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1

Background

This chapter contains the background for the rest of this thesis. We as-
sume that the reader is familiar with basic algebraic geometry, and more
specifically with schemes, divisors, Picard groups, and the process of blow-
ing up a scheme in a point. A classic reference for this is [Har77]. We
introduce del Pezzo surfaces, and we focus especially on del Pezzo surfaces
of degree 1 in Section 1.4. In Sections 1.1, 1.3, 1.4.1, and 1.4.3, we work
with del Pezzo surfaces over any field; most results in Sections 1.2 and
1.4.2, however, only hold over algebraically closed fields.

1.1 Del Pezzo surfaces
Definition 1.1.1. A variety is a separated scheme of finite type over
a field. A variety is nice if it is projective, smooth, and geometrically
integral.

Definition 1.1.2. A curve is a variety of pure dimension 1, and a surface
is a variety of pure dimension 2.

Notation 1.1.3. For a field k, we denote by k a fixed algebraic closure
and by ksep the separable closure of k in k. For a ring A, an A-algebra
B, and a scheme X over Spec A, we denote by X ×A B the base change
X ×Spec A Spec B.
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1. BACKGROUND

Definition 1.1.4. A del Pezzo surface is a nice surface with ample anti-
canonical divisor. The degree of a del Pezzo surface is the self-intersection
number of the anticanonical divisor.

If X is a del Pezzo surface of degree d, then, since −KX is ample, there
is an integer m > 0 such that −mKX determines an embedding of X
into some projective space. The degree of X under this embedding is
(−mKX)2 = m2K2

X , so we have d = K2
X > 0. Moreover, d is an integer

between 1 and 9 [Man86, 24.3 (i)]. A well-known class of del Pezzo surfaces
consists of those of degree 3, which are exactly the smooth cubic surfaces
in P3.

Remark 1.1.5. For d ≥ 3, the anticanonical divisor of a del Pezzo surface
of degree d is very ample, and defines an embedding of the surface into a
projective space of dimension d [Kol96, III.3.4.3, III.3.5.2]; the image is a
surface of degree d. Del Pezzo surfaces of degree 2 are exactly the smooth
hypersurfaces of degree 4 in the weighted projective space P(2, 1, 1, 1),
and del Pezzo surfaces of degree 1 are exactly the smooth hypersurfaces of
degree 6 in the weighted projective space P(2, 3, 1, 1) (see [Kol96, III.3.5];
we will show this for the latter in Section 1.4.1).

Remark 1.1.6. If X is a del Pezzo surface over a perfect field k, then
the base change X = X ×k k is a del Pezzo surface too: assume that
−KX is ample, then we have −KX · C > 0 for every irreducible curve
C on X. Now let D be an integral curve on X, and let C be the image
of D on X under the map X −→ X. The pullback of C to X consists
of the Galois conjugates D1, . . . , Dn of D under the action of the Galois
group G =Gal(k/k). Since −KX · C > 0, and the intersection pairing is
preserved under base change, we have

∑n
i=1−KX · Di = −KX · C > 0.

Since G acts transitively on the set {D1, . . . , Dn} [Sta20, Tag 04KY], it
follows that −KX · D > 0. Finally, from (−KX)2 > 0 it follows that
(−KX)2 > 0, and therefore −KX is ample by Nakai-Moishezon [Har77,
Theorem V.1.10].

Del Pezzo surfaces over a separably closed field are birationally equivalent
to the projective plane. To state a more precise version of this we introduce
the notion of general position.

Definition 1.1.7. For r ≤ 8, points P1, . . . , Pr in P2 are in general posi-
tion if no three of them lie on a line, no six of them lie on a conic, and no
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1.2. THE GEOMETRIC PICARD GROUP

eight of them lie on a singular cubic with one of these eight points at the
singularity.

Theorem 1.1.8. A del Pezzo surface of degree d over a separably closed
field k is isomorphic to either P1

k×P1
k, in which case d = 8, or to P2

k blown
up at r ≤ 8 k-rational points in general position, in which case d = 9− r.

Proof. Manin proved this for k algebraically closed in [Man86, 24.4]; the
result for k separably closed followes from [Coo88, Propositions 5 and 7],
see for example [VA09, Theorem 2.1.1].

The previous theorem and Remark 1.1.6 show that a del Pezzo surface
over a perfect field k becomes birationally equivalent to P2 after a base
change to the algebraic closure of k; varieties with this property are called
geometrically rational. In Theorem 1.3.6 we state Iskoviskih’s classificaton
of all geometrically rational surfaces.

1.2 The geometric Picard group
Since del Pezzo surfaces are nice, we can identify their Picard group with
their Weil divisor class group [Har77, II.6.16]. In this section we state some
results about the Picard group of a del Pezzo surface over an algebraically
closed field; in this case we can easily describe the Picard group as a result
of Theorem 1.1.8. We spend particular attention to the exceptional classes
in the Picard group. Our main reference for this theory is [Man86].

Let k be an algebraically closed field. Let X be a del Pezzo surface of
degree d over k, and assume that X is isomorphic to P2 blown up in
r = 9 − d points P1, . . . , Pr in general position. Let KX be the class in
Pic X of a canonical divisor of X, and for i ∈ {1, . . . , r}, let Ei be the
class in Pic X corresponding to the exceptional curve above Pi. Finally,
let L be the class in Pic X corresponding to the pullback of a line in P2

that does not contain any of the points P1, . . . , Pr.

Theorem 1.2.1. The Picard group Pic X is ismorphic to Z10−d. More-
over, the set {L,E1, . . . , Er} forms a basis for Pic X, and we have −KX =
3L−

∑r
i=1Ei.

Proof. This follows from Theorem 1.1.8 and [Man86, 20.9.1 and 20.10].
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1. BACKGROUND

Remark 1.2.2. By Theorem 1.1.8, our assumptions on X are satisfied
by all del Pezzo surfaces except for a del Pezzo surface of degree 8 that is
isomorphic to P1 × P1. The Picard group of such a surface is isomorphic
to Z⊕ Z.

For i, j ∈ {1, . . . , r}, i 6= j, we have Ei · Ej = 0, L · Ei = 0, L2 = 1, and

E2
i = −1, −KX · Ei = 1. (1.1)

Besides E1, . . . , Er, there are more classes in Pic X satisfying (1.1). In
the rest of this section we will list results about these so-called exceptional
classes.

Definition 1.2.3. Let Y be a nice surface with canonical class KY . An
exceptional class in Pic Y is a class D with D2 = D · KY = −1. An
exceptional curve on Y is an irreducible curve on Y whose class in Pic Y
is an exceptional class.

Every exceptional class in Pic X contains exactly one exceptional curve
on X [Man86, 26.2 (i)].

For d ≥ 3, the anticanonical divisor −KX determines an embedding ϕ of
X in Pd (see Remark 1.1.5). If this is the case, and if C is an exceptional
curve on X, then its image ϕ(C) has degree −KX · C = 1, hence ϕ(C)
is a line on ϕ(X). Therefore one often refers to exceptional curves on del
Pezzo surfaces as lines.

Remark 1.2.4. By Castelnuovo’s contraction theorem, an exceptional
curve C on a nice surface Y can be ‘blown down’ in the sense that there
exists a nonsingular projective surface Y0 with a point P , and a morphism
f : Y −→ Y0, such that f is the blow-up of Y0 in P , and C = f−1(P )
[Har77, Theorem V.5.7]. If Y is a del Pezzo surface, then Y0 is a del Pezzo
surface too [Man86, 24.5.2 (i)], of degree one higher than Y .

Proposition 1.2.5. Every geometrically integral curve on X with neg-
ative self-intersection is an exceptional curve, and isomorphic to P1.

Proof. This is in [Man86, 24.3 (ii)]; it follows from adjunction.

The following proposition tells us exactly what the exceptional classes in
Pic X look like. Recall that d is the degree of X, and r = 9− d.
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1.2. THE GEOMETRIC PICARD GROUP

Proposition 1.2.6. For d ≤ 8, the exceptional classes in Pic X are those
of the form aL−

∑r
i=1 biEi where r = 9− d, and (a, b1, . . . , br) is given by

taking the first r + 1 entries of any of the rows of the following table for
which the remaining d − 1 entries are zero, and permuting b1, . . . , br. So
for d = 1 all rows are used, for d = 2 only rows 1–4, for d = 3, 4 rows 1–3,
for d = 5, 6, 7 rows 1–2, and for d = 8 row 1.

a b1 b2 b3 b4 b5 b6 b7 b8
0 −1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
2 1 1 1 1 1 0 0 0
3 2 1 1 1 1 1 1 0
4 2 2 2 1 1 1 1 1
5 2 2 2 2 2 2 1 1
6 3 2 2 2 2 2 2 2

Proof. [Man86, 26.1]

From this table we find the number of exceptional classes in Pic X, de-
pending on d. Since every exceptional class in Pic X contains exactly one
exceptional curve on X, this equals the number of exceptional curves.

d 1 2 3 4 5 6 7 8
# exceptional classes 240 56 27 16 10 6 3 1

Table 1.1: Number of exceptional classes in Pic X, depending on the
degree of X.

Remark 1.2.7. We give a geometric description of the table in Propo-
sition 1.2.6 [Man86, 26.2]: an exceptional class of the form D = aL −∑r
i=1 biEi, with (a, b1, . . . , br) a vector given by Proposition 1.2.6, is either

one of the Ei, where i ∈ {1, . . . , r} (which is the case if bi = −1), or it is
the class corresponding to the strict transform of a curve in P2 of degree
a, going through Pi with multiplicity bi for each i.

Let I be the set of exceptional classes in Pic X, and let I0 be the set

{(e1, . . . , er) ∈ Ir | ∀i 6= j : ei · ej = 0}.

Note that (E1, . . . , Er) is an element in I0. We will show that every element
in I0 gives rise to a basis for Pic X.
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Lemma 1.2.8. For (e1, . . . , er) ∈ I0, there is a morphism f : X −→ P2,
and points Q1, . . . , Qr ∈ P2 that are in general position, such that f is the
blow-up of P2 at Q1, . . . , Qr, and, for all i, the element ei is the class in
Pic X of the exceptional curve above Qi.

Proof. Recall that we can blow down an exceptional curve onX and obtain
a del Pezzo surface of degree d+ 1 (Remark 1.2.4). Since the exceptional
curves in the classes e1, . . . , er are pairwise disjoint, after blowing down one
of them the remaining ones are exceptional curves on the resulting surface.
Therefore we can repeatedly blow down the exceptional curves in all the
classes e1, . . . , er. It follows that we obtain a morphism f : X −→ P2,
which is the blow-up in r points Q1, . . . , Qr. If Q1, . . . , Qr were not in
general position, then X would contain curves with self-intersection ≤ −2,
contradicting Proposition 1.2.5.

Let ι = (e1, . . . , er) be an element in I0, and Q1, . . . , Qr ∈ P2 as in the
previous lemma. Then we have KX = −3l +

∑r
i=1 ei, where l is the class

of the strict transform of a line in P2 not containing any of the Qi, and it
follows that {l, e1, . . . , er} forms a basis for Pic X (Theorem 1.2.1).

Remark 1.2.9. Let V be the set of 240 vectors (a, b1, . . . , br) that are in
the table in Proposition 1.2.6 (where the bi can be permuted). We have a
map

f : I0 −→ HomSet(I, V )
as follows. For ι = (e1, . . . , er) ∈ I0, let l be the unique class in Pic X
such that KX = −3l +

∑r
i=1 ei. Then we define f(ι) as follows.

f(ι) : I −→ V, e 7−→ (e · l, e · e1, . . . , e · er).

The map f(ι) is a bijection with inverse f(ι)−1((a, b1, . . . , br)) = al −∑r
i=1 biei ∈ I. We conclude that every element of I0 gives rise to a bijection

between I and V .

1.3 Minimality
In this section we consider del Pezzo surfaces over non-algebraically closed
fields. We state a useful classification ofminimal del Pezzo surfaces (Theo-
rem 1.3.4). Recall that for a field k we denote by ksep its separable closure.
From [Coo88, Proposition 5] it follows that the exceptional curves on a
nice surface over a field k are all defined over ksep.
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Definition 1.3.1. A nice surface X over a field k is minimal if there
is no set of pairwise disjoint exceptional curves on X that form an orbit
under the action of Gal(ksep/k) on Pic (X ×k ksep).

Note that this definition makes sense when we consider Remark 1.2.4; dis-
joint exceptional curves that are conjugate under the action of Gal(ksep/k)
can be blown down simultaneously. Since after blowing down one obtains
a surface that has smaller Picard number, this is a finite process that
results in a minimal surface.

If k = ksep, then a minimal del Pezzo surface over k is isomorphic to
either P2 or P1 × P1; this follows from the definition of minimality and
from Theorem 1.1.8. For general k, the minimal del Pezzo surfaces are
classified in Theorem 1.3.4. We first introduce the following definition.

Definition 1.3.2. A rational conic bundle is a minimal nice geometri-
cally rational surface X with a morphism f : X −→ C to a nice curve C
of genus 0, such that the generic fiber of f is a smooth curve of genus 0.

The following theorem describes the geometric fibers of a rational conic
bundle.

Theorem 1.3.3. If X is a rational conic bundle over a perfect field k
with morphism f : X −→ C, then any reducible fiber of the base change
fk : X ×k k −→ C ×k k consists of two exceptional curves on X ×k k that
intersect in a point and are conjugate under the action of Gal(k/k).

Proof. [Has09, Theorem 3.6]

We can now classify all minimal del Pezzo surfaces.

Theorem 1.3.4. Let X be a del Pezzo surface of degree d over a field k.
(i) If d = 3, 5, 6, 9, then X is minimal if and only if Pic X ' Z.

(ii) If d = 1, 2, 4, then X is minimal if and only if Pic X ' Z, or
Pic X ' Z⊕ Z and X is a rational conic bundle.

(iii) If d = 8 then X is minimal if and only if Pic X ' Z, or X ' C×C ′,
where C,C ′ are smooth curves of genus 0.

(iv) If d = 7 then X is not minimal.
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1. BACKGROUND

Proof. [Isk80, Corollary of Theorems 5, 4, and 1, before paragraph 4]

Remark 1.3.5. In case (ii) of Theorem 1.3.4, the surface X admits two
representations as a conic bundle; see [Isk80, Theorem 5].

Theorem 1.3.6 classifies all geometrically rational surfaces.

Theorem 1.3.6. Let X be a smooth projective geometrically rational
surface over a field k. Then X is birationally equivalent (over k) to one of
the following surfaces.

(i) A quadric in P3
k;

(ii) a del Pezzo surface;

(iii) a rational conic bundle.

Proof. [Isk80, Theorem 1]

1.4 Del Pezzo surfaces of degree 1
In this section we focus on del Pezzo surfaces of degree 1, which are the
main objects of study in this thesis. In Section 1.4.1 we show that a del
Pezzo surface X of degree 1 with canonical divisor KX can be embedded
as a smooth sextic in the weighted space P(2, 3, 1, 1), and we describe the
different maps induced by the linear systems | − 3KX |, | − 2KX |, and
| −KX |. In Section 1.4.2 we describe how the exceptional curves on a del
Pezzo surface of degree 1 over an algebraically closed field can be identified
with the classical root system E8. Finally, in Section 1.4.3 we study the
elliptic surface that arises from a del Pezzo surface of degree 1 by blowing
up the base point of the anticanonical linear system.

1.4.1 The anticanonical model and linear systems

Let X be a del Pezzo surface of degree 1 over a field k with anticanonical
divisor −KX . We start this section by recalling some concepts associated
to divisors on X.

Definition 1.4.1. For a divisor D on X, we define L(D) to be the k-
vector space consisting of all the rational functions over k on X with poles
at most at D. We denote its dimension by l(D). The complete linear
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1.4. DEL PEZZO SURFACES OF DEGREE 1

system |D| associated to D consists of all effective divisors on X that are
linearly equivalent to D.

For a divisor D on X, the map f 7−→ div(f) + D induces a bijection
between the space (L(D)− 0)/k∗ and the complete linear system |D|.

Definition 1.4.2. A linear system onX is a subset L of a complete linear
system |D| for some divisor D on X, such that the image of L under the
bijection α : |D| −→ (L(D)−0)/k∗, together with 0, is a sub-vector space,
say V , of L(D). The dimension of L is dimkV − 1.

Definition 1.4.3. A base point of a linear system L on X is a point
P ∈ X such that P ∈ C for all divisors C ∈ L.

Let L be a non-empty linear system on X, such that L corresponds to the
sub-vector space V ⊂ L(D) for some divisor D on X. Then L determines
a rational map ϕL : X 99K Pnk , where n is the dimension of L. If L is
base-point-free, then ϕL is a morphism.

We describe the anticanonical model of X.

Definition 1.4.4. The anticanonical ring of X is the graded ring

R(X,−KX) =
⊕
m≥0
L(−mKX),

and the anticanonical model of X is the scheme Proj R(X,−KX).

Since −KX is ample, the ring R(X,−KX) is non-empty and non-zero, so
the anticanonical model of X is well defined. Moreover, X is isomorphic to
Proj R(X,−KX) [Kol96, III.3.5]. We construct the anticanonical model
for X, following [CO99].

Lemma 1.4.5. For all positive integers m we have

l(−mKX) = 1 + 1
2m(m+ 1)d.

Proof. [Kol96, III.3.2.5.2].

By the previous lemma, we have l(−KX) = 2. Let {z, w} be a basis
for L(−KX). For all m ≥ 1, the elements zm, zm−1w, . . . , zwm−1, wm

are linearly independent in L(−mKX) by [CO99, 2.3]. Therefore, since
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l(−2KX) = 4, we can choose an element x ∈ L(−2KX) such that the set
{z2, zw,w2, x} forms a basis for L(−2KX). The elements z3, z2w, zw2, w3,
zx, wx in L(−3KX) are linearly independent [CO99, p.1200]. Since we
have l(−3KX) = 7 we can therefore choose an element y ∈ L(−3KX)
to obtain a basis {z3, z2w, zw2, w3, zx, wx, y} of L(−3KX). Finally, since
l(−6KX) = 22, the 23 elements

z6, z5w, z4w2, z3w3, z2w4, zw5, w6, x3, x2z2, x2w2, x2zw, xz4, xz3w,

xz2w2, xzw3, xw4, xyz, xyw, y2, yz3, yz2w, yzw2, yw3

of L(−6KX) are linearly dependent. Let h(x, y, z, w) = 0 be a dependence
relation between them. We can rescale x and y such that the coefficients
of the monomials x3 and y2 are ±1, and write

h = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6, (1.2)

where ai ∈ k[z, w] is homogeneous of degree i for each i in {1, . . . , 6}.
Let k[x, y, z, w] be the graded k-algebra where x has degree 2, y has de-
gree 3, and z, w have degree 1. Then the anticanonical model of X is
Proj k[x, y, z, w]/(h).

The linear system | − 3KX |

The linear system | − 3KX | induces an embedding of X into P6, with
coordinates {z3, z2w, zw2, w3, zx, wx, y}. This embedding factors through
the anticanonical model of X.

For the rest of this section we identify X with its anticanonical model,
that is, the zero locus of h in Pk(2, 3, 1, 1), where h is given by (1.2).

The linear system | − 2KX |

Let p : Pk(2, 3, 1, 1) 99K Pk(2, 1, 1) be the projection to (x : z : w); its
restriction to X is a morphism of degree 2. Let i : Pk(2, 1, 1) ↪→ P3

k be
the 2-uple embedding, sending (x : z : w) to (x : z2 : zw : w2). Write
(α0, α1, α2, α3) for the coordinates of P3

k, then i(Pk(2, 1, 1)) is a cone Q
given by α2

2 = α1α3, with vertex v = (1 : 0 : 0 : 0). The composition
ϕ = i ◦ p : X −→ P3

k is a double cover of Q, and this is the morphism
defined by the linear system | − 2KX |. If char k 6= 2 then we can do a
coordinate change such that h is given by y2 − x3 − a′2x2 − a′4x− a′6, and
the morphism ϕ is ramified at the points (x : y : z : w) ∈ X for which

x3 + a′2x
2 + a′4x+ a′6 = 0. (1.3)
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1.4. DEL PEZZO SURFACES OF DEGREE 1

In that case, the branch locus of ϕ is the union of v and the curve B
that is the intersection of the cubic surface in P3

k defined by (1.3) with
Q, and B is a smooth integral curve of degree six and genus four [CO99,
Proposition 3.1]. In the case char k = 2, the morphism ϕ is ramified at
the points (x : y : z : w) ∈ X for which a1x+a3 = 0, and the branch curve
of ϕ is smooth if and only if the intersection of the zero loci of a1 and a3
in P1 is empty [CO00, Remark 2.5].

The linear system | −KX |

The linear system | −KX | defines a rational map µ : X 99K P1
k, projecting

to the coordinates z, w. This is not defined in the point O = (1 : 1 : 0 : 0),
which is the unique base point of |−KX |. Let E be the blow-up of X in O,
then the rational map µ induces a morphism ν : E −→ P1

k. This gives E
the structure of an elliptic surface; see Section 1.4.3.

Some of the rational maps and morphisms described above are shown in
the following commutative diagram.

P1
k

E X Pk(2, 3, 1, 1) Pk(2, 1, 1)

Q

P3
k

π

ν

µ

|−KX |

|−2KX |
ϕ

p

i

'

1.4.2 Exceptional curves and the E8 root system

Let X be a del Pezzo surface of degree 1 over an algebraically closed field.
Recall that Pic X contains exactly 240 exceptional classes (Table 1.1);
let I be the set of these classes. In this section we describe the relation
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between I and the root system E8. In particular, we show that the group
of permutations of I that preserve the intersection pairing is isomorphic
to the automorphism group of E8 (Corollary 1.4.10), which gives us a
very useful tool when studying configurations of exceptional curves. Root
systems arise in the study of many different objects, such as Lie groups
and the classification of singularities on varieties. We will only treat a
very small fraction of the theory of root systems here and in Chapter 3.
Useful references for more on root systems are [Bou68] and [Hum72].

We start by recalling the definition of a root system.

Definition 1.4.6. Let V be a finite-dimensional vector space over R with
a positive-definite inner product 〈·, ·〉. A root system in V is a finite set
R of non-zero vectors, called roots, that satisfy the following conditions:

(i) the roots span V ;

(ii) for all r ∈ R, we have λr ∈ R =⇒ λ = ±1;

(iii) for all r, s ∈ R, we have s− 2r 〈r,s〉〈r,r〉 ∈ R;

(iv) for all r, s ∈ R, the number 2 〈r,s〉〈r,r〉 is an integer.
The rank of R is the dimension of V .

Definition 1.4.7. If R is a root system in a vector space V with in-
ner product 〈·, ·〉, and S is a root system in a vector space W with in-
ner product [·, ·], then R and S are isomorphic if there is an isomor-
phism of vector spaces ϕ : V −→ W , which sends R to S, and such that
[ϕ(r1), ϕ(r2)] = 〈r1, r2〉 for all r1, r2 ∈ R.

Let Λ be the E8 lattice, given by

Λ =
{
a ∈ Z8 +

〈(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)〉 ∣∣∣∣∣
8∑
i=1

ai ∈ 2Z
}
⊂ R8.

This is the unique positive-definite, even, unimodular lattice of dimen-
sion 8 [MH73, II.§6]. The set

E8 = {a ∈ Λ | ‖a‖ =
√

2}

forms a root system in R8, known as the E8 root system. [Hum72, 12.1].
We will show that Pic X contains a subset R that forms a root system
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1.4. DEL PEZZO SURFACES OF DEGREE 1

isomorphic to E8 (Proposition 1.4.8), and we will give a bijection between
R and I (Remark 1.4.9).

Recall that X is isomorphic to P2 blown up in 8 points P1, . . . , P8 in
general position (Theorem 1.1.8). Let KX be the class in Pic X of a
canonical divisor of X. For i ∈ {1, . . . , 8}, let Ei be the class in Pic X
corresponding to the exceptional curve above Pi, and let L be the class in
Pic X corresponding to the pullback of a line in P2 that does not contain
any of the points P1, . . . , P8. Consider the subgroup

K⊥X = {D ∈ Pic X | D ·KX = 0} ⊂ Pic X,

and its subset
R = {D ∈ K⊥X | D2 = −2}.

Let
(
K⊥X , 〈·, ·〉

)
be the vector space R ⊗Z K

⊥
X with inner product 〈·, ·〉

defined as the negative of the intersection pairing in Pic X.

Proposition 1.4.8. The set R is a root system of rank 8 in
(
K⊥X , 〈·, ·〉

)
.

Moreover, it is isomorphic to E8, and every element in R can be given as a
linear combination with integer coefficients of the elements r1, . . . , r8 ∈ R,
given by

E1 − E2, E2 − E3, . . . , E7 − E8, L− E1 − E2 − E3.

Proof. In [Man86, Propositions 25.1.1 and 25.2] it is shown that R is a
root system of rank 8; in [Man86, Theorem 25.4 and Proposition 25.5.6]
it is shown that this root system is isomorphic to E8, and the basis is
given.

Remark 1.4.9. For e ∈ I we have e+KX ∈ K⊥X and 〈e+KX , e+KX〉 = 2,
and this gives a bijection

I −→ R, e 7−→ e+KX .

For e1, e2 ∈ I we have 〈e1 + KX , e2 + KX〉 = 1 − e1 · e2, where · is the
intersection pairing in Pic X.

As a consequence of Proposition 1.4.8 and the bijection in Remark 1.4.9
we have the following result.

Corollary 1.4.10. The group of permutations of I that preserve the
intersection pairing is isomorphic to the Weyl groupW8, which is the group
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of permutations of E8 generated by the reflections in the hyperplanes
orthogonal to the roots.

Proof. [Man86, 25.1.1 and 23.9]

Another way of phrasing Corollary 1.4.10 is that the weighted graphs on I
and E8 and their automorphism groups are isomorphic (Corollary 1.4.14).

Definition 1.4.11. By a graph we mean a pair (V,D), where V is a set
of elements called vertices, and D a subset of the power set of V such that
every element in D has cardinality 2; elements in D are called edges, and
the size of the graph is the cardinality of V . A graph (V,D) is complete
if for every two distinct vertices v1, v2 ∈ V , the pair {v1, v2} is in D.
By a weighted graph we mean a graph (V,D) with a map ψ : D −→ A,
where A is any set, whose elements we call weights; for any element d
in D we call ψ(d) its weight. If (V,D) is a weighted graph with weight
function ψ, then we define a weighted subgraph of (V,D) to be a graph
(V ′, D′) with map ψ′, where V ′ is a subset of V , while D′ is a subset of
the intersection of D with the power set of V ′, and ψ′ is the restriction of
ψ to D′. A clique of a weighted graph is a complete weighted subgraph.
An isomorphism between two weighted graphs (V,D) and (V ′, D′) with
weight functions ψ : D −→ A and ψ′ : D′ −→ A′, respectively, consists of
a bijection f between the sets V and V ′ and a bijection g between the sets
A and A′, such that for any two vertices v1, v2 ∈ V , we have {v1, v2} ∈ D
with weight w if and only if {f(v1), f(v2)} ∈ D′ with weight g(w). We
call the map f an automorphism of (V,D) if (V,D) = (V ′, D′), ψ = ψ′,
and g is the identity on A.

Definition 1.4.12. By Γ we denote the complete weighted graph whose
vertex set is the set of roots in E8, and where the weight function is
induced by the dot product. Similarly, by G we denote the complete
weighted graph whose vertex set is I, and where the weight function is the
intersection pairing in Pic X.

We can rephrase Remark 1.4.9 and Corollary 1.4.10 in terms of Γ and G
as follows.

Remark 1.4.13. There is an isomorphsim of weighted graphs between G
and Γ, that sends a vertex e in G to the corresponding vertex e + KX

in Γ, and an edge d = {e1, e2} in G with weight w to the edge δ =
{e1 + KX , e2 + KX} in Γ with weight 1 − w. The different weights that

20



1.4. DEL PEZZO SURFACES OF DEGREE 1

occur in G are 0, 1, 2, and 3, and they correspond to weights 1, 0,−1,
and −2, respectively, in Γ.

Corollary 1.4.14. The weighted graphs G and Γ have isomorphic au-
tomorphism groups, given by the Weyl group W8.

1.4.3 The anticanonical elliptic surface

Let k be a field, and S a del Pezzo surface of degree 1 over k. In this
section we give more details about the surface E that was introduced in
Section 1.4.1: it is obtained from S by blowing up the base point O of
the anticanonical linear system | − KS |. We show that it is an elliptic
surface, and we study the sections of this surface and relate these to the
exceptional curves on S (Proposition 1.4.21). For more theory on elliptic
surfaces, see [Shi90] and [SS10].

Definition 1.4.15. An elliptic surface Y is a nice surface with a sur-
jective morphism f : Y −→ C, where C is a nice curve, such that the
following holds.

• The morphism f admits a section, that is, a morphism s: C −→ Y such
that

f ◦ s = idC .

• Almost all fibers of f are elliptic curves.
• No fibers of f contain an exceptional curve of Y .
We call the morphism f an elliptic fibration.

We will now describe the surface E , and show that it is an elliptic surface
over P1 (Lemma 1.4.16). We use the same notation as in Section 1.4.1;
specifically, we identify the surface S with the smooth sextic in Pk(2, 3, 1, 1)
with coordinates (x : y : z : w) given by h = 0, where

h = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6,

with ai ∈ k[z, w] homogeneous of degree i for each i. The point O is
then given by (1 : 1 : 0 : 0), and the blow-up of S in O is denoted by
π : E −→ S. We follow [VAZ09, 7.3] to describe E : it is the subscheme of
Pk(2, 3, 1, 1)× P1

k given by

E :
{
y2 + a1xy + a3y − x3 − a2x

2 − a4x− a6 = 0;
vz − uw = 0,
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where u, v are the coordinates of P1
k. The projection to P1

k is the morphism
ν : E −→ P1

k, which was also introduced in Section 1.4.1. Outside the
exceptional divisor of π, which is given by Õ = {(1 : 1 : 0 : 0)} × P1

k ⊂ E ,
we have (u : v) = (z : w). Set t = u

v , which gives z = tw on E . The generic
fiber of ν is a cubic curve over the function field k(t) of P1, and it is the
subset of Pk(t)(2, 3, 1) given by

E : y2 + wa1(t, 1)xy + w3a3(t, 1)y − x3 − w2a2(t, 1)x2

− w4a4(t, 1)x− w6a6(t, 1) = 0.

Let A2
k(t) be the affine open subset w 6= 0 of Pk(t)(2, 3, 1) with coordinates

X = x
w2 , Y = y

w3 . The intersection of E with A2
k(t) is given by

Y 2 + a1 (t, 1)XY + a3 (t, 1)Y = X3 + a2(t, 1)X2 + a4(t, 1)X + a6(t, 1).

Since S is smooth and geometrically rational, the discriminant ∆ of E is
a polynomial in k[t] of degree between 10 and 12 [SS10, 4.3, 4.4, 8.2, 8.3].
In particular, ∆ is not identically 0, so E is an elliptic curve over k(t).
Similarly, for (u0 : v0) ∈ P1

k, the fiber ν−1((u0 : v0)) is isomorphic to the
cubic curve in P2

k with affine Weierstrass equation

Y 2 + a1 (u0, v0)XY + a3 (u0, v0)Y = X3 + a2(u0, v0)X2

+ a4(u0, v0)X + a6(u0, v0). (1.4)

This is an elliptic curve for all (u0 : v0) ∈ P1
k such that v0 6= 0 and

∆(u0
v0

) 6= 0. Therefore, all but finitely many fibers of ν are elliptic curves,
with zero-point given by the intersection with the exceptional divisor Õ.

Let KE be the canonical divisor on E .

Lemma 1.4.16. The surface E is an elliptic surface with elliptic fibration ν.
Moreover, every fiber of ν is linearly equivalent to −KE and has self-
intersection 0.

Proof. We already showed that almost every fiber of ν is an elliptic curve,
so we only have to show that no fibers of ν contain an exceptional curve
on E . Since all fibers of ν are given by (1.4), they are integral, so the
only way they could contain an exceptional curve is if they are one. Since
ν restricted to E \ Õ is the map µ induced by the anticanonical linear
system | −KS | (see Section 1.4.1), the fibers of ν are linearly equivalent
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to −KE = π∗(−KS) + Õ. Since all fibers of ν are linearly equivalent and
pairwise disjoint, they have self-intersection 0. Therefore no fiber is equal
to an exceptional curve. We conclude that E is an elliptic surface with
elliptic fibration ν.

Remark 1.4.17. The set of k(t)-rational points on E forms a group, the
Mordell–Weil group of E over k(t) or of E [Shi90, Theorem 1.1]. This
group is torsion-free and has rank at most 8 over k [Shi90, Theorem 10.4].
The set of sections of ν form a group as well, and the map

P = (XP , YP ) 7−→
(
s : P1 \ {(1 : 0)} −→ E , (t : 1) 7−→ (XP (t), YP (t), t)

)
induces an isomorphism between the group of k(t)-rational points on E
and the group of sections of ν that are defined over k [Sil94, Proposi-
tion 3.10]. As a consequence of this correspondence, we sometimes talk
about a k-section as a morphism P1

k −→ E , and sometimes as a curve on
E , whose generic point is the corresponding k(t)-rational point on E.

The following definition generalizes the notion of section.

Definition 1.4.18. A multisection of degree d or d-section of E is an
irreducible curve C contained in E such that the projection ϕ|C : C −→ P1

k

is non-constant and of degree d.

Remark 1.4.19. Note that a section is a multisection of degree 1, and in
a similar way as with sections, the d-sections of E correspond to points on
the generic fiber E of E that are defined over a degree d extension of k(t).

We end this chapter by showing that the exceptional curves on S induce
sections of ν, and by giving a characterization of these sections on E .

Remark 1.4.20. Since exceptional curves on S are defined over a sepa-
rable closure of k (Theorem 1.1.8), from [VA08, Theorem 1.2] it follows
that the exceptional curves on S are exactly the curves given by

x = p(z, w), y = q(z, w),

where p, q ∈ k[z, w] are homogeneous of degrees 2 and 3. Note that this
implies that an exceptional curve never contains O = (1 : 1 : 0 : 0).
Therefore, for an exceptional curve C on S, its strict transform π∗(C)
on E satisfies

π∗(C)2 = −1, π∗(C) · −KE = π∗(C) · (π∗(−KS) + Õ) = 1 + 0 = 1,
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so π∗(C) is an exceptional curve on E as well. Moreover, since a fiber of ν
is linearly equivalent to −KE , the curve π∗(C) intersects every fiber once.
This gives a section of ν.

Proposition 1.4.21. Let C be a section of ν on E . The following are
equivalent.

(i) C is the strict transform of an exceptional curve on S.

(ii) C is of the form

x = p(z, w), y = q(z, w),

where p, q ∈ k[z, w] are homogeneous of degree 2 and 3.

(iii) C is disjoint from Õ.

Proof. (i) is equivalent to (ii) by Remark 1.4.20, and (ii) and (iii) are
equivalent by [Shi90, Lemma 10.9].
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