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2

Density of rational points on
a family of del Pezzo
surfaces of degree 1

In this chapter we study the Zariski density of the set of rational points on
del Pezzo surfaces of degree 1. In Section 2.1 we give some background and
known results. In Section 2.2 we state our main result (Theorem 2.2.1)
and the main ingredient for its proof (Proposition 2.2.6). We prove the
latter in Section 2.3, and prove our main theorem in Section 2.4. Finally,
in Section 2.5 we give examples. This chapter is based on work with Julie
Desjardins.

2.1 Rational points on del Pezzo surfaces
Let X be a variety defined over a number field k. In arithmetic geometry
we are interested in the set of k-rational points X(k) on X. For example,
we can ask whether X(k) is empty, and if so, if we can explain why. If
X(k) is not empty, we can further ask how big this set is: is it finite?
Infinite? And if it is infinite, what does it look like? Is it dense with
respect to the Zariski topology?
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2. DENSITY OF RATIONAL POINTS

For del Pezzo surfaces, some (partial) answers to these questions are
known. An overview can be found in [VA09, 1.4]; the following results
are stated there. For example, del Pezzo surfaces of degrees 1, 5, and 7
over a field k always contain a k-rational point, and del Pezzo surfaces of
degree at least 5 over a number field k satisfy the Hasse principle, meaning
that if such a surface contains an element in X(kv) for the completion kv
at every place v of k, then it contains a k-rational point. There are also
examples of del Pezzo surface of degrees 2, 3, and 4 over Q without a
Q-rational point even though they do have R-, C-, and Qp-rational points
for all primes p [VA09, Examples 1.4.1–1.4.3].

Zariski density of rational points
In the rest of this chapter, by density we mean density with respect to
the Zariski topology, unless stated otherwise. To give an overview of what
is known for the Zariski density of the set of rational points on del Pezzo
surfaces, we introduce another property of a variety.

Definition 2.1.1. A variety X over a field k is k-unirational if there is
a dominant rational map Pnk 99K X for some n.

Remark 2.1.2. Note that if two varieties are birationally equivalent over
a field k, one is k-unirational if and only if the other one is. Moreover,
if k is infinite, then k-unirationality implies Zariski density of the set of
k-rational points.

Theorem 2.1.3. Let k be a field. The following hold.
(i) Del Pezzo surfaces of degree at least 3 over k with a k-rational point
are k-unirational.

(ii) Del Pezzo surfaces of degree 2 over k that contain a point that is
neither in the ramification locus of the anticanonical map, nor in the
intersection of four exceptional curves, are k-unirational.

(iii) Del Pezzo surfaces of degree 1 that admit a conic bundle structure
are k-unirational.

Proof. (i) Segre proved this for degree 3 and k = Q in [Seg43] and [Seg51].
Manin proved it for d ≥ 5, as well as for d = 3, 4 for large enough cardi-
nality of k [Man86, Theorems 29.4, 30.1]. Kollár finished the case d = 3
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2.1. RATIONAL POINTS ON DEL PEZZO SURFACES

[Kol02], and Pieropan the case d = 4 [Pie12, Proposition 5.19]. Part (ii)
is in [STVA14]; part (iii) is in [KM17].

Of course, if a del Pezzo surface S of degree 1 over a field k is not minimal,
then we can blow down exceptional curves to obtain a del Pezzo surface
S′ of higher degree, and use Theorem 2.1.3 (i) or (ii) hold to determine
whether S′ is k-unirational. Since S and S′ are birationally equivalent,
S is unirational if and only S′ is. The del Pezzo surfaces of degree 1 in
Theorem 2.1.3 are those that are minimal with Picard rank 2; see Theo-
rem 1.3.4. Outside this case the question of k-unirationality for minimal
del Pezzo surfaces of degree 1 is wide open. Even though these surfaces
always contain a k-rational point (the base point of the anticanonical lin-
ear system), we do not have any example of a minimal del Pezzo surface
of degree 1 with Picard rank 1 that is known to be k-unirational, nor of
one that is known not to be k-unirational.

If k is infinite, then k-unirationality implies density of the set of k-rational
points. Therefore, for k infinite, Theorem 2.1.3 implies that for a del Pezzo
surface X of degree at least 3, the set X(k) of k-rational points is Zariski-
dense if and only if it is not empty, and if X has degree 2, the set X(k)
is Zariski-dense if it contains a point outside the ramification locus of the
anticanonical map and not contained in the intersection of four exceptional
curves. While unirationality for del Pezzo surfaces of degree 1 is still out
of reach, we can at least try to prove Zariski density of the set of k-rational
points for these surfaces. A strong reason why we expect that the set of
k-rational points on a del Pezzo surface of degree 1 is dense, at least when
k is a number field, is the following conjecture by Colliot-Thélène and
Sansuc.

Conjecture 2.1.4. [CT92, Conjecture d] For every geometrically ratio-
nally connected variety over a number field, its set of rational points is
dense in the Brauer–Manin set for the adelic topology.

Since del Pezzo surfaces of degree 1 are geometrically rationally connected
and have a rational point, this conjecture implies the density of their set
of rational points over number fields [Wit18, Remark 2.4(iii)].
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2. DENSITY OF RATIONAL POINTS

Known results
Let S be a del Pezzo surface of degree 1 over a field k with char k 6= 2, 3,
and let E be the associated elliptic surface obtained by blowing up the
base point of the linear system | −KS |. We identify S with its anticanon-
ical model in the weighted projective space Pk(2, 3, 1, 1) with coordinates
x, y, z, w, and since char k 6= 2, 3, we define S as the zero locus of

y2 = x3 + xf(z, w) + g(z, w),

where f and g ∈ k[z, w] are homogeneous of degrees 4 and 6, respectively.

Previous results on Zariski density of S(k) are obtained by proving that
the set E(k) is dense in E , which implies the result for S(k). People have
done this either by considering root numbers of fibers, or by constructing
a multisection.

Remark 2.1.5. If E contains a section over k other than the exceptional
curve above the base point of | −KS |, then this section corresponds to a
non-zero k(t)-rational point in the Mordell–Weil group of E , which has no
torsion (Remark 1.4.17). By Silverman’s Specialization Theorem [Sil83,
Theorem C], this gives a non-torsion k-rational point on all but finitely
many fibers of E , thus implying the density of the set of k-rational points
on E , hence on S.

We briefly state previous results here.

In [VA11], Várilly-Alvarado proves Zariski density of the set of Q-rational
points of S when f = 0 and g = Az6 + Bw6, with non-zero A,B ∈ Z,
such that either 3A/B is not a square, or gcd(A,B) = 1 and 9 - AB. His
results are conditional under the finiteness of the Tate–Shafarevich group
of elliptic curves with j-invariant 0. OverQ, the latter implies that the root
number of such an elliptic curve E equals (−1)rank(E). Várilly-Alvarado
shows that his surfaces have infinitely many disjoint pairs of fibers of E
with opposite root number, thus showing that there are infinitely many
fibers with positive rank.

Ulas and Togbé, prove Zariski density of the set of Q-rational points of S
in the following cases.
• g = 0 and deg(f(z, 1)) ≤ 3, or g = 0 and deg(f(z, 1)) = 4 with f
not even, or f = 0 and g(z, 1) is monic of degree 6 and not even [Ula07,
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2.2. MAIN RESULT

Theorems 2.1 (1), 2.2, and 3.1].
• g = 0 and deg(f(z, 1)) = 4, or f = 0 and g(z, 1) is even and monic of
degree 6, both cases under the condition that there is a fiber of E with
infinitely many rational points [Ula07, Theorems 2.1 (2) and 3.2].
• S can be defined by y2 = x3 − h(z, w), with h(z, 1) = z5 + az3 +
bz2 + cz + d ∈ Z[z], and the set of rational points on the curve Y 2 =
X3 + 135(2a− 15)X − 1350(5a+ 2b− 26) is infinite [Ula08, Theorem 2.1].
• f(z, 1) and g(z, 1) are both even of degree 4 and there is a fiber of E
with infinitely many rational points [UT10, Theorem 2.1].

Jabara generalized the results from [Ula07] mentioned above in [Jab12,
Theorems C and D]. Though the proofs of these two theorems are incom-
plete (see [SvL14, Remark 2.7]), they hold for sufficiently general cases.

In [SvL14], Salgado and van Luijk generalize some of the previous results,
proving Zariski density of the set of k-rational points of S for any infinite
field k with char k 6= 2, 3, assuming that there exists a point Q on a smooth
fiber of E satisfying several conditions, among which that a multisection
that they construct from Q has infinitely many k-rational points.

2.2 Main result
Our main theorem is the following; recall that this is joint work with Julie
Desjardins.

Theorem 2.2.1. Let k be a number field, let A,B ∈ k be non-zero, and
let S in P(2, 3, 1, 1) be the del Pezzo surface of degree 1 over k given by

y2 = x3 +Az6 +Bw6. (2.1)

Let E be the elliptic surface obtained by blowing up the base point of the
linear system |−KS |. Then the set of k-rational points on S is dense in S
with respect to the Zariski topology if and only if S contains a k-rational
point P with non-zero z, w coordinates, such that the corresponding point
on E lies on a smooth fiber and is non-torsion on that fiber.

Remark 2.2.2. Note that the family of surfaces we consider is the same as
the one studied by Várilly-Alvarado in [VA11]. Moreover, the case A = 1
is proven by Ulas in [Ula07] for k = Q under the same condition that we
have (the existence of a fiber of E with infinitely many rational points);
we generalize his result to any non-zero A, and to any number field.
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2. DENSITY OF RATIONAL POINTS

While Salgado and van Luijk prove their result over all infinite fields with
characteristic unequal to 2, 3 in [SvL14], their condition that there exists
a point Q such that their multisection has infinitely many rational points
is not easy to verify, nor is it clear to hold for every surface whose set of
rational points is dense, that is, it might not be a necessary condition. For
the family in Theorem 2.2.1, we give sufficient and necessary conditions
for the set of rational points of S to be dense.

Let k be an infinite field with char k 6= 2, 3, let A,B ∈ k non-zero, and
let S be the del Pezzo surface of degree 1 over k given by (2.1), with
canonical divisor KS . Let E be the elliptic surface obtained by blowing
up the base point of the linear system | −KS |. The key ingredient of the
proof of Theorem 2.2.1 is Proposition 2.2.6. We recall some notation from
Section 1.4.3, which we will use throughout this chapter.

Notation 2.2.3. Let π : E −→ S be the blow-up of S in O = (1 : 1 : 0 : 0)
with exceptional divisor Õ. Since π gives an isomorphism between E \ Õ
and S \ {O}, we denote a point R ∈ E \ Õ by the coordinates of π(R) in
Pk(2, 3, 1, 1). Let ν : E −→ P1 be the elliptic fibration on E , which is given
on S by the projection onto (z : w). For R = (xR : yR : zR : wR) ∈ S\{O},
we denote by RE the inverse image π−1(R) on E , which is a point on the
fiber ν−1((zR : wR)).

Definition 2.2.4. For any point R = (xR : yR : zR : wR) in E with
yR, zR 6= 0, we define the curve CR ⊂ E as the strict transform of the
intersection of S with the surface given by

3x2
Rz

2
Rxz − 2yRz3

Ry − (x3
R − 2Az6

R)z3 + 2Bz3
Rw

3 = 0. (2.2)

Remark 2.2.5. For R = (xR : yR : zR : wR) in E with yR, zR 6= 0, the
curve π(CR) does not contain the point O, so we identify the curve CR
with π(CR) ⊂ P(2, 3, 1, 1); see Notation 2.2.3.

If R is a point on S with non-zero z-coordinate and such that RE lies on a
smooth fiber and is non-torsion, then its y-coordinate is non-zero as well,
and every non-zero multiple nRE of RE on its fiber has non-zero z- and
y-coordinate; therefore we can define CnRE for every non-zero integer n.
We use this in the following proposition. Recall the definition of d-section
(Definition 1.4.18).

Proposition 2.2.6. Let P be a point in S(k) with non-zero z, w coor-
dinates, such that PE lies on a smooth fiber and is non-torsion. If k is a

30



2.3. CREATING A MULTISECTION

number field, then there exists an integer n such that one of the following
holds:

(i) CnPE has a component that is a section of E that is defined over k;

(ii) CnPE is a 3-section of E of geometric genus 0;

(iii) CnPE is a 3-section of E whose normalization is an elliptic curve
with positive rank over k.

Remark 2.2.7. Note that case (i) in the previous proposition immedi-
ately implies the density of the set of k-rational points on S, see Re-
mark 2.1.5.

2.3 Creating a multisection
In this section we prove Proposition 2.2.6. We use Notation 2.2.3.

Remark 2.3.1. Let R = (xR : yR : zR : wR) be a point in E , with
yR, zR 6= 0, and let CR be the corresponding curve as in Definition 2.2.4.
Let A3 be the affine open subset of P(2, 3, 1, 1) given by w 6= 0, with
coordinates X = x

w2 , Y = y
w3 , and T = z

w . We describe the intersection
CR ∩ A3. Write

F = Y 2 −X3 −AT 6 −B, (2.3)
G = 3x2

Rz
2
RXT − 2yRz3

RY − (x3
R − 2Az6

R)T 3 + 2Bz3
R.

We have CR ∩A3 = Z(F )∩Z(G), where Z(F ) and Z(G) are the zero loci
of F and G, respectively. Since yR, zR 6= 0, the projection p : A3 −→ A2

to the X,T -coordinates has a section given by

r : (X,T ) 7−→
(
X,

3x2
Rz

2
RXT − (x3

R − 2Az6
R)T 3 + 2Bz3

R

2yRz3
R

, T

)
.

Note that p induces an isomorphism Z(G) −→ A2 with inverse r. It
follows that CR ∩ A3 is isomorphic to p(Z(F )), and the latter is defined
by HR = 0, where

HR = 4y2
Rz

6
RX

3 − 9x4
Rz

4
RX

2T 2 + (6x5
Rz

2
R − 12Ax2

Rz
8
R)XT 4

− 12Bx2
Rz

5
RXT + (4Ax3

Rz
6
R + 4Ay2

Rz
6
R − 4A2z12

R − x6
R)T 6

+ 4Bz3
R(x3

R − 2Az6
R)T 3 + 4Bz6

R(y2
R −B). (2.4)
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2. DENSITY OF RATIONAL POINTS

We denote by KE the canonical divisor of E . Let k be an algebraic closure
of k, and write CR for the base change CR ×k k.

Lemma 2.3.2. Let R = (xR : yR : zR : wR) be a point in E with yR, zR
non-zero, and let CR be the curve in Definition 2.2.4. The following hold.

(i) The curve CR does not contain a fiber of E .

(ii) The curve CR is contained in the linear system | − 3KE + 3Õ|, and
intersects every fiber of ν in three points counted with multiplicity.

Proof. (i). From equation (2.2) it is clear that CR does not contain the
fiber w = 0. Moreover, since the coefficient of X3 of HR (2.4) as a polyno-
mial in k[T ] is constant and non-zero, CR does not contain any fiber with
w 6= 0, either.
(ii). The linear system | − 3KS | induces the 3-uple embedding of S into
P6 (Section 1.4.1). Under this embedding, the curve π(CR) is given by the
intersection of S with a hyperplane, hence we have π(CR) ∼ −3KS . Since
yR, zR 6= 0, the image π(CR) does not contain the point O, so this implies

CR = π∗(π(CR)) ∈ |π∗(−3KS)| = | − 3KE + 3Õ|.

Since a fiber F of ν is linearly equivalent to −KE , it has self-intersection
zero (Lemma 1.4.16), and Õ is a section of ν, we have

F · CR = F · (−3KE + 3Õ) = 0 + 3 = 3.

Since F is irreducible, it follows that, since F is not contained in CR, the
number of intersection points of F and CR is 3, counted with multiplicity.

Let ζ3 ∈ k be a primitive third root of unity. Note that, for a curve CR as
in Definition 2.2.4, the morphism of P(2, 3, 1, 1) given by multiplying the
w-coordinate with ζ2

3 restricts to an automorphism of CR = CR ×k k.

Definition 2.3.3. Let R = (xR : yR : zR : wR) be a point in E , with
yR, zR 6= 0, and let CR be the corresponding curve as in Definition 2.2.4.
By σ we denote the automorphism of CR given by

σ : (x : y : z : w) 7−→ (x : y : z : ζ2
3w) = (ζ2

3x : y : ζ3z : w) (2.5)

Recall that π : E −→ S is the blow-up of S in O, and ν : E −→ P1 is the
elliptic fibration on E .
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2.3. CREATING A MULTISECTION

Proposition 2.3.4. Let R = (xR : yR : zR : 1) be a point in E , with
xR ∈ k, yR, zR ∈ k∗, and let CR be the curve in Definition 2.2.4. The
following hold.

(i) The curve CR is singular in R, σ(R), and σ2(R).

(ii) If π(R) is not contained in an exceptional curve on S = S×k k, then
CR either contains a section that is defined over k, or it is geometrically
integral and has geometric genus at most 1, in which case R, σ(R),
σ2(R) are all double points.

Proof. (i). It is an easy check that R is contained in CR. Let mR be the
maximal ideal in the local ring of R on E . The point R lies in the affine
space A3 ⊂ P(2, 3, 1, 1) defined by w 6= 0 as in Remark 2.3.1. The ideal
mR is generated by X − xR, Y − yR, and T − zR. Let F,G be as in (2.3).
We have E ∩ A3 = Z(F ), and using the identity B = y2

R − x3
R − At2R, we

can write F as

F = 2yR(Y − yR)− 3x2
R(X − xR)− 6At50(T − zR)

+ (Y − yR)2 − (X − xR)3 − 3xR(X − xR)2 −A(T − zR)6

− 6AzR(T − zR)5 − 15At20(T − zR)4

− 20Az3
R(T − zR)3 − 15Az4

R(T − zR)2.

Set
α = 2yR(Y − yR)− 3x2

R(X − xR)− 6Az5
R(T − zR),

then it follows that α is contained in m2
R, so the tangent line to E at R is

given by α = 0.
Similarly, we can rewrite G as

G = −z3
Rα+ 3x2

Rz
2
R(X − xR)(T − zR)− (x3

R − 2Az6
R)(T − zR)3

− (3x3
RzR − 6Az7

R)(T − zR)2,

so we conclude that G is contained inm2
R, hence CR is singular in R. Since

σ is an automorphism of CR, this implies that CR is singular in σ(R) and
σ2(R), as well.
(ii). Assume that π(R) is not contained in an exceptional curve on S.
We distinguish two cases. First assume that CR is not irreducible or not
reduced. Since CR does not contain a fiber and intersects every fiber
with multiplicity 3 (Lemma 2.3.2), this implies that there is a curve that
intersects every fiber with multiplicity one (hence is a section), say H1,
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2. DENSITY OF RATIONAL POINTS

such that CR either contains H1 as irreducible component, or CR is a
multiple of H1. Since CR is disjoint from the zero section, it follows that
π(H1) is an exceptional curve on S (Proposition 1.4.21). Therefore, by
our assumption, R is not contained in H1, so CR is not a multiple of H1,
and H1 is an irreducible component of CR. Let H2 be the other (not
necessarily irreducible or reduced) component of CR, which contains R.
If H2 were not irreducible or not reduced, it would either be a double
section or two sections intersecting in R. In both cases, π(R) lies on an
exceptional curve, contradicting our first assumption. We conclude that
H2 is irreducible and reduced. Since CR is defined over k, it is fixed by the
action of the absolute Galois group of k on Pic S. The exceptional curves
of S are all defined over the separable closure ksep of k by Theorem 1.1.8,
so the Galois group Gal(ksep/k) acts on them. Since CR contains only
one exceptional curve of S, which is H1, it follows that this component is
invariant under the Galois action, hence it is defined over k. This finishes
the first case. Now assume that CR is irreducible and reduced. Since CR
is contained in the linear system | − 3KE + 3Õ| by Lemma 2.3.2, from the
adjunction formula it follows that its arithmetic genus is 1

2 ·(9−3)+1 = 4.
Since the three distinct points R, σ(R), σ2(R) are all singular on CR, we
conclude that they all have multiplicity 2, and the geometric genus of CR
is at most 1.

Remark 2.3.5. In the last proof, we concluded that in the case where
CR is geometrically integral, the geometric genus of CR is at most 1. If
it were 0, then CR would contain exactly one more singular point besides
R, σ(R), σ2(R), say Q. Then σ(Q) and σ2(Q) would be singular points
of CR as well, so Q would be a fixed point of σ. We study this case
further here. Note that the points on the intersection of CR with the
fiber above (1 : 0) are fixed points of σ. Assume that σ has a fixed point
Q = (xQ : yQ : zQ : wQ) in CR \ (CR ∩ E(1:0)). From (2.5) it follows
that there is a λ ∈ k such that λ3yQ = yQ, λ

2xQ = xQ, λzQ = zQ, and
λζ2

3wQ = wQ. Since wQ 6= 0, the last equation implies λ = ζ3n−2
3 for some

n > 0, and it follows that xQ = zQ = 0. From (2.2) and the fact that CR
lies in E we find

2yRz3
RyQ = 2Bz3

Rw
3
Q; (2.6)

y2
Q = Bw6

Q. (2.7)

Since B,wQ 6= 0, it follows from (2.7) that yQ 6= 0 and we can write
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2.3. CREATING A MULTISECTION

B =
(
yQ
w3
Q

)2
. Substituting this in (2.6), we find

2yRz3
RyQ = 2

(
yQ
w3
Q

)2

z3
Rw

3
Q.

Since yQ, zR 6= 0 this implies yR = yQ
w3
Q
, from which it follows that we have

B = y2
R. Since R is contained in E , it follows that y2

R = x3
R + Az6

R + y2
R,

from which we get A = −x3
R

z6
R

. So in this case, the surface S is of the form

y2 = x3 + −x
3
R

z6
R

z6 + y2
Rw

6,

and Q = (0 : yR : 0 : 1). But then CR contains the section

D :

x = xR
z2
R
z2,

y = yRw
3,

(2.8)

contradicting the fact that CR is irreducible. We conclude that if CR is
geometrically integral, then it has genus 0 if and only if it has a singular
point on the fiber above (1 : 0).

Remark 2.3.6. Let R be as in Proposition 2.3.4. If CR is a geometrically
integral curve of geometric genus 1, then, since CR intersects every fiber
of ν in three points counted with multiplicity (Lemma 2.3.2), this implies
that CR is a 3-section. Moreover, since R is a double point on CR, there
is a unique third point of intersection of CR with the fiber above (zR : 1)
in E , say Q. Since xR, yR, zR are elements in k, the fiber above (zR : 1)
is defined over k, and CR and R are both defined over k. It follows that
Q is defined over k. Hence ER = (C̃R, Q) is an elliptic curve defined
over k, where C̃R is the normalization of CR. Let DR be the sum on ER
of the points corresponding to σ(Q) and σ2(Q) on CR. Note that σ(Q)
and σ2(Q) are either both defined over k or conjugated, so DR is defined
over k.

Notation 2.3.7. If R is as in Proposition 2.3.4, and such that CR is a
geometrically integral curve of geometric genus 1, we denote by ER the
elliptic curve and by DR the point on it, both as defined in Remark 2.3.6.

Let η be the generic point of S, that is, η is the point (x̃ : ỹ : z̃ : 1) over the
function field k(S) = k(x̃, ỹ, z̃) = Frac(k[x, y, z]/(y2−x3−Az6−B)) of S.
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2. DENSITY OF RATIONAL POINTS

Let Cη ∈ Pk(S)(2, 3, 1, 1) be the corresponding curve given by (2.2). From
Proposition 2.3.4 and Remark 2.3.5 it follows that Cη is geometrically
integral of genus 1. Let Eη be the corresponding elliptic curve with point
Dη as in Notation 2.3.7. In Lemma 2.3.8 we give a Weierstrass model for
the curve Eη, which we will use in Proposition 2.3.10.

Recall that A,B are fixed non-zero elements in k. We define the polyno-
mial

q = q1q2q3q4 (2.9)

in the polynomial ring k[x̃, z̃] as follows.

q1 = x̃;
q2 = −x̃6 + 8Az̃6x̃3 + 4ABz̃6;
q3 = x̃6 + 8(Az̃6 −B)x̃3 + 16(A2z̃12 +ABz̃6);

q4 = 29x̃12 +
(
40B + 24Az̃6

)
x̃9 + 16

(
9ABz̃6 −B2 + 6A2z̃12

)
x̃6

+ 128
(
A3z̃18 + 3A2Bz̃12 + 2AB2z̃6

)
x̃3

+ 64(AB3z̃6 + 2A2B2z̃12 +A3Bz̃18).

Lemma 2.3.8. There exists a unique polynomial δ ∈ k[x̃, z̃], and unique
rational functions

ξD = α
(q1q3)2 , γD = β

(q1q3)3 ,

where α and β are polynomials in k[x̃, z̃], such that the leading terms of
δ, α and β, as univariate polynomials in x̃, are given by

−27Bz̃48x̃81, 1
4 z̃

16x̃42, 1
8 z̃

24x̃63,

respectively, and such that the following holds. There is an isomorphism
ω between the elliptic curve Eη and the curve with Weierstrass equation
given by

γ2 = ξ3 + δ, (2.10)

such that the denominators in the defining equations of ω and ω−1 are all
of the form 2a3b(q2q4)c for positive integers a, b, c. Moreover, the point on
(2.10) corresponding to the point Dη on Eη is given by

ω(Dη) = (ξD, γD). (2.11)

Proof. The magma code that is used in this proof can be found in [Coda].
Let Q be the third point of intersection of Cη with the fiber of η on the
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base change E ×k k(S) over P1×k k(S). Write Q = (xQ : yQ : zQ : 1), with
xQ, yQ, zQ ∈ k(S). Then Q lies in Cη ∩

(
A3 ×k k(S)

)
, which is isomorphic

to the curve C1
η in A2 ×k k(S) defined by Hη = 0, where Hη is given

in (2.4) after substituting R by η. We find xQ by substituting T = z̃,
B = ỹ2 − x̃3 −Az̃6 in (2.4) and factorizing, which yields

xQ = 9x̃4 − 8x̃ỹ2

4ỹ2 .

We conclude that the elliptic curve Eη as defined in Remark 2.3.6 is iso-
morphic to the curve

(
C̃1
η ,
(

9x̃4−8x̃ỹ2

4ỹ2 , z̃
))

, where C̃1
η is the normalization

of C1
η . With magma we compute a Weierstrass model for Eη, which is given

by

γ′2 = ξ′3 + (3 · 25)6δ

(q2q4)6 , (2.12)

where δ is a polynomial in k[x̃, z̃] with leading term −27Bz̃48x̃81. We
verify with magma that the denominators in the defining equations of the
isomorphism ω1 between Eη and the curve (2.12), as wel as those of ω−1

1 ,
are all of the form 2a′(q2q4)b′ for positive integers a′, b′. The change of
coordinates

ξ′ = (3·25)2

(q2q4)2 ξ, γ′ = (3·25)3

(q2q4)3γ,

induces an isomorphism ω2 between the curve (2.12) and the curve defined
by

γ2 = ξ3 + δ. (2.13)

We conclude that ω = ω2◦ω1 is an isomorphism between Eη and the curve
(2.13), and the denominators in the defining equations of ω and ω−1 are
all of the form 2a3b(q2q4)c for positive integers a, b, c.
If δ′ was another polynomial in k[x̃, z̃] such that Eη were isomorphic to
the curve given by γ2 = ξ3 + δ′, then we would have δ′ = υ6δ for some
υ ∈ k(S), hence δ′ would not have leading term −27Bz̃48x̃81 as univariate
polynomial in x̃. We conclude that δ is the unique polynomial with leading
term −27Bz̃48x̃81 such that Eη is isomorphic to the curve with Weierstrass
model (2.13). With magma we compute the sum D on the curve (2.13) of
the points corresponding to

(
ζ2

3
9x̃4−8x̃ỹ2

4ỹ2 , ζ3z̃
)

and
(
ζ3

9x̃4−8x̃ỹ2

4ỹ2 , ζ2
3 z̃
)

on
Cη. We find D = (ξD, γD) with ξD = α

(q1q3)2 , γD = β
(q2q3)3 , where α, β are

elements in k[x̃, z̃] with leading terms as univariate polynomials in x̃ given
by 1

4 z̃
16x̃42 and 1

8 z̃
24x̃63, respectively.

37



2. DENSITY OF RATIONAL POINTS

Remark 2.3.9. Let L be the hypersurface in A2 × S defined by

4y2z6X3 − 9x4z4X2T 2 + (6x5z2 − 12Ax2z8)XT 4 − 12Bx2z5XT

+ (4Ax3z6 + 4Ay2z6 − 4A2z12 − x6)T 6 + 4Bz3(x3 − 2Az6)T 3

+ 4Bz6(y2 −B) = 0,

and let λ : L −→ S be the projection to S. Let R = (xR : yR : zR : 1) be
a point in E with xR ∈ k, yR, zR ∈ k∗, q(xR, zR) 6= 0, and such that CR
is geometrically integral of genus 1. We identify R with π(R) ∈ S; the
fiber of λ above R is the curve in A2 given by HR = 0, where HR is in
(2.4), hence it is isomorphic to CR ∩ A3, where A3 is defined by w 6= 0 in
P(2, 3, 1, 1). Moreover, the curve Cη ∩ (A3 ×k k(S)) is isomorphic to the
generic fiber of λ.
Let δ and ω be as in Lemma 2.3.8, and ER, DR as in Notation 2.3.7. Since
q(xR, zR) is non-zero, the isomorphism ω specializes to the fiber λ−1(R),
and we obtain an isomorphism between ER and the curve given by

γ3 = ξ2 + δ(xR, zR), (2.14)

that sends the point DR to the point

(ξD(xR, zR), γD(xR, zR)).

Let P = (x0 : y0 : z0 : 1) be a point on S with z0 6= 0. Let V be the set
of points R = (xR : yR : z0 : 1) on the fiber of PE with xR ∈ k, yR ∈ k∗,
such that q(xR, z0) 6= 0 (where q is given in (2.9)), and such that CR is
geometrically integral of genus 1.

Proposition 2.3.10. If k is a number field, then for all but a finite
number of points R in the set V , the curve ER has positive rank over k.

Proof. Let δ be as in Lemma 2.3.8. We define the following polynomials
in k[x̃, ξ, γ].

ψ1 = 1, ψ2 = 2γ, ψ3 = 3ξ4 + 12δ(x̃, z0)ξ,

ψ4 = 2ψ2
(
ξ6 + 20δ(x̃, z0)ξ3 − 8δ(x̃, z0)2

)
,

and recursively,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2, (2.15)

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ

2
m+1 for m ≥ 3. (2.16)
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Let ξD, γD be as in Lemma 2.3.8. For m ≥ 1, we define ψm,x̃ to be the
rational function

ψm(x̃, ξD(x̃, z0), γD(x̃, z0)) ∈ k(x̃).

Write d = q1(x̃, z0)q3(x̃, z0) ∈ k[x̃]. From Remark 2.3.9, we find

ψ2,x̃ = N2
d3 , ψ3,x̃ = N3

d8 , ψ4,x̃ = N4
d15 ,

where N2, N3, N4 are polynomials in k[x̃]. Let ci be the leading coefficient
of Ni for i ∈ {2, 3, 4}, then we have

deg (N2) = 63, deg (N3) = 168, deg (N4) = 315,

c2 = 1
4z

24
0 , c3 = 3

28 z
64
0 , c4 = 1

213 t
120
0 .

We claim that for all m ≥ 1 we have

ψm,x̃ = Nm

dm2−1 ,

Where Nm is a polynomial in k[x̃] with leading coefficient cm such that

deg (Nm) = 21(m2 − 1) and cm = m

(1
2z

8
0

)m2−1
.

Assume that this claim is true (we prove this below). Since k is a number
field, there is an upper bound B = B(k) such that the torsion points on
the fiber of PE have order at most B [Mer96]. Let R = (xR : yR : z0 : 1)
be a point in V such that ψm,x̃(xR) is non-zero for all m ≤ B. Note that,
since z0 6= 0, this holds for all but finitely many points in V by our claim.
By Remark 2.3.9, the curve ER is isomorphic to the elliptic curve in A2

given by equation (2.14), where zR = z0. We identify ER with this model.
Let DR be the point on ER as in Notation 2.3.7, and note that DR is
defined over k because R is. Write

ξR = ξD(xR, z0), γR = γD(xR, z0),

then we have DR = (ξR, γR) by Remark 2.3.9, and since q(xR, z0) 6= 0, the
point DR is non-zero on ER.
Note that for m ≥ 1, the polynomial ψm(xR, ξ, γ) ∈ k[ξ, γ] is the m-th
division polynomial of ER, as defined in [Sil09, Exercise 3.7], and from
the same reference we know that DR is m-torsion for m ≥ 2 if and only if
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ψm(xR, ξR, γR) = ψm,x̃(xR) = 0. Since we chose R such that ψm,x̃(xR) 6= 0
for all m ≤ B, we conclude that DR is non-torsion on ER. This, together
with the proof of the claim below, proves the propostion.
Proof claim.
We prove this by induction. Set k ≥ 2, and assume that the claim holds
for m < 2k+ 1 (note that this is indeed the case for k = 2). Then we have

deg
(
Nk+2N

3
k

)
= 21((k + 2)2 − 1) + 63(k2 − 1) = 21(4k2 + 4k);

deg
(
Nk−1N

3
k+1

)
= 21((k − 1)2 − 1) + 63((k + 1)2 − 1) = 21(4k2 + 4k),

so we find

deg(Nk+1N
3
k ) = deg

(
Nk−1N

3
k+1

)
= 21((2k + 1)2 − 1). (2.17)

Completely analogously, we find that the denominators of ψk+2,x̃ψ
3
k,x̃ and

ψk−1,x̃ψ
3
k+3,x̃ are both equal to d(2k+1)2−1. Combining this with (2.17), we

find from the recursion in (2.15) that the denominator of ψ2k+1,x̃ is equal
to d(2k+1)2−1, that the degree of N2k+1 is at most 21((2k + 1)2 − 1), and
that the coefficient of the monomial x̃21((2k+1)2−1) in N2k+1 is given by
ck+2c

3
k − ck−1c

3
k+1, which by induction is equal to

(k + 2)(1
2z

8
0)(k+2)2−1k3(1

2z
8
0)3(k2−1)

− (k − 1)(1
2z

8
0)(k−1)2−1(k + 1)3(1

2z
8
0)3((k+1)2−1)

= (k3(k + 2)− (k − 1)(k + 1)3)(1
2z

8
0)4k2+4k

= (2k + 1)(1
2z

8
0)(2k+1)2−1.

Since the latter is non-zero we conclude that it is the leading coefficient
of N2k+1, so we find c2k+1 = (2k + 1)(1

2z
8
0)(2k+1)2−1, and we conclude

deg(N2k+1) = 21((2k + 1)2 − 1). This finishes the proof of the claim for
m = 2k + 1; we will now prove it for m = 2k + 2 in a similar way. By
induction, we have
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deg
(
N2
kNk+1Nk+3

)
= 42(k2 − 1) + 21((k + 1)2 − 1)

+ 21((k + 3)2 − 1)
= 21((2k + 2)2 − 1 + 3)

deg
(
Nk−1Nk+1N

2
k+2

)
= 21((k − 1)2 − 1) + 21((k + 1)2 − 1)

+ 42((k + 2)2 − 1)
= 21((2k + 2)2 − 1 + 3),

so we find

deg
(
N2
kNk+1Nk+3

)
= deg

(
Nk−1Nk+1N

2
k+2

)
= 21((2k + 2)2 − 1) + deg (N2) . (2.18)

Analogously we find that the denominators of both ψ2
k,x̃ψk+1,x̃ψk+3,x̃ and

ψk−1,x̃ψk+1,x̃ψ
2
k+2,x̃ are equal to d(2k+2)2−1d22−1. Combining this with

(2.18), we find from the recursion in (2.16) that the denominator of ψ2k+2
is equal to d(2k+2)2−1, that the degree of N2k+2 is at most 21((2k+2)2−1),
and that the coefficient of the monomial x̃21((2k+2)2−1) in N2k+2 is given
by 1

c2
(c2
kck+1ck+3 − ck−1ck+1c

2
k+2), which by induction is equal to

1
c2

(
k2(1

2z
8
0)2(k2−1)(k + 1)(1

2z
8
0)(k+1)2−1(k + 3)(1

2z
8
0)(k+3)2−1

−(k − 1)(1
2z

8
0)(k−1)2−1(k + 1)(1

2z
8
0)(k+1)2−1(k + 2)2(1

2z
8
0)2(k+2)2−2

)
= 1
c2

(
(k2(k + 1)(k + 3)− (k − 1)(k + 1)(k + 2)2)(1

2z
8
0)4k2+8k+6

)
= 1
c2

(
2(1

2z
8
0)3(2k + 2)(1

2z
8
0)(2k+2)2−2

)
= 1
c2

(
c2(2k + 2)(1

2z
8
0)(2k+2)2−1

)
= (2k + 2)(1

2z
8
0)(2k+2)2−1.

Since the latter is non-zero we conclude that it is the leading coefficient
of N2k+2, so we find c2k+2 = (2k + 2)(1

2z
8
0)(2k+2)2−1, and we conclude

deg(N2k+2) = 21((2k + 2)2 − 1). This finishes the proof of the claim for
m = 2k + 2. The rest of the claim now follows from induction.

We are now ready to prove Proposition 2.2.6. Recall that for a point
P ∈ S \ {(1 : 1 : 0 : 0)}, we denote by PE the corresponding point on E .
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By the fiber of PE we mean the fiber of the elliptic fibration ν : E −→ P1

that contains PE ; see also Notation 2.2.3.

Proof of Proposition 2.2.6. Let k be a number field, and let P be
a point P = (x0 : y0 : z0 : 1) as in Proposition 2.2.6. Since P is defined
over k and PE has infinite order on its fiber, the set P = {nPE : n ∈ Z \ 0}
contains infinitely many points on the fiber of PE that are all defined
over k and have non-zero y, z-coordinates. Since the strict transform of
an exceptional curve on S is a section of E (Remark 1.4.20), there are
at most 240 points in P that are contained in the strict transform of an
exceptional curve on S (Table 1.1). Let V1 be the set of these points. Let
V2 be the set of points (xR : yR : z0 : 1) ∈ P such that xR is a root of the
polynomial q(x̃, z0) ∈ k[x̃] defined in (2.9); there are at most 25 points in
V2. For all points R in P \V1, the curve CR is defined over k, and it either
contains a section defined over k, or is geometrically integral of genus at
most 1, by Lemma 2.3.4. Let V3 be the set in P \ (V1∪V2) for which CR is
geometrically integral of genus 1, and for which the elliptic curve ER has
rank 0 over k; the set V3 is finite by Proposition 2.3.10. We conlude that
the set P \ (V1 ∪ V2 ∪ V3) contains infinitely many points, and all integers
n for which nPE is in this set satisfy the statement in Proposition 2.2.6.

2.4 Proof of the main result
In this section we prove Theorem 2.2.1. Let A, B, k, S, and E be as in the
theorem (in particular, k is now a number field), and recall Notation 2.2.3.

Proof of Theorem 2.2.1. Let P be a point satisfying the conditions
in Theorem 2.2.1. By Proposition 2.2.6, there exists an integer n such
that one of the following holds.

(i) CnPE has a component that is a section defined over k,

(ii) CnPE is a 3-section of E of geometric genus 0, or

(iii) CnPE is a 3-section of E whose normalization is an elliptic curve
with positive rank over k.

Choose such an n and set R = nPE . Note that in case (i) we are done
by Remark 2.1.5. In case (ii), the desingularization of CR is a smooth
curve of genus 0. Since R is not a triple point on CR, the latter contains
a rational point given by the unique other point in the intersection of
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CR with the fiber of R, hence CR has infinitely many k-rational points.
In case (iii), CR contains infinitely many k-rational points as well. Now
assume we are in case (ii) or (iii). Then CR contains infinitely many k-
rational points, and since CR intersects each fiber of E in 3 points counted
with multiplicity, this implies that CR intersects infinitely many fibers in
a k-rational point. We show that infinitely many of these points are non-
torsion on their fiber. Note that every smooth fiber is an elliptic curve
over k, hence there is an upper bound B = B(k) such that on all the
fibers, all the torsion points have order at most B [Mer96]. Let m ≤ B be
an integer, and let Tm be the zero locus of the m-th division polynomial
ψm ∈ k[x, y, t] of the generic fiber E over the function field k(t). We have
ψm ∈ k[x, t], and for any τ ∈ k, the polynomial ψm(x, τ) ∈ k[x] has degree
m2 [Sil09, Exercise III.3.7]. So Tm is an m2-section of E . Moreover,
for every smooth fiber Et, the intersection of Tm with Et is exactly the
set of m-torsion points on Et, which has size m2 [Sil09, Exercise III.3.7
and Corollary III.6.4]. It follows that Tm intersects every smooth fiber
of E in m2 points, all with multiplicity 1. In particular, the curve CR is
not a component of Tm, since in all three cases above, CR intersects the
smooth fiber of P in a point with multiplicity 2. Therefore, the curve CR
intersects Tm only in finitely many points. Since all the torsion points
on the fibers of E are contained in the finite union ∪m≤BTm, we conclude
that CR intersects only finitely many fibers in a torsion point. Since we
already showed that CR intersects infinitely many fibers in a k-rational
point, this implies that CR intersects infinitely many fibers in a k-rational
point that is non-torsion on its fiber. We conclude that infinitely many
smooth fibers of E have infinitely many k-rational points. Since a smooth
fiber Et is closed and irreducible in E , it follows that Et ∩ E(k) = Et. So
E(k) contains infinitely many one-dimensional irreducible subsets, which
implies that it is of dimension 2, and since E is irreducible we conclude
that E(k) = E , i.e., the set of k-rational points of E is dense in E . Since E
and S are birationally equivalent, it follows that S(k) is dense in S as well.
Conversely, if S did not contain a point P as in the theorem, then S(k)
would be contained in the union of the torsion locus ∪m≤BTm with the
two fibers (1 : 0) and (0 : 1) and the singular fibers, which is a strict closed
subset of S, hence S(k) would not be dense in S.
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2.5 Examples
We conclude this chapter by giving two examples where we prove the den-
sity of the set of rational points on specific del Pezzo surfaces of degree 1.
The rank of the Mordell–Weil group over Q of the surfaces in Examples
2.5.1 and 2.5.2 is 0 by [DN, Corollary 2.4 and Figure 5], so in these cases
the density of the set of Q-rational points can not be proven by the exis-
tence of a section over Q (see also Remark 2.1.5).

Example 2.5.1. Let k be a number field and let S be the del Pezzo
surface of degree 1 in P(2, 3, 1, 1) given by

y2 = x3 + 6(27z6 + w6).

Note that S does not satisfy the conditions of [VA11, Theorem 1.1] since
3 · 27 is a square and gcd(6 · 27, 6) 6= 1, hence the density of the set of
Q-rational points could not be proven by Várilly-Alvarado [VA11, Exam-
ple 7.2]. However, the fiber E(1:1) of the anticanonical elliptic surface E
above (1 : 1) is smooth, and with magma we find that this fiber has rank 2.
So S contains a point that lies on a smooth fiber of E and has infinite
order, hence S(k) is dense in S by Theorem 2.2.1.
We illustrate this by constructing a 3-section as in (2.2). With magma
we find two generators for E(1:1)(Q), given by P1 = (1 : 13 : 1 : 1) and
P2 = (22 : 104 : 1 : 1). The curve CP1 is cut out from S by

3xz − 26y + 323z3 + 12w3,

and it has geometric genus 1. We find CP1 ∩ E(1:1) = {P1, Q1} with
Q1 =

(
−1343

676 : 222431
17576 : 1 : 1

)
. The elliptic curve E = (C̃P1 , Q1) is given by

Weierstrass equation

γ2 = ξ3 − 2 · 34 · 52 · 28368481,

and the point D = σ(Q1)+σ2(Q1) has infinite order on E; its ξ-coordinate
is given by

ξD = 11 · 33487 · 580020724757
(2 · 12 · ·167 · 523)2 ,

so D has infinite order on E by a result of Lutz and Nagel ([Corollary
VIII.7.2][Sil09]). We conclude that the 3-section CP1 has infinitely many
k-rational points. Equivalently, we could have used the point P2 to create
a 3-section with infinitely many k-rational points: the curve CP2 is cut
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out from S by 1452xz− 208y− 10324z3 + 12w3; it has geometric genus 1,
the third point of intersection of CP2 with the fiber E(1:1) is given by
Q2 =

(
12793
2704 : −2327053

140608 : 1 : 1
)
, and the point σ(Q2) + σ2(Q2) again has

infinite order on the elliptic curve (C̃P2 , Q2). We conclude that also CP2

has infinitely many k-rational points.

Example 2.5.2. Let k be a number field and consider the del Pezzo
surface S of degree 1 in P(2, 3, 1, 1) given by

y2 = x3 + 243z6 + 16w6.

Note that this surface does not satisfy the conditions of [VA11, Theo-
rem 1.1], so the method there failed in this case [VA11, Remark 7.4].
Salgado and van Luijk made the observation that this surface contains
the point P = (0 : 4 : 0 : 1), which is 3-torsion on its fiber on E (more
generally, a surface of the form y2 = x3 + β2w6 has the 3-torsion point
(0 : β : 0 : 1)). However, this point is contained in 9 exceptional curves,
so their method does not work with P . They did not find another point
for which the computations were doable to show density of S(k) [SvL14,
Examples 7.3 and 4.4 (iii)]. Finally, Elkies showed that the set S(Q) is
Zariski-dense in S, by constructing a multisection with infinitely many
rational points in the linear system | − 3KS | that contains P as a point of
multiplicity 3 (this idea was generalized to any surface with a torsion point
in the master thesis [Bul18], though under the assumption that at least
one of the infinitely many multisections constructed there has infinitely
many rational points).
We prove the density of S(k) in S using Theorem 2.2.1: with magma we
find that the fiber E(1:5) above (1 : 5) is smooth and has rank 2, so S
contains a point that lies on a smooth fiber of E and has infinite order (for
example P = (−63 : −14 : 1 : 5)), hence S(k) is dense in S.
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