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Introduction

Del Pezzo surfaces are surfaces that can be classified by their degree,
which is an integer between 1 and 9. They are named after Pasquale
del Pezzo, who studied surfaces of degree d in Pd, corresponding to del
Pezzo surfaces of degree at least 3; well-known examples are smooth cubic
surfaces in P3. Over an algebraically closed field, del Pezzo surfaces are
birationally equivalent to the projective plane, and therefore they have a
geometric structure that is easy to describe. However, for lower degree
del Pezzo surfaces, this structure is rich enough to provide interesting
questions. Moreover, over a non-algebraically closed field k, del Pezzo
surfaces are in general not birationally equivalent to the projective plane,
and therefore their set of k-rational points can a priori take many forms.

This thesis contains results on both the arithmetic (Chapter 2) and the
geometry (Chapters 3–5) of del Pezzo surfaces of degree 1.

Chapter 1 covers the necessary background, assuming the reader is already
familiar with basic algebraic geometry. Del Pezzo surfaces are defined
there, and it is shown that they contain a finite number of exceptional
curves (also called lines), based on the degree of the surface. A well-
known example of this is the fact that smooth cubic surfaces over C contain
exactly 27 lines. From Section 1.4 on, the focus is on del Pezzo surfaces
of degree 1. Such a surface, over a field k, can be defined as the set
of solutions in the weighted projective space P(2, 3, 1, 1) with coordinates
x, y, z, w to an equation of the form

y2 + a1(z, w)xy+ a3(z, w)y = x3 + a2(z, w)x2 + a4(z, w)x+ a6(z, w), (1)
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where ai ∈ k[z, w] is homogeneous of degree i for each i. The two main
features of del Pezzo surfaces of degree 1 that are covered are their associ-
ated elliptic surface, which is obtained by blowing up the base point of the
anticanonical linear system, and the connection between their exceptional
curves and the root system E8.

In Chapter 2, which is joint work with Julie Desjardins, we study the
k-rational points on a family del Pezzo surfaces of degree 1, where k is
a number field. These correspond to the solutions to (1) for which all
coordinates are elements in k. Our main result is the following.

Theorem 1. Let k be a number field, let A,B ∈ k be non-zero, and let
S in P(2, 3, 1, 1) be the del Pezzo surface of degree 1 over k given by

y2 = x3 +Az6 +Bw6. (2)

Let E be the elliptic surface obtained by blowing up the base point of the
linear system |−KS |. Then the set of k-rational points on S is dense in S
with respect to the Zariski topology if and only if S contains a k-rational
point P with non-zero z, w coordinates, such that the corresponding point
on E lies on a smooth fiber and is non-torsion on that fiber.

As mentioned before, if k is a non-algebraically closed field, it is in gen-
eral not true that a del Pezzo surface over k is birationally equivalent to
the projective plane. One measure of ‘how close’ a variety is to being
birational to projective space is unirationality: a variety X over a field k
is k-unirational if there is a dominant map Pnk 99K X for some n. Del
Pezzo surfaces of degree at least 2 have been known to be k-unirational
for any field k, with an extra condition for degree 2 (summarized in Theo-
rem 2.1.3). For minimal del Pezzo surfaces of degree 1, for a long time no
results on unirationality were known, and only recently Kollár and Mella
proved that those with Picard rank 2 are unirational [KM17]. Outside
this case, the question of k-unirationality for minimal del Pezzo surfaces
of degree 1 is wide open. Even though these surfaces always contain a k-
rational point, we do not have any example of a minimal del Pezzo surface
of degree 1 with Picard rank 1 that is known to be unirational, nor of one
that is known not to be unirational.
For an infinite field k, the k-unirationality of a variety X implies that
the set X(k) of k-rational points is Zariski-dense in X. Partial results on
the Zariski density of the set of rational points on del Pezzo surfaces of
degree 1 are known, though most results either depend on conjectures, or
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give sufficient conditions that might not be necessary (for an overview,
see Section 2.1). Theorem 1 is the first result that gives necessary and
sufficient conditions for the set of k-rational points of the family given by
(2) to be Zariski-dense, where k is any number field.
After finishing this thesis, Jean-Louis Colliot-Thélène showed us that we
can generalize the part of the proof where we show that the conditions are
sufficient to any field of characteristic 0 (these conditions are in general
not necessary if k is not a number field). We will include this result in the
paper that is based on Chapter 2.

Chapters 3 and 4 are adaptations of the preprints [vLWa] and [vLWb],
respectively, which have been submitted to journals. As mentioned before,
a del Pezzo surface of degree d over an algebraically closed field contains
a finite number of exceptional curves, which depends on the degree d.
When studying arithmetic questions, the configuration of these curves
can be important. For example, one of the conditions that the authors of
[SvL14] impose on a del Pezzo surface of degree 1 for the set of rational
points to be dense, is for the existence of a point that is not contained in
six exceptional curves. Moreover, from [STVA14, Corollary 18], it follows
that the set of rational points on a del Pezzo surface of degree 2 is dense
if it contains a point that is not contained in four exceptional curves, and
lies outside a specific closed subset of the surface. A natural question is
therefore the following.

Question 1. Let P be a point on a del Pezzo surface S of degree 1 over
an algebraically closed field. How many exceptional curves of S can go
through P?

The analogue to Question 1 has been known classically for del Pezzo sur-
faces of degree at least 2. As an example, del Pezzo surfaces of degree 3
contain 27 exceptional curves, and the maximal number of intersecting
exceptional curves is 3. The intersection graph of these curves, where
each vertex represents a curve and two vertices are connected if the cor-
responding curves intersect, contains no fully connected subgraph of size
bigger than 3, so the graph immediately gives a sharp upper bound for
the number of intersecting exceptional curves. This is also the case for del
Pezzo surfaces of degree 2, which contain 56 exceptional curves, of which
at most 4 go through a single point. For del Pezzo surfaces of degree 1,
which contain 240 exceptional curves, we do not get a sharp upper bound
outside characteristic 2 just by looking at the intersection graph. The
latter contains fully connected subgraphs of size 16, but we prove that the
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answer to Question 1 is 10 outside characteristics 2 and 3. More precicely,
if S is a del Pezzo surface of degree 1 given by (1), then S is a double
cover ϕ : S −→ Q of a cone Q in P3, ramified over a sextic curve, and in
Chapter 4 we prove the following two theorems.

Theorem 2. Let S be a del Pezzo surface of degree 1, and let P be a
point on the ramification curve of ϕ. The number of exceptional curves
that go through P is at most ten if char k 6= 2, and at most sixteen if
char k = 2.

Theorem 3. Let S be a del Pezzo surface of degree 1, and let P be a
point on S outside the ramification curve of ϕ. The number of exceptional
curves that go through P is at most ten if char k 6= 3, and at most twelve
if char k = 3.

Chapter 4 is based on work by the same author in [Win14]; Theorem 2 is
stated there, as well as the weaker version of Theorem 3 that for a point P
ouside the ramification curve, there are at most 12 exceptional curves go-
ing through P and at most 10 in characteristic 0. In Chapter 4 we extend
these results to all characteristics, and we give examples that show that
the upper bounds are sharp in all characteristics except possibly charac-
teristic 5. Moreover, we heavily reduce the use of computer computations
in the proof of [Win14, Proposition 4.29]; this is done in Section 4.4.

The 240 exceptional curves on a del Pezzo surface of degree 1 are in one-
to-one correspondence with 240 vectors in R8 that form the E8 root sys-
tem. As a consequence of this correspondence, the intersection graph on
the exceptional curves, where edges have weight w if the corresponding
exceptional curves have intersection multiplicity w, is isomorphic to the
graph Γ where vertices represent the vectors in E8, and where two vertices
are connected by an edge of weight a if the two corresponding vectors have
dot product a in R8. In order to prove Theorems 2 and 3 we use results
on Γ that were already in [Win14], and are now part of Chapter 3. The
graph Γ is too big to let a computer find all the information we needed
there in a reasonable time. However, Γ has 696,729,600 symmetries (the
automorphism group is the Weyl group W8), which can be used to reduce
computations.

In Chapter 3 we extend the results on Γ that were in [Win14] to a thor-
ough study of the action ofW8 on Γ. The root system E8 pops up in many
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branches of mathematics and physics (for example Lie groups, sphere pack-
ings, string theory). This chapter can be read separately from the rest of
the thesis, and is also interesting for the reader that wants to know about
the E8 root system without any interest in del Pezzo surfaces. However,
using the relation with del Pezzo surfaces of degree 1, this chapter also
gives a list of all potentially possible configurations of a maximal set of
exceptional curves that all intersect in a point. In Theorem 3.1.3 we prove
that for a large class of subgraphs of Γ, any two subgraphs from this class
are isomorphic if and only if there is a symmetry of Γ that maps one to
the other. We also give invariants that determine the isomorphism type of
a subgraph. Moreover, in Theorem 3.1.4 we show that for two isomorphic
subgraphs G1, G2 from this class that do not contain one of 7 specific
subgraphs, any isomorphism between G1 and G2 extends to a symmetry
of the whole graph Γ. These results reduce computations on the graph Γ
significantly, since they allow us to study many subgraphs by choosing one
representative from their isomorphism class.

In Theorem 1 we require the existence of a point on a del Pezzo surface
of degree 1 that is non-torsion on its fiber in the corresponding elliptic
fibration. This requirement seems to be related to the existence of a
point not being contained in too many exceptional curves: in Section 4 of
[SvL14], where many examples of del Pezzo surfaces of degree 1 are given,
every point on such a surface that is contained in at least 6 exceptional
curves corresponds to a point which is torsion on its fiber. It is therefore
a natural question to ask whether there is a relation between these two
situations.

Question 2. Let S be a del Pezzo surface of degree 1, and let P be
a point on S. If ‘many’ exceptional curves on S intersect in P , is the
corresponding point on the elliptic surface constructed from S then a
torsion point on its fiber?

Of course, the word ‘many’ has to be specified in the above question.
Kuwata proved that for del Pezzo surfaces of degree 2, if we take ‘many’
to be 4, the analogous question has a positive answer; see [Kuw05]. This
number is also the maximal number of exceptional curves that can in-
tersect in a point on the surface. In the case of del Pezzo surfaces of
degree 1, the question is more complicated, since more exceptional curves
can intersect in a single point, and in many different configurations.

In Chapter 5 we prove the following theorem.
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Theorem 4. Let S be a del Pezzo surface of degree 1, and let P be a
point on S. If at least 9 exceptional curves on S intersect in P , then the
corresponding point on the elliptic surface constructed from S is torsion
on its fiber.

To prove Theorem 4, we use results on the configurations of the 240 lines
on a del Pezzo surface of degree 1 from Chapter 3. Moreover, using results
from Chapter 4, we give examples of surfaces with 6 exceptional curves
that pass through a point P that does not correspond to a torsion point,
proving that in general the answer to Question 2 is negative if we take
‘many’ to be 6 or less. What still remains to be done are the cases of 7
and 8 exceptional curves that intersect in a point.
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