, the stabilizer size and the cardinal-
ity of the automorphism group is the same. Therefore, by what we showed
above, different cliques of the same size and with the same stabilizer size
in the table have a different number of subsets of two orthogonal roots.
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• c = {−2, 0, 1}
We start with cliques in Γ{−2,0,1} containing an edge of color −2. We fix a
root e and compute the maximal cliques in Γ{−2,0,1} containing e and −e.
We find the following.

r Number of maximal cliques of size r
in Γ{−2,0,1} containing e and −e

≤ 12 0
13 370440
14 250236
15 0
16 77895

17–18 0
19 7019208
20 861840
21 120960
22 44352
23 0
24 4032

25–28 0
≥ 30 0

Since there are no maximal cliques of size bigger than 29 containing an
edge of color −2, we conclude that all the maximal cliques in Γ{0,1} of size
at least 29 are also maximal cliques in Γ{−2,0,1}. This leaves us with the
maximal cliques in Γ{0,1} of size 22 and 28. Looking at the table in the
appendix, we see that for both sizes there is only one orbit, and it is an easy
check that for the listed representatives L22 of size 22 and L28 of size 28 of
both these orbits, there are no roots that can be added to extend the clique
in Γ{−2,0,1}. Therefore L22 and L28 are still maximal in Γ{−2,0,1}. We now
turn to the cliques in Γ{−2,0,1} in the table. First of all, one can check easily
with magma that these are indeed maximal cliques in Γ{−2,0,1}. For K1 and
K2 of size 28 or ≥ 30, everything is exactly the same as for Γ{0,1}, and we
showed that the proposition holds in these cases. For the other cliques,
we see that for all sizes except 13, 19, and 20, two different cliques of
the same size have different automorphism groups. For sizes 13, 19, and
20, we compute, completely analogously to what we did for c = {0, 1},
that the number of subsets of two orthogonal roots in two different cliques

116



3.5. MAXIMAL CLIQUES

whose automorphism groups have the same cardinality is different. For
example, the cliques of size 19 whose automorphism group has size 96,
contain (in order of appearence in the table) 91, 95, 94, 98, 103 subsets
of two orthogonal roots. This proves that all the cliques in the table are
pairwise not isomorphic, hence not conjugate. Again using Lemma 3.5.27,
we can check that every maximal clique in Γ{−2,0,1} that is conjugate to
one of the cliques in the table, showing that the table is complete. Finally,
except for the cliques

L1 = {1, 8, 12, 14, 15, 20, 22, 23, 36, 38, 39, 128,
136, 137, 138, 139, 149, 160, 169}

and

L2 = {1, 8, 12, 14, 50, 68, 70, 74, 128, 136, 137, 154,
169, 170, 176, 177, 181, 182, 215}

of size 19, any two different cliques of the same size that have the same
stabilizer size have the same cardinality of their automorphism groups as
well. We already showed that this means that they contain a different
number of pairs of orthogonal roots. We compute that L1 contains 109
such pairs, and L2 contains 79. Therefore we can conclude that different
cliques of the same size and with the same stabilizer size in the table have
a different number of subsets of two orthogonal roots.

Cliques of size 29 in Γ{0,1} and Γ{−2,0,1}

Cliques of size 29 in Γ{0,1}

The graph Γ0,1 contains a surprisingly large number of maximal cliques of
size 29, so we will treat this case separately in this section. As before, we
say that the stabilizer size of an orbit is the size of the stabilizer of any of
the elements in the orbit (Definition 3.5.26).

Proposition 3.5.36. In the graph Γ0,1 there are 62825152320 maximal
cliques of size 29. They form 432 orbits under the automorphism groupW .
The multiset of their stabilizer sizes is{

1(8),2(81), 4(107), 6(5), 8(50), 10, 12(41), 14(2), 16(28), 18(2), 20(5), 24(28), 32(4),

36, 48(21), 60, 64(2), 72(7), 96(3), 120, 128(2), 144(4), 192(7), 240(6), 360,
384(3), 432(2), 720(2), 1152(2), 1440, 1920, 40320, 51840, 103680

}
,
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where the superscripts indicate the multiplicity of the elements in the
multiset. For two maximal cliques K1 and K2 of size 29 in Γ{0,1}, the
following are equivalent.

(i) K1 and K2 are conjugate under the action of W .

(ii) K1 and K2 are isomorphic.

(iii) K1 and K2 have the same stabilizer size, and the same number
of maximal monochromatic subcliques of color 1 of size r, for all r ∈
{1, . . . , 8}.

(iv) The automorphism groups of K1 and K2 have the same cardinal-
ity, and K1 and K2 have the same number of maximal monochromatic
subcliques of color 1 of size r, for all r ∈ {1, . . . , 8}.

Moreover, the table in Appendix B gives a complete list of representatives
of the orbits of maximal cliques of size 29 in Γ{0,1}.

The number of cliques mentioned in Proposition 3.5.36 is too large to fit
in most computers’ memory: even if we were to use only 30 bytes per
clique to store the vertices in the clique, then all cliques together would
still require close to two terrabytes of storage. Instead of doing this, we
will use the fact that each 29-clique contains a monochromatic 5-clique of
color 0 or a monochromatic 4-clique of color 1.

Proof. The Ramsey number R(4, 5) equals 25 (Theorem 3.5.21). This
implies that a 29-clique in Γ{0,1} contains a 5-clique of edges of color 1
or a 4-clique of edges of color 0. Under the action of the automorphism
group W there is only one orbit of 5-cliques with only edges of color 1 (see
Proposition 3.2.12); we call these cliques of type K5(1)), and there are two
orbits of 4-cliques with pairwise orthogonal roots (see Proposition 3.4.1);
we call the 4-cliques of which the sum is a double root of type Ka

4 (0) and
those of which the sum is not a double of type Kb

4(0)). Therefore, if we fix
a representative clique for each of these three orbits, then each 29-clique
is conjugate to a 29-clique that contains one of our three cliques of size 4
or 5.
We pick the clique A = {1, 2, 129, 130, 131} of type K5(1). There are
109 other vertices that are connected with color 0 or 1 to each of the 5
vertices of A. With magma, we count that the graph on these 109 vertices
with only edges of color 0 or 1 has exactly n1 = 127168449 maximal
cliques of size 24. After adding to each the vertices of A, this yields n1
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maximal 29-cliques that contain A in the graph Γ0,1. Similarly, for the
cliques B1 = {1, 8, 26, 31} and B2 = {1, 8, 26, 43} of typeKa

4 (0) andKb
4(0),

respectively, we count with magma that there are n2 = 16685128 maximal
29-cliques in Γ0,1 that contain B1, and n3 = 504 maximal 29-cliques that
contain B2.
One can easily verify with magma that the 432 cliques of size 29 in the
table in Appendix B are maximal cliques in Γ0,1. For each clique K of
size 29, for each integer 1 ≤ r ≤ 8, we can consider the number χr of
maximal monochromatic subcliques of K of color 1 of size r. These eight
invariants together pin down 430 out of the 432 cliques in the table. Only
the sequence (χ1, χ2, . . . , χ8) = (0, 0, 0, 0, 0, 4, 138, 17) occurs twice: for
the 67-th and 299-th cliques in the table. These two cliques have 16 and
18 subcliques of type Ka

4 (0), respectively, so they are not isomorphic. We
conclude that any two cliques in the table are not isomorphic, hence not
conjugate. So there are at least 432 orbits of maximal 29-cliques. We know
that there are 483840 cliques of size 5 in Γ{1} from Corollary 3.2.7, so the
stabilizer of A has size |W |

|WA| = |W |
483840 = 1440. The table also lists for each

clique c the number of subcliques of type K5(1), as well as the stabilizer
size, so we can use Lemma 3.5.27 to calculate the number of conjugates of
c that contain A. Summing over all these 432 cliques, we obtain exactly
the number n1, so we conclude that all n1 maximal 29-cliques in Γ0,1 that
contain A are accounted for in these 432 orbits. Similarly, the stabilizers
of B1 and B2 have sizes 4608 and 384, respectively. The table lists the
number of subcliques of type Ka

4 (0) and Kb
4(0) for every given clique c,

so we can use Lemma 3.5.27 again to calculate the number of conjugates
of c that contain Bi for i = 1, 2. Summing over all 432 cliques, we find
again that all maximal 29-cliques containing B1 or B2 are accounted for
in these 432 orbits.
We conclude that there are 432 orbits of 29-cliques in Γ0,1, as claimed,
and since no two cliques in the table are isomorphic, this proves (i)⇔ (ii).
The multiset of stabilizer sizes follows from the table. The length of the
orbit of any clique c is |W ||Wc| . Summing over all 432 cliques in the table, we
find that the total number of 29-cliques is also as claimed. Finally, as we
saw before, the invariant χr is different for all cliques except for the 67-th
and 299-th cliques in the table. These two cliques have stabilizer size 4
and 8, respectively, so the stabilizer size, together with the χr form a set
of invariants that uniquely determine each of the 432 orbits of maximal
29-cliques. This proves that (i) is equivalent to (iii). The stabilizer of a
clique maps to the automorphism group of this clique as a colored graph.
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In all 432 cases, the clique generates a full rank sublattice of our lattice, so
this map is injective. It turns out that in all cases, it is in fact a bijection.
This proves (iii) ⇔ (iv).

Corollary 3.5.37. Let K1 and K2 be two maximal cliques in Γ{0,1},
and f : K1 −→ K2 an isomorphism between them. Then f extends to a
unique automorphism of Λ.

Proof. SinceK1 andK2 are isomorphic, it follows from Propositions 3.5.35
and 3.5.36 that they are conjugate to each other; this means that they
are both conjugate to the same clique in the tables in de appendix; call
this clique H. Then there are elements α, β in W such that we have
α(K1) = β(K2) = H, so β ◦ f ◦ α−1 is an element in the automorphism
group Aut(H) of H. Of course, f extends to an element in W if and only
if β ◦ f ◦ α−1 does. We conclude that we can reduce to the case where
K1 = K2 = H, and f is an element in Aut(H).
In Proposition 3.5.35 we computed the stabilizers and the automorphism
groups of all cliques in Γ{0,1} of size unequal to 29, and we did the same
for cliques of size 29 in Proposition 3.5.36. In magma we construct for each
clique in the table the map between the stabilizer and the automorphism
group that is given by restriction. In all cases, this is an isomorphism. We
conclude that all automorphisms of the cliques in the table extend to an
element in W .

The table in Appendix B contains the results of the previous proposition,
with a representative of each orbit. The notation in the table means the
following.

Notation 3.5.38.
K: a clique in Γ{0,1}; we denote vertices by their index as described in
Notation 3.5.2.
|WK |: the size of the stabilizer of clique K in the group W .
#K5(1): the number of cliques of size 5 with only edges of color 0 in K.
#Ka

4 (1): the number of cliques in K of four roots that sum up to a double
root in Λ, with only edges of color 1.
#Kb

4(1): the number of cliques in K of four roots that do not sum up to
a double root in Λ, with only edges of color 1.
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Remark 3.5.39. In the proof of Proposition 3.5.36, we found more than
127 million cliques of size 29 that contain A = {1, 2, 129, 130, 131}. To find
that they represent exactly 432 different orbits, one might naively try to
just verify for each pair whether they are conjugate. This takes too much
time; as described in Remark 3.5.29, we divided the big set into smaller
sets according to the stabilizer sizes.

Cliques of size 29 in Γ{−2,0,1}

It is an easy check that all 432 cliques of size 29 in Γ{0,1} in the table
are maximal in Γ{−2,0,1} as well. We conclude that the orbits of maxi-
mal cliques of size 29 in Γ{−2,0,1} are exactly the 432 that we found in
Γ{0,1}, and the orbits of maximal cliques of size 29 that contain an edge
of color −2.
As we did in Proposition 3.5.35, we fix a root e and compute all maximal
cliques of size 29 in Γ{−2,0,1} that contain e and −e with magma. There are
56 of these, and they form one orbit under the action of the stabilizer We

of e. Since W acts transitively on pairs of inverse roots, we conclude that
all maximal cliques of size 29 in Γ{−2,0,1} that contain an edge of color −2
are in the same orbit; call this orbit A. One can easily check with magma
that the clique of size 29 that is written in the table for Γ{−2,0,1} is maxi-
mal, and moreover, it contains the roots 1 and 128, that are each other’s
inverse. We conclude that it is a representative of A. The stabilizer and
automorphism group are computed with magma.

We finish with the proof of Theorem 3.1.4 for maximal cliques in Γ{−2,0,1}.
This is very similar to the proof of Lemma 3.5.34. Recall the graphs A,
C1, D, and F as defined before Theorem 3.1.4.

Lemma 3.5.40. Let K1 and K2 be two maximal cliques in Γ{−2,0,1}, and
f : K1 −→ K2 an isomorphism between them. The following hold.

(i) The map f extends to an automorphism of Λ if and only if for every
subclique S = {e1, . . . , er} of K1 that is isomorphic to A, C1, D, or F ,
its image f(S) in K2 is conjugate to S under the action of W .

Let S be a subclique of K1.

(ii) If S is isomorphic to C1, then S and f(S) are conjugate if and only
if both

∑5
i=1 ei and

∑5
i=1 f(ei) are in the set {2f1 + f2 | f1, f2 ∈ E}, or

neither are.
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(iii) If S is isomorphic to D, then S and f(S) are conjugate if and only
if both

∑5
i=1 ei and

∑5
i=1 f(ei) are in the set {2f1 + 2f2 | f1, f2 ∈ E},

or neither are.

(iv) If S is isomorphic to F , then S and f(S) are conjugate if and only
if both

∑5
i=1 ei and

∑6
i=1 f(ei) are in 2Λ, or neither are.

Proof. This proof is very similar to the proof of Lemma 3.5.34, so we will
sketch what we did, and we refer to the other proof for details.
We reduce again to the case K1 = K2 = H, with H one of the 54 cliques
in the list for Γ{−2,0,1} in the appendix, and f a representative of a class
of the cokernel of the map g : WH −→ Aut(H), where WH is the stabilizer
of H in W , and Aut(H) is the automorphism group of H.
For each clique H of those 54 in the table, we check with magma that the
map g : WH −→ AutH is injective; for the 13th, 15th, and 17th − 54th
cliques it is an isomorphism. It follows that for those cliques, every auto-
morphism extends to an element in W , so we are done. Here we refer to
Corollary 3.5.37 for the cliques that are the same as in Γ{0,1}.
For each cliqueH of the remaining 14 cliques in the list, we do the following
in magma with the three functions that we name CokernelClassesTypeF,
CokernelClassesTypeD, and CokernelClassesTypeC1 [Codb]. We con-
struct a set TH of representatives of the classes of the cokernel of the map
from WH to Aut(H). We then check for each t in TH , and for all subcliqes
S = {e1, . . . , er} of H that are isomorphic to F (or D, or C1, respectively),
whether S and t(S) are not conjugate. For all t and S for which this is the
case, we verify that

∑r
i=1 ei is in 2Λ (or in the set {2f1 + 2f2 | f1, f2 ∈ E},

or in the set {2f1 + f2 | f1, f2 ∈ E}, respectively), and
∑r
i=1 t(ei) is not,

or vice versa. This proves (ii), (iii), and (iv).
For H equal to the 4th, 8th, 10th, 14th, and 16th clique, for each non-
trivial element t in TH there is a subclique S of H that is isomorphic to F ,
and such that t and t(S) are not conjugate. Similarly, for each clique H
of the remaining 9 cliques in the list, for each non-trivial element t of TH ,
there is a subclique S of H that is isomorphic to either C1, D, or A, and
such that S and t(S) are not conjugate. This finishes the proof of (i).

3.6 Proof of the main theorems
We now put together all the results that form the proofs of Theorem 3.1.3
and Theorem 3.1.4, which are both stated in the Section 3.1.
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Proof of Theorem 3.1.3. Part (i) is Proposition 3.4.1 (iii), and part
(ii) is Proposition 3.4.7 (ii). We proceed with (iii). Of course, if K1 and
K2 are conjugate under the action of W , they are isomorphic as colored
graphs, since W respects the dot product. Now assume that K1 and K2
are isomorphic as colored graphs. We will show that they are conjugate
under the action of W . First of all, by Lemma 3.2.13, we can assume that
there is a type I, II, III, or IV, that both K1 and K2 belong to. Therefore
we continue to prove the result per type.
For type I, the results for colors −2 and −1 are at the beginning of Sec-
tion 3.4; the results for color 0 are in Propositions 3.4.1, 3.4.6 (iii), and
3.5.15, and the results for color 1 are in Proposition 3.2.12.
For type II, from Proposition 3.2.5 we know what the cliques look like,
and the results are then in Proposition 3.2.12 and Corollary 3.3.17.
For type III, the results follow from Propositions 3.3.1 and 3.3.2.
Finally, for type IV, the results follow from Propositions 3.5.6, 3.5.28,
Lemma 3.5.30, Propositions 3.5.33and 3.5.35, and Section 3.5.4.

Proof of Theorem 3.1.4. By Lemma 3.2.13, we can assume that
there is a type I, II, III, or IV, that both K1 and K2 belong to. Therefore
we continue to prove (i) per type. First of all, if K1 and K2 are of type
III, then f always extends; this is shown in Corollary 3.3.34.
If K1 and K2 are of type I, they are monochromatic. If they have color
−2 or −1, then they are of type III (see Section 3.4). For color 0 the proof
is in Corollary 3.4.5, and for color 1 in Corollary 3.4.9.
For type II, by Proposition 3.2.5, K1 and K2 are either monochromatic
of color 0, hence of type I, or they are both sets of the vertices of a 7-
crosspolytope, in which case the statement is in Corollary 3.3.32.
If K1 and K2 are of type IV, they are maximal cliques in a graph Γc, where
there are 14 different possibilities for c. For c ∈ {{−2}, {−1}, {0}, {1}}, the
cliquesK1 andK2 are of type I, which we already covered (note that forK1
and K2 maximal in Γ{1}, there is always an automorphism extending f !).
For c in {{−2,−1}, {−2, 1}}, the cliques K1 and K2 are of type I as well
(Lemma 3.5.5). For c = {−2, 0}, the proof is in Lemma 3.5.17. For c in
{{−1, 1}, {−2,−1, 1}}, an isomorphism of maximal cliques always extends,
see Corollary 3.5.31. The same holds for c = {0, 1}, see Corollary 3.5.37.
For c ∈ {{−1, 0}, {−2,−1, 0}}, the statement is in Lemma 3.5.34.
For c = {−2, 0, 1} the statement is Lemma 3.5.40.
Finally, for c = {−2,−1, 0, 1} there is one clique, which is Γ itself, and
every automorphism of Γ is an element in W . This finishes (i).
Part (ii) follows from Propositions 3.3.29 and 3.4.1 for type A, and it
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follows from Propositions 3.2.12 and 3.4.7 for type B. Finally, part (iii) is
in Lemma 3.5.34, and part (iv) is in Lemma 3.5.40.

Remark 3.6.1. From Theorem 3.1.4 it follows that for an isomorphism
f of two cliques K1 and K2 of types I, II, III, or IV, one can determine
whether f extends to an automorphism of Λ by checking for all subcliques
of K1 of the form A, B, Cα, D, or F , if f restricted to an associated
ordered sequence extends. However, one never has to check all subcliques
of those six forms. The following table shows for each type of K1 and K2
which subcliques are sufficient to check.

Type Subtype All isomor- A B C−1 C1 D F
phisms extend

I Γ{−2} x
I Γ{−1} x
I Γ{0} x
I Γ{1} x
II k-simplex, k ≤ 7 x
II 7-crosspolytope x
III all x
IV Γ{−2} x
IV Γ{−1} x
IV Γ{0} x
IV Γ{1} x
IV Γ{−2,−1} x
IV Γ{−2,0} x
IV Γ{−2,1} x
IV Γ{−1,0} x x
IV Γ{−1,1} x
IV Γ{0,1} x
IV Γ{−2,−1,0} x x
IV Γ{−2,−1,1} x
IV Γ{−2,0,1} x x x x
IV Γ{−2,−1,0,1} x
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